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Abstract: The vanishing phase space generator of the full four-dimensional diffeomorphism-related
symmetry group in the context of the Barbero–Immirz–Holst Lagrangian is derived directly, for
the first time, from Noether’s second theorem. Its applicability in the construction of classical
diffeomorphism invariants is reviewed.
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1. Introduction

What we identify as the Barbero–Immirzi–Holst model serves as a foundation for
today’s canonical approach to loop quantum gravity. In this article, we derive a new
analysis of the underlying four-dimensional spacetime diffeomorphism-related classical
canonical symmetry. We derive the canonical symmetry generators directly from the
vanishing charge that follows from Emmy Noether’s second theorem, in a manner similar
to the first such derivation presented for conventional canonical gravity in [1]. The focus is
on a reformulated ADM approach that incorporates densitied triads. And we argue that the
extension of this analysis to the new triad approach to gravity as proposed in [2–4] is almost
trivial. As is well known, in order to achieve the results of canonically generated variations
of spacetime coordinates, it is necessary to supplement the variations of phase space
variables under diffeomorphims with related triad gauge transformations. We conclude
with an overview of a technique for introducing intrinsic coordinates as gauge conditions
and employing the full diffeomorphism generator to construct invariant temporal evolution
in a manner related to Rovelli’s relative observables [5]. This lays the foundations for an
eventual application in loop quantum gravity.

It should be stressed that this underlying phase space approach to symmetry is still
not widely appreciated in the general relativity community. We have written much on the
historical background of the dispute amongst proponents of the original Wheeler–Dewitt
formalism and approaches developed by Peter Bergmann, including many collaborators
and students. See, for example, [6]. The key distinction in this dispute is Wheeler’s
abandonment of the full spacetime diffeomorphism symmetry. He did retain a three-
dimensional phase space covariance, but he abandoned the full spacetime symmetry in
a phase space framework in favor of a notion that he called ‘multi-fingered time’ [7]. At
least intially he thought that the spatial metric itself could fix the time evolution. The views
have evolved substantially, and in fact today there is a much wider appreciation of the
potential to implement the full four-dimensional diffeomorphism symmetry in the general
relativistic phase space. Indeed, several authors have addressed the question of how one can
invoke this symmetry in constructing true spacetime diffeomorphism invariants. Especially
noteworthy are current efforts to employ the full symmetry, recognizing that the full general
relativistic metric, including the so-called lapse and shift functions, must be included as
phase space functions. We cite, in particular, the recent work in quantum cosmology [8–12]
where intrinsic coordinates are being employed in the context of quantum loop cosmology.
The coordinates themselves are defined in terms of either of the spacetime metric or material
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fields. One can thereby in principal employ the diffeomorphism symmetry group that we
are deriving in a new manner in this article to construct objects that are invariant under
the action of the group. This is closely related to an approach called relational quantum
mechanics that has long been advocated by Rovelli [13].

2. Derivation of Canonical Hamiltonian

We use minus one half of the ADM Lagrangian as rewritten using triad variables.

L = −1
2
LADM = −1

2
Nt
(

3R + KabKab − (Ka
a)

2
)
= −1

2
Nt
(

3R + KabeacebdKcd −
(

eabKab

)2
)

, (1)

where

Kab =
1

2N

(
gab,0 − Ncgab,c − gcaNc

,b − gcbNc
,a

)
=

1
2N

(
gab,0 − 2gc(aNc

|b)

)
. (2)

The variable t is the determinant of the spatial metic gab, with eab its inverse. The variable
N is the lapse while Na represents the metric shift functions. 3R is the tree-dimensional
curvature scalar.

The first task is to specialize to tetrads with the choice Eµ
0 = nµ = δ

µ
0 N−1 − δ

µ
a N−1Na.

This tetrad is orthogonal to the constant time hypersurface. The covariant metric is

gµν =

(
−N2 + NcNdgcd gacNc

gbdNd gab

)
, (3)

with the contravariant metric

gµν =

(
−1/N2 Na/N2

Nb/N2 eab − NaNb/N2

)
. (4)

We then choose the remaining tetrads to be tangential to the constant time hypersurface.
Thus, the full set of contravariant tetrads (with the upper index representing the row and
the lower index representing the column) is

Eµ
I =

(
N−1 0

−N−1Na Ta
i

)
, (5)

with the corresponding covariant set

eI
µ =

(
N 0

ti
aNa ti

a

)
. (6)

However, we employ as independent triad variables
∼
T a

i := tTa
i where t := det

(
ti
a
)
.

