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Abstract: In this paper, we study analytical approximate solutions for second-order homogeneous
differential equations with the existence of only two turning points (but without poles) by using the
uniform asymptotic approximation (UAA) method. To be more concrete, we consider the Pöschl–
Teller (PT) potential, for which analytical solutions are known. Depending on the values of the
parameters involved in the PT potential, we find that the upper bounds of the errors of the approxi-
mate solutions in general are .0.15∼10% for the first-order approximation of the UAA method. The
approximations can be easily extended to high orders, for which the errors are expected to be much
smaller. Such obtained analytical solutions can be used to study cosmological perturbations in the
framework of quantum cosmology as well as quasi-normal modes of black holes.

Keywords: loop quantum cosmology; cosmological perturbations; power spectrum; black holes;
quasi-normal modes; gravitational waves
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1. Introduction

A century after the first claim by Einstein that general relativity (GR) needs to be
quantized, the unification of quantum mechanics and GR still remains an open question
despite enormous efforts [1,2]. Such a theory is necessary not only for conceptual reasons
but also for the understanding of fundamental issues, such as the big bang and black hole
singularities. Various theories have been proposed, and among them, string/M-Theory
and loop quantum gravity (LQG) have been extensively investigated [3–13]. Differences
between the two approaches are described in [14,15].

LQG was initially based on a canonical approach to quantum gravity (QG) introduced
earlier by Dirac, Bergmann, Wheeler, and DeWitt [16,17]. However, instead of using
metrics as the quantized objects [16,17], LQG is formulated in terms of densitized triads
and connections and is a non-perturbative and background-independent quantization of
GR [18,19]. The gravitational sector is described by the SU(2)-valued Ashtekar connection
and its associated conjugate momentum, the densitized triad, from which one defines the
holonomy of Ashtekar’s connection and the flux of the densitized triad. Then, one can
construct the full kinematical Hilbert space in a rigorous and well-defined way [7–13].
An open question of LQG is its semiclassical limit: that is, are there solutions of LQG that
closely approximate those of GR in the semiclassical limit?
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Although the above question still remains open, concrete examples can be found in
the context of loop quantum cosmology (LQC). (For recent reviews of LQC, see [20–30] and
references therein.) Physical implications of LQC have also been studied using the effective
descriptions of the quantum spacetimes derived from coherent states [31], whose validity
has been verified numerically for various spacetimes [32–37], especially for states sharply
peaked on classical trajectories at late times [38]. The effective dynamics provide a definitive
answer to the resolution of the big bang singularity [39–48], which is replaced by a quantum
bounce when the energy density of matter reaches a maximum value determined purely by
the underlying quantum geometry.

To connect LQC with observations, cosmological perturbations in LQC have been also
investigated intensively in the past decade, and a variety of different approaches to extend
LQC to include cosmological perturbations have been developed. These include the dressed
metric [49–51], hybrid [27,52–54], deformed algebra [55–58], and separate universe [59,60]
approaches. For a brief review on each of these approaches, we refer readers to [29].

One of the major challenges in the study of cosmological perturbations in LQC is
how to solve for the mode functions µk from the modified Mukhanov–Sasaki equation. So
far, this has mainly been done numerically [20–30]. However, this is often required to be
conducted with high-performance computational resources [61], which are not accessible
to the general audience.

In the past decade, we have systematically developed the uniform asymptotic approxi-
mation (UAA) method initially proposed by Olver [62–64] and have applied it successfully
to various circumstances [65–85] 1. In this paper, we continue work on this by considering
the case in which the effective potential has only zero points but without singularities. To be
more concrete, we consider the Pöschl–Teller (PT) potential, for which analytical solutions
are known [86]. The consideration of this potential is also motivated by the studies of
cosmological perturbations in dressed metric and hybrid approaches [87,88], in which it
was shown explicitly that the potentials for the mode functions can be well-approximated
by the PT potential with different choices of the PT parameters. In particular, in the dressed
metric approach, the mode function satisfies the following equation [87]

µ′′k (η) +
[
k2 − V (η)

]
µk(η) = 0, (1)

in which V (η) serves as an effective potential. During the bouncing phase, it is given by

Vdressed(η) ≡
γBm2

Pl(3− γBt2/t2
Pl)

9(1 + γBt2/t2
Pl)

5/3
, (2)

where γB is a constant introduced in [87], and mPl and tPl are, respectively, the Planck mass
and time. This potential can be well-approximated by a PT potential

VPT(η) =
V0

cosh2 α(η − ηB)
, (3)

with

V0 =
γBm2

Pl
3

=
α2

6
. (4)

Here η is the conformal time related to the cosmic time t by dη = dt/a(t). On the other
hand, in the hybrid approach, the effective potential is given by

VHybrid(η) = −
γBm2

Pl(1− γBt2/t2
Pl)

9(1 + γBt2/t2
Pl)

5/3
, (5)
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which can be also modeled by the PT potential (3) but now with [88]

V0 =
m2

PlγB

9
, α2 =

2
3

m2
PlγB. (6)

For more details, we refer readers to [87,88].
The rest of the paper is organized as follows: In Section 2, we provide a brief review

of the UAA method with two turning points and show that the first-order approximate
solution will be described by the parabolic cylinder functions. In Section 3, we construct the
explicit approximate analytical solutions with the PT potential and find that the parameter
space can be divided into three different cases: (A) k2 � β2, (B) k2 ' β2, and (C) k2 � β2,
where k and β are real constants. After working out the error control function T (cf.
Appendix C) in each case, we are able to determine the parameter q0, which is introduced
in the process of the UAA method in order to minimize the errors. Then, we show the
upper bounds of errors of our approximate solutions with respect to the exact one given in
Appendix B. In particular, in Case A), the upper bounds are .0.15%, while in Case B), they
are no larger than 10%. In Case C), the errors are also very small, except for the minimal
points (cf. Figure 10), at which the approximate solutions deviate significantly from the
analytical one. The causes of such large errors are not known and are still under our
investigation. In each of these three cases, we also develop our numerical codes and find
that the numerical solutions trace the exact one very well and that the upper bounds of
errors are always less than 10−4% in each of the three cases. The paper ends with Section 4,
in which our main conclusions are summarized. There are also three Appendices A–C,
in which some mathematical formulas are presented.

