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Abstract: The unimodular theory of gravity is an alternative perspective to the traditional general
relativity of Einstein and opens new possibilities for exploring its implications in cosmology. In this
paper, we investigated Unimodular Gravity (UG) with the cosmological data from the Pantheon
sample of Type Ia Supernovae (SNs) (2018), Baryon Acoustic Oscillations (BAOs), and the obser-
vational H(z) data from the Differential Age method (DA). We also used the Cosmic Microwave
Background (CMB) distance priors from the Planck 2018 results. We considered a model consisting
of a generalized cosmological constant, radiation, and a dark matter component along with normal
matter. The considered theory respects only unimodular coordinate transformations. We first fit our
model with low-redshift data from SNs and DA and determined the value of the model parameters
(ξ, H0). We found the best-fit value of parameter ξ = 6.03± 0.40, which deviates slightly from 6, for
which the theory becomes the standard general theory of relativity. We observed a small deviation in
the value of the Hubble constant (H0 = 72.6± 3.5 km s−1 Mpc−1) in the UG model compared with
the standard ΛCDM model (H0 = 72.2± 1.2 km s−1 Mpc−1). Using the BAO + CMB constraint in
the UG model, we obtained H0 = 68.45± 0.66 km s−1Mpc−1, and ξ is ∼6.029. For the combined
datasets (SN + DA + BAO + CMB), the estimated H0 = 69.01± 0.60 km s−1 Mpc−1 with ξ ∼6.037,
and in standard gravity, H0 = 68.25± 0.40 km s−1 Mpc−1.

Keywords: unimodular gravity; cosmological constant; Hubble parameter; Hubble tension; dark
energy

1. Introduction

There are many competing models to fit cosmological observations, such as the modi-
fied theory of gravity, the scalar field theory, the ΛCDM model, etc. [1]. In these models, the
ΛCDM model is a plausible model for explaining current cosmological observations [2,3].
However, the cosmological constant Λ has its own fine-tuning problem. Some of the
proposals, such as supersymmetry, supergravity, anthropic considerations, the adjustment
mechanism, changing gravity, etc., were discussed in [4] regarding the cosmological con-
stant problem. In this review paper [4], Unimodular Gravity (UG) was discussed as a
possible generalization of gravity. Unimodular gravity is an interesting model that was first
proposed by Anderson and Finkelstein [5] following the closely related proposal given by
Einstein [6]. It might solve the cosmological constant problem since

√−g is not a dynam-
ical field in this theory. However, in [4], it was explained that the cosmological constant
reappears as an integration constant, and the fine-tuning problem remains in the theory.
This is because, within that unimodular model of gravity, the theory still maintains full
General Coordinate Invariance (GCI). Several studies regarding the cosmological constant
problem in unimodular gravity were performed in [7–11].

In [12–30], various other aspects of unimodular gravity were studied. In this work, we
are interested in studying its implications in cosmology. The full metric can be broken into

Universe 2023, 9, 469. https://doi.org/10.3390/universe9110469 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe9110469
https://doi.org/10.3390/universe9110469
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0001-8142-4822
https://orcid.org/0000-0001-9001-4905
https://doi.org/10.3390/universe9110469
https://www.mdpi.com/journal/universe
http://www.mdpi.com/2218-1997/9/11/469?type=check_update&version=3


Universe 2023, 9, 469 2 of 14

a scalar field and an unimodular metric [12,13]. In [15,16], the implication of unimodular
gravity was studied thoroughly using such a decomposition. In these works and [12,13],
the theory respects covariance under unimodular coordinate transformations instead of
general coordinate invariance. Broken general coordinate invariance introduces a parame-
ter ξ [15,16] with a value other than 6, where ξ = 6 corresponds to full general coordinate
invariance, and the outcome of the theory is the same as that of general relativity. Other val-
ues of ξ correspond to unimodular gravity and provide covariance under only unimodular
coordinate transformations. In [15,16], the authors discussed the expansion of the universe
considering the generalized non-relativistic matter and generalized cosmological constant
separately. A model where only radiation was assumed was also discussed. The motivation
for these models is to describe the current expansion of the universe by only one component,
either dark matter or a cosmological constant, to solve the coincidence problem.

