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Abstract: This paper implements the enhanced Kudryashov approach to retrieve highly dispersive
optical solitons and study it with four nonlinear forms. These are the power law, generalized
quadratic-cubic law, triple-power law, and the generalized non-local law. This approach reveals
bright and singular optical solitons along with the respective parameter constraints.
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1. Introduction

A few years ago, the idea of highly dispersive (HD) solitons was proposed. It came out
of extreme necessity for sustaining the careful balance between chromatic dispersion (CD)
and the self-phase modulation (SPM) for these solitons to travel across inter-continental
distances without any loss or pulse collapse. Occasionally, the source of dispersion, namely
the CD, could become depleted during such trans-continental and trans-oceanic distances.
Therefore, it is deemed necessary to replenish this loss of dispersion by introducing ad-
ditional dispersion terms. This led to the inclusion of inter-modal dispersion (IMD),
third-order dispersion (3OD), fourth-order dispersion (4OD), fifth-order dispersion (5OD)
and sixth-order dispersion (6OD). Together, these dispersion terms constitute HD optical
solitons. Thus, these six dispersion terms, together with the self–phase modulation (SPM)
effect, lead to the structure of HD nonlinear Schrödinger’s Equation (NLSE). One issue that
immediately pops up is the slowdown of solitons with the inclusion of these dispersion
terms and the other issue is the soliton radiation. While soliton radiation is ignored, the
slowdown of solitons is inevitable.

This study will concentrate on four distinct types of SPM. They are power law, gen-
eralized quadratic-cubic law, triple-power law and the generalized non-local law. The
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enhanced Kudryashov’s approach will be the integration scheme that will be employed to
recover the soliton solutions. It is only the bright and singular soliton solutions that are
recoverable by the application of this integration architecture. The parameter constraints
that naturally emerge from the soliton solutions guarantee the existence of such solitons.
The details of the integration algorithm are discussed and the solutions, recovered for these
four forms of nonlinear refractive index structure, are enumerated and exhibited. The
details follow through next.

Governing Model

Through an optical waveguide, the dimensionless form of HD-NLSE with a generic
non-Kerr law of nonlinear refractive index is given as:

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx + F[|q|2]q = 0. (1)

Here, in (1), the complex-valued function q(x, t) depicts the wave profile that passes
through a monomode optical fiber across intercontinental distances. The two independent
variables are x and t, that account for spatial and temporal variables, respectively. The
first term is with linear temporal evolution, whose coefficient is i =

√
−1, while the six

dispersion terms with coefficients aj for j = 1, 2, 3, 4, 5, 6 represent the IMD, CD, 4OD,
4OD, 5OD and 6OD. The generalized version of the refractive index that is dependent on
intensity is denoted by the functional F. This model, which is a partial differential equation,
will now be addressed by means of Kudryashov’s improved technique, after it is reduced
to an ordinary differential Equation (ODE).

The subsequent section revisits the enhanced Kudryashov’s integration scheme.
Section 3 applies this scheme to HD-NLSE to recover the bright and singular 1–soliton
solutions to the model for the four forms of SPM. Finally, in Section 4, some conclusive
statements are given.

2. Enhanced Kudryashov’s Method

We will consider the following nonlinear evolution equation (NLEE):

P(u, ux, ut, uxt, uxx, . . .) = 0. (2)

where P is a polynomial function of u and several of its derivatives, and u is the dependent
variable of both t and x. Furthermore, u is an unknown function which was investigated
using this technique.

The key algorithmic framework of the improved Kudryashov technique is as follows [1–5]:

Step–
1:

By applying the following traveling wave hypothesis:

u(x, t) = U(ξ), ξ = k(x− vt), (3)

where k and v are undetermined constants. Then, Equation (2) is simplified to the
form of a nonlinear ordinary differential equation, in general, given by

P(U,−kvs.U′, kU′, k2U′′, . . .) = 0. (4)

Step–
2:

Presuming that the solution to Equation (4) may be written as

U(ξ) =
N

∑
l=0

λiRi(ξ), (5)

where λi are constants to be determined for every i = 0, 1, . . . , N and the function
R(ξ) satisfies the following nonlinear ODE:

R′(ξ)2
= R(ξ)2(1− χR(ξ)2), (6)
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The solutions of (6) is

R(ξ) =
4a

4a2eξ + χe−ξ
, (7)

where a and χ turn out to be arbitrary constants.
Step–
3:

To determine N, the number of summands in Equation (5), we must compute the
balance between the nonlinear term and the higher-order derivative in Equation (4).