2. The Uniform Asymptotic Approximation Method

Let us start with the following second-order differential equation

d2µk(y)
dy2 = f (y)µk(y). (7)

It should be noted that all second-order linear homogeneous ordinary differential equations
(ODEs) can be written in the above form by properly choosing the variable y and µk(y).
Instead of working with the above form, we introduce two functions g(y) and q(y), so that
the function f (y) takes the form [62]

f (y) = λ2g(y) + q(y), (8)

where λ is a large positive dimensionless constant and serves as a bookmark, so we can
expand µk(y) as

µk(y) =
∞

∑
n=0

µ
(n)
k (y)
λn . (9)

After all the calculations are done, one can always set λ = 1 by simply absorbing the factor
λ−n into µ

(n)
k (y). It should be noted that there exist cases in which the above expansion

does not converge, and in these cases, we shall expand µk(y) only to finite terms, say, N ,
so that µk(y) is well-approximated by the sum of these N terms. On the other hand, the
main reason to introduce two functions g(y) and q(y), instead of only f (y), is to minimize
errors by properly choosing g(y) and q(y).

In general, the function g(y) has singularities and/or zeros over the interval of our
interest. We call the zeros and singularities of g(y) turning points and poles, respectively.
The uniform asymptotic approximate (UAA) solutions of µk(y) depend on the properties of
g(y) around their poles and turning points [62–64]. The cases in which g(y) has both poles
and turning points were studied in detail in [67,69,74], so in this paper, we shall focus
ourselves on the cases where singularities are absent and only turning points exist. As to
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be shown below, the treatments of these cases will be different from the ones considered
in [67,69,74]. In particular, in our previous studies, the function q(y) was uniquely deter-
mined by requiring that the error control function be finite and minimized at the poles, while
in the current cases, no such poles exist. So to fix q(y), other analyses of the error control
function must be carried out.

2.1. The UAA Method

The UAA method includes three major steps: (i) the Liouville transformations, (ii) the
minimization of the error control function, and (iii) the choice of the function y(ζ), where ζ
is a new variable. In the following, we shall consider each of them separately.

2.1.1. The Liouville Transformations

The Liouville transformations consist of introducing a new variable ζ(y), for which it
is assumed that the inverse y = y(ζ) always exists and is thrice-differentiable. Without loss of
generality, we also assume that y(ζ) is a monotonically increasing function (cf. Figure 1).
Then, in terms of U(ζ), which is defined by

U(ζ) ≡ ẏ−1/2µk, (10)

Equation (7) takes the form

d2U(ζ)

dζ2 =
[
λ2ẏ2g + ψ(ζ)

]
U(ζ), (11)

where

ẏ ≡ dy(ζ)
dζ

> 0, ζ ′(y) ≡ dζ(y)
dy

=
1
ẏ

, (12)

and

ψ(ζ) ≡ ẏ2q + ẏ1/2 d2

dζ2

(
ẏ−1/2

)
= ẏ2q− ẏ3/2 d2

dy2

(
ẏ1/2

)
≡ ψ(y). (13)

2 y

ζ

− ζ

ζ 0

0

y1

y

Figure 1. The function ζ(y) vs. y, which is assumed to be an always increasing function of y.

It should be noted that Equations (7) and (11) are completely equivalent, and so far, no
approximations have been taken. However, the advantage of the form of Equation (11) is
that by properly choosing q(y), the term |ψ(ζ)| can be much smaller than

∣∣λ2ẏ2g
∣∣: that is,∣∣∣∣ ψ

λ2ẏ2g

∣∣∣∣� 1, (14)
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so that the exact solution of Equation (7) can be well-approximated by the first-order
solution of Equation (11) with ψ(ζ) = 0. This immediately raises the question: how to
choose q(y) so that condition (14) holds. To explain this in detail, let us move onto the
next subsection.

2.1.2. Minimization of Errors

To minimize the errors, let us first introduce the error control function [62–64,67,69,74]

T (ζ) ≡ −
∫

ψ(ζ)

|ẏ2g|1/2 dζ. (15)

Then, introducing the free parameters an and bn into the functions g(y) and q(y), we have

g(y) = g(y, an), q(y) = q(y, bn), (16)

where n = 1, 2, ..., N, with N being an integer. It is clear that for such chosen g(y) and q(y),
the error control function T (ζ) will also depend on an and bn. To minimize the errors, one
way is to minimize the error control function by properly choosing an and bn so that

∂T (ζ, an, bn)

∂an
= 0,

∂T (ζ, an, bn)

∂bn
= 0,

(n = 1, 2, ..., N). (17)

2.1.3. Choice of y(ζ)

On the other hand, the errors also depend on the choice of y(ζ), which in turn sen-
sitively depends on the properties of the functions g(y) and q(y) near their poles and
turning points. In addition, it must be chosen so that the resulting equation of the first-
order approximation (obtained by setting ψ(ζ) = 0) can be solved explicitly (in terms of
known functions). Considering all the above, it has been found that y(ζ) can be chosen
as [62–64,67,69,74]

ẏ2g =


sgn(g), zero turning point,
ζ, one turning point,
ζ2

0 − ζ2, two turning point,

(18)

in the cases with zero, one, and two turning points, respectively. Here sgn(g) = 1 for g > 0,
and sgn(g) = −1 for g < 0.

In the rest of this paper, we shall consider only the cases with two turning points.