One of the challenging tasks in modern cosmology is to determine the precise value
of the Hubble constant H0. Considering the standard ΛCDM model, the H0 value deter-
mined by the Cosmic microwave Background (CMB) experiments, such as WMAP and
Planck, differs from the value determined by the local distance ladder approach, such
as Supernovae and H0 for the Equation of State (SH0ES) project. The Planck 2018 re-
sults gave the value H0 = 67.4± 0.5 km s−1Mpc−1 [31]. The constraint of H0 in CMB
measurement is model-dependent. The most-recent results of the SH0ES program gave
H0 = 73.30± 1.04 km s−1Mpc−1 [32], which differ by 5σ from the final result of Planck.
Since the local measurement of H0 does not rely on any cosmological assumptions, it can
be considered model-independent. To alleviate this tension in the measurement of H0 from
low- and high-redshift probes, primarily two methods are suggested in the literature: early
universe modification and late universe modification [33–37]. Modified gravity might also
be a solution for the Hubble tension [38,39].

In this paper, we investigated how the unimodular theory differs from the general
theory of relativity and to what extent the Hubble tension problem can be addressed
within this framework. Here, we took into account a unimodular gravity model [16] with a
generalized cosmological constant term. We extended this model by including the dark
matter and radiation energy components. In general relativity, it is well known that the
radiation term has a small contribution at the lower redshift values. However, it is necessary
to test if the same is true in unimodular gravity. The radiation term is added to check its
contribution to the Hubble constant in our model. In addition, the value of the comoving
sound horizon, which is the calibration scale for the BAO and CMB data, is sensitive to the
radiation term. This might result in a change in the value of the Hubble constant when we
consider the BAO and CMB data. For supernovae, we used the Pantheon datasets (2018) to
estimate the parameters of the model. We further studied the Hubble constant problem in
the theory by including the BAO data and CMB distance priors.

The manuscript is structured as follows. The review of the unimodular gravity model
and unimodular field equations, with broken general coordinate invariance, is given in
Section 2 and Section 3, respectively. In Section 4, we describe the unimodular gravity model
having a generalized cosmological constant. In Section 5, we describe our methodology and
datasets used for the analysis. In Section 6, we discuss our results, and then, we conclude
in Section 7.

2. Field Decomposition in Unimodular Gravity

To begin, we decomposed the standard metric gµν into a scalar field χ and unimodular
metric ḡµν as gµν = χ2 ḡµν. We point out that, in the Cartesian coordinate system, the
determinant of ḡµν is unity. We can generalize it to any coordinate system, such that
det(ḡµν) = f (x) [16], where f (x) is some specified function of space–time coordinates
while keeping det(ḡµν) as non-dynamical. The theory is supposed to be invariant under
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Unimodular General Coordinate Transformations (UGCTs), such that the Jacobian of the
transformation is unity, i.e.,

xµ → x′µ (1)

det
(

∂x′µ
∂xν

)
= 1 (2)

Under this transformation, the determinant of gµν and, hence, the field χ behaves as a
scalar. Following the definition of gµν, we have

gµν =
ḡµν

χ2 , Γµ
αβ = Γ̄µ

αβ + Γ̃µ
αβ, (3)

where Γµ
αβ is the full affine connection, and the connection Γ̄µ

αβ corresponds to the unimod-

ular metric ḡµν. Γ̃µ
αβ contains all the terms of the scalar field χ and is given by

Γ̃µ
αβ = ḡµ

β∂α ln χ + ḡµ
α ∂β ln χ− ḡαβ∂µ ln χ. (4)

Similarly, under this definition, the Ricci curvature tensor Rµν and Ricci scalar R are
decomposed. The first part of Rµν is made of the unimodular metric, and the second one
contains the terms of the scalar field χ (see [16]). One can write the gravitational action as

SE =
∫

d4x
√−ḡ
16πG

[
χ2R̄− ξ ḡµν∂µχ∂νχ

]
, (5)

where, if parameter ξ 6= 6, GCI is broken and the theory respects only unimodular coordi-
nate invariance.

