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The heliosphere is filled with solar wind, which is formed due to the expansion of
the plasma of hot solar corona. Solar wind has structures and phenomena with a wide
range of scales, varying from large-scale structures and phenomena, associated with the
non-stationarity and inhomogeneity of the solar corona, to small-scale structures and
phenomena, associated with the development of local plasma processes. Solar wind is
an open system with free energy transfer from the large to small scales. The study of
solar wind structures and phenomena is the key to understanding solar, heliospheric, and
solar-terrestrial physics [1–4]. The present Special Issue focuses on exploring certain aspects
of these fundamental questions.

Three articles [5–7] report on studies in which models were developed that link the
properties of large-scale solar wind to the conditions of the solar atmosphere. Berezin
and Tlatov [5] developed an empirical model that relates the solar wind velocity near the
Earth to the topology of the large-scale magnetic field in the photosphere. Shugay et al. [6]
described the main principles involved in the development of the online, semi-empirical
system known as the Space Monitoring Data Center (SMDC) of the Moscow State University,
which forecasts arrival of ICMEs to Earth. Maiewski et al. [7] presented a model that permits
the identification of the spatial distribution of the characteristics of the magnetic field and
plasma over distances ranging from 20 to 1200 solar radii at almost all solar latitudes. This
model takes into account the evolution of the Sun’s magnetic field during the solar cycle,
when the dominant dipole magnetic field is replaced by the quadrupole one.

In order to understand how the decrease in solar activity in solar cycles 23–24 af-
fected the main drivers of magnetospheric disturbance, Yermolaev et al. [8] studied the
average temporal profiles of the solar wind parameters and magnetospheric indices of
the disturbed solar wind types CIR, Sheath, ejecta, and MC and found that the profiles
remained similar in shape but noticeably decreased in magnitude. In another work,
Yermolaev et al. [9] discussed the general effects of changes in the structure of the he-
liosphere and the decrease in the solar wind parameters on the solar wind/magnetosphere
interaction. Rakhmanova et al. [10] investigated the transformation of a turbulent cas-
cade behind a quasi-perpendicular bow shock in the magnetosheath depending on the
type of large-scale phenomena of solar wind interacting with the Earth’s magnetosphere.
Li et al. [11] analyzed the dynamics of the solar wind that caused a complex, multistep,
magnetic storm on 21–22 October 1999.

In the remaining three papers [12–14], the roles of solar wind helium ions (alpha
particles) in shaping phenomena of different scales are studied. Khokhlachev et al. [12]
compared the helium abundance Nα/Np in large-scale ejecta and MC phenomena during
epochs of high (21–22 SC) and low (23–24 SC) solar activity and showed that the helium
abundance Nα/Np not only dropped significantly in 23–24 SC, but its values became less
dependent on the main parameters of the solar wind. Nα/Np depends most strongly
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on the distance between the satellite and the center of the magnetic flux rope in the MC
during epochs of strong solar activity. Lang et al. [13] investigated processes on the kinetic
scale and showed that both anisotropic electrons and alpha beams lead to the excitation of
several plasma waves, and the wave frequency, growth rate, and polarization properties
are sensitive to the electron temperature anisotropy (Te⊥/Te‖), the parallel electron beta
(βe‖), and the alpha beam drift velocity (vα/vA). Sapunova et al. [14] compared the MHD
parameters of helium ions (the bulk velocity Vα, temperature Tα, absolute density Nα,
and helium abundance Nα/Np) for 20 interplanetary shocks, with similar parameters
for 25 Earth bow shock crossings. The following correlation was found to exist between
the Nα/Np and angle θBn: the lower the value of θBn is, the greater the reduction in
the abundance of helium Nα/Np behind the interplanetary shock front will be. For the
Earth’s bow shock crossings, a significant increase in Nα/Np was found to occur in quasi-
perpendicular events.
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