Step–
4:

Utilizing (5) in (4) in addition to (6) and (5). When we do this substitution,
we obtain a polynomial in the bases R(ξ) and R′(ξ). By collecting all terms of
the same power in this polynomial and setting them equal to zero, we have a
system of overdetermined algebraic equations which can be solved using software
such as Maple or Mathematica to find the values of k, v, a, χ, and λi for every
i = 0, 1, . . . , N. Finally, as a consequence of all of the above, we will obtain several
exact solution families of (2).

3. Mathematical Analysis

For this system to be solved, the following solution structure is proposed.

q(x, t) = U(ξ)eiφ(x,t), (8)

where ξ is the variable of the wave, given by

ξ = k(x− vt). (9)

U(ξ) represents the amplitude component of the soliton solution in this case, the speed of
the soliton by v, and the phase component which, denoted by φ(x, t), is defined as

φ(x, t) = −κx + ωt + θ. (10)

κ is the soliton frequency, ω is the wave number, and θ is a phase constant in Equation (10).
Substituting (8) in (1) and then splitting into real and imaginary components yields

a6k6U(6) + F
(

U2
)

U + 5a5κk4U(4) + a4k4U(4) + 15a6κ4k2U′′ − 10a5κ3k2U′′ (11)

−6a4κ2k2U′′ + 3a3κk2U′′ + a2k2U′′ + U
(
−a6κ6 + a5κ5 + a4κ4 − a3κ3 − a2κ2 + a1κ −ω

)
−15a6κ2k4U(4) = 0,

and

k5(a5 − 6a6κ)U(5) − k
(

6a6κ5 − 5a5κ4 − 4a4κ3 + 3a3κ2 + 2a2κ − a1 + v
)

U′ + (12)

k3U(3)
(

20a6κ3 − 10a5κ2 − 4a4κ + a3

)
U(3) = 0.

Equation (12) yields the speed of the soliton

v = −6a6κ5 + 5a5κ4 + 4a4κ3 − 3a3κ2 − 2a2κ + a1, (13)

and the parameter constraints

20a6κ3 − 10a5κ2 − 4a4κ + a3 = 0, a5 − 6a6κ = 0. (14)

3.1. Power Law

For power-law nonlinearity, the model stands as:
iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx + b|q|2nq = 0. (15)
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In this case, Equation (11) can be written as:

k2U(6) + H1U + H2U′′ + H3U(4) + H4U2n+1 = 0, (16)

where 
H1 = −a6κ6+a5κ5+a4κ4−a3κ3−a2κ2+a1κ−ω

a6k4 ,

H2 = 15a6κ4−10a5κ3−6a4κ2+3a3κ+a2
a6k2 ,

H3 = −15a6κ2+5a5κ+a4
a6

,

H4 = b
a6k4 .

(17)

Applying the transformation
U = V

3
n

Equation (16) is transformed into

V5
(

3H3n5V(4) + 3H2n5V′′ + 3k2n5V(6)
)
+ V4(−9H3(n− 3)n4V′′2

−3H2(n− 3)n4V′2 − 12H3(n− 3)n4V(3)V′ − 30k2(n− 3)n4
(

V(3)
)2

−18k2(n− 3)n4V(5)V′ − 45k2(n− 3)n4V(4)V′′) + V2(−9H3n2
(

2n3 − 11n2 + 18n− 9
)(

V′
)4

−405k2(n− 1)n2
(

2n2 − 9n + 9
)(

V′
)2(V′′)2 − 180k2n2

(
2n3 − 11n2 + 18n− 9

)
V(3)(V′)3

)

+V(ξ)3(V′′(18H3

(
2n2 − 9n + 9

)
n3(V′)2

+ 180k2(n− 3)(2n− 3)n3V(3)V′)

+45k2
(

2n2 − 9n + 9
)

n3(V′′)3
+ 45k2

(
2n2 − 9n + 9

)
n3V(4)(V′)2

) +

H4n6V12 + H1n6V6 + 135k2n
(

8n4 − 50n3 + 105n2 − 90n + 27
)