3. Field Equations in Unimodular Gravity

We considered the action as discussed in [15,16]. The action follows covariance under
unimodular coordinate transformations. Considering both matter and the cosmological
constant, the action is given as follows:

S =
∫

d4x
√
−ḡ
[χ2

κ
R̄− ξ

κ
ḡµν∂µχ∂νχ

]
+ SM + SΛ, (6)

here κ = 16πG, ξ is the parameter of the theory, and SM and SΛ are the actions corre-
sponding to matter and the cosmological constant. For the general theory of relativity, the
parameter ξ = 6. Under this theory, the Einstein field equation and equation of motion for
field χ are given by

−χ2
[

R̄µν −
1
4

ḡµνR̄
]
−
[
(χ2);µ;ν −

1
4

ḡµν(χ
2);λ

;λ

]
+ ξ
[
∂µχ∂νχ− 1

4
ḡµν∂λχ∂λχ

]
=

κ

2

[
Tµν −

1
4

ḡµνTλ
λ

]
(7)

and
2χR̄ + 2ξ ḡµν(χ);µ;ν = κTχ, (8)

respectively.
In this theory, the cosmological constant or vacuum energy term does not contribute

to Equation (7); however, the term Tχ includes all the contribution due to the coupling
of χ with matter fields and the cosmological constant. For the spatially flat Friedmann–
Robertson–Walker (FLRW) metric, we can write ḡµν = diagonal[1,−1,−1,−1] and identify
the scale factor a(η) with the scalar field χ.
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4. Generalized Cosmological Constant with Radiation

In [16], the authors investigated a model for the coincidence problem based on a
generalized cosmological constant in unimodular gravity, where only ordinary matter and
the cosmological constant play a role. The action for the generalized cosmological constant
term is defined as

SΛ = −
∫

d4x
√
−ḡ
[
Λχξ−2 + Λ1χ

]
, (9)

In this model, the generalized cosmological constant term Λχδ with a parameter δ
appears in the action instead of the standard general relativity term Λχ4. For a consistent
solution, it is found that a term Λ1χ is required in the action and δ = ξ − 2. We followed
this model. We are interested in considering both the dark matter (CDM) and cosmological
constant term, along with radiation. Thus, in place of ordinary matter, we took into account
both cold dark matter and ordinary matter, and we also included radiation. We expect
that minimally broken invariance may explain cosmological observations. The purpose of
including radiation is that it might cause a deviation in the Hubble constant problem.

For radiation, the term Tλ
λ = 0 and, also, Tχ = 0 since there is no direct coupling to the

vector field with field χ [16]. The energy densities corresponding to matter and radiation
still hold the same proportionality: ρm ∝ χ−3 and ρR ∝ χ−4, respectively, as in standard
general relativity [16]. Using Equations (7) and (8), we obtain

(ξ − 2)
(

dχ

dη

)2
− 2χ

d2χ

dη2 =
κ

2
χ4ρm +

2κ

3
χ4ρR. (10)

Here, we used TR
00 = χ4ρR. The equation of motion of χ gives

2ξ
d2χ

dη2 = κχ3ρm + κ
[
(ξ − 2)Λχξ−3 + Λ1

]
. (11)

Integrating Equation (11), we obtain(
dχ

dη

)2
=

κ(ρ0m + Λ1)χ

ξ
+

κΛ
ξ

χξ−2 + C0, (12)

where C0 is the integration constant. For a consistent solution, we obtain

ρ0m =
2(ξ − 3)Λ1

(6− ξ)
, (13)

and
C0 =

2κρ0R
3(ξ − 2)

. (14)

Now, we considered χ = a(t), where a(t) is the scale factor of the universe. Changing
the conformal time “η” to the cosmological time “t” using χdη = a(t)dη = dt leads to

H(a)2 =
κ(ρ0m + Λ1)

