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Abstract: In this paper, we take the bidirectional sixth-order Sawada–Kotera equation as an instance
and use a new limit approach to generate a multiple-pole solution and the degenerate of the breather
wave from the N-order soliton solution. We show not only the substitution method, but also the
specific mathematical expression of the double-pole, triple-pole, and the degenerate breather solution
after the substitution. Meanwhile, we give the dynamic images and trajectories of the different
multiple-pole solution. Moreover, we also acquire the interaction between two double-pole solutions
and different nonlinear superposition solutions.
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1. Introduction

With the continuous development of science and technology, as well as scientific
research tools, the importance of nonlinear phenomena in nature is gradually increasing [1].
The different forms of solutions are the most interesting points in the study of partial
differential equations [2]. Particularly for multiple-pole solutions, which consist of groups
of weakly bound solitons with similar velocity and amplitude [3]. In fact, most researchers
have used the inverse scattering method and Darboux transformation method to acquire
the multiple-pole solution [4–7]. The Darboux transformation method has formed a mature
theoretical system [8,9]. Some productive systems are cumbersome to calculate using the
inverse scattering method. For Equation (1), there will be a fifth-order differential operator
in the solving process [10]. To the best of our knowledge, relatively few papers have
studied this solution using the bilinear method; this method allows the calculation steps to
be simplified. In this paper, we take the bidirectional sixth-order Sawada–Kotera equation
as an instance and use a new limit approach to generate a multiple-pole solution and the
degenerate of the breather wave from the N-order soliton solution.

The bidirectional sixth-order Sawada–Kotera equation has the following form:

5utt + 5uxxxt− 15uxuxt− 15uxxut− 45(ux)
2uxx + 15uxxuxxx + 15uxuxxx−uxxxxxx = 0, (1)

which is a sixth-order nonlinear equation (KdV6) that was derived from the fifth-order
Sawada–Kotera equation [11]. The Sawada–Kotera model is a well-known equation that
due to the gravitational force and conformal field theory, preserved the current of the
Liouville sample. Equation (1) is better for certain physical environments because it permits
us to describe waves that spread in opposite orientations [12]. Equation (1) passes the
Painlevé analysis test [13] and its integrability is discussed in [14].

For Equation (1), Hu et al presented a Lax pair and Bäcklund transformation forms [15].
Huber found new exact solutions using the homogeneous balance method [16]. Kupershmidt
found an auto-Bäcklund transformation for it using the method of truncated singular expan-
sion [14]. Wazwaz derived multiple soliton solutions and multiple singular soliton solutions
using the Cole–Hopf transformation [11]. Li et al constructed vector fields and the optimal
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system using the Lie symmetry analysis approach and derived a periodic wave solution with
detailed analysis [13]. Yin et al presented its multiple kink solutions [17].

The structure of the paper is as follows. In Section 2, N-soliton solutions of Equation (1)
is given directly by Hirota bilinear method. In Section 3, based on N-soliton solutions and
new limit-approach constraints, we obtain the double-pole, triple-pole and quadruple-pole
solution. In Section 4, the interaction between two double-pole solutions is constructed by
changing the constraints. Meanwhile, we also acquire the degenerate solution of a second-
order breather solution with module resonance conditions. We observed the different
superposition solutions using MAPLE. Section 5 contains our conclusions.

2. N-Soliton Solution

The Hirota bilinear method is a well-known method for solving the soliton solution of
nonlinear equations [18]. Using logarithmic transformation

u = 2(ln f )x, (2)

Equation (1) can be transformed into the bilinear form

(5D2
t + 5D3

xDt − D6
x)( f · f ) = 0, (3)

where Dx, Dt are defined by

Dm
x Dn

t ( f · g) = (
∂

∂x1
− ∂

∂x2
)m(

∂

∂t1
− ∂

∂t2
)n( f (x1, t1) · g(x2, t2))|x1=x2,t1=t2 . (4)

So Equation (3) is equivalent to

5 f f2t − 5 f 2
t − f f6x + 6 fx f5x − 15 f2x f4x + 10 f 2

3x

+ 5 fxxxt f − 5 f3x ft − 15 fxxt fx + 15 f2x fxt = 0.

Then, based on the above form, the f can be directly obtained as

f = fN = ∑
µ=0,1

exp

(
N

∑
j=1

µjθj +
N

∑
j<s

µjµs Ajs

)
, (5)

where

θj = k jx + ωjt + η
(0)
j , ωj =

(
−1

2
± 3
√

5
10

)
k3

j , (6)

eAjs =

(
2k2

j − (1±
√

5)k jks + 2k2
s

)(
k j − ks

)2(
2k2

j + (1±
√

5)k jks + 2k2
s

)(
k j + ks

)2
.