V
(
V′
)4V′′ −

9k2(40n5 − 274n4 + 675n3 − 765n2 + 405n− 81)
(
V′
)6

= 0. (18)

Balancing V5V(6) with V12 in Equation (18), it turns out that N = 1. Consequently, we
arrive at

V(ξ) = λ0 + λ1R(ξ), (19)

Substituting (19) into (18) along with (6). When we do this substitution, we obtain a
polynomial in the bases R(ξ) and R′(ξ). By collecting all terms of the same power in this
polynomial and setting them equal to zero, we have a system of overdetermined algebraic
equations which can be solved using software such as Maple or Mathematica to obtain the
following result:

λ0 = 0, λ1 = ± 6

√
9H2(40n5 + 274n4 + 675n3 + 765n2 + 405n + 81)χ3

H4n2(64n4 + 288n3 + 648n2 + 648n + 243)
,

H1 = −
9H2

(
8n2 + 18n + 9

)2

n2(64n4 + 288n3 + 648n2 + 648n + 243)
,

H3 = −
H2n2(20n2 + 36n + 27

)
64n4 + 288n3 + 648n2 + 648n + 243

,

k = ±

√
H2n4

64n4 + 288n3 + 648n2 + 648n + 243
. (20)
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Inserting (20) together with (7) into (19) leads to a solution of the form

q(x, t) =

{
± 6

√
9H2(40n5 + 274n4 + 675n3 + 765n2 + 405n + 81)χ3

H4n2(64n4 + 288n3 + 648n2 + 648n + 243)

×

 4a exp
[
±
√

H2n4

64n4+288n3+648n2+648n+243 (x− vt)
]

4a2 exp
[
±
√

4H2n4

64n4+288n3+648n2+648n+243 (x− vt)
]
+ χ


} 3

n

ei(−κx+ωt+θ). (21)

Setting χ = ±4a2, and H2 > 0. The bright soliton can be found by considering for Equation (21):

q(x, t) =

{
± 6

√
9H2(40n5 + 274n4 + 675n3 + 765n2 + 405n + 81)

H4n2(64n4 + 288n3 + 648n2 + 648n + 243)

× sech

√ H2n4

64n4 + 288n3 + 648n2 + 648n + 243
(x− vt)

} 3
n

ei(−κx+ωt+θ), (22)

as well as the singular soliton:

q(x, t) =

{
± 6

√
9H2(40n5 + 274n4 + 675n3 + 765n2 + 405n + 81)

H4n2(64n4 + 288n3 + 648n2 + 648n + 243)

× csch

√ H2n4

64n4 + 288n3 + 648n2 + 648n + 243
(x− vt)

} 3
n

ei(−κx+ωt+θ). (23)

3.2. Generalized Quadratic-Cubic Law

For generalized quadratic-cubic law nonlinearity, the model stands as:

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx +
(

b1|q|n + b2|q|2n
)

q = 0. (24)

In this case, Equation (11) can be written as:

k2U(6) + H1U + H2U′′ + H3U(4) + H4Un+1 + H5U2n+1 = 0, (25)

where 

H1 = −a6κ6+a5κ5+a4κ4−a3κ3−a2κ2+a1κ−ω
a6k4 ,

H2 = 15a6κ4−10a5κ3−6a4κ2+3a3κ+a2
a6k2 ,

H3 = −15a6κ2+5a5κ+a4
a6

,

H4 = b1
a6k4 ,

H5 = b2
a6k4 .

(26)

Applying the transformation
U(ξ) = V(ξ)

3
n

Equation (25) transformed to
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H4n6V9 + H1n6V6 + 135k2n
(

8n4 − 50n3 + 105n2 − 90n + 27
)

VV′4V′′

+H5n6V12 − 9k2
(

40n5 − 274n4 + 675n3 − 765n2 + 405n− 81
)

V′6

+V(2(9H3n2
(
−2n3 + 11n2 − 18n + 9

)
V′4 − 180k2n2

(
2n3 − 11n2 + 18n− 9

)
V(3)V′3

−405k2n2
(

2n3 − 11n2 + 18n− 9
)

V′2V′′2) + V5
(

3H3n5V(4) + 3H2n5V′′ + 3k2n5V(6)
)