ξ
a−3 +

κΛ
ξ

aξ−6 +
2κρ0R

3(ξ − 2)
a−4, (15)

and simplifying, we obtain

H(a) =
H0

(1 + (ρ0mξ)/(2Λ(ξ − 3)) + (2ξρ0R)/(3Λ(ξ − 2)))1/2

× aξ/2−3
[
1 +

ρ0mξ

2Λ(ξ − 3)
a3−ξ +

2ξρ0R
(3Λ(ξ − 2))

a2−ξ
]1/2

. (16)
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Here, ρ0m represents the current energy density of ordinary matter and CDM together,
ρ0R represents the current energy density of photons and neutrinos together, and H0 is
given by

H0 =

√
κΛ
ξ

[
1 + (ρ0mξ)/(2Λ(ξ − 3)) + (2ξρ0R)/(3Λ(ξ − 2))

]
. (17)

5. Methodology and Datasets

We performed our analyses with the Hubble relation given in Equation (16), which
can be written in standard notation as

H(z, Ωm, H0, ξ) = H0(1 + z)3−ξ/2

√(
3

ξ − 3
Ω0

m(1 + z)ξ−3 +
4

ξ − 2
Ω0

R(1 + z)ξ−2 +
6
ξ

ΩΛ

)
(18)

where, for each component, we define Ω0
i = ρ0

i /ρcr with ρcr the critical energy density
of the universe. For ΛCDM model, we set ξ = 6, and in the unimodular gravity model,
we set (H0, Ωm, ξ) as free parameters. We used the observational datasets including the
Supernovae (SNs), measurements of the BAO, and observational H(z) data obtained from
the Differential Age method (DA) to estimate the model parameters. We further constrained
our parameters using the distance priors from the Planck 2018 data [40]. The MCMC
exploration of the model parameter space was carried out using the Python ensemble
sampling toolkit emcee [41].

We used the Pantheon dataset [42] for supernovae, which spans the redshift range
0.01 < z < 2.26 and contains 1048 data points. These observations provide the apparent
magnitude mo(z) of the supernovae at peak brightness. The resulting apparent magnitude
m(z) is related to the luminosity distance dL(z) as

mth(z, Ωm, H0, ξ) = 5 log10

[
dL(z)
Mpc

]
+ 25 + MB (19)

where the luminosity distance is

dL(z) = (1 + z)
∫ z

0

cdz′

H(z′, Ωi, ξ)
(20)

and MB is the supernova absolute magnitude. So, the distance modulus is given by

µ(z) = mth(z, Ωm, H0, ξ)−MB (21)

We also considered the 31 observed Hubble data points from the Differential Age (DA)
method [43] to constrain the value of H0. The quantity measured in the differential age
method is related to the Hubble parameter:

H(z) = − 1
1 + z

dz
dt

. (22)

This method can be used to find the Hubble constant H0. Table 1 shows the 31 points
of H(z) data given by differential age method [44].
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Table 1. The 31 observational data points of H(z) obtained from the differential age method.

z H(z) σH Ref. z H(z) σH Ref.

0.09 69 12 [45] 0.3802 83 13.5 [46]
0.07 69.0 19.6 [47] 0.4004 77 10.2 [46]
0.12 68.6 26.2 [47] 0.4247 87.1 11.2 [46]
0.20 72.9 29.6 [47] 0.4497 92.8 12.9 [46]
0.28 88.8 36.6 [47] 0.4783 80.9 9 [46]
0.17 83 8 [48] 0.47 89 23 [49]
0.27 77 14 [48] 0.48 97 62 [50]
0.4 95 17 [48] 0.88 90 40 [50]
0.9 117 23 [48] 1.3 168 17 [48]
0.1791 75 4 [51] 1.43 177 18 [48]
0.1993 75 5 [51] 1.53 140 14 [48]
0.3519 83 14 [51] 1.75 202 40 [48]
0.5929 104 13 [51] 1.037 154 20 [51]
0.6797 92 8 [51] 1.363 160 33.6 [52]
0.7812 105 12 [51] 1.965 186.5 50.4 [52]
0.8754 125 17 [51]

