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Abstract: Based on the results discussed on the invariant planes in the known literature [Universe
2022, 8, 365] for the flat FLRW space-time universe model with ideal fluid under the gravity of
f (R, T) = ξRα + ζ

√
−T, this paper continues to describe the global dynamics of this model in

the three-dimensional space containing infinity through dynamic system analysis. Moreover, the
cosmological solutions of all the physical significance regions restricted by three invariant planes are
also fully discussed.
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1. Introduction

The present Universe is flat and undergoing accelerated expansion based on recent
observations [1–4]. An obscure energy termed dark energy is associated with accelerated ex-
pansion as it can generate a late-time speeding up of the cosmological foundation. The most
comprehensive theory, general relativity (GR), is an excellent match with observational
data. However, failing to explain the late-time acceleration [5,6], one of the shortcomings of
GR, stimulates the necessity of alternative approaches to resolving the dark side puzzle.
These approaches are mainly based on two methodologies. The first methodology relates
to introducing a dark energy area to vary the matter substance of the Universe, starting
from either a standard scalar field, a phantom field, or an amalgamation of the two fields
in a unified model and then developing into more complicated scenarios [7–9]. As GR,
in its usual form, may not describe the Universe’s evolution accurately at astrophysical
and cosmological scales, the second methodology is concerned with modifying the gravi-
tational area. This methodology has aroused enthusiasm over the previous decades, and
many novel gravity theories have been proposed. These modified gravity theories mainly
incorporate f (R) gravity [10,11], f (T ) gravity [12], Gauss–Bonnet gravity [13,14], f (R, T)
gravity [15], f (T , T) gravity [16], and so on, where R, T, and T are the Ricci scalar, the
trace of the energy-momentum tensor, and the torsion scalar, respectively.

As one of the simplest modified gravity theories, f (R) gravity, can create a natural
connection between late-time cosmic acceleration and the inflation epoch. In this gravity
theory, the Ricci scalar R is substituted by an arbitrary function f (R) in Einstein–Hilbert
action. Hence, the field equations linked with the standard Einstein–Hilbert action get
extended in f (R) gravity theory. Some f (R) gravity models have been tested to explain
dark energy and late-time accelerated expansion [17–20]. The inflation realized by three
kinds of effects, f (R) gravity, the quantum anomaly, and the R2 term in loop quantum
cosmology, has been studied in [21]. Sebastiani and Myrzakulov [22] analyzed many
paradigms using several revised methods and obtained effective solutions for inflation
in f (R) gravity. Gonzalo and Diego proposed the junction condition for f (R) gravity
formulated in metric-affine spaces [23] through a distributional tensor approach. It has
been observed that any model in f (R) gravity can be recast as a cosmological fluid in
generalized Robertson–Walker space-time [24]. The latest developments in modified gravity
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and a virtual toolbox for studying inflation, dark energy, and bouncing cosmologies in
the context of modified gravity have been provided in [25]. Oikonomou investigated the
phenomenology of an f (R) gravity model in the presence of a primordial light axion scalar
field during the inflationary era [26]. The isotropization of a pre-bounce contracting phase
in f (R) gravity has been investigated in [27].

Another modified gravity theory named f (R, T) gravity was proposed by Harko
et al. in 2011 [15], which is considered as an extension of f (R) gravity. This gravity theory
considers the effect of a minimal coupling between matter and geometry in gravitational
action. The consequence of some imperfect exotic fluid or quantum effects originating from
a conformal anomaly trace may be the reason for the dependence on trace T. In f (R, T)
gravity theory, geometrical contributions to the total cosmic energy density and matter
particles generate cosmic acceleration. After the introduction of this theory, it attracted
much attention and researchers applied it to many other cosmological scenarios, including
thermodynamics [28,29], redshift drift [30], wormholes [31,32], gravitational waves [33,34],
baryogenesis [35], anisotropic cosmology [36], scalar perturbations [37], and Big-Bang
nucleosynthesis [38]. Recently, an anisotropic version of Tolman VII isotropic solution
in f (R, T) gravity has been developed in [39] via the gravitational decoupling approach,
where the f (R, T) model proposed is fit for describing the anisotropic nature of compact
stars. Shaikh [40] studied the behaviors of general relativistic hydrodynamics in the form
of perfect fluid and holographic dark energy in f (R, T) gravity and the obtained solutions
coincide with the observations of SNe Ia and CMB. By introducing the Hubble parameter’s
inflation solutions, a mimetic f (R, T) gravity theory in the presence of the swampland de
Sitter conjecture has been analyzed in [41]. Gonçalves et al. [42] investigated the scalar-
tensor representation of f (R, T) gravity and inferred the explicit form of the functions
f (R, T). Various other studies related to f (R, T) gravity can be found in [43–49].

