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Abstract: In search of physics beyond the standard model, new phenomena can be relevant in low
energies. In view of the Standard Model Extension is an effective field theory, in this study we
explore the fermionic sector by showing that the properties of nonrelativistic quantum systems can
be modified. We study one-dimensional nonrelativistic quantum systems under Lorentz symmetry
violation effects caused by the coupling between the fixed vector field f µγ5 and the derivative of
the fermionic field. We deal with the quantum bouncer, the attractive inverse-square potential, a
modified attractive inverse-square potential, and a scalar exponential potential inside this scenario
of the Lorentz symmetry violation. Then, we show that the spectra of energy are influenced by the
Lorentz symmetry violation effects.

Keywords: violation of the Lorentz symmetry; derivative of the fermionic field; quantum bouncer;
attractive inverse-square potential; scalar exponential potential

1. Introduction

General Relativity (GR) succeeded in describing the gravitational interaction as a
manifestation of the curvature of spacetime. So far, GR has passed all the tests to which it
was submitted. On the other hand, the effects of dark matter and the accelerated expansion
of the universe (dark energy) pose a challenge to understand which local theory is adequate
to understand these phenomena. The quantum description of gravitation is the major
motivation in search of a more fundamental theory. In this way, an extension of the Standard
Model of Particle Physics (SM) was proposed in Ref. [1]. The search for an extended theory
has promoted the idea that the Lorentz symmetry can be violated at some energy scale.
In recent years, two forms of investigation of this type of violation have been explored: the
Lorentz Symmetry Violation (LSV) by noncommutative theories [2] and by spontaneously
generated LSV. The spontaneous violation of the Lorentz symmetry allows to investigate
this option at low energies by exploring contexts in which laboratory measurements can
be analyzed, and then, traces of this break can appear. Kostelecký and Samuel proposed
the idea of the extension of the Higgs mechanism by the presence of nonzero vacuum
expectation values of tensor-valued fields in the context of String Theory [3]. The immediate
consequence is the spontaneous break in the Lorentz symmetry [4–6]. This proposal takes
into account the renormalizability, and it is known as the Standard Model Extension
(SME) [7,8]. If we relax the renormalizability condition, then we can explore several
possibilities out of SME (nonminimal SME) [9–39].

Our research perspective is to establish low energy contexts that can show spontaneous
symmetry violation by a background field. By observing that SME presents explicitly LSV
in the fermionic sector, we thus explore this scenario in (1 + 1)-dimensions. Therefore, our
focus is to investigate how background fields can modify the properties of nonrelativistic
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quantum systems. However, why should we investigate this possibility of detection LSV
since LSV is expected to occur at high energies? We should observe that SME is an effective
field theory, and nowadays we can perform very precise measurements in low-energy
physics. Thereby, we might hope to detect minute modifications of such physics arising
from new phenomena in low energies.

In this work, we discuss the Lorentz symmetry violation effects caused by the coupling
between a fixed vector field Bµ = γ5 f µ and the derivative of the fermionic field proposed
by Kostelecký and Lane [6] on one-dimensional potentials at low-energy regime. Our
analysis of the Lorentz symmetry violation effects is made from the eigenvalues of energy.
We present a different perspective on the search for Lorentz symmetry violation effects in
the low-energy regime.

This paper is organized as follows: in Section 2, we introduce the coupling between
the vector field Bµ = f µγ5 and the derivative of the fermionic field, which gives rise to
the background of the Lorentz symmetry violation; in Section 3, we analyze the Lorentz
symmetry violation effects on the quantum bouncer [40–43]; in Section 4, we deal with
the Lorentz symmetry violation effects on the attractive inverse-square potential [44];
in Section 5; we discuss the Lorentz symmetry violation effects on the one-dimensional
harmonic oscillator and the attractive inverse-square potential; in Section 6 we study the
Lorentz symmetry violation effects on the scalar exponential potential [41,45]; in Section 7,
we present our conclusions.