In this work, we also wanted to test our model for the Hubble tension with the SH0ES
observations. The determination of H0 in the SH0ES observations [32,53] is based on the
constraint on the absolute magnitude MB, which depends on the astrophysical properties of
the sources. Furthermore, in the SH0ES observations, to determine the value of the Hubble
constant H0, the data of Type Ia supernovae in the redshift range 0.023 ≤ z ≤ 0.15 are used,
and cosmography with q0 = −0.55 and j0 = 1 is considered. In [54], it was argued that the
supernova absolute magnitude MB that is used to determine the value of the local H0 is
not compatible with the supernova, BAO, and CMB data, and it was shown that how the
statistical analysis with the prior on MB is an alternative to the prior on H0. Further, in [54],
it was shown that the statistical analysis is biased when the prior on H0 is used instead of
the prior on MB. A detailed analysis was performed in [54]. Therefore, we adopted this
method of applying the prior on MB to determine the value of H0. The χ2 function for MB
is given by

χ2
MB

=
(MB −MR21

B )2

σ2
MR21

B

, (23)

where MR21
B is the calibration that corresponds to the latest constraint on H0 by the SH0ES

observation. For the Pantheon dataset, MR21
B = −19.2435± 0.0373 mag.

We performed the joint analysis of the SN and DA datasets by minimizing the chi-
squared function, defined as

χ2 = χ2
DA + χ2

SN + χ2
MB

, (24)

where

χ2
DA = ∑

i

(H(zi)− H(zi, Ωm, H0, ξ))2

σ2
H

, (25)

χ2
SN = ∑

i,j
{mth(zi)−mo(zi)}TC−1

i,j {mth(zj)−mo(zj)}, (26)

= ∑
i,j
{∆m(zi)−MB}TC−1

i,j {∆m(zj)−MB}, (27)

∆m(zi) = mo(zi)− µ(zi). (28)

We took the values of m0(z) and the full covariance matrix, Cij, from the Pantheon
catalog. To minimize the chi-squared function of supernovae, we adopted the methodology
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of marginalization over MB, as discussed in [54]. The marginalized chi-squared function
will become

χ2
SN + χ2

MB
= χ2

SN,marg + χ2
loc, (29)

where

χ2
SN,marg = A− B2

C
, (30)

χ2
loc =

(B/C−MR21
B )2

1/C + σ2
MB

(31)

and

A = ∑
i,j

∆m(zi)
TC−1

i,j ∆m(zj), (32)

B = ∑
i,j

∆m(zi)
TC−1

i,j , (33)

C = ∑
i,j

C−1
ij . (34)

We further used the observational datasets of the BAO measurements including Galaxy
BAO and Lyα BAO (eBOSS) to constrain the model parameters. BAO studies along the
line of sight measure the combination H(z)rd, whereas investigations of the BAO feature in
the transverse direction offer a value of DM(z)/rd and DV(z)/rd, where rd ≡ rs(zd) is the
comoving size of the sound horizon at the baryon drag epoch (zd) [55]. Table 2 contains a
list of the datasets we used.

Table 2. BAO data measurements we used in our analysis. DM, DV , and rd are in units of Mpc, while
H(z) is in units of km s−1 Mpc−1.