+V3(V′′
(

18H3

(
2n2 − 9n + 9

)
n3V′2 + 180k2

(
2n2 − 9n + 9

)
n3V(3)V′

)
+45k2

(
2n2 − 9n + 9

)
n3V′′3 + 45k2

(
2n2 − 9n + 9

)
n3V(4)V′2)

+V(ξ)4(−9H3(n− 3)n4V′′2 − 3H2(n− 3)n4V′2 − 12H3(n− 3)n4V(3)V′

−30k2(n− 3)n4V(3)2
− 18k2(n− 3)n4V(5)V′ − 45k2(n− 3)n4V(4)V′′) = 0. (27)

Balancing V5V(6) with V12 in Equation (27) gives N = 1. Consequently, we arrive at

V(ξ) = λ0 + λ1R(ξ), (28)

Substituting (28) into (27) along with (6), we obtain a polynomial in the bases R(ξ) and
R′(ξ). By collecting all terms of the same power in this polynomial and setting them equal
to zero, we have a system of overdetermined algebraic equations which can be solved using
software such as Maple or Mathematica to obtain the following result:

λ0 = 0, λ1 = ± 6

√
9H2(40n5 + 274n4 + 675n3 + 765n2 + 405n + 81)χ3

H5n2(64n4 + 288n3 + 648n2 + 648n + 243)
, H4 = 0,

H1 = −
9H2

(
8n2 + 18n + 9

)2

n2(64n4 + 288n3 + 648n2 + 648n + 243)
,

H3 = −
H2n2(20n2 + 36n + 27

)
64n4 + 288n3 + 648n2 + 648n + 243

,

k = ±

√
H2n4

64n4 + 288n3 + 648n2 + 648n + 243
. (29)

Inserting (29) together with (7) into (28) leads to a solution of the form

q(x, t) =

{
± 6

√
9H2(40n5 + 274n4 + 675n3 + 765n2 + 405n + 81)χ3

H5n2(64n4 + 288n3 + 648n2 + 648n + 243)

×

 4a exp
[
±
√

H2n4

64n4+288n3+648n2+648n+243 (x− vt)
]

4a2 exp
[
±
√

4H2n4

64n4+288n3+648n2+648n+243 (x− vt)
]
+ χ


} 3

n

ei(−κx+ωt+θ). (30)

Setting χ = ±4a2, and H2 > 0, Equation (30) reduces to the bright soliton:

q(x, t) =

{
± 6

√
9H2(40n5 + 274n4 + 675n3 + 765n2 + 405n + 81)

H5n2(64n4 + 288n3 + 648n2 + 648n + 243)
× (31)

sech

√ H2n4

64n4 + 288n3 + 648n2 + 648n + 243
(x− vt)

} 3
n

ei(−κx+ωt+θ),
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and the singular soliton:

q(x, t) =

{
± 6

√
9H2(40n5 + 274n4 + 675n3 + 765n2 + 405n + 81)

H5n2(64n4 + 288n3 + 648n2 + 648n + 243)
× (32)

csch

√ H2n4

64n4 + 288n3 + 648n2 + 648n + 243
(x− vt)

} 3
n

ei(−κx+ωt+θ).

3.3. Triple-Power Law

For triple-power law nonlinearity, the model stands as:

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx +
(

b1|q|2n + b2|q|4n + b3|q|6n
)

q = 0. (33)

In this case, Equation (11) can be written as:

H1U + H2U′′ + H3U(4) + H4U2n+1 + H5U4n+1 + H6U6n+1 + k2U(6) = 0, (34)

where 
H1 = −a6κ6+a5κ5+a4κ4−a3κ3−a2κ2+a1κ−ω

a6k4 ,

H2 = 15a6κ4−10a5κ3−6a4κ2+3a3κ+a2
a6k2 ,

H3 = −15a6κ2+5a5κ+a4
a6

,

H4 = b1
a6k4 , H5 = b2

a6k4 , H6 = b3
a6k4 .