Dynamic system analysis has been applied extensively to various models in different
gravity theories [50–57] since it can depict the qualitative behavior of cosmological models
where the derivation of exact solutions of evolution equations is inaccessible. Through
dynamic system analysis, the dynamics of the f (R, T) = ξRα + ζ

√
−T gravitational model

on three invariant planes have been investigated in [57], and all the finite and infinite
equilibrium points used in this work are taken from this reference. The present study
mainly focuses on the dynamics of this model in three-dimensional space containing
infinity, which improves the dynamic investigation of the model to a certain extent. This
paper presents the dynamic behavior of the evolutionary trajectories of the cosmological
model in all physically feasible regions restricted by three invariant planes and discusses
the corresponding cosmological solutions.

The structure of this paper is as follows: in Section 2, we present the field equations of
the model in f (R, T) gravity. The dynamic equations and corresponding dynamic analysis
of the model in three-dimensional space are shown in Section 3. The paper ends with a
summary of the obtained results in Section 4.

2. Field Equations of f (R, T) Gravity

The f (R, T) gravity theory can be described by the following action

S =
∫ √

−gd4x
[

1
16πG

f
(

R, T(m)
)
+ L(m) + L(rad)

]
, (1)

where G is the gravitational constant, g is the determinant of the metric, L(m) and L(rad)

represent the Lagrangians of the dust matter and radiation, respectively. As usual,

Tµν ≡ −
2√−g

δ
[√−g

(
L(m) + L(rad)

)]
δgµν , (2)
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Moreover, assuming that L(m) and L(rad) depend only on the metric, we obtain

Tµν = gµν

[
L(m) + L(rad)

]
− 2

∂
[

L(m) + L(rad)
]

∂gµν . (3)

By considering a perfect fluid, we have

gαβ δT(m)

δgµν = −2T(m)
µν . (4)

Then, by transforming the action S, the field equations become

fR(R, T)Rµν −
1
2

f (R, T)gµν +
(

gµν�−∇µ∇ν

)
fR(R, T)

= (8πG + fT(R, T))T(m)
µν + 8πGT(rad)

µν ,
(5)

where fR(R, T) = ∂ f (R, T)/∂R, fT(R, T) = ∂ f (R, T)/∂T, ∇µ denotes the covariant deriva-
tive and � = ∇µ∇µ.

By contracting Equation (5), we get

fR(R, T) + 3� fR(R, T)− 2 f (R, T) = (8πG + fT(R, T))T. (6)

Here, we are interested in studying the behavior of this theory for spatially flat FLRW
space-time described by

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

, (7)

where a(t) stands for the scale factor. With the conservation of energy-momentum tensor
of all matter and the relation ∇µT(m)

µν = 0 = ∇µT(rad)
µν , we find

ḟT(R, T) =
3
2

H(t) fT(R, T), (8)

where H(t) = ȧ(t)/a(t) is the Hubble parameter, and a dot denotes the derivative with
respect to the cosmic time t. With the metric (7), Equations (5) and (6) can be rewritten as

3H2 fR(R,T) +
1
2
( f (R, T)− fR(R, T)R) + 3H ḟR(R, T)

= (8πG + fT(R, T))ρ(m) + 8πGρ(m),
(9)

and

2Ḣ fR(R, T) + f̈R(R, T)− H ḟR(R, T) = −(8πG + fT(R, T))ρ(m) − 32
3

πGρ(rad). (10)

3. Dynamic Analysis of the f (R, T) = ξRα + ζ
√
−T Model

3.1. Dynamic Equations

In this section, we consider the minimally coupled f (R, T) gravity, i.e.,
f (R, T) = g(R) + h(T). In order to obtain the dynamic equations, we introduce six dimen-
sionless independent variables [49], namely,

x1 ≡ −
ġ′(R)

Hg′(R)
, x2 ≡ −

g(R)
6H2g′(R)

, x3 ≡
R

6H2 =
Ḣ
H2 + 2, (11)

x4 ≡ −
h(T)

3H2g′(R)
, x5 ≡ −

8πGρ(rad)

3H2g′(R)
, x6 ≡ −

Th′(T)
3H2g′(R)

. (12)
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We also define four dimensionless parameters [49] as follows

m ≡ Rg′′(R)
g′(R)

, r ≡ −Rg′(R)
g(R)

=
x3

x2
, n ≡ Th′′(T)

h′(T)
, s ≡ Th′(T)

h(T)
=

x6

x4
. (13)