2. Non-Relativistic Wave Equation in a Background of the Lorentz
Symmetry Violation

Based on Ref. [6], a model of describing a Lorentz symmetry violation background is
made by introducing a coupling between the vector field f µγ5 and the derivative of the
fermionic field. The Dirac equation is written in the following form (with the units h̄ = 1
and c = 1):

iγµ∂µΨ + i f µ γ5 i ∂µ Ψ = m Ψ. (1)

The term f µγ5 is a fixed vector field that yields a privileged direction in the spacetime,
where f µ establishes the extent of the Lorentz symmetry violation [6]. Moreover, γµ

corresponds to the Dirac γ matrices, where γ0 = β̂ and γk = β̂ α̂k [46].
Let us consider (1 + 1)-dimensions

(
ds2 = −dt2 + dx2). In this case, the Dirac matrices

are defined as [47]: β̂ = σ3, α̂1 = σ1 and β̂ γ5 = σ2, where the matrices σi =
(
σ1, σ2, σ3)

are the standard Pauli matrices [42]. Henceforth, we assume that the extent of the Lorentz
symmetry violation is determined by the space-like vector [48]:

f µ = (0, ς). (2)

Thereby, the Dirac Equation (1) becomes [48,49]

i
∂Ψ
∂t

= m σ3Ψ− iσ1 ∂Ψ
∂x

+ ς σ2 ∂Ψ
∂x

. (3)

By following Ref. [46] in order to achieve the nonrelativistic limit of the Dirac
Equation (3), the four-component spinor Ψ(t, x) can be written in terms of two-component
spinors: ψ(t, x) and χ(t, x). This is made by Ψ(t, x) = e−i m t(ψ χ)T, where m is the rest
mass of the particle. Note that ψ(t, x) corresponds to the large components of Ψ(t, x), while
χ(t, x) corresponds to the small components of Ψ(t, x) [46]. Then, after some calculations,
we obtain the Schrödinger equation (with the units h̄ = 1 and c = 1):

i
∂ψ

∂t
= − 1

2m

(
1− ς2

) ∂2ψ

∂x2 . (4)
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In the following sections, we bring a discussion about the nonrelativistic effects of the
Lorentz symmetry violation caused by the coupling between the vector field f µγ5 and the
derivative of the fermionic field on one-dimensional potentials. By considering a quantum
particle subject to a scalar potential V(x), the Schrödinger Equation (4) becomes [48,49]

i
∂ψ

∂t
= − 1

2m

(
1− ς2

) ∂2ψ

∂x2 + V(x)ψ. (5)

We thus search for Lorentz symmetry violation effects on a particle subject to a quan-
tum bouncer [40–42], the attractive inverse-square potential [44], a modified attractive
inverse-square potential [50], and the scalar exponential potential [41,45]. Despite working
with (1 + 1)-dimensions, we should observe that these potentials can be dealt with by using
the spherical and cylindrical symmetries. Examples of them are given in Refs. [38,39,50–53].

3. Quantum Bouncer

We start our search for nonrelativistic effects of the Lorentz symmetry violation by
considering a particle subject to a constant force, for instance, a particle of mass m in a
constant gravitational field or an electric charge in a uniform electric field [40–43]. This
quantum system is called quantum bouncer. The name “quantum bouncer” was given
by Gibbs [40] and it has been studied in several contexts [41,54–57]. From a semiclassical
analysis, it is worth citing the studies of the quantum bouncer made in Refs. [42,58] and
the analogues of it in Refs. [59,60]. The quantum bouncer is described by the potential
energy [40–43]:

V(x) =
{

m g x (x > 0);
∞ (x < 0),

(6)

where m is the mass of the particle, g is the gravity acceleration, and x is the height over
Earth’s surface.

In this section, we consider the extent of the Lorentz symmetry violation to be deter-
mined by the space-like vector (2), hence, with the potential energy (6), the Schrödinger
Equation (5) for x > 0 is given by

i
∂ψ

∂t
= − 1

2m

(
1− ς2

) ∂2ψ

∂x2 + m g x ψ. (7)

Observe that the Hamiltonian operator given in the right-hand side of Equation (7)
does not depend on t, therefore, the solution to Equation (7) can be given by ψ(t, x) =
e−i E t u(x). By substituting this solution into Equation (7), we find

d2u
dx2 −

2m2g
(1− ς2)

x u +
2mE

(1− ς2)
u = 0. (8)

Let us go further by defining the parameter:

y =

(
2m2g
1− ς2

)1/3

×
[

x− E
mg

]
, (9)

thus, Equation (8) becomes

d2u
dy2 − y u = 0. (10)