(35)

Applying the transformation
U = V

1
n

Equation (34) is transformed into

H1n6V6 +
(
−120k2n5 + 274k2n4 − 225k2n3 + 85k2n2 − 15k2n + k2

)
V′6 + H6n6V12

+H5n6V10 + H4n6V8 +
(

360k2n5 − 750k2n4 + 525k2n3 − 150k2n2 + 15k2n
)

VV′4V′′

V2(
(
−6H3n5 + 11H3n4 − 6H3n3 + H3n2

)
V′4 + (−270k2n5 + 495k2n4 − 270k2n3

+45k2n2)V′2V′′2 +
(
−120k2n5 + 220k2n4 − 120k2n3 + 20k2n2

)
V(3)V′3)

+V3(
(

30k2n5 − 45k2n4 + 15k2n3
)

V′′3 +
(

120k2n5 − 180k2n4 + 60k2n3
)

V(3)V′V′′

+V′2
((

12H3n5 − 18H3n4 + 6H3n3
)

V′′ +
(

30k2n5 − 45k2n4 + 15k2n3
)

V(4)
)
)

+V4(
(

3H3n4 − 3H3n5
)

V′′2 +
(

H2n4 − H2n5
)

V′2 +
(

10k2n4 − 10k2n5
)

V(3)2

V′
((

4H3n4 − 4H3n5
)

V(3) +
(

6k2n4 − 6k2n5
)

V(5)
)
++

(
15k2n4 − 15k2n5

)
V(4)(ξ)V′′(ξ))

+V5
(

H3n5V(4) + H2n5V′′ + k2n5V(6)
)
= 0. (36)

Balancing V5V(6) with V12 in Equation (36) gives N = 1. Consequently, we arrive at

V(ξ) = λ0 + λ1R(ξ), (37)

Substituting (37) into (36) along with (6). When we do this substitution, we obtain a
polynomial in the bases R(ξ) and R′(ξ). By collecting all terms of the same power in this
polynomial and setting them equal to zero, we have a system of overdetermined algebraic
equations which can be solved using software such as Maple or Mathematica to obtain the
following result:
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λ0 = 0, λ1 = ±

√
2(n + 1)χ(H2n4τ1 + H3n2τ3)

H4n6τ2
, k = ±

√
H2n4

τ2
,

H1 = −H3

n4 −
4H2

(
16n4 + 72n3 + 162n2 + 162n + 61

)
n2τ2

,

H5 = −
H2

4 n4(6n2 + 5n + 1
)
τ2
(

H2
(
20n2 + 12n + 3

)
n2 + H3τ2

)
4(n + 1)(H2n2τ1 + H3τ3)

2 ,

H6 =
H2H3

4 n10(120n4 + 154n3 + 71n2 + 14n + 1
)
τ2

2
8(n + 1)2(H2n2τ1 + H3τ3)3 . (38)

where

τ1 = 40n4 + 160n3 + 338n2 + 330n + 123,

τ2 = 64n4 + 288n3 + 648n2 + 648n + 243,

τ3 = 128n6 + 704n5 + 1936n4 + 2880n3 + 2430n2 + 1134n + 243. (39)

Inserting (38) together with (7) into (37) leads to a solution of the form

q(x, t) =

{
±

√
2(n + 1)χ(H2n4τ1 + H3n2τ3)

H4n6τ2

 4a exp
[
±
√

H2n4

τ2
(x− vt)

]
4a2 exp

[
±
√

4H2n4

τ2
(x− vs.t)

]
+ χ


} 1

n

×ei(−κx+ωt+θ). (40)

Setting χ = ±4a2, and H2 > 0, The bright soliton can be found by considering for Equation (30):

q(x, t) =

{
±

√
2(n + 1)(H2n4τ1 + H3n2τ3)

H4n6τ2
sech

√H2n4

τ2
(x− vt)

} 1
n

ei(−κx+ωt+θ). (41)

as well as the singular soliton:

q(x, t) =

{
±

√
2(n + 1)(H2n4τ1 + H3n2τ3)

H4n6τ2
csch

√H2n4

τ2
(x− vt)

} 1
n

ei(−κx+ωt+θ). (42)

3.4. Generalized Non-Local Law

For generalized non-local law nonlinearity, the model stands as:
iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx + b

(
|q|2n

)
xx

q = 0. (43)

In this case, Equation (11) can be written as:

H1U + H2U′′ + H3U(4) + H4U2n−1(U′)2
+ H5U2nU′′ + k2U(6) = 0, (44)

where 

H1 = −a6κ6+a5κ5+a4κ4−a3κ3−a2κ2+a1κ−ω
a6k4 ,

H2 = 15a6κ4−10a5κ3−6a4κ2+3a3κ+a2
a6k2 ,

H3 = −15a6κ2+5a5κ+a4
a6

,

H4 = b
a6k4 ,

H5 = 2bn
a6k2 .