We can rewrite Equations (9) and (10) as

1 +
g

6H2g′
+

h
6H2g′

− R
6H2 +

ġ′

Hg′
=

8πGρ(m)

3H2g′
+

h′ρ(m)

3H2g′
+

8πGρ(rad)

3H2g′
, (14)

and

2
Ḣ
H2 +

g̈′

H2g′
− ġ′

Hg′
= −8πGρ(m)

H2g′
− h′ρ(m)

H2g′
− 32πGρ(rad)

3H2g′
. (15)

Equation (8) becomes

Th′′ = −1
2

h′, (16)

and then we get

Th′ − 1
2

h + C = 0, (17)

where C is an integration constant. Set C = 0, which leads to s = 1/2. Then, we obtain
x4 = 2x6 and h = ζ

√
−T, where ζ is a constant.

We study the late-time behaviors of this model, i.e., radiation does not exist, and
consider the form f (R, T) = ξRα + ζ

√
−T, where ξ is a constant. Thus, we get

x3 = −αx2, m = α− 1. (18)

Setting x1 ≡ x, x2 ≡ y, x4 ≡ z, we obtain the autonomous dynamic system

dx
dN

= −1 + x(x + αy) + (α− 3)y− 3
2

z,

dy
dN

= − xy
α− 1

+ 2y(2 + αy),

dz
dN

= z
(

5
2
+ x + 2αy

)
,

(19)

where N = ln a. The density parameter of matter Ω(m) and effective equation of state ω(eff)

are defined as follows

Ω(m) ≡ 8πGρ(m)

3H2g′
= 1− x + (α− 1)y− z, (20)

ω(eff) ≡ −1− 2Ḣ
3H2 =

1
3
(1 + 2αy). (21)

3.2. Dynamic Analysis in Three-Dimensional Space

Dynamic analysis of system (19) on invariant planes has been presented in [57],
where the equilibrium points used in the following are provided. According to [57],
the cosmological solution matching observations can be obtained when α > 1 and α is
approaching 1. Here, we set α = 1.1 to proceed with the dynamic analysis of the system
in 3D. Other values of α can be taken to study this model similarly. The finite equilibrium
points of system (19) are summarized in Table 1.

From Table 1, the points p1, p3 are radiation points with Ω(m) = 0 and ω(eff) = 1/3.
The eigenvalues of p1, p3 are 7/2, 2, −6 and −7/2, −3/2, 9, respectively, so these points
are saddles.
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The point p2 can be considered as a φ-matter-dominated epoch (φMDE) [58] with
Ω(m) = 2 and ω(eff) = 1/3. Although the value of the matter-density parameter does not
match the effective equation of state, the Universe’s evolution may be related to this point
in the model. The eigenvalues of p2 are 3/2, −2, 14, so p2 is a saddle.

For point p4, it has Ω(m) = 0 and ω(eff) = 4. As this point cannot describe any known
matter, we consider it nonphysical. The eigenvalues of p4 are 27/2, 6, 5/4, so p4 is unstable.

The equilibrium point p5 can present a matter-dominated era with Ω(m) = 81/121
and ω(eff) = −1/10. The eigenvalues of p5 are 3/2, −15/22± βi, where β ≈ 2.9845 and
i2 = −1, so p5 is unstable.

The point p6 can be used to explain the late accelerating expansion of the Universe. At
this point, matter and radiation are absent, while the Universe is dominated by dark energy.
This point has Ω(m) = 0 and ω(eff) = −6/11. The eigenvalues of p6 are 3/2, −12/11± γi,
where γ ≈ 4.5144, so p6 is a stable spiral point.

For the infinite equilibrium points e13, E13, and a set of non-isolated points filling up
the circle where the plane y = 0 intersects the Poincaré sphere, we can only describe the
trend of the trajectories around them. Because the coordinates of these infinite points are
indistinct, it is challenging to study their physical properties.

Table 1. The finite equilibrium points of the dynamical systems.