Hence, the second order differential Equation (10) is known as the Airy equation [40,42,61].
Its solution is given by

u(y) = b1 Ai(y) + b2 Bi(y), (11)
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where b1 and b2 are constants and the functions Ai(y) and Bi(y) are the Airy functions [40–42,61].
Note that, when x → ∞, then, y→ ∞. Therefore, we have the boundary condition:

u(y→ ∞) = 0. (12)

By substituting the wave function (11) into Equation (12), we have that the boundary
condition (12) requires that b2 = 0, because Bi(y)→ ∞ when y→ ∞ [40–42,61]. Thereby,
the wave function (11) becomes

u(y) = b1 Ai(y). (13)

On the other hand, when x = 0, then, y → y0 = − E
mg ×

(
2m2g
1−ς2

)1/3
. In this way, we

have the second boundary condition:

u(y0) = 0. (14)

By substituting (13) into Equation (14), we obtain

u(y0) = b1 Ai(y0) = 0. (15)

With the purpose of obtaining the energy levels explicitly, let us consider the case
where y0 � 0. By following Refs. [41,42,61], for y0 � 0, the function Ai(y0) can be written
in the form:

Ai(y0) ≈
1

√
π (−y0)

1/4 sin
(

2
3
(−y0)

3/2 +
π

4

)
. (16)

We should observe that y0 < 0, thereby, after substituting (16) into Equation (15) we
obtain:

2
3
(−y0)

3/2 +
π

4
= nπ, (17)

where n = 1, 2, 3, . . .. Since y0 = − E
mg ×

(
2m2g
1−ς2

)1/3
, we obtain from Equation (17):

En ≈
(

mg2(1− ς2)
2

)1/3

×
[

3π

2

(
n− 1

4

)]2/3
. (18)

Hence, the energy eigenvalues of the quantum bouncer given in Equation (18) is
influenced by the Lorentz symmetry violation effects caused by the coupling between the
vector field f µγ5 and the derivative of the fermionic field. The nonrelativistic effects of the
Lorentz symmetry violation on the energy levels are determined by the presence of the
parameter ς, which arises from the extent of the Lorentz symmetry violation defined by
the space-like vector (2). In the limit ς→ 0, we recover the energy levels of the quantum
bouncer in the absence of the Lorentz symmetry violation background [41].

From another point of view, the linear confining potential given in Equation (6) can
be obtained when an electron is confined to a triangular well [43,62–67], which has a great
interest in semiconductor devices [62–67]. Therefore, nanostructures such as the triangular
well give us a good hint about searching for Lorentz symmetry breaking effects.
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4. Attractive Inverse-Square Potential

Let us consider a particle subject to the attractive inverse-square potential. For the
one-dimensional case, we follow Ref. [44] and write the attractive inverse-square potential
as the “regularized” potential:

V(x) =
{

∞ (x ≤ ε);
− a

x2 (x > ε), (19)

where ε > 0 and a > 0. In recent years, analogues of the attractive inverse-square potential
have been studied in Lorentz symmetry violation backgrounds [38,39].

Therefore, by considering the potential energy (19), the Schrödinger Equation (5) in
the region x > ε is given in the form:

i
∂ψ

∂t
= − 1

2m

(
1− ς2

) ∂2ψ

∂x2 −
a
x2 ψ. (20)

In the same way of the previous section, the solution to Equation (20) can be written
in the form: ψ(t, x) = e−i E t u(x). Thereby, after substituting ψ(t, x) = e−i E t u(x) in
Equation (20), we have

d2u
dx2 +

2ma
(1− ς2)

u
x2 +

2mE
(1− ς2)

u = 0. (21)

In search of bound states, we assume that E < 0 from now on. Then, we define the
parameter:

λ =

√
−2mE
(1− ς2)

, (22)

and perform the change of variables: ρ = λ x. In this way, Equation (21) becomes

d2u
dρ2 +

2ma
(1− ς2)

u
ρ2 − u = 0. (23)

Let us write the solution to Equation (23) in the following form:

u(ρ) =
√

ρ W(ρ), (24)

where W(ρ) is an unknown function. After substituting the function (24) into Equation (23),
we obtain the following equation for the function W(ρ):

d2W
dρ2 +

1
ρ

dW
dρ

+
ν2

ρ2 W −W = 0. (25)