2.2. UAA Method for Two Turning Points

For the cases with two turning points, we can always write g(y) as

g(y) = p(y)(y− y1)(y− y2), (19)

where y1 and y2 are the two turning points, and p(y) is a function of y, with p(yi) 6= 0,
(i = 1, 2). In general, according to the properties of y1 and y2, we can divide all the cases
into three different subclasses:

1. y1 and y2 are two distinct real roots of g(y) = 0;
2. y1 = y2, a double real root of g(y) = 0;
3. y1 and y2 are two complex roots of g(y) = 0. Since g(y) is real, in this case, these two

roots must be complex conjugate, y1 = y∗2 .

To apply the UAA method to Equation (12), we assume that the following conditions
are satisfied [67,69,74]:
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• When far away from any of the two turning points, we require∣∣∣∣ q(y)g(y)

∣∣∣∣� 1. (20)

• When near any of these two points, we require∣∣∣∣ q(y)(y− yi)

g(y)

∣∣∣∣� 1, (i = 1, 2), (21)

provided that the two turning points are far away from each other: that is, when
|y1 − y2| � 1.

• If the two turning points are close to each other, |y1 − y2| ' 0, then near these points,
we require ∣∣∣∣ q(y)(y− y1)(y− y2)

g(y)

∣∣∣∣� 1. (22)

It should be noted that when |y2 − y1| � 1, the two turning points are far away,
and each of them can be treated as an isolated single turning point [62,63]. In addition,
without loss of generality, we assume that g(y) < 0 for y > y2 or y < y1 when y1
and y2 are real. When y2 and y1 are complex conjugate, we assume that g(y) < 0 (cf.
Figure 2). Then, in this case, we adopt a method to treat all these three classes listed above
together [64,67,69,74]. In particular, we choose ẏ2g as

ẏ2g = ζ2
0 − ζ2


> 0, g > 0,
= 0, g = 0,
< 0, g < 0,

(23)

so that ζ is an increasing function of y (cf. Figure 1) and√
|g(y)| dy =

√∣∣ζ2
0 − ζ2

∣∣ dζ. (24)

When we integrate the above equation, without loss of generality, we shall choose the
integration constants so that

ζ(y1) = −ζ0, ζ(y2) = ζ0. (25)

Then, we find that

ζ2
0 =


> 0, y1,2 real, and y1 6= y2,
= 0, y1,2 real, and y1 = y2,
< 0, y1,2 complex,

(26)

with

ζ2
0 = ± 2

π

∫ y2

y1

√
|g(y)|dy

= ± 2
π

∫ ζ0

−ζ0

√∣∣ζ2
0 − ζ2

∣∣dζ, (27)

where “ + ” corresponds to cases in which the two turning points y1 and y2 are both real,
and “− ” corresponds to cases in which the two turning points y1 and y2 are complex
conjugate. When y1 and y2 are complex conjugate, the integration of Equation (27) is along
the imaginary axis [64]. When the two real roots are equal, we have ζ0 = 0.
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β2 k
2

β2  k2

β2 < k2

-4 -2 2 4
y

-1

1

2

3

g(y)

Figure 2. The function g(y) defined by Equation (39) for different choices of k and β. In particular,
the dotted black line denotes the case k2 < β2, and the solid blue line denotes the case k2 = β2, while
the dash-dotted red line denotes the case k2 > β2.

To proceed further, let us first derive the relation between ζ(y) and y by first integrating
the right-hand side of Equation (24). To this goal, it is found to be easier to distinguish the
case in which y1 and y2 are real from the one in which they are complex conjugate.

2.2.1. When y1,2 Are Real

Let us first consider the case when y1 and y2 are real. Then, when y > y2, we have
ζ(y) > ζ0 (cf. Figure 1). Hence, from Equation (24), we find∫ y

y2

√
−g(y′)dy′ =

∫ ζ

ζ0

√
v2 − ζ2

0dv

=
1
2

ζ
√

ζ2 − ζ2
0 −

ζ2
0

2
ln

 ζ +
√

ζ2 − ζ2
0

ζ0


=

1
2

ζ
√

ζ2 − ζ2
0 −

ζ2
0

2
arcosh

(
ζ

ζ0

)
, (y ≥ y2). (28)

When y ≤ y1, we have ζ(y) ≤ −ζ0. Then, from Equation (24), we find∫ y1

y

√
−g(y′)dy′ =

∫ −ζ0

ζ

√
v2 − ζ2

0dv

= −1
2

ζ
√

ζ2 − ζ2
0 +

ζ2
0

2
ln

−ζ −
√

ζ2 − ζ2
0

ζ0


= −1

2
ζ
√

ζ2 − ζ2
0 −

ζ2
0

2
ln

−ζ +
√

ζ2 − ζ2
0

ζ0


= −1

2
ζ
√

ζ2 − ζ2
0 −

ζ2
0

2
arcosh

(
− ζ

ζ0

)
, (y ≤ y1). (29)

When y1 ≤ y ≤ y2, we have −ζ0 < ζ(y) < ζ0, and∫ y

y1

√
g(y′)dy′ =

∫ ζ

−ζ0

√
ζ2

0 − v2dv =
1
2

ζ
√

ζ2
0 − ζ2

+
ζ2

0
2

arccos
(
− ζ

ζ0

)
, (y1 ≤ y ≤ y2). (30)
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2.2.2. When y1,2 Are Complex Conjugate

Now let us turn to consider the case when y1 and y2 are complex. For this case, ζ2
0 is

always negative, ζ2
0 < 0; thus, from Equation (10), we find [64]

∫ y

0

√
−g(y′)dy′ =

∫ ζ

0

√
ζ2 − ζ2

0dζ

=
1
2

ζ
√

ζ2 − ζ2
0 −

ζ2
0

2
ln

 ζ +
√

ζ2 − ζ2
0

|ζ0|

. (31)

2.2.3. The First-Order Approximate Solutions

With the choice of Equation (23), we find that Equation (12) reduces to

d2U
dζ2 =

[
λ2
(

ζ2
0 − ζ2

)
+ ψ(ζ)

]
U, (32)

where we assume that ζ ∈ (−ζ2, ζ2), with ζ2 being a real and positive constant, which can
be arbitrarily large ζ2 → ∞.