Survey ze f Measurement Observation σ Reference

6dFGS 0.106 DV/rd 2.9762 0.1329 [56]
SDSS MGS 0.15 DV/rd 4.4657 0.1681 [57]
BOSS DR12 0.38 DM × rd, f id/rd 1518 20 [58]
BOSS DR12 0.38 H × rd/rd, f id 81.5 1.7 [58]
BOSS DR12 0.51 DM × rd, f id/rd 1977 24 [58]
BOSS DR12 0.51 H × rd/rd, f id 90.5 1.7 [58]
BOSS DR12 0.61 DM × rd, f id/rd 2283 28 [58]
BOSS DR12 0.61 H × rd/rd, f id 97.3 1.8 [58]
BOSS DR14 0.72 DV/rd 16.08472 0.41278 [59]
eBOSS QSO 0.978 DA × rd, f id/rd 1586.18 284.93 [60]
eBOSS QSO 0.978 H × rd/rd, f id 113.72 14.63 [60]
eBOSS QSO 1.23 DA × rd, f id/rd 1769.08 159.67 [60]
eBOSS QSO 1.23 H × rd/rd, f id 131.44 12.42 [60]
eBOSS QSO 1.526 DA × rd, f id/rd 1768.77 96.59 [60]
eBOSS QSO 1.526 H × rd/rd, f id 148.11 12.75 [60]
eBOSS QSO 1.944 DA × rd, f id/rd 1807.98 146.46 [60]
eBOSS QSO 1.944 H × rd/rd, f id 172.63 14.79 [60]
eBOSS Ly 2.34 DM/rd 37.41 1.86 [61]
eBOSS Ly 2.34 H/rd 8.86 0.29 [61]

eBOSS QSOxLy 2.35 DM/rd 36.3 1.8 [61]
eBOSS QSOxLy 2.35 DH/rd 9.20 0.36 [61]

eBOSS combined 2.34 DM/rd 37 1.3 [61]
eBOSS combined 2.34 DH/rd 9.00 0.22 [61]



Universe 2023, 9, 469 8 of 14

The comoving angular diameter distance DM(z) and volume averaged scale DV(z)
are related to H(z) as

DM(z) = c
∫ z′

0

dz
H(z′)

, (35)

DV(z) =
(

zDH(z)D2
M(z)

)1/3
, (36)

DA(z) =
DM

(1 + z)
. (37)

The comoving sound horizon is given by

rd =
∫ ∞

zd

cs(z)
H(z)

dz, (38)

where cs(z) = c[3 + 9
4 ρb(z)/ργ(z)]−1/2 is the speed of sound in the baryon–photon fluid,

with ρb(z) and ργ(z) being the baryon and photon densities, respectively, and zd being the
redshift at the drag epoch. The reference point used to calibrate the BAO observations is
the sound horizon rd, also known as the standard ruler of BAO observations. From the
BAO data, we can only constrain the combination of H0 and sound horizon rd. In order to
approximate the H0 from BAO data, we used the analytic approximation of zd from [62]
and took Ωbh2 from the Planck 2018 results (Ωbh2 = 0.02236) [31].

Also, to constrain the model parameters with the physics of the early universe, we
utilized the compressed likelihood of the CMB, which is based on distance priors [40].
Distance priors provide effective information on the CMB through the acoustic scale lA,
which characterizes the variations of the peak spacing, and the shift parameter R, which
affects the heights of the peaks.

Distance priors are defined as

lA = (1 + z∗)
πDA(z∗)

r∗(z∗)
, (39)

R(z∗) ≡
(1 + z∗)DA(z∗)

√
Ωm H2

0

c
, (40)

where z∗ is the redshift at the photon decoupling epoch. At this epoch, the comoving sound
horizon will be

r∗ =
∫ ∞

z∗

cs(z)
H(z)

dz, (41)

here we used the analytic approximation of z∗ from [62] to estimate the model parameters.
Finally, we combined the BAO data and distance priors from the CMB with the DA

and SN datasets and performed the joint analysis to explore the parameter space. We
minimized the χ2 function, defined as

χ2
final = χ2

DA + χ2
SN + χ2

MB
+ χ2

BAO + χ2
CMB, (42)

= χ2
DA + χ2

SN,marg + χ2
loc + χ2

BAO + χ2
CMB, (43)

where

χ2
CMB = ∑(yi − di)C−1

ij (yj − dj), (44)

and yi = {R(z∗), lA(z∗)} are values predicted in the UG model, di = {RPlanck, lPlanck
A } are

set to their mean values, and Cij is their covariance matrix in the ΛCDM model [40].
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6. Results and Discussion