The second order differential Equation (25) is known as the Bessel equation [61,68]
and the parameter ν is defined as

ν =

√
2ma

(1− ς2)
− 1

4
. (26)

Let us impose that W(ρ)→ 0 when ρ→ ∞. Thereby, a solution to Equation (25) is given
in terms of the modified Bessel function of the third kind of imaginary order [44,69–73]:

W(ρ) = d1 Kiν(ρ), (27)

where d1 is a constant.
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Let us write ρn = λnε when x = ε. From the potential energy (19), when x = ε we
have the boundary condition:

W(ρn) = d1 Kiν(ρn) = 0. (28)

With the aim of obtaining the energy levels explicitly, we consider ρn � 1. For ρn � 1,
the function Kiν(ρn) can be written in the form [69,72–74]:

Kiν(ρn) ∝ sin(ν ln(ρn/2) + δ), (29)

where δ is a constant [69,72–74]. By substituting (29) into Equation (28), we obtain

ρn =
2

eδ/ν
eαπ/ν, (30)

where α = 0,±1,±2,±3, . . .. However, since ρn � 1, we have that the possible values of
the parameter α must be given by α = −n, where n = 1, 2, 3, 4, . . . [75]. With ρn = λnε,
where λn is given in Equation (22), we obtain from Equation (30):

En = −
2
(
1− ς2)

m ε2 e
2δ/

√
2ma

(1−ς2)
− 1

4

exp

− 2nπ√
2ma

(1−ς2)
− 1

4

. (31)

The energy levels given in Equation (31) show us that there exists the influence
the Lorentz symmetry violation effects caused by the coupling between the vector field
f µγ5 and the derivative of the fermionic field on them. The energy levels (31) decrease
exponentially with the quantum number n. When n → ∞ we have that En→∞ = 0.
Therefore, there is an accumulation point of energy levels in the energy level En = 0 [73].
The effects of the Lorentz symmetry violation is also determined by the parameter ς. It
is worth emphasizing that ς stems from the extent of the Lorentz symmetry violation
defined by the space-like vector (2). Besides, we recover the energy levels of the attractive
inverse-square potential in the absence of Lorentz symmetry breaking effects [44] by using
the limit ς→ 0 in Equation (31).

5. Modified Attractive Inverse-Square Potential

Let us extend the discussion about the attractive inverse-square potential of Ref. [44]
by including a contribution to the “regularized” potential (19) given by the one-dimensional
harmonic oscillator. Thereby, the “regularized” potential (19) becomes

V(x) =
{

∞ (x ≤ ε);
− a

x2 +
1
2 m ω2 x2 (x > ε),

(32)

where we also have ε > 0 and a > 0. Recently, we studied an analogue of the potential (32)
in a system of a neutral particle with an induced electric dipole moment [50].

Therefore, by considering the potential energy (32), the Schrödinger Equation (5) for
x > ε is given by

i
∂ψ

∂t
= − 1

2m

(
1− ς2

) ∂2ψ

∂x2 −
a
x2 ψ +

1
2

m ω2 x2 ψ. (33)

Let us also write ψ(t, x) = e−i E t u(x), and thus, Equation (33) becomes

d2u
dx2 +

2ma
(1− ς2)

u
x2 −

m2ω2

(1− ς2)
x2 u +

2mE
(1− ς2)

u = 0. (34)
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We go further by performing the change of variables: r = m ω x2/
√

1− ς2. Thereby,
Equation (34) becomes

d2u
dr2 +

1
2r

du
dr

+
ma

2(1− ς2)

u
r2 −

1
4

u +
E

2ω
√

1− ς2

u
r
= 0. (35)

The solution to Equation (35) is given in the form:

u(r) =
c1

r1/4 Mκ, iµ(r) +
c2

r1/4 Wκ, iµ(r), (36)

where c1 and c2 are constants. The functions Mκ, iµ(r) and Wκ, iµ(r) are the Whittaker
functions of first and second kinds of imaginary order, respectively [50,76]. Besides, the pa-
rameters κ and µ are defined as

κ =
E

2ω
√

1− ς2
;

µ =

√
ma

2(1− ς2)
− 1

16
. (37)