Point Coordinates Scale Factor Ω(m) ω(eff) Stability

p1 (1, 0, 0) a(t) = a0

(
t−ti
t0−ti

) 1
2 0 1

3 saddle

p2 (−1, 0, 0) a(t) = a0

(
t−ti
t0−ti

) 1
2 2 1

3 saddle

p3 (− 5
2 , 0, 7

2 ) a(t) = a0

(
t−ti
t0−ti

) 1
2 0 1

3 saddle

p4 ( 3
2 , 5, 0) a(t) = a0

(
t−ti
t0−ti

) 2
15 0 4 unstable

p5 ( 3
11 , 70

121 , 0) a(t) = a0

(
t−ti
t0−ti

) 11
15 81

121 − 1
10 unstable

p6 ( 3
22 ,− 145

121 , 90
121 ) a(t) = a0

(
t−ti
t0−ti

) 22
15 0 − 6

11 stable

The three planes y = 0, z = 0 and Ω(m) = 0 are invariant planes of system (19).
Through Poincaré compactification [59], the infinite space can be closed to the finite, so the
whole space can be regarded as a Poincaré ball. A Poincaré ball is divided by these three
invariant planes into eight regions Ri (i = 1, · · · , 8), as shown in Figure 1. The accurate
representation of regions Ri (i = 1, · · · , 8) is

R1 : x < 0, Ω(m) > 0, z > 0, R2 : x > 0, Ω(m) > 0, z > 0,

R3 : x < 0, Ω(m) > 0, z < 0, R4 : x > 0, Ω(m) > 0, z < 0,

R5 : x < 0, Ω(m) < 0, z > 0, R6 : x > 0, Ω(m) < 0, z > 0,

R7 : x < 0, Ω(m) < 0, z < 0, R8 : x > 0, Ω(m) < 0, z < 0.

The cosmological solutions in the viable f (R) gravity models hold g′(R) > 0 which
guarantees that gravity is an attractive force. According to the definition of Ω(m), these
solutions must have Ω(m) ≥ 0. The condition Ω(m) ≥ 0 should hold in this model because
f (R) gravity can be considered as a particular case of f (R, T) = g(R) + h(T) gravity with
h(T) = 0. From Figure 1, we know that Ω(m) > 0 in regions Ri (i = 1, 2, 3, 4), Ω(m) < 0 in
regions Ri (i = 5, 6, 7, 8). Thus, we will focus on the dynamics of regions Ri (i = 1, 2, 3, 4)
instead of Ri (i = 5, 6, 7, 8).



Universe 2023, 9, 49 6 of 17

The dynamic behavior of system (19) inside regions Ri (i = 1, 2, 3, 4) is determined by
the following five planes and one surface, which divide these four regions into
several subregions:

y = 0, z = 0, Ω(m)(x, y, z) = 0,

b1(x, y, z) = 0, b2(x, y) = 0, b3(x, y) = 0,

where

Ω(m)(x, y, z) = 1− x + 0.1y− z,

b1(x, y, z) = −1 + x2 + 1.1xy− 1.9y− 1.5z,

b2(x, y) = −10x + 2.2y + 4,

b3(x, y) = x + 2.2y + 2.5.

R
6

R
5

R
1

R
7

R
4

R
2

R
3

R
1R

5

R
6

R
7

R
8

O

y

z

x R
2

R
8

R
4

R
3

Figure 1. The Poincaré ball is divided into eight regions. The green plane is z = 0, the blue plane is
Ω(m) = 0, the pink plane is y = 0 and a set of non-isolated equilibrium points fill up the pink circle
where the plane y = 0 intersects Poincaré sphere. The point O is the center of the ball.

The region R1 is divided into seven subregions R1i (i = 1, · · · , 7) (see Figures 2 and 3).
The dynamic behavior of system (19) in these seven subregions is presented in Table 2.

For subregion R11, its front part is bounded by Ω(m) = 0 and y = 0, its back is
restricted by the Poincaré sphere, and its bottom is limited in z = 0. As shown in Table 2, the
trajectories of system (19) monotonically decrease in the positive y and z axes and increase
in the positive x axis, which indicates that the trajectories in R11 can get to subregions R12,
R17 and the sources of these trajectories are subregion R16 and infinite equilibrium points
in y = 0 restricted to R11.
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The right of subregion R12 is restricted by Poincaré sphere, the left is limited by b3 = 0,
the back is bounded by Ω(m) = 0, the bottom is confined by z = 0 and the front is bounded
by b2 = 0. The movement of trajectories in R12 increases monotonically in the positive x
and y axes, and decreases in the positive z axis. Thus, R11 is the source of these trajectories
and R13 is the subregion that these trajectories tend to.

p3

z

p5

p2

p6

R
1

p1

y x

Figure 2. The purple surface is b1 = 0, the yellow plane is b2 = 0, and the light blue plane is b3 = 0.

p6

p3

R
11

p6

R
12

p1

p6

p5

R
13

p5

p6

p1

R
14

p3

p6

p2 p5

R
15

p3 p6

R
16

R
17

p2 p5

p6

p3

Figure 3. The region R1 is divided into seven subregions by the five planes y = 0, z = 0, Ω(m) = 0,
b2 = 0, and b3 = 0, and one surface b1 = 0.
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Table 2. Dynamic behavior of the trajectories in the seven subregions.