Furthermore, rather than choosing the lapse N as an independent configuration variable,
we work with N∼ := t−1N. Therefore, for the following, we need

t,µ = tti
a,µTa

i =
(

ti
aT̃a

i

)
,µ
− ti

aT̃a
i,µ; (7)

therefore, we find that

t,µ =
1
2

ti
aT̃a

i,µ, (8)

ti
a,µ = t−1T̃b

j,µ

(
−ti

btj
a +

1
2

tj
bti

a

)
, (9)

and
Ta

i,µ = −1
2

t−2tj
bT̃b

j,µT̃a
i + t−1T̃a

i,µ. (10)
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Now, we define the canonical momentum

pl
e :=

∂L
∂T̃e

l,0

= −Nt
(

eacebd − eabecd
)

Kcd
∂Kab

∂T̃e
l,0

. (11)

Therefore, we need

2Nt
∂Kab

∂T̃e
l,0

= gabtl
e − 2tl

(agb)e. (12)

Subsequently,
pl

e = Td
l Ked, (13)

from which we deduce that
pi
(ati

b) = Kab. (14)

Therefore, we can write the Lagrangian immediately in terms of the canonical momenta.
To obtain the canonical HamiltonianHc, we must now focus on pi

aT̃a
i,0 which we want

to write in terms of the momenta. We have

pi
aT̃a

i,0 = KabTb
i T̃a

i,0. (15)

We rewrite this in terms of derivatives of tj
c. Therefore, we consider first

T̃a
i,0 = (tTa

i ),0 = t,0Ta
i + tTa

i,0 = ttj
c,0Tc

j Ta
i − tTc

i Ta
j tj

c,0, (16)

and we therefore have

pi
aT̃a

i,0 =
1
2

tKab

(
eabecd − ebcead

)
gcd,0. (17)

But
gcd,0 = 2NKcd + 2ge(cNe

|d), (18)

so we conclude, finally, that

pi
aT̃a

i,0 = tKab

(
eabecd − ebcead

)(
NKcd + ge(cNe

|d)

)
. (19)

We thereby obtain the expression for the canonical Hamiltonian,

Hc = pi
aT̃a

i,0 −L

=
Nt
2

(
3R + KabeacebdKcd −

(
eabKab

)2
)
+ tKab

(
eabNc

|c − eacNb
|c

)
. (20)

For later use, we need to rewrite the canonical Hamiltonian in terms of pi
a using Kab = pi

(ati
b),

which implies that

KabeacebdKcd = pi
(ati

b)pj
(ctj

d)e
acebd =

1
2

(
pi

a pi
beab + pi

a pj
bTa

j Tb
i

)
(21)

and
eabKabecdKcd = pi

aTa
i pj

bTb
j . (22)
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Therefore, the canonical Hamitonian becomes

Hc =
Nt
2

(
3R +

1
2

pi
a pi

beab +
1
2

pi
a pj

bTa
j Tb

i − pi
aTa

i pj
bTb

j

)
+ tpi

ati
b

(
eabNc

|c − ec(aNb)
|c

)
=

N∼
2

(
T̃a

i T̃b
j

3Rij
ab +

1
2

pi
a pi

bT̃a
j T̃b

j +
1
2

pi
a pj

bT̃a
j T̃b

i − pi
aT̃a

i pj
bT̃b

j

)
+tpi

ati
b

(
eabNc

|c − ec(aNb)
|c

)
= N∼

≈
H0 + pi

aT̃a
i Nc
|c −

1
2

pi
a t∼

i
bT̃c

j T̃a
j Nb
|c −

1
2

pi
bT̃c

i Nb
|c, (23)

where N∼ := t−1N and

≈
H0 := −1

2
T̃a

i T̃b
j

(
3Rij

ab + pi
a pi

b − pi
b pj

a

)
. (24)

It is straightforward to check that this does deliver an almost correct expression for the
time rate of change in the densitized triad—lacking, as we shall see shortly, the arbitrary
triad gauge rotations, i.e.,

T̃e
l,0 =

∂Hc

∂pl
e
= N∼

(
pl

bT̃e
j T̃b

j − pj
bT̃b

j T̃e
l

)
+ T̃e

l Nc
|c −

1
2

t∼
l
bT̃c

j T̃e
j Nb
|c −

1
2

T̃c
l Ne
|c. (25)