Here, k j, η
(0)
j (j = 1, 2, · · · , N) are arbitrary complex constants, ∑

µ=0,1
is all possible

combinations of µj = 0, 1. We depict the 3D plot, density plot and contour plot of a single-
soliton and two-soliton solution. Figure 1 is presented by taking parameters k1 = 2, k2 =

3, η
(0)
1 = η

(0)
2 = 0 in Equation (1). All lines in Figure 1c are parallel, and the slope is constant

as
5− 3

√
5

10
k2

1 when |t| → ∞. Two different slopes (red and yellow line) in Figure 1f are

5− 3
√

5
10

k2
1 and 5− 5− 3

√
5

10
k2

2 when |t| → ∞.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Single soliton for Equation (1) by choosing k1 = 2, η
(0)
1 = 0: (a) 3D plot of u; (b) The

corresponding density plot; (c) The contour plot; two-soliton solution for Equation (1) by choosing

k1 = 2, k2 = 3, η
(0)
1 = η

(0)
2 = 0; (d) 3D plot of u; (e) The corresponding density plot; (f) The

contour plot.

In our previous research [19], we found that two solitons will transform to resonance
Y-type soliton if we take suitable k1, k2 in accordance with {exp(A12) = 0, k1 6= k2}.
Equation (6) demonstrates that there is no resonance in this model. In fact, for the vast
majority of (1 + 1)-dimensional evolution equations, it is hardly possible to find two solitons
that merge into one at some point.

3. Multiple-Pole Solutions
3.1. Double-Pole Solution

Let

N = 2, k2 = k1 + ε, η
(0)
1 = χ

(0)
1 + ln

(
− β

ε

)
, η

(0)
2 = χ

(0)
1 + ln

(
β

ε

)
(7)

in Equation (5), then the second-order soliton solution will be degenerated to a double-pole
solution u2 when ε→ 0, and this degenerated solution has the following form

u2 = 2(ln f )x, f = 1 + β∂k1

(
eχ1
)
− D11β2e2χ1 , (8)

with

χj = k jx + ωjt + χ
(0)
j , Djs =


2
√

5− 5
20k2

1
, j = s,

(k1 − k2)
2((
√

5− 3)k2
1 + (

√
5− 1)k1k2 + (

√
5− 3)k2

2)

(k1 + k2)2((
√

5− 3)k2
1 − (

√
5− 1)k1k2 + (

√
5− 3)k2

2)
, j 6= s,

and k j, χ
(0)
j , β(j = 1, 2) are all real parameters.

The parameter β in Equation (7) not only affects the initial position of the solution,
but also controls the perturbation direction of the degenerated solution. It is well known



Universe 2023, 9, 55 4 of 11

that the bright multiple-pole solution which is derivative with respect to x has a max-
imum point [20]. Similarly, the dark multiple-pole solution has a minimum point [21].
In this system, Figure 2 visually depicts two different types, β > 0 and β < 0. Choos-
ing

{
β = 4

√
5 + 2

√
5, k1 = ±2

}
, we obtain a bright double-pole solution in Figure 2a.

If
{

β = −4
√

5 + 2
√

5, k1 = ±2
}

, the dark double-pole solution is depicted in Figure 2d.

Moreover, if we take β = ±2
√

5 + 2
√

5 k1, two different trajectory equations in Figure 2b,e
are symmetrical about the origin when |t| → ∞. Their specific expressions are as follows:

x =
5− 3

√
5

10
k2

1t ±
ln
(

18(5−
√

5)k6
1t2
)
− ln5

2k1
. (9)

According to Equation (9), we can deduce that the velocity of u2 while in motion is not
constant, but varies with time. This conclusion is also graphically illustrated in Figure 2.

(a) (b) (c)

(d) (e) (f)

Figure 2. Two different types of double-pole solution for Equation (8): (a,b) with β =

4
√

5 + 2
√

5, k1 = ±2, χ
(0)
1 = 0; (d,e) with β = −4

√
5 + 2

√
5, k1 = ±2, χ

(0)
1 = 0; (c,f) are 3D-plots of

(a,d), respectively, with respect to x.