In the unimodular gravity model, we set the uniform prior on all three parame-
ters (Ωm, H0, ξ) in the range Ωm ∈ [0, 0.5], H0 ∈ [60, 80], and ξ ∈ [5, 8] and performed
the MCMC analysis of the joint SN + DA dataset, marginalized over MB. The mean
values of the parameters we obtained were Ωm = 0.294 ± 0.061, ξ = 6.03 ± 0.40, and
H0 = 72.6± 3.5 km s−1Mpc−1. For the standard (ΛCDM) model (ξ = 6), the mean values
of the parameters obtained for low redshift data are H0 = 72.2± 1.2 km s−1 Mpc−1, and
Ωm = 0.285± 0.021. In Figure 1, we show the results for the unimodular gravity and
standard gravity models using the SN + DA datasets.
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Figure 1. The 2D contour plot and 1D marginalized posterior distributions of model parameters ξ,
Ωm, and H0 in the unimodular gravity model (ξ 6= 6) and the standard (ΛCDM) model (ξ = 6) using
the SN + DA datasets.

We note that, while unimodular gravity theory can fit the low-redshift SN + DA data
with a small deviation in the mean value of the parameters (ξ, Ωm, H0), the constraints on
Ωm and H0 are not as tight as in the case of the standard ΛCDM model.

We next used the BAO dataset combined with the CMB distance priors and set the
uniform prior on ξ, Ωm, and H0. We obtained the mean value of the parameters as
Ωm = 0.299± 0.008, ξ = 6.029± 0.022, and H0 = 68.45± 0.66 km s−1Mpc−1. If we put
these values in Equations (38) and (41), we find that the sound horizon at drag epoch
(rd) and at photon decoupling epoch (r∗) is 148.7 Mpc and 146.1 Mpc, respectively. The
mean values of the parameters we found for the standard (ΛCDM) model (ξ = 6) are
Ωm = 0.306± 0.006, H0 = 67.80± 0.42 km s−1 Mpc−1, and in this case, rd = 147.9 Mpc
and r∗ = 145.3 Mpc.

In this case, we found that the mean values of Ωm and H0 are tightly constrained in
the UG model and differ by ∼1σ from the standard ΛCDM model. Also, the value of rd
and r∗ is consistent with the ΛCDM model. In Figure 2, we show the comparison of the
unimodular gravity model with the standard gravity model using the BAO + CMB data.

Combining the SN + DA data with the BAO and CMB distance priors, we obtain
ξ = 6.037 ± 0.020, Ωm = 0.292 ± 0.007, and H0 = 69.01 ± 0.60 km s−1Mpc−1 as the
best-fit parameters for the unimodular gravity model and Ωm = 0.30± 0.005 and H0 =
68.25± 0.40 km s−1Mpc−1 for the standard (ΛCDM) model. We found that the values of
the model parameters in the unimodular gravity model using the SN + DA + BAO + CMB
dataset are consistent with the Planck 2018 results. The results of both models are shown in
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Figure 3. In Table 3, we list the best-fit value of the parameters inferred from the CMB, BAO,
DA, and SN datasets in the standard (ΛCDM) model and the unimodular gravity model.
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Figure 2. The 2D contour plot and 1D posterior distributions of model parameters ξ, Ωm, and H0 in
the unimodular gravity model (ξ 6= 6) and the standard (ΛCDM) model (ξ = 6) using the BAO data
and distance priors from the Planck 2018 data.
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Figure 3. The 2D contour plot and 1D posterior distributions of model parameters ξ, Ωm, and H0 in
the unimodular gravity model (ξ 6= 6) and the standard (ΛCDM) model (ξ = 6) using the BAO + SN
+ DA + CMB data.
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Table 3. The results for the standard (ΛCDM) model and the unimodular gravity model using the
BAO, DA, and SN datasets.