Neglecting the ψ(ζ) term, we find that the approximate solutions can be expressed in
terms of the parabolic cylinder functions W( 1

2 λζ2
0,±
√

2λζ) [64], and are given by

U(ζ) = αk

{
W
(

1
2

λζ2
0,
√

2λζ

)
+ ε1

}

+βk

{
W
(

1
2

λζ2
0,−
√

2λζ

)
+ ε2

}
, (33)

from which we have

µk(y) = αk

(
ζ2 − ζ2

0
−g(y)

) 1
4 [

W
(

1
2

λζ2
0,
√

2λζ

)
+ ε1

]

+βk

(
ζ2 − ζ2

0
−g(y)

) 1
4 [

W
(

1
2

λζ2
0,−
√

2λζ

)
+ ε2

]
, (34)

where αk and βk are two integration constants, and ε1 and ε2 are the errors of the corre-
sponding approximate solutions, whose upper bounds are given by Equations (A1) and
(A2) in Appendix A.

For the choice of Equation (23), we find that the associated error control function
defined by Equation (15) now takes the form

T (ζ) = −
∫ ζ
{

q
g
− 5

16
g′2

g3 +
1
4

g′′

g2

}√
v2 − ζ2

0dv

+
∫ ζ
{

5ζ2
0

4(v2 − ζ2
0)

3
+

3
4(v2 − ζ2

0)
2

}√
v2 − ζ2

0dv

= −
∫ y{ q

g
− 5

16
g′2

g3 +
1
4

g′′

g2

}√
−gdy′

+
∫ ζ
{

5ζ2
0

4(v2 − ζ2
0)

5/2
+

3
4(v2 − ζ2

0)
3/2

}
dv, (35)
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for g < 0, and

T (ζ) =
∫ ζ
{

q
g
− 5

16
g′2

g3 +
1
4

g′′

g2

}√
ζ2

0 − v2dv

−
∫ ζ
{

5ζ2
0

4(v2 − ζ2
0)

3
+

3
4(v2 − ζ2

0)
2

}√
ζ2

0 − v2dv

=
∫ y{ q

g
− 5

16
g′2

g3 +
1
4

g′′

g2

}
√

gdy′

+
∫ ζ
{

5ζ2
0

4(ζ2
0 − v2)5/2

− 3
4(ζ2

0 − v2)3/2

}
dv, (36)

for g > 0.

3. UAA Solutions with the Pöschl–Teller Potential

To study the case in which only turning points exist, in this paper, we consider the
second-order differential Equation (7) with a Pöschl–Teller (PT) potential [87,88]

(
λ2g + q

)
= −

(
k2 −

β2
0

cosh2(αy)

)
, (37)

as in this case exact solutions exist, where k is the comoving wavenumber, and β0 is a real
and positive constant. The two parameters β0 and α determine the height and the spread of
the PT potential, respectively. Under the rescaling αy→ y, the α parameter can be absorbed
into the wavenumber k and β0 by redefining (k/α→ k, β0/α→ β0). As a result, there is
no loss of generality to set α = 1 from now on. Then, the exact solutions in this case exist
and are presented in Appendix B.

On the other hand, to apply the UAA method to this case and to minimize the errors
of the analytic approximate solutions, we tentatively choose q as

q =
q2

0

cosh2(y)
, (38)

where q0 is a free parameter to be determined below by minimizing the error control
function (15) with the choice of ẏ2g given by Equation (23). Then, we have

g(y) =
β2

cosh2(y)
− k2, (39)

where β ≡
√

β2
0 − q2

0. In this paper, without loss of generality, we shall choose q0 so that β

is always real: that is
β2 ≡ β2

0 − q2
0 > 0. (40)

Thus, from g(y) = 0 we find that the two roots are given by

yi = ± cosh−1 β

k
= ± cosh−1

√
β2

0 − q2
0

k
. (41)

It is clear that, depending on the relative magnitudes of β0 and k as well as the choices of q0,
two turning points can be either complex or real. In Figure 2, we plot out the three different
cases, k2 < β2, k2 = β2, and k2 > β2, from which it can be seen clearly that the two turning
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points are real and different for k2 < β2, real and equal for k2 = β2, and complex conjugate
for k2 > β2. Then, from Equations (38) and (39), we find that∣∣∣∣ q(y)g(y)

∣∣∣∣ =
∣∣∣∣∣ q2

0

β2 − k2 cosh2(y)

∣∣∣∣∣ ' q2
0e−2|y| (42)

for |y| � 0, ∣∣∣∣ q(y)(y− yi)

g(y)

∣∣∣∣ ' q2
0

y + yj
, (i 6= j) (43)

for |y| ' |yi| and |y1 − y2| � 1, and∣∣∣∣ q(y)(y− y1)(y− y2)

g(y)

∣∣∣∣ ' q2
0 (44)

for |y| ' |y1| and |y1− y2| ' 0. In the following, let us consider the three cases: (a) k2 � β2,
(b) k2 ' β2, and (c) β2 � k2 separately.