Let us impose that u(r)→ 0 when r → ∞. Thereby, let us take c1 = 0 in Equation (36),
and thus, the solution to Equation (35) can be given in terms of the Whittaker functions of
second kind of imaginary order [50,76]:

u(r) =
c2

r1/4 Wκ, iµ(r). (38)

Note that, when x = ε we can write r0 = m ω ε2/
√

1− ς2. In addition, when x = ε,
we have the boundary condition:

u(r0) = 0. (39)

Then, by substituting Equation (38) into Equation (39), we have

u(r0) =
c2

r1/4
0

Wκ, iµ(r0) = 0. (40)

In order to obtain the energy levels explicitly, we focus on the particular case where
r � 1. As shown in Ref. [50], for r � 1, we can write

Wκ, iµ(r) ≈ 2A
√

r cos
(

2µ + µ ln
(

β r
4µ2

)
+

π

4

)
, (41)

where β = 1
2 − κ and

A =
e−µπ+β√
2µ ββ−1/2 . (42)

Therefore, after substituting (41) into the boundary condition (40), we obtain

r0 =
4µ2

β
e
(

π
4µ +2

)
eπα/µ, (43)

where α = 0,±1,±2,±3, . . .. Observe that the possible values of α in which ww satisfy the
condition r0 � 1 are α = −n, where n = 1, 2, 3, . . .. In this way, with β = 1

2 − κ and by
substituting Equation (37) into Equation (43), we find
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En = ω
√

1− ς2 −
8µ2(1− ς2) e

(
π
4µ−2

)
m ε2 exp

− nπ√
ma

2(1−ς2)
− 1

16

. (44)

Hence, Equation (44) yields the energy levels of the modified attractive inverse-square
potential (32) in the background of the Lorentz symmetry violation effects caused by the
coupling between the vector field f µγ5 and the derivative of the fermionic field. The in-
fluence of the Lorentz symmetry violation background is given by the presence of the
parameter ς in the energy levels which, in turn, arises from the extent of the Lorentz
symmetry violation defined by the space-like vector (2). Note that the Lorentz symmetry
violation effects modify the angular frequency of the harmonic oscillator by yielding an
effective angular frequency ω′ = ω

√
1− ς2. By taking the limit ς → 0 in Equation (44),

we obtain the energy levels of the modified attractive inverse-square potential (32) in the
absence of Lorentz symmetry breaking effects.

6. Scalar Exponential Potential

In this section, we analyze a scalar exponential potential [41,45] in the background of
the Lorentz symmetry violation yielded by the coupling between the vector field f µγ5 and
the derivative of the fermionic field. The extent of the Lorentz symmetry violation is also
defined by the space-like vector (2). Therefore, the scalar exponential potential is given
by [41,45]:

V(x) = −V0 e−x/a, (45)

where V0 and a are constants and x is defined in the range 0 ≤ x < ∞. Despite being a
spherically symmetric potential and possessing exact solutions only for s-waves [41], we
can study this system in the Lorentz symmetry violation background by dealing with the
nonrelativistic limit of the Dirac equation in (1 + 1)-dimensions. Indeed, the nonrelativistic
limit of the Dirac equation given by Equation (5) allow us to analyze the s-waves in
a quantum system with spherical symmetry. In this way, by considering the potential
energy (45), the Schrödinger Equation (5) becomes

i
∂ψ

∂t
= − 1

2m

(
1− ς2

) ∂2ψ

∂x2 −V0 e−x/a ψ. (46)

We proceed with the solution to Equation (46) by being ψ(t, x) = e−i E t u(x), then,
Equation (46) becomes

d2u
dx2 +

2mV0

(1− ς2)
e−x/a u +

2mE
(1− ς2)

u = 0. (47)

We thus perform the change of variables:

y = e−x/2a, (48)

and rewrite Equation (47) as follows:

d2u
dy2 +

1
y

du
dy

+
8mE a2

(1− ς2)

u
y2 +

8mV0 a2

(1− ς2)
u = 0. (49)

Our aim is to achieve bound states, hence, we assume that E < 0. Next, we define
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ν̄ =

√
− 8mE a2

(1− ς2)
;

(50)

β̄ =

√
8m V0 a2

(1− ς2)
,

and write Equation (49) in the form:

d2u
dy2 +

1
y

du
dy
− ν̄2

y2 u + β̄2 u = 0. (51)