It is important to recognize here that the ADM Lagrangian does not depend on the
antisymmetrized linear combination of velocities T̃a[i t∼

j]
a , and as a consequence, we obtain

a corresponding primary constraint, with a corresponding addition to the Hamiltonian
generator of time evolution. Rosenfeld, indeed, in [14] considered a tetrad version of general
relativity in which analogous constraints appeared and, although he did not explicitly
construct the corresponding extended Hamiltonian, he could easily have applied his new
techniques to achieve this. We next derive the relevant primary constraint by applying
Noether’s second theorem.

3. Noether Charges

First, there is a vanishing charge that arises from the invariance of the ADM action
under triad rotations

δηTa
i = εijkT̃a

j ηk, (26)

where ηk are arbitrary spacetime functions. Following Noether’s second theorem, con-
served charge arises as follows. The variation of the action is

0 = δη

∫
d4xL =

∫
d4x

( δL
δT̃a

i

)
δη T̃a

i +

(
∂L

∂T̃a
j,µ

εijkT̃a
j ηk

)
,µ

. (27)

When the field equations are satisfied, we obtain, letting the variations vanish at spatial
infinity, the conserved charge

Cη =
∫

d3xpi
aεijkT̃a

j ηk. (28)

But since ηk can vary arbitrarily with time, we deduce the existence of constraints

0 = H̃k := −εijk pi
aT̃a

j . (29)

The additional constraints that arise from the invariance of the action under spacetime
diffeomorphisms require a bit more work to derive. We derive the vanishing Noether
charge diffeomorphism-related generator following the procedure that was applied in the
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conventional metric case in [1]. It should be noted here that this procedure was applied
to tetrad-based general relativity by Rosenfeld in 1930. And as observed in [15], he did
not complete the derivation of the canonical generators that we shortly find, very likely
because he recognized that he could not express them exclusively in terms of canonical
variables. In other words, he did not recognize, as first observed in [16], that the variations
were not projectable under the Legendre transformation to phase space.

Under an infinitesimal diffeomorphism x′µ = xµ − εµ, the scalar density L transforms as 1

δ̄L = (Lεµ),µ, (30)

where the δ̄ variation is actually the Lie derivative Lε. We shortly work out the corresponding
field variations. But first, we derive the corresponding vanishing Noether charges noting that
when the field equations are satisfied, and letting εa → 0 at spatial infinity,

∫
d4xδ̄L =

∫
d3x

 ∂L
∂T̃a

i,0
δ̄T̃a

i +
∂L

∂N∼ ,0
δ̄N∼ +

∂L
∂Na

,0
δ̄Na

∣∣∣∣∣∣
x0

f

x0
i

=
∫

d3xLε0
∣∣∣x0

f

x0
i

. (31)

Therefore, again, taking into account that the time dependence of εµ is arbitrary, we derive
the corresponding vanishing Noether charges

Cε =
∫

d3xCε (32)

with vanishing charge density

Cε =
∂L

∂T̃a
i,0

δ̄T̃a
i +

∂L
∂N∼ ,0

δ̄N∼ +
∂L

∂Na
,0

δ̄Na −Lε0

= pi
a δ̄T̃a

i +
≈
P δ̄N∼ +

∼
Pa δ̄Na −Lε0. (33)

We recognize, of course, that the momenta
≈
P and

∼
Pa are primary constraints.

The next step is to determine the variations under x′µ = xµ − εµ. We must bear
in mind that the variations of the triads must yield vectors that remain tangent to the
fixed time hypersurface. And furthermore, the varied nµ = δ

µ
0 N−1 − δ

µ
a N−1Na must be

perpendicular to this new hypersurface. The resulting variations are

δ̄N = Nε0
,0 − NNaε0

,a + Nε0
,0 + N,aεa (34)

and
δ̄Na = Naε0

,0 − (N2eab + NaNb)ε0
,b + εa

,0 − Nbεa
,b + Na

,0ε0 + Na
,bεb. (35)

To determine the variation of T̃a
i , we refer to the variation of the spatial components of

the metric. We have

δ̄gab = δ̄ti
ati

b + ti
a δ̄ti

b

= ti
a,µεµti

b + ti
ati

b,µεµ + ti
cNcε

µ
,ati

b + ti
cεc

,ati
b + ti

ati
cNcε0

,b + ti
ati

cεc
,b. (36)