3.2. Triple-Pole Solution

Let

N = 3, k2 = k1 + ε, k3 = k1 + 2ε, η
(0)
1 = χ

(0)
1 + ln

(
β

ε2

)
,

η
(0)
2 = χ

(0)
1 + ln

(
−2β

ε2

)
, η

(0)
3 = χ

(0)
1 + ln

(
β

ε2

)
,

(10)

then the third-order soliton solution will be degenerated to a triple-pole solution u3 when
ε→ 0, and this solution is expressed as

u3 = 2(ln f )x, (11)

where
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f = 1 + β∂2
k1

(
eχ1
)
− β2

[
D11

(
2(∂k1 χ1)

2 − 2∂2
k1

χ1

)
+ 2(∂k1 D11)(∂k1 χ1) +

1
2

∂2
k1

D11

]
e2χ1

− 8β3D3
11e3χ1 .

(12)

Here, k1, χ
(0)
1 are arbitrary real parameters.

Resemble the conclusion of the degenerate solution u2 , the degenerate solution of
the third-order soliton has bright and dark solutions with different parameters. Like-
wise, β > 0 or β < 0 is a significant impact factor. Figure 3 portrays the bright triple-
pole solution in Figure 3a, with the dark one in Figure 3c. Moreover, we let parameters{

β = ±
(

4
√

5 + 10
)

k2
1, χ

(0)
1 = 0

}
in order to have the center of the solution in Equation (11)

at the origin and the trajectory symmetric about the (0, 0) when |t| → ∞. For each particular
k1, the mathematical expressions for the three trajectories in Figure 3b,d at infinity are

x =
5− 3

√
5

10
k2

1t ±
ln
(

162(3−
√

5)k12
1 t4

)
− ln5

2k1
,

x =
5− 3

√
5

10
k2

1t +
1
k1

ln
10k2

1(21
√

5− 47)

β(199
√

5− 445)
.

(13)

When β = ±
(

4
√

5 + 10
)

k2
1, the second formula in Equation (13), i.e., the middle

trajectory, will simplify to x =
5− 3

√
5

10
k2

1t. In addition, u3 at infinity distance can be
approximated as a nonlinear superposition of three solutions; one has constant velocity,
and the other two solutions have ever-changing speed. It follows that Equation (13)
supports the above conclusion.

(a) (b)

(c) (d)

Figure 3. Two different types of triple-pole solution for Equation (11): (a,b) with β = 8(5+ 2
√

5), k1 =

±2, χ
(0)
1 = 0; (c,d) with β = −8(5 + 2

√
5), k1 = ±2, χ

(0)
1 = 0.

3.3. Quadruple-Pole Solution

For N = 4, ensure that
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k2 = k1 + ε, k3 = k1 + 2ε, k4 = k1 + 3ε, η
(0)
1 = χ

(0)
1 + ln

(
− β

ε3

)
,

η
(0)
2 = χ

(0)
1 + ln

(
3β

ε3

)
, η

(0)
3 = χ

(0)
1 + ln

(
−3β

ε3

)
, η

(0)
4 = χ

(0)
1 + ln

(
β

ε3

)
.

(14)

When ε→ 0, we obtain the exact expression of quadruple-pole solution u4 = 2(ln f )x
after a very cumbersome calculation.

f = 1 + β∂3
k1

(
eχ1
)
+ Pe2χ1 + Qe3χ1 + 1296β4D6

11e4χ1 (15)

where

P = 3β2

[
− 1

16

(
∂4

k1
D11

)
− 1

2
(
∂k1 χ1

)(
∂3

k1
D11

)
− 3

2
(
∂k1 χ1

)2
(

∂2
k1

D11

)
+
(

∂3
k1

χ1

− 2
(
∂k1 χ1

)3
)(

∂k1 D11
)
+
(

2
(
∂k1 χ1

)(
∂3

k1
χ1

)
− 3
(

∂2
k1

χ1

)2
−
(
∂k1 χ1

)4
)

D11

]
,

Q = −18β3

[(
4∂3

k1
χ1 − 6

(
∂k1 χ1

)(
∂2

k1
χ1

))
D3

11 +
(

6
(
∂k1 D11

)(
∂k1 χ1

)2 − 6
(
∂k1 D11

)(
∂2

k1
χ1

)
−
(

∂3
k1

D11

))
D2

11 +
(

6
(
∂k1 D11

)2(
∂k1 χ1

)
+ 3
(
∂k1 D11

)(
∂2

k1
D11

))
D11

]
,

and k1, χ
(0)
1 are arbitrary real parameters, D11 fulfils Equation (8).