3.1. k2 � β2

In this case, we have g(y) is always negative, g(y) < 0, so that the two turning points
of g(y) = 0 are complex conjugate and are given by

y1 = y∗2 = −i cos−1
(

β

k

)
' − iπ

2
. (45)

As discussed in the last section, now ζ2
0 < 0, for which Equation (32) can be cast in

the form
d2W(ζ)

d2ζ
=
{
− λ2

(
ζ2 + ζ̂2

0

)
+ ψ

}
W(ζ), (46)

where ζ̂2
0 ≡ −ζ2

0 > 0. Note that in writing down the above equation, we replaced U with
W. In addition, the new variable ζ is related to y via

∫ y

0

√
−g(y)dy =

∫ ζ

0

√
v2 + ζ̂2

0dv =
1
2

ζ̂2
0 ln
(

ζ +
√

ζ2 + ζ̂2
0

)
+

1
2

ζ
√

ζ2 + ζ̂2
0 −

1
2

ζ̂2
0 ln ζ̂0, (47)

from which we find that ζ̂0 is given explicitly by

ζ̂2
0 = 2(k− β) > 0. (48)

Moreover, in the case of the PT potential, the integration of Equation (47) can be carried
out explicitly, giving

∫ y

0
dy
√
−g = εy

√
1− x2

√
k2 − β2 ×AppellF1

(
1
2

,−1
2

, 1,
3
2

;
1− x2

1− k2/β2 , 1− x2
)

, (49)

where εy denotes the sign of y, with x ≡ 1/ cosh(y), and AppellF1 is the Appell hypergeo-
metric function. Ignoring the ψ term in Equation (46), we find the general solution

µk(y) =

(
ζ2 + ζ̂2

0
−g(y)

)1/4{
αkW

(
−

ζ̂2
0

2
,
√

2ζ

)
+ βkW

(
−

ζ̂2
0

2
,−
√

2ζ

)}
, (50)

where W denotes the Weber parabolic cylinder function [89], and αk and βk are two integra-
tion parameters that generally depend on the comoving wavenumber k.
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The validity of the analytic solution (50) depends on the criteria given by
Equations (20)–(22), while its accuracy can be predicted by the error control function T . In
the current case, we find that T of Equation (35) can be written as a combination of the
three terms given by Equations (A10) 2, where

T1 =
∫ y

0

q√−g
dy =

q2
0εy

β
ln

(√
1− x2β +

√
k2 − β2x2√

k2 − β2

)
,

T2 =
∫ y

0

(
5g′2

16g3 −
g
′′

4g2

)√
−gdy = −εy

{
1

4β
ln

(√
1− x2β +

√
k2 − x2β2√

k2 − β2

)

−
√

1− x2 A
12(k2 − β2)(k2 − β2x2)3/2

}
,

T3 =
∫ ζ

0

(
−5ζ̂2

0

4
(
v2 + ζ̂2

0
)5/2 +

3

4
(
v2 + ζ̂2

0
)3/2

)
dv = −

ζ
(
ζ2 + 6ζ̂2

0
)

12ζ̂2
0
(
ζ2 + ζ̂2

0
)3/2 , (51)

where A is given by Equation (A12). It should be noted that T1, T2, and T3 given in
Equation (51) all vanish when y = 0 (for which we have x = 1 and ζ = 0); that is,

T (ζ = 0) = 0. (52)

Further, as the PT potential is an even function, the error control function is antisymmetric
about the origin: namely, T (−y) = −T (y). As a result, we will study its behavior only
on the positive y axis, y ≥ 0. With the help of Equation (47), the numeric value of the
error control function at any point y > 0 can be found from Equation (51). In particular,
for β/k� 1, we find that

T =
q2

0
k

√
1− x2 −

ζ
(
ζ2 + 6ζ̂2

0
)

12ζ̂2
0
(
ζ2 + ζ̂2

0
)3/2 +O

(
x2,

β2

k3

)

→ 1
24k

[(
24q2

0 − 1
)
−
(

β

k

)
+O

(
β2

k2

)]
, (53)

as x → 0 (or y → ∞). Note that ζ → ∞ as y → ∞, which can be seen clearly from
Equation (47). Thus, to minimize the error control function for very large values of y, we
must choose

q2
0 =

1
24
' 4.167× 10−2. (54)

In Figure 3, we plot the functions |q/g|, |q(y− y1)/g|, and |q(y− y1)(y− y2)/g| to-
gether with the error control function defined by Equations (A10)–(A12) for

(k, β) = (5.0, 1.0), with q0 being given by Equation (54). (Recall β0 ≡
√

β2 + q2
0.) From

these figures, it is clear that the conditions (20)–(22) are well-satisfied, and the error control
function remains small all the time. In particular, it decreases as β/k decreases.
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Figure 3. Plots of the quantities |q/g|, |q(y− y1)/g|, |q(y− y1)(y− y2)/g|, and the error control
function T for k = 5.0, β = 1.0, and q0 = 1/

√
24, for which we have y2 = y∗1 = 1.36944i.

In Figure 4, we plot the mode functions µk(y), µN
k (y), µE

k (y), and the relative difference
δA(y) defined by

δA(y) ≡
∣∣∣∣∣ |µk(y)| −

∣∣µA
k (y)

∣∣
µA

k (y)

∣∣∣∣∣, (55)

where A = (N, E), µk(y) denotes the mode function obtained by the UAA method given by
Equation (50), µN

k (y) is the numerical solution obtained by integrating Equation (7) directly
with the same initial conditions, while µE

k (y) is the exact solution given by Equation (A7).
From these figures, we can see that the maximal errors occur in the region near y = 0,
but the upper bound is no larger than 0.15% at any given y, including the region near y ' 0.

It is interesting to note that this analytical approximate solution is only up to the first-
order approximation of the UAA method. With higher-order approximations, the relative
errors are even smaller.