Therefore, we find
δ̄ti

a = ti
a,µεµ + ti

bNbε0
,a + ti

bεb
,a. (37)
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Next, we calculate δ̄Ta
i using

δ̄ti
aTa

j = −ti
a δ̄Ta

j , (38)

which implies

δ̄Tb
j = −δ̄ti

aTa
j Tb

i = −
(

ti
a,µεµ + ti

cNcε0
,a + ti

cεc
,a

)
Ta

j Tb
i

= Tb
j,µεµ − NbTa

j ε0
,a − εb

,aTa
j . (39)

Now, to obtain δ̄T̃a
i , we need

δ̄t = tδ̄ti
aTa

i = t
(

ti
a,µεµ + ti

bNbε0
,a + ti

bεb
,a

)
Ta

i , (40)

which implies

δ̄T̃a
i = δ̄tTa

i + tδ̄Ta
i = T̃a

,µεµ + Nbε0
,bT̃a

i + εb
,bT̃a

i − NaT̃c
i ε0

,c − εa
,cT̃c

i . (41)

Finally, we also find that

δ̄N∼ = −N∼

(
1
2

t∼
i
a
∼
T a

i,µεµ + εa
,a + ε0

,aNa
)

+ N∼ ε0
,0 − N∼ Naε0

,a +

(
1
2

t∼
i
a
∼
T a

i,0N∼ + N∼ ,0

)
ε0 +

(
1
2

t∼
i
a
∼
T a

i,bN∼ + N∼ ,b

)
εb. (42)

As noted originally in [16] with regard to Hilbert action, the variations of the lapse
and shift are not projectable under the Legendre transformation to phase space due to the
dependence on their time derivatives, and the unique means of eliminating these terms
in spacetime diffeomorphisms is to require a metric dependence which we rewrite in the
form ∼n µξ

∼
0, where

∼n µ := tnµ =
(

N∼
)−1(

δ
µ
0 − δ

µ
a Na

)
. (43)

The general infinitesimal spacetime coordinate variation is therefore

εµ = tnµξ
∼

0 + δ
µ
a ξa. (44)

It should be noted here that this requirement results in a loss of the original spacetime
diffeomorphism Lie algebra. The most striking change is a forced dependence on the
underlying spatial metric, leading to what has become known as the Bergmann Komar
group. A detailed history of this development can be found in [6,19].

Taking this required metric dependence into account, the resulting variations are

δ̄N = ξ̇0 − Naξ0
,a + ξaN,a =

(
tξ
∼

0
)

,0
− Na

(
tξ
∼

0
)

,a
+ ξaN,a

= t,0ξ
∼

0 + tξ
∼

0
,0 − Nat,aξ

∼
0 − Natξ

∼
0
,a + ξaN,a; (45)

therefore,

δ̄N∼ = δ̄t−1N + t−1δ̄N

= −t−2δ̄tN + t−1
(

t,0ξ
∼

0 + tξ
∼

0
,0 − Nat,aξ

∼
0 − Natξ

∼
0
,a + ξaN,a

)
= −t−2δ̄tN + t−1

(
tti

a,0Ta
i ξ
∼

0 + tξ
∼

0
,0 − Natti

b,aTb
i ξ
∼

0 − Natξ
∼

0
,a + ξaN,a

)
. (46)



Universe 2023, 9, 458 7 of 13

To continue, we need

δ̄ti
a = ti

a,µεµ + ti
bNbε0

,a + ti
bεb

,a

= N−1ti
a,0ξ0 − N−1ti

a,bNbξ0 + ti
a,bξb + ti

bNb
(

N−1ξ0
)

,a
+ ti

b

(
−N−1Nbξ0 + ξb

)
,a

= N−1ti
a,0ξ0 − N−1ti

a,bNbξ0 + ti
a,bξb + ti

b

(
−N−1Nb

,aξ0 + ξb
,a

)
. (47)

We use this to calculate

−t−2Nδ̄t = −t−1Nδ̄ti
aTa

i = −t−1Ta
i

(
ti
a,0ξ0 − ti

a,bNbξ0 + Nti
a,bξb + ti

b

(
−Nb

,aξ0 + Nξb
,a

))
. (48)