With β = ±4
3
(5 + 2

√
5)

3
2 k3

1, we give bright (β > 0) and dark (β < 0) quadruple-pole
solutions in Figure 4. Each solution has a protruding part and a collapsing part, with the
protruding part of the light solution in the same position as the collapsing part of the
dark solution, and vice versa. It follows that two types of solutions have exactly the
same trajectory at infinity and are symmetric about the origin. The four trajectories in
Figure 4b,d are

(a) (b)

(c) (d)

Figure 4. The bright and dark quadruple-pole solutions are defined by Equation (15) with χ
(0)
1 =

0, k1 = 2: β =
32
3
(5 + 2

√
5)

3
2 in (a,b), β = −32

3
(5 + 2

√
5)

3
2 in (c,d).
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x =
5− 3

√
5

10
k2

1t ±
ln
(

9(5−
√

5)k6
1t2
)
− ln10

2k1
,

x =
5− 3

√
5

10
k2

1t ±
ln
(

1296(5− 2
√

5)k18
1 t6

)
− 2ln5

2k1
.

(16)

4. Interaction between Multiple-Pole Solutions

As we all know, the interaction between solitons causes phase shifts, so interaction
between double-pole solutions also causes phase shifts. Actually, based on Equation (7), let

N = 2n, k2 = k1 + ε, k4 = k3 + ε, · · · , k2n = k1 + (2n− 1)ε,

η
(0)
1 = χ

(0)
1 + ln

(
− β

ε

)
, η

(0)
2 = χ

(0)
1 + ln

(
β

ε

)
, · · · ,

η
(0)
2n−1 = χ

(0)
2n−1 + ln

(
− β

ε

)
, η

(0)
2n = χ

(0)
2n−1 + ln

(
β

ε

)
,

(17)

then a 2n-order soliton solution will be degenerated to the interaction between n double-
pole solutions when ε→ 0, k j, χ

(0)
j are consistent with the above constraints.

For n = 1, apparently, we can acquire a double-pole soliton as shown in Equation (8).
For n = 2, the expression of the interaction between two double-pole solutions u2−2 is

u2−2 = 2 ln( f )x, (18)

f = 1 + β∂k1

(
eχ1
)
+ β∂k3

(
eχ3
)
− β2D11e2χ1 − β2D33e2χ3 + β2(∂k1 ∂k3 D13

)
eχ1 + χ3

− β3D13D11

(
D13

(
∂k3 χ3

)
+ 2∂k3 D13

)
e2χ1 + χ3

− β3D13D33

(
D13(∂k1 χ1) + 2∂k1 D13

)
eχ1 + 2χ3 + β4D11D4

13D33e2(χ1 + χ3).

(19)

Taking parameters k1 = 3
5 , k3 = 13

10 , χ
(0)
1 = χ

(0)
3 = 0, the solution defined by

Equation (18) is shown in Figure 5. To show the dynamic behavior more clearly, un-

like Equation (8), we choose ωj = −
5 + 3

√
5

10
k3

j . Comparing the two cases (β = ± 1
10

)
in Figure 5, we find that the positive or negative of β only affects the direction of the
perturbation, not the orientation of where the solution lies. Based on the conclusion of
Equation (8) and the method of analyzing the interaction solution mentioned in [22], we
have promotional conclusions about trajectories in Figure 5b,d. To facilitate further study
of this by other scholars, we likewise give the mathematical expressions of the trajectory of
u2−2 when |t| → ∞.

The trajectory corresponding to k1:

x =
(3
√

5 + 5)
10

k2
1t± 1

2k1
ln

(
18(5 +

√
5)k6

1t2

5

)
+

5 ln(720− 288
√

5)
6

, t→ +∞,

x =
(3
√

5 + 5)
10

k2
1t± 1

2k1
ln

(
18(5 +

√
5)k6

1t2

5

)
+

5
3

ln
390963

√
5− 2

√
5

250000
, t→ −∞.

(20)

The trajectory corresponding to k3:

x =
(3
√

5 + 5)
10

k2
3t± 1

2k3
ln

(
18(5 +

√
5)k6

3t2

5

)
+

5 ln(3380− 1352
√

5)
13

, t→ +∞,

x =
(3
√

5 + 5)
10

k2
3t± 1

2k3
ln

(
18(5 +

√
5)k6

3t2

5

)
+

10
13

ln
1694173

√
5− 2

√
5

500000
, t→ −∞.

(21)
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(a) (b)

(c) (d)

Figure 5. The interaction solution defined by Equation (18) with k1 = 3
5 , k2 = 13

10 , χ
(0)
1 = χ

(0)
3 = 0:

β = 1
10 in (a,b), β = − 1

10 in (c,d).