(45)
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Applying the transformation to
U = V

2
n

transforms Equation (44) into

H1n6V6 +
(
−2H5n5 + 4H4n4 + 4H5n4

)
V8V′2 + 2H5n5V9V′′

+
(
−240k2n5 + 1096k2n4 − 1800k2n3 + 1360k2n2 − 480k2n + 64k2

)
V′6

+
(

720k2n5 − 3000k2n4 + 4200k2n3 − 2400k2n2 + 480k2n
)

VV′4V′′

+V2
((
−12H3n5 + 44H3n4 − 48H3n3 + 16H3n2

)
V′4

+
(
−540k2n5 + 1980k2n4 − 2160k2n3 + 720k2n2

)
V′2V′′2

+
(
−240k2n5 + 880k2n4 − 960k2n3 + 320k2n2

)
V(3)V′3)

+V3(
(

60k2n5 − 180k2n4 + 120k2n3
)

V′′3 +
(

240k2n5 − 720k2n4 + 480k2n3
)

V(3)V′V′′

+V′2
((

24H3n5 − 72H3n4 + 48H3n3
)

V′′ +
(

60k2n5 − 180k2n4 + 120k2n3
)

V(4)
)
)

+V4(2H2(2− n)n4V′2 +
(

12H3n4 − 6H3n5
)

V′′2 +
(

40k2n4 − 20k2n5
)

V(3)2

+V′
((

16H3n4 − 8H3n5
)

V(3) +
(

24k2n4 − 12k2n5
)

V(5)
)
++

(
60k2n4 − 30k2n5

)
V(4)V′′)

+V5
(

2H3n5V(4) + 2H2n5V′′ + 2k2n5V(6)
)
= 0. (46)

Balancing V5V(6) with V9V′′ in Equation (46) gives N = 1. Consequently, we arrive at

V(ξ) = λ0 + λ1R(ξ), (47)

Substituting (47) into (46) along with (6). When we do this substitution, we obtain a
polynomial in the bases R(ξ) and R′(ξ). By collecting all terms of the same power in this
polynomial and setting them equal to zero, we have a system of overdetermined algebraic
equations which can be solved using software such Maple or Mathematica to obtain the
following result:

Result-1:

λ0 = 0,

λ1 = ± 4

√
− (3n3 + 11n2 + 12n + 4)χ8(H3n3 + 2H3n2 + 20k2n3 + 24k2n2 + 24k2n + 16k2)

H4n5 ,

k = ±

√
n2(H1n4 − 16H3n2 − 32H3n− 16H3)

64n4 + 256n3 + 448n2 + 384n + 128
,

H2 = −
H1
(
n4 + 4n3 + 7n2 + 6n + 3

)
n4 + 16H3(n + 1)4

4n2(n + 1)2(n2 + 2n + 2)
,

H5 =
2H4

(
H3n2 + 2k2(3n + 4)

)
χ6(H3n2(n + 2) + 4k2(5n3 + 6n2 + 6n + 4))

. (48)

Inserting (48) together with (7) into (47) leads to a solution of the form
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q(x, t) =

{
± 4

√
− (3n3 + 11n2 + 12n + 4)χ8(H3n3 + 2H3n2 + 20k2n3 + 24k2n2 + 24k2n + 16k2)

H4n5

×


4a exp

(
±
√

n2(H1n4−16H3n2−32H3n−16H3)
64n4+256n3+448n2+384n+128 (x− vt)

)

4a2 exp

(
±
√

4n2(H1n4−16H3n2−32H3n−16H3)
64n4+256n3+448n2+384n+128 (x− vt)

)
+ χ


} 2

n

ei(−κx+ωt+θ). (49)

Setting χ = ±4a2, and H1n4 − 16H3n2 − 32H3n− 16H3 > 0, Equation (49) reduces to the
bright soliton:

q(x, t) =

{
± 4

√
− (3n3 + 11n2 + 12n + 4)(H3n3 + 2H3n2 + 20k2n3 + 24k2n2 + 24k2n + 16k2)

H4n5

×sech

√n2(H1n4 − 16H3n2 − 32H3n− 16H3)

64n4 + 256n3 + 448n2 + 384n + 128
(x− vt)