Combining terms, we obtain

δ̄N∼ = −t−1Ta
i

(
ti
a,0ξ0 − ti

a,bNbξ0 + Nti
a,bξb + ti

b

(
−Nb

,aξ0 + Nξb
,a

))
+ t−1

(
tti

a,0Ta
i ξ
∼

0 + tξ
∼

0
,0 − Natti

b,aTb
i ξ
∼

0 − Natξ
∼

0
,a + ξaN,a

)
= −t−1Ta

i

(
Nti

a,bξb + ti
b

(
−Nb

,aξ0 + Nξb
,a

))
+ t−1

(
tξ
∼

0
,0 − Natξ

∼
0
,a + ξaN,a

)
= −N∼ Ta

i ti
a,bξb + Na

,aξ
∼

0 − N∼ ξa
,a + ξ

∼
0
,0 − Naξ

∼
0
,a + t−1N,aξa

= Na
,aξ
∼

0 − N∼ ξa
,a + ξ

∼
0
,0 − Naξ

∼
0
,a + N∼ ,aξa. (49)

Next, we need

δ̄Na = ξa
,0 − Neabξ0

,b + N,beabξ0 + Na
,bξb − Nbξa

,b

= ξa
,0 − Neab

(
tξ
∼

0
)

,b
+
(

tN∼
)

,b
eabtξ

∼
0 + Na

,bξb − Nbξa
,b

= ξa
,0 − t2N∼ eabξ

∼
0
,b + t2N∼ ,beabξ

∼
0 + Na

,bξb − Nbξa
,b. (50)

As a final step, we need to consider the variations under εµ = δ
µ
a ξa. These contribute

the additional terms to the Noether density

pi
aT̃a

i,bξb + pi
a

(
ξb

,bT̃a
i − εa

,cT̃c
i

)
. (51)

After performing an integration by parts, letting ξa → 0 as xa → ∞, we obtain contribution

−pi
aT̃a

i,bξb +
(

pi
aT̃a

i

)
,b

ξb −
(

pi
bT̃a

i

)
,a

ξb =
(

pi
a,bT̃a

i − pi
b,aT̃a

i − pi
bT̃a

i,a

)
ξb

= −2D[a pi
b]T̃

a
i ξb =: H̃bξb. (52)

Indeed, since ξa is an arbitrary spacetime function, this delivers an additional vanishing
Noether generator of spatial diffeomorphisms with constraint

0 = H̃a = −2T̃b
i D[b pi

a]. (53)
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Substituting the original variations into the Noether charge, we obtain

Cε = pi
aT̃a

i,0ε0 −Lε0

+ pi
aT̃a

i,bεb + pi
a

(
Nbε0

,bT̃a
i + εb

,bT̃a
i − NaT̃c

i ε0
,c − εa

,cT̃c
i

)
+
≈
P δ̄N∼ +

∼
Pa δ̄Na

=
≈
H0ε0 +

(
pi

aT̃a
i Nc
|c −

1
2

pi
a t∼

i
bT̃c

j T̃a
j Nb
|c −

1
2

pi
bT̃c

i Nb
|c

)
ε0

+ pi
aT̃a

i,bεb + pi
a

(
Nbε0

,bT̃a
i + εb

,bT̃a
i − NaT̃c

i ε0
,c − εa

,cT̃c
i

)
+
≈
P δ̄N∼ +

∼
Pa δ̄Na. (54)

Next, we collect terms (54) involving ε0 and not
≈
H0. We have

1
2

(
pi

aTa
i ecd − pi

aTd
i eac

)
tge(cNe

|d)ε
0 + pi

a

(
Nbε0

,bT̃a
i − NaT̃c

i ε0
,c

)
=

1

2N∼

(
pi

aT̃a
i ecd − pi

aT̃d
i eac

)
N(c|d)ξ∼

0

− 1

N∼
pi

a

− 1

N∼
N∼ ,bNbξ

∼
0
,bT̃a

i + Nbξ
∼

0
,bT̃a

i +
1

N∼
N∼ ,cNaT̃c

i ξ
∼

0 − NaT̃c
i ξ
∼

0
,c

. (55)

We perform an integration by parts in the first line to obtain

−1
2

[
N∼ ξ
∼

0
(

pi
aT̃a

i ecd − pi
aT̃(d

i ec)a
)]
|d

Nc

= −1
2

(
N∼ ξ
∼

0
)
|d

(
pi

aT̃a
i Nd − pi

aT̃(d
i Na)