Two-soliton solutions can be reduced to a breather wave with a special property as
long as we add to the module resonance conditions

k1 = k∗3, χ
(0)
1 = χ

(0)∗
3 , (22)

where the symbol ∗ stands for conjugate. Figure 6 vividly depicts the dynamic property of
the degenerate of the second-order breather solution.

However, the above limit substitution method in Equation (18) does not derive the
interaction between triple-pole solutions, so we can promote it further.

Let

N = 2n, k2 = k1 + ε, k3 = k1 + 2ε, k4 = k1 + 3ε, · · · , kn = k1 + (n− 1)ε,

kn+2 = kn+1 + ε, kn+3 = kn+1 + 2ε, · · · , k2n = kn+1 + (n− 1)ε,

η
(0)
1 = χ

(0)
1 + ln

(−1)n+1C0
n−1

εn−1 , η
(0)
2 = χ

(0)
1 + ln

(−1)n+2C1
n−1

εn−1 , · · · , η
(0)
n = χ

(0)
1 + ln

(−1)2nCn−1
n−1

εn−1 ,

η
(0)
n+1 = χ

(0)
n+1 + ln

(−1)n+1C0
n−1

εn−1 , η
(0)
n+2 = χ

(0)
n+1 + ln

(−1)n+2C1
n−1

εn−1 , · · · , η
(0)
2n = χ

(0)
n+1 + ln

(−1)2nCn−1
n−1

εn−1 ,

k1 = k∗n+1, ξ
(0)
1 = ξ

(0)∗
n+1,

(23)

then the degenerate solution of n-order breather solution will be generated when ε → 0.
The last row of conditions in Equation (23) are the module resonance constraints. Remove
this requirement, and we can acquire the interaction between two triple-pole solutions and
two quadruple-pole solutions, and so on. Together with the above resonance conditions,
also we can obtain the degenerate solution of the n-order breather solution.
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(a) (b)

(c) (d)

Figure 6. The degeneration of second-order breather solution defined by Equation (18) with k1 = k∗3 =

1 + i
2 , χ

(0)
1 = χ

(0)
3 = 0 : β = 1 in (a), corresponding density plot in (b); β = −1 in (c), corresponding

density plot in (d).

The nonlinear superposition of multiple-pole solutions and single solitons is studied
subsequently. Subject to the three-soliton solution, we simply do the transformation (7)
and then similarly make ε converge to zero. Figure 7 demonstrates the various cases of
nonlinear superposition of the double-pole solution and single soliton for different k3.
Taking k1 = 2, when 0 < k3 < k1, the density plots of the solution after superposition is
similar to the shape of double-pole solution (in Figure 2b). And the superposition solution
also can be seen as four solutions at t infinity. When k3 = k1, the original form of the
multipole solution disappears, forming a special Y-shaped solution. The method used
to derive this solution is quite different from the method we commonly use to derive
a resonance Y-type solution by making exp

(
Ajs
)
= 0. It is worth investigating further

whether this excitation pattern constant. For k3 > k1, the density plots of the superposition
solution has five (k3 = 3) and six (k3 = 5) tracks at t infinity, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 7. The various cases of nonlinear superposition of the double-pole solution and single soliton

with k1 = 2, β = 2
√

5 + 2
√

5, χ
(0)
1 = χ

(0)
3 = 0 : k3 = 0.5 in (a); k3 = 1 in (b); k3 = 2 in (c); k3 = 3 in

(d); k3 = 4 in (e); k3 = 5 in (f).

5. Conclusions

We use the new limit method to generate different degenerate solutions directly
from an N-soliton solution by means of the Hirota bilinear method for the bidirectional
sixth-order Sawada–Kotera equation. The degenerate solutions include both multiple-pole
solutions as shown in Figures 2–4. With module resonance conditions, the degenerate
solution of a second-order breather solution is as shown in Figure 6. The dynamic properties
of these multiple-pole solutions are accurately expressed by Equations (9), (13) and (16).
Equations (20), (21) and Figure 5 perfectly prove that the collision between two double-pole
solutions is elastic. Compared with the results in the literature [23,24], the findings have
similarities with the results we obtained. In the end, we study the superposition solutions
consisting of a double-pole solution and different single-soliton solutions. In this context,
the mechanism by which the Y-type solution is formed deserves further investigation.
With Equation (23), we can obtain the interaction between two n-pole solutions.

We hope that all exact solutions obtained in this paper will be fully used in physics,
specifically in plasmas, optics and quantum mechanics. This method still operates for the
larger N case. It is simpler to calculate than the inverse scattering method. The methods
mentioned in this paper can be used with other integrable systems. A wider range of
substituting forms will be studied in our future research.
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