Subregion Corresponding Region Dynamic Behavior

R11 b1 > 0, b2 > 0, b3 < 0, y < 0, z > 0 ẋ > 0, ẏ < 0, ż < 0

R12 b1 > 0, b2 < 0, b3 < 0, y < 0, z > 0 ẋ > 0, ẏ > 0, ż < 0

R13 b1 > 0, b2 < 0, b3 > 0, y < 0, z > 0 ẋ > 0, ẏ > 0, ż > 0

R14 h1 < 0, h2 < 0, h3 > 0, y < 0, z > 0 ẋ < 0, ẏ > 0, ż > 0

R15 b1 < 0, b2 > 0, b3 > 0, y < 0, z > 0 ẋ < 0, ẏ < 0, ż > 0

R16 b1 < 0, b2 > 0, b3 < 0, y < 0, z > 0 ẋ < 0, ẏ < 0, ż < 0

R17 b1 > 0, b2 > 0, b3 > 0, y < 0, z > 0 ẋ > 0, ẏ < 0, ż > 0

The right side of R13 is restricted by b3 = 0, its left is confined by b1 = 0, and its
front, bottom, and back parts are limited by the planes b2 = 0, z = 0, and Ω(m) = 0,
respectively. The tendency of trajectories in subregion R13 presents a monotone increase
along the positive three axes. The trajectories in R13 originate from subregions R12, R17, and
the point p5, and then move to R14 and p6.

For subregion R14, its front and back are bounded by b2 and Ω(m) = 0, respectively,
its bottom is limited by z = 0, and its left and right are restricted by y = 0 and b1 = 0,
respectively. The trajectories in R14 monotonically decrease in the positive x axis, increase
in the positive y and z axes, so the trajectories are from R13 and go to R15.

The front part of subregion R15 is restricted by b1 = 0, the back is bounded by y = 0
and b3 = 0, the upper is limited by Ω(m) = 0 and b3 = 0, and the bottom is confined by
z = 0. In subregion R15, trajectories are monotone decreasing in the positive x and z axes
while increasing in the positive y axis. Therefore, these trajectories are from R14 and move
to R16.

For R16, its front part is bounded by b3 = 0 and its back part is confined by two
planes Ω(m) = 0 and b3 = 0. The behavior of trajectories in this subregion is decreasing
monotonically in the positive three axes, so these trajectories stem from p3 and R15 and
then enter into R11.

The back, left, right, lower, and front parts of subregion R17 are bounded by the surface
b1 = 0, the planes b3 = 0, y = 0, b2 = 0, and z = 0, respectively. The trajectories in R17
monotonically decrease in the positive y axis and increase in the positive x and z axes.
Hence, they come from subregions R11, R15, and the point p5 and move towards p6.

Overall, the dynamic behavior of the trajectories in the seven subregions of R1 analyzed
above can be displayed as

R17 R13

p5

p6

R11PS in R11 R12

R14.R15

R16p3

Note: PS is a Poincaré sphere.
According to the process of dynamics represented above, the trajectories of system (19)

in the region R1 possess an ω-limit, i.e., future attractor, at p6 and α-limits, i.e., past
attractor, at the infinite equilibrium points in y = 0 limited to R11 and the finite equilibrium
points p3, p5. Although the points p3 and p5 have positive real eigenvalues, they are post
attractors in R1. Cosmological solutions matching observations go through a long enough
matter-dominated epoch and then into an accelerated expansion, i.e., an unstable point of
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matter switches to a stable acceleration equilibrium point in phase space. The trajectories
originated from p5 can get to p6 through subregions R13 or R17, which represent a class of
cosmological solutions.

The region R2 is divided into five subregions R2i (i = 1, · · · , 5), shown in Figures 4 and 5,
and Table 3 displays the dynamic behavior of system (19) in these five subregions.

x

y

z

p1

p2

p3

e13

R
2

p4

Figure 4. The purple surface is b1 = 0, the yellow plane is b2 = 0, and the light blue plane is b3 = 0.

p1

p4

R
21

p4

R
22

p2

p3

p4

R
23

e13

p2

p3

R
24

p3

R
25

Figure 5. The region R2 is divided into five subregions by the five planes y = 0, z = 0, Ω(m) = 0,
b2 = 0, and b3 = 0, and one surface b1 = 0.

Table 3. Dynamic behavior of the trajectories in the five subregions.