)
−1

2
N∼ ξ
∼

0
(

pi
a|dT̃a

i Nd − pi
a|dT̃(d

i Na)
)

. (56)

In addition, we have

pi
aT̃a

i,bεb + pi
a

(
εb

,bT̃a
i − εa

,cT̃c
i

)
= pi

aT̃a
i,bN∼

−1
Nbξ
∼

0 − pi
aT̃a

i

(
−N∼

−2
N∼ ,bNbξ

∼
0 + N∼

−1
Nb

,bξ
∼

0 + N∼
−1

Nbξ
∼

0
,b

)
+pi

aT̃b
i

(
−N∼

−2
N∼ ,bNaξ

∼
0 + N∼

−1
Na

,bξ
∼

0 + N∼
−1

Naξ
∼

0
,b

)
. (57)

Then, it turns out that some amazing cancelations occur, and the resulting Noether
charge is

Cξ =
∫

d3x
[
≈
H0ξ

∼
0 +

∼
Haξa

+
≈
P
(

Na
,aξ
∼

0 − N∼ ξa
,a + ξ

∼
0
,0 − Naξ

∼
0
,a + N∼ ,aξa

)
+

∼
Pa

(
ξa

,0 − t2N∼ eabξ
∼

0
,b + t2N∼ ,beabξ

∼
0 + Na

,bξb − Nbξa
,b

)]
, (58)

where we have the additional vanishing constraint due to the arbitrariness in function ξ
∼

0,

≈
H0 = −1

2
T̃a

i T̃b
j

(
3Rij

ab + pi
a pi

b − pi
b pj

a

)
= 0. (59)
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Similarly, since ξa can vary arbitrarily in time, we obtain constraint

Ha = 0. (60)

These results imply, of course, that Cξ itself vanishes. 2

4. Spacetime Diffeomorphism-Related Noether Generator

We work out here the requirement to add gauge transformations to the diffeomorphisms
in order to attain projectability under the Legendre transformation from configuration–velocity
space to phase space. This challenge arises due to the absence of anti-symmetrized linear
combinations of triad time derivatives in the ADM Lagrangian. This is a combination that
appears in the Ricci rotation coefficient (see [20]).

Ωij
0 = −T̃a[i

,0 t∼
j]
a − Na

,bt[ia T j]b + Nctk
c Ta[iT j]btk

a,b + Nct[ic,bT j]b. (61)

We undertake the variation of the covector component Ωij
0 under the infinitesimal diffeo-

morphism with descriptor εµ = nµξ0 + δ
µ
a ξa,

δ̄Ωij
0 = Ωij

µε
µ
,0 + δΩij

0 . (62)

We do not need δΩij
0 since it is projectible. Thus, we have

δ̄Ωij
0 = Ωij

0

(
N−1ξ0

)
,0
+ Ωij

a

(
−N−1Naξ0 + ξa

)
,0
+ . . . . (63)

We discover that the unprojectable time derivatives of the lapse and shift appear in this
variation. But the good news is that these inadmissible variations can be eliminated by
adding gauge rotations with

ηk = −εkijΩij
µnµξ0, (64)

with generator

−
∫

d3xεkijΩij
µnµξ0 pk = −

∫
d3xεkijΩij

µnµξ0εkmn pm
a T̃a

a

=
∫

d3xΩk[i
µ t∼

j]
a nµT̃a

k ξ
∼

0. (65)

The additional Ricci rotation coefficient is (from [20]) the three-dimensional coefficient
Ωij

a = ω
ij
a .

Adding this expression to the first line in (58), we define the vanishing generator
density

H0 :=
(
−3R +

1
4

pi
a pi

beab − 1
4

pi
aTa

i pj
bTb

j + Ωk[i
µ t∼

j]
a nµT̃a

k

)
= 0. (66)

Thus, we finally have the full diffeomorphism-related vanishing Noether generator,
derived directly from the vanishing Noether charge,

Cξη =
∫

d3x
[
H0ξ

∼
0 +Haξa + ηkHk

+
≈
P
(

Na
,aξ
∼

0 − N∼ ξa
,a + ξ

∼
0
,0 − Naξ

∼
0
,a + N∼ ,aξa

)
+

∼
Pa

(
ξa

,0 − t2N∼ eabξ
∼

0
,b + t2N∼ ,beabξ

∼
0 + Na

,bξb − Nbξa
,b

)]
. (67)
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5. Variations Produced by the Generators and the Generator Algebra

We first confirm here that the Noether generators that were obtained do indeed
generate the correct variations of configuration variables. (One could indeed invoke a
procedure invented by Rosenfeld in 1930 to show that momentum variables also undergo
the correct variations.) We begin with the variations generated by R(ξ) :=

∫
d3xHkξk.