Data Sets Parameter Standard Gravity Unimodular Gravity

H0 72.2± 1.2 72.6± 3.5
SN + DA ξ 6 6.03± 0.40

Ωm 0.285± 0.021 0.294± 0.061

H0 67.80± 0.42 68.45± 0.66
ξ 6 6.029± 0.022

BAO + CMB Ωm 0.306± 0.006 0.299± 0.008
rd 147.9 148.7
r∗ 145.3 146.1

H0 68.25± 0.40 69.01± 0.60
ξ 6 6.037± 0.020

SN + DA + BAO + CMB Ωm 0.30± 0.005 0.292± 0.007
rd 148.2 149.2
r∗ 145.6 146.6

In order to study the impact of unimodular gravity on the Hubble tension problem, in
Figure 4, we plot the 1D posterior distribution of H0 and the corresponding median along
with the 1σ error band plot for the unimodular gravity and standard (ΛCDM) models.
Here, we also compared our results with the Planck 2018 and SH0ES 2022 estimates of H0.

From these results, one can note that the value of H0 is sensitive to the value of ξ. Here,
we estimated ξ ≈ 6.03 from all datasets. The mean value of H0 obtained from SN + DA
data changed significantly after including the BAO + CMB data, and the constraint became
more stringent. Furthermore, the tension with the SH0ES 2022 results remained almost the
same in our results.

64 68 72 76
H0 
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Figure 4. The 1D posterior distribution and corresponding median along with the 1σ error band plot
of H0 for the UG and standard (ΛCDM) models in comparison with the Planck 2018 [31] and SH0ES
2022 [32] results.

7. Conclusions

In this paper, we discussed the cosmological implication of the unimodular theory of
gravity, which is an alternative approach to the general theory of relativity. The decomposi-
tion of the full metric in a scalar field and the unimodular metric led to the decomposition
in the affine connection, Ricci tensor, and Ricci scalar. The general coordinate invariance
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was broken by introducing a parameter ξ. We considered a unimodular gravity model
with broken general coordinate invariance and focused on estimating the cosmological
parameters of the current universe in this model. We found that the UG model can fit the
cosmological data with ξ ≈ 6.03, which is very close to that of general relativity (ξ = 6).
We also observed a small increase in the mean value of H0 obtained in unimodular gravity
compared with the standard (ΛCDM) model in all datasets.

We compared our theory of unimodular gravity with that studied in [28]. In this
cosmological diffusion model, the unimodular constraint was applied to the full metric.
In this way, a non-conservative current was established. Such a current can be due to the
interaction of all matter. However, as the interaction of ordinary matter is well known, the
authors explored the non-gravitational interaction of dark sector components. The cold dark
matter interacts with dark energy, which appears as a time-dependent cosmological term
Λ(t). It was shown that, for some value of the diffusion parameter of the theory, it is possible
to alleviate the Hubble tension by 2.4σ. On the other hand, in our theory, we applied the
unimodular constraint only to the unimodular metric, and no such non-gravitational
interacting term was considered. The introduced parameter ξ is effective only in the
gravitational sector and generalized cosmological constant. As a result, the theory does not
reduce the Hubble tension as much as in the diffusion model of unimodular gravity.

In the current work, we studied the cosmological parameters at the background
level. A study of cosmological perturbation can further give more-precise values of the
parameters of the theory. In [25], a study of linear perturbation was performed under
such a construction of unimodular gravity where the decomposition of the metric and the
introduction of ξ were performed in the same way. The power spectrum was derived, and
the unimodular correction to the tensor-to-scalar ratio was obtained. It was shown that the
unimodular correction can raise or lower the value of the tensor-to-scalar ratio. However, a
detailed study is still required to know the shift in the peaks in the angular power spectrum
in the CMB, which can further refine the value of the Hubble constant. One has to go for
the complete study of cosmological perturbation assuming such a constraint of unimodular
gravity.

A comparison with the model used in [16] is necessary. In that model, only the general-
ized cosmological constant or generalized non-relativistic matter was considered, whereas
in our model, cold dark matter, the generalized cosmological constant, and radiation were
all taken into account. Therefore, our model provides a more-satisfactory fit to the data. It
could be a reliable model that consists of cold dark matter and the cosmological constant,
similar to the ΛCDM of standard gravity.
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