Subregion Corresponding Region Dynamic Behavior

R21 b1 < 0, b2 < 0, b3 > 0, y > 0, z > 0 ẋ < 0, ẏ < 0, ż > 0

R22 b1 > 0, b2 > 0, b3 > 0, y > 0, z > 0 ẋ > 0, ẏ > 0, ż > 0

R23 b1 < 0, b2 > 0, b3 > 0, y > 0, z > 0 ẋ < 0, ẏ > 0, ż > 0

R24 b1 > 0, b2 > 0, b3 > 0, y > 0, z > 0 ẋ > 0, ẏ > 0, ż > 0

R25 b1 > 0, b2 > 0, b3 < 0, y > 0, z > 0 ẋ > 0, ẏ > 0, ż < 0



Universe 2023, 9, 49 10 of 17

As shown in Figure 5, the front of subregion R21 is bounded by the plane b2 = 0, the
back is limited by Ω(m) = 0, the base is restricted by z = 0, and the right is confined by y = 0.
The trajectories of system (19) in R21 decrease monotonically in the positive x and y axes and
increase in the positive z axis. Accordingly, the trajectories in R21 are from p4 and go to R23.

For subregion R22, its front part is restricted by Poincaré sphere and b1 = 0, its back is
bounded by Ω(m) = 0, and its bottom is confined by z = 0. In this subregion, the trajectories
of system (19) increase monotonically in the positive three axes directions. Therefore, these
trajectories originate from p4 and get to R23.

The front of subregion R23 is bounded by the Poincaré sphere, the back is limited by
y = 0 and b2 = 0, the left and right are limited by b1 = 0, and the bottom is confined by
z = 0. In R23, the trajectories are monotone decreasing in the positive y and z axes and
increasing in the positive x axis, which shows that these trajectories can get to e13 and the
sources of them are p2, p3, p4, R21, R22, and R24.

The front of subregion R24 is restricted by Poincaré sphere, the left is confined by the
surface b1 = 0, and the right, the upper, and the lower are limited by the planes b3 = 0,
Ω(m) = 0, and z = 0, respectively. The trajectories in R24 behave the same as those in
subregion R22. Thus, they come from R25 and leave for R23.

The front of R25 is restricted by Poincaré sphere and b3 = 0, the back is limited by
y = 0, the upper is confined by Ω(m) = 0, and the lower is bounded by z = 0. The tendency
of the trajectories in this subregion displays a monotonic increase in the positive x and y
axes, and a monotonic decrease in the positive z axis. The trajectories thereby originate
from infinite equilibrium points in y = 0 restricted to R25 and point to R24.

In summary, the dynamic behavior of the trajectories in the five subregions of R2
discussed above is shown below.

PS in R25 R25 R24 R23 R22

e13.p3

p2 R21 p4

From the dynamic demonstration of R2, we find that the trajectories in R2 own an
ω-limit at e13 and α-limits at infinite equilibrium points in y = 0 limited to R25 and finite
equilibrium points p2, p3, p4. In addition, p4 is a past attractor for its instability. We find
that there are trajectories that originate from p2, p3, p4 and infinite point in y = 0 restricted
by R25 and move to e13 in the region R2. However, cosmological solutions can not be found
in this region.

The region R3 is divided into seven subregions R3i (i = 1, · · · , 7) (see Figures 6 and 7).
The dynamic behavior of the system (19) in these seven subregions is presented in Table 4.

In Figure 7, the right side of the subregion is limited by the plane y = 0 and the left
is restricted by b2 = 0, the front part of R31 is bounded by Poincaré sphere, the back is
confined by b3 = 0 and the top is restricted by z = 0. As shown in Table 3, the trajectories
of system (19) in subregion R31 are monotone increasing in the positive x and z axes,
decreasing in the positive y axis. Therefore, the trajectories in R31 stem from the infinite
equilibrium points in y = 0 restricted to R31 and get into subregions R32 and R36.

The bottom of subregion R32 is restricted by the Poincaré sphere, the top is limited by
z = 0 and b1 = 0, the front is bounded by b3 = 0 and the back is confined by y = 0 and
h2 = 0. The behavior of trajectories in R32 is the same with those in subregion R31. For this
reason, the trajectories in this subregion derive from R31 and R33, then enter R35.
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Figure 7. The region R3 is divided into seven subregions by the five planes y = 0, z = 0, Ω(m) = 0,
b2 = 0, and b3 = 0, and one surface b1 = 0.
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Table 4. Dynamic behavior of the trajectories in the seven subregions.