} 2
n

ei(−κx+ωt+θ), (50)

and the singular soliton:

q(x, t) =

{
± 4

√
− (3n3 + 11n2 + 12n + 4)(H3n3 + 2H3n2 + 20k2n3 + 24k2n2 + 24k2n + 16k2)

H4n5

×csch

√n2(H1n4 − 16H3n2 − 32H3n− 16H3)

64n4 + 256n3 + 448n2 + 384n + 128
(x− vt)

} 2
n

ei(−κx+ωt+θ). (51)

Result-2:

λ0 = 0, λ1 = ± 4

√
−H1n(15n3 + 46n2 + 36n + 8)χ2

16H4(n + 1)
,

k = ±

√
H1n5

64n3 + 160n2 + 128n + 32
, (52)

H2 = −
H1n

(
2n4 + 5n3 + 4n2 − 2n− 2

)
4(n + 1)2(2n + 1)

, H3 = − H1n3(3n + 4)
16(n + 1)2(2n + 1)

, H5 = 0.

Inserting (48) together with (7) into (47) leads to the soliton solution

q(x, t) =

{
± 4

√
−H1n(15n3 + 46n2 + 36n + 8)χ2

16H4(n + 1)

×

 4a exp
(
±
√

H1n5

64n3+160n2+128n+32 (x− vs.t)
)

4a2 exp
(
±
√

4H1n5

64n3+160n2+128n+32 (x− vt)
)
+ χ


} 2

n

ei(−κx+ωt+θ). (53)

Setting χ = ±4a2, and H1 > 0. The bright soliton can be found by considering, for Equation (53):
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q(x, t) =

{
± 4

√
−H1n(15n3 + 46n2 + 36n + 8)

16H4(n + 1)

×sech

√ H1n5

64n3 + 160n2 + 128n + 32
(x− vs.t)

} 2
n

ei(−κx+ωt+θ), (54)

as well as the singular soliton:

q(x, t) =

{
± 4

√
−H1n(15n3 + 46n2 + 36n + 8)

16H4(n + 1)

×csch

√ H1n5

64n3 + 160n2 + 128n + 32
(x− vs.t)

} 2
n

ei(−κx+ωt+θ). (55)

4. Conclusions

This paper addressed HD–NLSE by the usage of enhanced Kudryashov’s approach.
There are four forms of SPM that were addressed. These are power-law, quadratic-cubic
law, triple-power law and the generalized non-local nonlinear law. These were addressed
sequentially starting from the power law and then gradually moving in the ascending
order of SPM structures for the first three forms of nonlinear refractive index. The fourth
form of SPM is, however, independent of the first three forms. While this paper studies the
HD solitons with four forms of SPM, it must be noted that such solitons with no SPM were
already studied earlier during 2022 and the corresponding conservation laws were reported
there too [6]. The immediate physical applications of the results would be rendered in long
distance fiber-optic communications across inter-continental distances. Additional forms
of waveguides where the proposed model along with the results would be applicable are
metamaterials, metasurfaces, PCF and so on.

The bright and singular soliton solutions to the model were recovered and presented.
It must be noted that bright solitons are the ones that are visible on an oscilloscope when
these are experimentally demonstrated. Dark solitons are not visible on an oscilloscope
without the presence of a background wave. Singular solitons, on the other hand, are
viable candidates for rogue waves. These solutions included parameter constraints that
ensure the existence of these kind of solitons. These constraints naturally and effortlessly
fell out from the solution structure. A visible shortcoming of this integration approach
is that it fails to reveal the dark optical soliton solutions to the model. The results of the
model nevertheless show exceptional promise. The bright soliton solutions will be applied
to derive the conservation laws to the model that can be obtained by the application of
the multiplier approach or even by the aid of the Lagrangian. Subsequently, the issue
of quasi–monochromatic dynamics of these solitons will be handled. This would lead to
the phenomena of optical soliton cooling. Another avenue to explore is the construction
of the perturbed HD solitons when the perturbation terms would have their greatest
intensity. When a perturbed model fails the Painleve test of integrability and is therefore
not integrable, the semi-inverse variational principle comes to the rescue. Such promises
will be sequentially honored with time and the results will be revealed and disseminated
across the board. The results would be aligned along the works that have been recently
reported [6–24].
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