To check our numerical solutions, in Figure 4 we also plot the relative differences ε(y)
between µN

k (y) and µE
k (y), defined by

ε(y) ≡
∣∣∣∣∣
∣∣µN

k (y)
∣∣− ∣∣µE

k (y)
∣∣

µE
k (y)

∣∣∣∣∣. (56)

From these figures, it can be seen that ε(y) is no larger than 10−7, and our numerical code
is well-tested and justified.
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It is also interesting to note that the mode functions are oscillating for y . −10,
and these fine features are captured in all three mode functions, although there are some
differences in the details. Again, as shown by their relative variations, these differences
are very small. In addition, we also consider other choices of β and k and find that they all
have similar properties under the condition k2 � β2.
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Figure 4. Plots of the mode functions µk(y), µN
k (y), µE

k (y) and their relative differences δN(y), δE(y)
and ε(y) for k = 5.0, β = 1.0 and q0 = 1/

√
24, for which we have y2 = y∗1 = 1.36944i.

3.2. β2 ' k2

In this case, depending on k & β or k . β, the function g(y) has different prop-
erties, as shown in Figure 2. Therefore, in the following subsections, let us consider
them separately.

3.2.1. k & β

When k & β, the function g(y) is always non-positive for y ∈ (−∞, ∞). Then
from Equations (A10) and (51), we find that

T (y) '
q2

0 − 1/4
2β

ln
(

2
ε

)
+

9
48k

+O(ε), (57)
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as y → ∞, but now we have ε ≡ (k− β)/k. Thus, to have the error control function be
finite at y = ∞, now we must set

q2
0 =

1
4

, (58)

instead of the value given by Equation (54) for the case k � β2. In Figure 5, we plot the
quantities |q/g|, |q(y− y1)/g|, |q(y− y1)(y− y2)/g|, and the error control function T for
k = 5.0, β = 4.9, and q0 = 1/2, for which we have y1 = y∗2 = 0.200335i. From these figures,
we can see clearly that the conditions (20)–(22) are well-satisfied, and the error control
function remains small all the time. Then, the corresponding quantities µk(y), µN

k (y), µE
k (y),

δA(y), and ε(y) are plotted in Figure 6. From the curves of δN(y) and δE(y), we can see that
now the errors of the first-order UAA solution are ≤4%, which are larger than those of the
last subcase. This is mainly because of the fast oscillations of the solution in the region y < 0.
Therefore, in order to obtain solutions with high precision, high-order approximations for
this case are needed. However, we do like to note that our numerical solution still matches
the exact one very well, as shown by the curve of ε(y), which is no larger than 6.0× 10−6.
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Figure 5. Plots of the quantities |q/g|, |q(y− y1)/g|, |q(y− y1)(y− y2)/g|, and the error control
function T for k = 5.0, β = 4.9, and q0 = 1/2, for which we have y1 = y∗2 = 0.200335i.
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Figure 6. Plots of the mode functions µk(y), µN
k (y), and µE

k (y) and their relative differences
δN(y), δE(y), and ε(y) for k = 5, β = 4.9, and q0 = 1/2.

3.2.2. k . β

In this case, we find that

ζ2
0 =

2
π

∣∣∣∣∫ y2

y1

√
g(y) dy

∣∣∣∣ = 2|k− β|. (59)

On the other hand, from Equations (36), (A10) and (A13), we find that

T (y) '


ζ(0)(6ζ2

0−ζ2(0))
12ζ2

0(ζ2
0−ζ2(0))

3/2 , y→ 0,

π(q2
0−1/4)
2β , y→ y2,

(60)

where ζ(0) ≡ ζ(y)|y=0 < ζ0. Note that in calculating the error control function near the
turning point y ' y2, we used the relation

β

k2
√

β2 − k2

(
β2x2 − k2

)3/2
' 1

ζ0
(ζ2

0 − ζ2)3/2, (61)
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so that the divergence of the second term of T2 cancels exactly with that of T3. Equation (61)

can be obtained directly from the relation
√

gdy =
√

ζ2
0 − ζ2dζ for the case g ≥ 0. Similarly,

it can be shown that

T (y) '
q2

0 − 1/4
2β

ln
(

2
ε

)
, y→ ∞. (62)

It is clear that to minimize the errors, in the present case, q2
0 must also be chosen to be

q2
0 =

1
4

, (63)

as given by Equation (58). In Figure 7, we plot the quantities |q/g|,
|q(y− y1)/g|, |q(y− y1)(y− y2)/g|, and the error control function T for k = 5.0, β = 5.1,
and q0 = 1/2, for which we have y1 = −y2 = −0.199668. It is clear that in this case, the
two turning points are very close, and the conditions |q/g| � 1 and |q(y− y1)/g| � 1 are
violated near these points. However, the condition |q(y− y1)(y− y2)/g| � 1 holds near
them. So, conditions (20)–(22) are also satisfied, and the error control function remains
small all the time.
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Figure 7. Plots of the quantities |q/g|, |q(y− y1)/g|, |q(y− y1)(y− y2)/g|, and the error control
function T for k = 5.0, β = 5.1, and q0 = 1/2, for which we have y1 = −y2 = −0.199668.

Then, the corresponding quantities µk(y), µN
k (y), µE

k (y), δA(y), and ε(y) are plotted
in Figure 8. From the curves of δN(y) and δE(y), we can see that now the errors of the
first-order UAA solution are .10%. Similar to the last subcase, this is mainly because
of the fast oscillations of the solution in the region y < 0. Therefore, in order to obtain
high precision, high-order approximations for this case are needed, too. In addition, our
numerical solution still matches well with the exact one, as shown by the curve of ε(y),
which is no larger than 2.0× 10−6.
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Figure 8. Plots of the mode functions µk(y), µN
k (y), and µE

k (y) and their relative differences
δN(y), δE(y), and ε(y) for k = 5, β = 5.1, and q0 = 1/2.