We have
δξ

∼
T a

i =
{ ∼

T a
i , R(ξ)

}
= −εijkξ j ∼T a

k. (68)

Next, we consider variations generated by V~η :=
∫

d3xHaηa, finding that

δ~η
∼
T a

i =
{ ∼

T a
i , V(~η)

}
= −

∼
Tb

i ηa
,b +

∼
Tb

i,bηa − ηbω
ji
b
∼
T a

j . (69)

Here, it is useful to define ωm
b := 1

2 εmjkω
jk
b , from which it follows that ω

ji
b = εjikωk

b.
Thus, we can interpret the last term in (69) as arising from a triad gauge rotation with
the gauge descriptor derived from the spatial diffeomorphism descriptor, i.e., the full
variation becomes such that the first is a spatial diffeomorphism variation and the second
is a gauge rotation,

δ~η
∼
T a

i = −
∼
Tb

i ηa
,b +

∼
Tb

i,bηa − εijkηbω
j
b
∼
T a

k. (70)

The final variation to consider is that generated by S[ξ
∼
] :=

∫
d3xH0ξ

∼
0. We have

δ
ξ
∼

∼
T a

i =

{
∼
T a

i , S[ξ
∼
]

}
=

{
∼
T a

i ,
{
∼
T a

i , S[ξ
∼

0]

}}
=

1
2

Tb
j

(
pi

bTa
j − pj

bTa
i

)
ξ
∼

0. (71)

The vanishing constraint generators that we obtained here are precisely those obtained
previously in [20]. Indeed, this algebra played a central role in the derivation of the
complete generator of spacetime diffeomorphism related transformations that we derived
here in an alternative manner in applying Noether’s second theorem. The generators obey
the following closed Poisson bracket algebra:

{R[ξ], R[η]} = −R[[ξ, η]], (72)

where [ξ, η]i := εijkξ jηk, {
V[~ξ], R[η]

}
=

{
S[ξ
∼
], R[η]

}
= 0, (73)

{
V[~ξ], V[~η]

}
= V[[~ξ,~η]]− R[3Rabξaηb], (74)

using the Lie bracket
[~ξ,~η]a := ξbηa

,b − ηbξa
,b, (75)

{
S[ξ
∼
], V[~η]

}
= −S[L~η ξ

∼
0]− R[ηaδPD[tξ

∼
0] + δR[Ωµnµtξ

∼
0]ωa], (76)

where
(δPD[tξ

∼
0] + δR[Ωµnµtξ

∼
0])ωi

a = (pj
aT̃bkDb(ξ

∼
0) + 2T̃b

j ξ
∼

0D[a pk
b])ε

ijk, (77)

and finally, {
S[ξ
∼
], S[η

∼
]

}
= V[~ζ]− R[[Daξ

∼
0T̃a, Dbη

∼

0T̃b]], (78)

where

ζa =

(
ξ
∼

0∂bη
∼
− η
∼

∂bξ
∼

)
≈e ab. (79)
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6. The Canonical Hamiltonian

It must be stressed that the above diffeomorphism generator differs in an essential
manner from the conventional temporal evolution generator. Note that the canonical
Hamiltonian derived in (23), after performing an integration by parts (assuming Na → 0 as
~x → ∞), takes the form

Hc =
≈
H0 + Na ∼Ha, (80)

and, as noted in (25), the Poisson bracket
{

T̃a
i ,
∫

d3xHc
}

yields an equation of motion that
does not take into account the spacetime coordinate freedom available in the function Ωk

that multiplies the triad gauge constraint in the complete Hamiltonian

H =
∫

d3x
(

N∼
≈
H0 + Na ∼Ha + Ωk ∼Hk

)
. (81)

This evolves initial phase space data in time via the Poisson bracket. The generator Cξη ,
on the other hand, acts on the entire solutions generated by H and transforms them to
new physically equivalent solutions that are related through the action of active spacetime
diffeomorphisms.