Subregion Corresponding Region Dynamic Behavior

R31 b1 > 0, b2 > 0, b3 < 0, y < 0, z < 0 ẋ > 0, ẏ < 0, ż > 0

R32 b1 > 0, b2 > 0, b3 > 0, y < 0, z < 0 ẋ > 0, ẏ < 0, ż < 0

R33 b1 < 0, b2 > 0, b3 > 0, y < 0, z < 0 ẋ < 0, ẏ < 0, ż < 0

R34 b1 < 0, b2 < 0, b3 > 0, y < 0, z < 0 ẋ < 0, ẏ > 0, ż < 0

R35 b1 > 0, b2 < 0, b3 > 0, y < 0, z < 0 ẋ > 0, ẏ > 0, ż < 0

R36 b1 > 0, b2 < 0, b3 < 0, y < 0, z < 0 ẋ > 0, ẏ > 0, ż > 0

R37 b1 < 0, b2 < 0, b3 < 0, y < 0, z < 0 ẋ < 0, ẏ > 0, ż > 0

For subregion R33, its front part is bounded by b1 = 0, its back is restricted by y = 0
and b2 = 0, and the top is limited by z = 0. In R33, the trajectories are monotone decreasing
in the positive three axes, which shows that the source of the trajectories in R33 is R34 and
these trajectories then go into R32.

The front part of subregion R34 is restricted by b2 = 0, the upper is bounded by z = 0,
and the back is limited by y = 0 and h1. The tendency of trajectories in R34 is monotonic
increasing in the positive y axis and decreasing in the positive x and z axes. Thus, the
trajectories in this subregion originate from p5 and leave for R33.

The upper part of subregion R35 is restricted by z = 0 and b1 = 0, the left and the right
are limited by b2 = 0 and Ω(m) = 0, respectively, and the front and the back are confined
by b3 = 0 and y = 0, respectively. In subregion R35, the trajectories monotonically increase
in the positive x and y axes, decrease in the positive z axis, which points that they come
from R32 and R36, then leave for the infinite equilibrium points in y = 0 limited to R35.

For R36, its front part is limited by b2 = 0 and the Poincaré sphere, its top is bounded
by z = 0, and its back is restricted by b3 = 0, Ω(m) = 0 and b1 = 0. In R36, the dynamic
behavior of trajectories is monotone increasing in positive three axes. The trajectories in
this subregion are from R37 and move to R35.

The right part of R37 is bounded by Poincaré sphere, the back is limited by Ω(m) = 0, and
other parts are restricted by b1 = 0. The behavior of the trajectories in R37 shows a monotonic
decrease in the positive x and z axes and increases in the positive y axis. For this reason, the
trajectories in R37 originate from the infinite equilibrium point E13 and go to R36.

On the whole, the behavior of the trajectories in the seven subregions of R3 discussed
above can be described as

E13 R37 R36 R35 PS in R35

R31PS in R31 R32 R34 p5.

The dynamic process above indicates that the trajectories in R3 possess ω-limits at the
infinite equilibrium points in y = 0 restricted to R35 and α-limits at E13 and the infinite
equilibrium points in y = 0 restricted to R31. We find that trajectories originating from
p5 can reach the infinite equilibrium points in y = 0 limited to R35. However, this region
contains no cosmological solutions because the infinite points that the trajectories point to
are not accelerated stable points.

The region R4 is divided into five subregions R4i (i = 1, · · · , 5), as shown in Figures 8 and 9.
The dynamic behavior of system (19) in these five subregions is displayed in Table 5.
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Figure 9. The region R4 is divided into five subregions by the five planes y = 0, z = 0, Ω(m) = 0,
b2 = 0, and b3 = 0, and one surface b1 = 0.

For subregion R41, its front part is limited by b2 = 0, its back is bounded by y = 0
and Ω(m) = 0, and its bottom and top are restricted by Poincaré sphere and b3 = 0,
respectively. The trajectories in subregion R41 are monotone increasing in the positive x
axis, and decreasing in the positive y and z axes. So these trajectories stem from subregions
R42 and R44 and destine for the infinite equilibrium points in y = 0 limited to R41.

The front of subregion R42 is restricted by b2 = 0, the back is bounded by y = 0 and
Ω(m) = 0, the top is confined by z = 0, and the bottom is limited by b3 = 0. The dynamic
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behavior of the trajectories in R42 is monotonically decreasing in the positive three axes
directions. Hence, the trajectories in R42 stem from p4, then leave for R41 and R43.

For R43, its top portion is limited by z = 0, its back is restricted by b2 and y = 0, and
the other portions are confined by b3 = 0. The trajectories in R43 are monotone decreasing
in the positive x and z axes, increasing in the positive y axis. These trajectories are from R42
and p2, then head for R44.