3.3. β2 � k2

In this case, two real turning points appear, given, respectively, by

y1 = −y2 = − cosh−1
(

β2

k2

)
. (64)

Then, we find that Equations (59) and (60) still hold in the current case, while Equation (61)
is replaced by

T (y)→
q2

0 − 1/4
2β

ln
(

1 + ε

1− ε

)
+

4 + ε− 5ε2

24k(1− ε2)
, (65)

as y→ ∞, but now we have ε ≡ k/β. Combining Equations (59), (60) and (65), we find that
currently the proper choice of q0 is still that given by q0 = 1/2, as in the last two subcases.
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In Figure 9, we plot the quantities |q/g|, |q(y− y1)/g|, |q(y− y1)(y− y2)/g|, and
the error control function T for k = 0.6, β = 4.0, and q0 = 1/2, for which we have
y1 = −y2 ' −2.58459. From this figure, we can see that the preconditions (20)–(22) are
well-satisfied. Then, for the first-order approximation of the UAA method, the solution
can be approximated by Equation (34), where ζ2

0 is given by Equation (59), αk and βk are
two integration constants, and ε1 and ε2 are the errors of the corresponding approximate
solutions, whose upper bounds are given by Equations (A1) and (A2) in Appendix A.
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Figure 9. Plots of the quantities |q/g|, |q(y− y1)/g|, |q(y− y1)(y− y2)/g|, and the error control
function T for k = 0.6, β = 4.0, and q0 = 1/2, for which we have y1 = −y2 ' −2.58459.

In Figure 10a, we plot out our first-order approximate solution, while Figure 10b
is used to compare the approximate solution with the exact one, so e plot both of them.
In particular, the solid line represents the exact solution, while the red dotted line is the
approximate solution. From this figure, it can be seen that except for the minimal points,
the two solutions match well. However, at these extreme minimal points, they deviate
significantly from each. The causes of such errors are not clear, and we hope to come back
to this issue on another occasion.

Finally, similar to all other cases, our numerical solution still matches well with the
exact one, as shown by the curve of ε(y), which is no larger than 8.0× 10−6.
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Figure 10. Plots of the mode functions (a) µk(y), (c) µN
k (y), and (b) µE

k (y) and their relative differences
(d) δN(y), (e) δE(y), and (f) ε(y) for k = 0.6, β = 4.0, and q0 = 1/2, for which we have y1 = −y2 '
−2.58459.

4. Conclusions

In this paper, we have applied the UAA method to the mode function µk with a PT
potential, for which it satisfies the second-order differential equation

d2µk(y)
dy2 +

(
k2 −

β2
0

cosh y

)
µk(y) = 0, (66)

where k and β0 are real constants. In this case, the exact solution is known and is given by
Equation (A7). The implementation of the UAA method includes the introduction of an
auxiliary function q(y), which is taken as

q(y) =
q2

0
cosh y

, (67)
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where q0 is a free parameter. Then, we carry out the integration of the error control function,
defined by

T (ζ) ≡ −
∫

ψ(ζ)

|ẏ2g|1/2 dζ, (68)

where

ψ(ζ) ≡ ẏ2q + ẏ1/2 d2

dζ2

(
ẏ−1/2

)
,

ẏ2g = ζ2
0 − ζ2. (69)

Clearly, the error control function T (ζ) will depend on q0. After working out the details,
we find that it is convenient to distinguish between three cases: A) k2 � β2, B) k2 ' β2,
and C) k2 � β2, where β2 ≡ β2

0 − q2
0 > 0. In particular, in Case A), a proper choice of q0 is

q0 = 1/
√

24, while in Cases B) and C), it is q0 = 1/2.
Once q0 is fixed, the analytical approximate solutions are uniquely determined by the

linear combination of the two parabolic cylinder functions W(ζ2
0/2,±

√
2ζ), as shown by

Equation (34). In particular, in Case A), the upper bounds of errors are .0.15%, as shown
in Figure 4. In Case B), two subcases are considered: one with k & β and the other with
k . β. In the first case, the upper bounds of errors are . 4%, while in the second case, they
are . 10%, as shown, respectively, in Figures 6 and 8. In Case C), the approximate solutions
also trace very well to the exact one, except for the minimal points, as shown in Figure 10.
This might be caused by the fact that at these points, the mode function µk is almost zero,
and very small non-zero values will cause significantly deviations. We are still working on
this case and hope to come back to this point on another occasion.

As mentioned in the Introduction, the potentials of the mode functions in both dressed
metric and hybrid approaches can be well-modeled by PT potentials. Therefore, the current
analysis of the choice of the function q(y) and the minimization of the error control function
shall shed great light on how to carry out similar analyses in order to obtain more accurate
approximate solutions in these models. We have been working on it recently and wish to
report our results soon on another occasion.

In addition, the differential equations for the quasi-normal modes of black holes
usually also take the form of Equation (7) with potentials that have no singularities 3,
but normally do have turning points [90,91]. For example, the effective potential for the
axial perturbations of the Schwarzschild black hole is given by

V (r) =
r− 2m

r4

{
l(l + 1)r− 6m

}
, (70)

where ω denotes the quasi-normal mode. Clearly, for r ≥ 2m, this potential also has no
poles, but in general f (r) ≡ V (r)−ω2 has two turning points. From [90,91], it can be seen
that the properties of this potential are shared by many other cases, including those from
modified theories of gravity. Thus, one can equally apply the analysis presented here to the
studies of quasi-normal modes of black holes.
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Appendix A. Upper Bounds of Errors

The upper bounds of the errors ε1 and ε2 appearing in Equation (33) are given by

|ε1|
M
(

1
2 λζ2

0,
√

2λζ
) ,

|∂ε1/∂ζ|
√

2N
(

1
2 λζ2

0,
√

2λζ
) ≤ κ

λ0E
(

1
2 λζ2

0,
√

2λζ
)

×
{

exp
(

λVζ,ζ2(T )
)
− 1

}
.

|ε2|
M
(

1
2 λζ2

0,
√

2λζ
) ,

|∂ε2/∂ζ|
√

2N
(

1
2 λζ2

0,
√

2λζ
) ≤ κE

(
1
2 λζ2

0,
√

2λζ
)

λ

×
{

exp
(

λ0V0,ζ(T )
)
− 1

}
, (A1)

where M
(

1
2 λζ2

0,
√

2λζ
)

, N
(

1
2 λζ2

0,
√

2λζ
)

, and E
(

1
2 λζ2

0,
√

2λζ
)

are auxiliary functions of

the parabolic cylinder functions defined explicitly in [64], and 4

Vζ1,ζ2 ≡
∫ ζ2

ζ1

|ψ(ζ)|√
|ζ2 − ζ2

0|
dζ, (A2)

is the associated error control function.