7. Extension to the Barbero–Immirzi–Holst Model

The Holst addition to the Lagrangian is

LH =
1

4γ
NtEµ

I Eν
J

4RI J
µν. (82)

It is introduced with what has become known as the Barbero–Immirzi parameter γ. The
curvature is expressed in terms of the Ricci rotation coefficients,

4RI J
µν = ∂µΩI J

ν − ∂νΩI J
µ + ΩIM

µ ΩνM
J −ΩIM

ν ΩµM
J . (83)

It is of course well known that this Lagrangian vanishes when, as we assume, the torsion
vanishes. The outcome for our specific use is that the new canonical momentum pγi

a is
obtained through a canonical transformation of pi

a, i.e.,

pγi
a = pi

a +
1
2

γ−1εijkω
jk
a . (84)

It follows that we need only make this substitution for pi
a in our Noether generator (67) to

obtain the spacetime diffeomorphism-related symmetry generator in the Barbero–Immirzi–
Holst model.

8. Evolving Constants of Motion

We briefly overview here the manner in which the vanishing diffeomorphism-related
generator may be employed to implement the use of intrinsic coordinates, evoking the general
method presented in [21]. There, we proposed the use of intrinsic coordinates which must
be spacetime scalar phase space functions. We represent them here as Xµ

(
T̃a

i , pb
j

)
3. With

their aid, we can establish gauge conditions which we represent as χ(1)µ = xµ − Xµ = 0.
Recognizing that these must be preserved under time evolution, we obtain a second set of
gauge conditions

0 =
d

d t
χµ = δ

µ
0 − Nρ{Xµ ,Hρ} = δ

µ
0 −A

µ
ρ Nρ =: χ(2)µ, (85)

where
Aµ

ρ :=
{

Xµ,Hρ

}
. (86)
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In [21], we extended a procedure that was invented in [22] so as to include the lapse and
shift as phase space variables. The basic idea is to take linear combinations of the eight first-

class constraints which we represent here by ζ(j)ν =
(
Hµ,

≈
P,

∼
Pa

)
, employing the inverse of

Aµ
ρ . Representing the new set of the original first-class constraints by ζ̄(j),µ, we are able to

arrange that they satisfy the Poisson brackets with the gauge conditions satisfying{
χ(i)µ, ζ̄ j,ν

}
= −δi

jδ
µ
ν . (87)

Consequently, we can solve for the gauge functions ξ̄µ which transform arbitrary solutions
of the field equations to those that satisfy the gauge conditions. Of course, in doing so, in
this case, we make use of Generator (67) with the new linear combinations of constraints
ζ(j)ν. Thus, for any phase space function Φ, including the lapse and shift, we can construct
the corresponding spacetime invariant IΦ through the action of the generator Cξ̄ , i.e.,

IΦ = exp
({
−, Cξ̄

})
Φ. (88)

The validity of this expansion has been demonstrated, for example, in [1,21], for several
previous models. It will be straightforward to do so for the classical Barbero–Immirzi–Holst
theory. A cosmological perturbative approach employing these expansions would be of
particular interest.

9. Conclusions

We presented here a new direct method for obtaining the generator of spacetime
diffeomorphism-related phase space transformations through appealing directly to Noether’s
second theorem. The question that must now be addressed is how one can take these classi-
cal symmetries into account in an eventual quantum theory of gravity. Much effort has of
course long been devoted to addressing this issue. Pullin and his collaborators have cer-
tainly made significant progress in addressing the associated problem of time [23]. Rovelli
has long advocated a closely related approach in which a subset of fields serve as clocks. In
this regard, we are choosing Weyl scalars expressed in terms of phase space variables as
both temporal and spatial intrinsic coordinates [24]. This is accomplished in a manner as
advocated in [1,21].
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Notes
1 A major advantage in employing the ADM Lagrangian is that it does vary as a Lagrangian density, assuming only that variations

at spatial infinity vanish. See [17], p. 119 and [18].
2 It is likely a surprise to most readers that this procedure for determining what are now known as secondary constraints, following

the so-called Bergmann–Dirac procedure, was initiated by Léon Rosenfeld in 1930. We believe it would be more accurate to refer
to the Rosenfeld–Bergmann–Dirac method. The relation between Bergmann, Rosenfeld and Dirac is analyzed in detail in [6].

3 The analogues have long been represented by several authors as Tµ and they have been denoted as “clock” variables. See, for
example, [8]. We recommend referring to T0 as a clock variable and the Ta rod variables.
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