Table 5. Dynamic behavior of the trajectories in the five subregions.

Subregion Corresponding Region Dynamic Behavior

R21 b1 > 0, b2 < 0, b3 > 0, y > 0, z < 0 ẋ > 0, ẏ < 0, ż < 0

R22 b1 < 0, b2 < 0, b3 > 0, y > 0, z < 0 ẋ < 0, ẏ < 0, ż < 0

R23 b1 < 0, b2 > 0, b3 > 0, y > 0, z < 0 ẋ < 0, ẏ > 0, ż < 0

R24 b1 > 0, b2 > 0, b3 > 0, y > 0, z < 0 ẋ > 0, ẏ > 0, ż < 0

R25 b1 > 0, b2 > 0, b3 < 0, y > 0, z < 0 ẋ > 0, ẏ > 0, ż > 0

The top portion of subregion R44 is restricted by z = 0, b1 and Ω(m) = 0, the right, left,
front, and back are bounded by b3 = 0, b2 = 0, the Poincaré sphere, and y = 0, respectively.
The tendency of the trajectories in R44 shows monotone increasing in the positive x and y
axes, monotone decreasing in the positive z axis. Thus, the trajectories in R44 stem from p2,
p4, R43, and R45, and enter R41.

For subregion R45, its top is confined by the plane z = 0, its front is limited by
b3 = 0 and the Poincaré sphere, and its back is restricted by y = 0. In R45, the trajectories
are monotone increasing in the positive three axes, hence they come from the infinite
equilibrium points in y = 0 restricted to R45, then get into R44.

The analysis of the dynamic behavior in the five subregions presented above can be
summarized as follows:

PS in R45 R45 R44 p4 R42

p2 R43

R41 PS in R44.

From the dynamic flow chart above, we can obtain that the trajectories in R4 own
ω-limits at the infinite equilibrium points in y = 0 restricted to R41 and α-limits at p2, p4,
and the infinite equilibrium points in y = 0 restricted to R45. No cosmological solution
exists in R4 because matter points and accelerated points are not located in this region.

4. Conclusions

Dynamic system analysis is a useful mathematical tool to explore the qualitative
dynamic behavior of cosmological models. Due to the fact that field equations in the
cosmological model include highly nonlinear terms, it is not easy to directly compare the
models with the observed values. However, we can use dynamic system analysis to find
the equilibrium points related to the model and the properties of these points. Since these
points represent the Universe’s evolution stage, we can compare the analysis of these points
with observational cosmology to obtain the rationality of the model.

In minimally coupled f (R, T) gravity, the function h(T) is confined to a specific form
c1
√
−T + c2, where c1, c2 are constants. Based on Case A in Section IV of [49], we choose this

particular form of f (R, T) gravity, which can reduce the independent variable. Considering
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the late-time behavior of the model, we obtain the autonomous dynamic system with only
three independent variables, which can describe the three-dimensional dynamic behavior
of the system.

Through dynamic system analysis, the dynamics of the model under the background
of f (R, T) = ξRα + ζ

√
−T gravity in regions restricted by the three invariant planes is

presented. Note that the cosmological solutions can be found in this model when α tends to
1 from the side greater than 1 (i.e., α→ 1+) [57], so we investigated the dynamic behavior of
the system in three-dimensional space when the α is close to 1. As the equilibrium points p5,
p6 are matter point and accelerated point, respectively, based on their values of ω(eff) and
Ω(m), the evolution from p5 to p6 can describe a matter-dominated phase to an accelerated
expansion. Thus, the evolution trajectories originating from p5 moving to p6 present a class
of cosmological solutions. A Poincaré ball, which stands for the whole space, is divided into
eight regions by the three invariant planes. However, as cosmological solutions hold when
Ω(m) ≥ 0, we mainly discussed the dynamic behavior of the four regions Ri (i = 1, 2, 3, 4)
in three-dimensional space and discarded the analysis of the regions Ri (i = 5, 6, 7, 8) with
Ω(m) < 0. The dynamic behavior of each subregion in the four regions Ri (i = 1, 2, 3, 4) is
presented in Tables 2–5 and the dynamic process of all subregions are shown in the form of
flow charts. The existence of cosmological solutions in the four regions has been discussed
and only the region R1 has cosmological solutions which can represent the evolution from
the matter-dominated epoch to the accelerated expansion.
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55. Gao, F.B.; Llibre, J. Global dynamics of the Hořava-Lifshitz cosmological model in a non-flat universe with non-zero cosmological

constant. Universe 2021, 7, 445. [CrossRef]
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