Appendix B. Exact Solutions with the Pöschl–Teller Potential

Let us consider the case with the Pöschl–Teller Potential given by

(
λ2g + q

)
= −

(
k2 −

β2
0

cosh2 y

)
. (A3)

Then, introducing the two new variables x and Y via the relations

x =
1

1 + e−2y , Y(x) = [x(1− x)]ik/2µk, (A4)

we find that Equation (7) with the above PT potential reads

x(1− x)
d2Y
dx2 + [a3 − (a1 + a2 + 1)x]

dY
dx
− a1a2Y = 0, (A5)

where

a1 =
1
2
(1 +

√
1− 4β2

0)− ik,

a2 =
1
2
(1−

√
1− 4β2

0)− ik,

a3 = 1− ik. (A6)
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Equation (A5) is the standard hypergeometric equation and has the general solution [87]

µE
k (η) = ak

(
x

1− x

)ik/2

× 2F1(a1 − a3 + 1, a2 − a3 + 1, 2− a3, x)

+
bk

[x(1− x)]ik/2 2F1(a1, a2, a3, x). (A7)

Here 2F1(a1, a2, a3, x) denotes the hypergeometric function, and ak and bk are two indepen-
dent integration constants that are uniquely determined by the initial conditions.

Appendix C. Computing the Error Control Function

In this appendix, we collect some useful formulae for working out the error control
function explicitly. Considering the particular form of the PT potential, it is easier to
compute the error control function by using the new variable x = sech(y); thus,

dy = −
εy dx

x
√

1− x2
, (A8)

where εy denotes the sign of y. In terms of the new variable,

q = q2
0x2, g = β2x2 − k2. (A9)

To calculate the error control function explicitly, let us consider the cases g < 0 and
g > 0 separately.

Appendix C.1. g < 0

In this case, the error control function is defined by Equation (35), which can be written
as

T (ζ) = T1(ζ) +T2(ζ) +T3(ζ), (A10)

where

T1 ≡
∫ q√−g

dy = −q2
0εy

∫ xdx√
1− x2

√
k2 − β2x2

=
q2

0εy

β
ln

(√
1− x2β +

√
k2 − β2x2√

|k2 − β2|

)
,

T2 ≡
∫ ( 5g′2

16g3 −
g
′′

4g2

)√
−gdy

= εy

∫
dx

(
5β4(x3 − x5)

4
√

1− x2(k2 − β2x2)5/2
+

β2(2x− 3x3)

2
√

1− x2(k2 − β2x2)3/2

)

= εy

{
− 1

4β
ln

(√
1− x2β +

√
k2 − x2β2√

|k2 − β2|

)
+

√
1− x2 A

12(k2 − β2)(k2 − β2x2)3/2

}
,

T3 ≡
∫ ζ
{

5ζ2
0

4(v2 − ζ2
0)

5/2
+

3
4(v2 − ζ2

0)
3/2

}
dv =

ζ3 − 6ζζ2
0

12ζ2
0(ζ

2 − ζ2
0)

3/2
, (A11)

where
A(x) ≡ 3k4 + 2k2β2

(
x2 − 1

)
− 3x2β4. (A12)
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Appendix C.2. g > 0

In this case, the error control function is defined by Equation (36), which can be also
written as Equation (A10) but now with

T1 ≡
∫ q
√

g
dy = εy

q2
0

β
arcsin

(
β
√

1− x2√
β2 − k2

)
,

T2 ≡
∫ (
− 5g′2

16g3 +
g
′′

4g2

)
√

gdy,

= εy

∫
dx

(
5β4(x3 − x5)

4
√

1− x2(β2x2 − k2)5/2
− β2(2x− 3x3)

2
√

1− x2(β2x2 − k2)3/2

)

= εy

{
− 1

4β
arcsin

(√
1− x2β√
β2 − k2

)
+

√
1− x2 A

12(β2 − k2)(β2x2 − k2)3/2

}
,

T3 ≡
∫ ζ
{

5ζ2
0

4(ζ2
0 − v2)5/2

− 3
4(ζ2

0 − v2)3/2

}
dv =

6ζζ2
0 − ζ3

12ζ2
0(ζ

2
0 − ζ2)3/2

. (A13)

Notes
1 It should be noted that the first application of the UAA method to cosmological perturbations in GR was carried out by Habib et

al.
2 In this case, the associated error control function is Vζ1,ζ(T ) for any given ζ1, where ζ1 ∈ (−∞, ∞) [64]. In this paper, we choose

ζ1 = 0, so the integrations will be carried out over the interval ζ ∈ [0, ∞), corresponding to y ∈ [0, ∞). Due to the symmetry of
the equation, one can easily obtain the solutions for the region y ∈ (−∞, 0] by simply replacing y by −y (or ζ by −ζ))

3 recall the inner boundaries of black hole perturbations are the horizons, at which the potentials are usually finite and non-singular
4 This corresponds to choosing the function Ω(x) introduced by Olver in [64] as Ω(x) =

√∣∣x2 − ζ2
0

∣∣, which satisfies the requirement
Ω(x) = O(x) as x → ±∞. For more details, see [64].
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