Note that Equation (51) is also the Bessel differential equation [61,68]. Let us consider
a regular solution to Equation (51) at y = 0 (x → ∞):

u(y) = c1 Jν̄

(
β̄ y
)
, (52)

where c1 is a constant and Jν̄

(
β̄ y
)

is the Bessel function of first kind [61,68]. Next, let us
impose that u(y)→ 0 when y = 1 (x = 0). This yields the following boundary condition:

u(y = 1) = c1 Jν̄

(
β̄
)
= 0. (53)

From now on, we focus on the particular case where β̄ y � 1. In short, in the case
where z0 � 1, the Bessel function can be written in the form [61]:

Jν(z0)→

√
2

π z0
cos
(

z0 −
ν̄ π

2
− π

4

)
. (54)

Thereby, by substituting Equation (54) into Equation (53), with z0 = β̄ (y = 1), we find

ν̄ =
2β̄

π
− 2
(

n +
3
4

)
, (55)

where n = 0, 1, 2, 3, . . .. Then, after substituting Equation (50) into Equation (55) we obtain

En = −4V0

π

1− π

a

√
1− ς2

2mV0

(
n +

3
4

)2

. (56)

Hence, Equation (56) yields the spectrum of energy of the scalar exponential poten-
tial (45) under the effects of the Lorentz symmetry violation effects caused by the coupling
between the vector field f µγ5 and the derivative of the fermionic field. The effects of the
Lorentz symmetry violation is viewed through the parameter ς, where ς stems from the
extent of the Lorentz symmetry violation defined by the space-like vector (2). Furthermore,

Equation (55) shows that bound states exist only if 2β̄
π − 2

(
n + 3

4
)
> 0, because ν̄ > 0.

In this way, we obtain an upper limit to the quantum number n given by

nmax <
a
π

√
2m V0

(1− ς2)
− 3

4
, (57)

otherwise, no bound states exist. Therefore, the quantum number n takes values from zero
to the upper limit (nmax) given in Equation (57). In addition, this upper limit is influenced
by the background of the Lorentz symmetry violation. By comparing with the discussion
about the Morse potential made in Ref. [77], the existence of this upper limit means that the
number of energy levels is limited.

Finally, by taking the limit ς→ 0 in Equation (57), we obtain the spectrum of energy
of the scalar exponential potential in the absence of Lorentz symmetry breaking effects.
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We should observe that the scalar exponential potential (45) has been used to describe
spherical quantum dots [51,52]. Therefore, we have another example of nanostructures
that provide us with insights into the search for Lorentz symmetry breaking effects in low
energies [6].

7. Conclusions

The search for physics beyond the standard model is a topic of fundamental interest
and justified the construction of the LHC. In this work, we have investigated in a low-
energy scenario how the model could be extended if a spontaneous breaking of the Lorentz
symmetry is detected. We have dealt with one-dimensional quantum systems in the Lorentz
symmetry violation background yielded by the coupling between a fixed vector field f µγ5

and the derivative of the fermionic field. Our starting point was the Dirac equation in
(1 + 1)-dimensions, which has ensured a general effective theory at low energies. Moreover,
the Dirac equation in (1 + 1)-dimensions permit us to deal with the s-waves in a quantum
system with spherical symmetry. As an example, we have studied the scalar exponential
potential (45). Besides the influence of the Lorentz symmetry breaking effects on the
spectrum of energy of the scalar exponential potential, we have seen that the quantum
number n has an upper limit (nmax), in turn, it is influenced by the background of the
Lorentz symmetry violation. With regard to the influence of the Lorentz symmetry violation
on the quantum bouncer, the attractive inverse-square potential and the modified attractive
inverse-square potential, we have shown in all these cases that the energy levels are
influenced by Lorentz symmetry breaking effects.

It is worth observing that the study of the Lorentz symmetry violation yielded by the
coupling between a fixed vector field f µγ5 and the derivative of the fermionic field can
be extended to (2 + 1)-dimensions and (3 + 1)-dimensions. This gives us a perspective of
searching for effects of the Lorentz symmetry violation through the magnetization [78–81]
and the thermodynamic properties [82–87] of quantum systems, quantum Hall effect [88],
Boson–Fermi systems [89], and the scattering of Dirac particles [90].
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