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Abstract: In this paper, we explore the gravitational collapse of matter (dust) under the effect of
zero-point length l0. During the gravitational collapse, we neglect the backreaction effect of pre-
Hawking radiation (in the sense that it is a small effect and cannot prevent the formation of an
apparent horizon), then we recast the internal metric of a collapsing star as a closed FRW universe
for any spherically symmetric case and, finally, we obtain the minimal value for the scale factor,
meaning that the particles never hit the singularity. We argue that the object emerging at the end
of the gravitational collapse can be interpreted as Planck stars (black hole core) hidden inside the
event horizon of the black hole, with a radius proportional to (GMl2

0/c2)1/3. Quite interestingly, we
found the same result for the radius of the Planck star using a free-falling observer point of view.
In addition, we point out a correspondence between the modified Friedmann’s equations in loop
quantum gravity and the modified Friedmann’s equation in string T-duality. In the end, we discuss
two possibilities regarding the final stage of the black hole. The first possibility is that we end up with
Planck-size black hole remnants. The second possibility is that the inner core can be unstable and,
due to the quantum tunneling effect, the spacetime can undergo a black-hole-to-white-hole transition
(a bouncing Planck star).

Keywords: black holes; gravitational collapse; singularities; T-duality

1. Introduction

Using classical general relativity, it was shown by Oppenheimer and Snyder [1]
that the ultimate fate of a spherically symmetric collapsing star must be a black hole.
According to general relativity, classical black hole solutions have singularities arising
during gravitational collapse. In particular, Penrose showed that even deviations from
spherical symmetry cannot prevent spacetime singularities from arising [2]. On the other
hand, Hawking [3,4] used quantum field theory in strong gravitational fields and found
that there must be a thermal flux of particle production, which is known as Hawking
radiation. This means that a static observer located far away from the black hole should
detect the temperature. Such temperature is very small and, as of today, has not been
measured. It is widely believed that such spacetime singularities can be cured within
a quantum theory of gravity. Regular black holes have attracted a lot of attention (see
different regular black hole solutions [5–11]), including a recent review [12] and possible
constraints to regular black holes with the Event Horizon Telescope image of Sagittarius
A∗ [13]. Different concerns have been raised about the stability of regular black holes.
Specifically, it has been argued that regular black holes can be generically unstable because
of the phenomenon known as the “mass inflation”, which can destabilize the inner horizon
and the role of Hawking radiation to cure this instability [14,15], and the problem with such
a claim see [16]. In the present paper, we shall peruse a different scenario; namely, it was
argued that ideas from T-duality can regularize the gravitational potential [17–20] and that
this can play an important role to resolve the black hole singularity [18]. Using T-duality,
it is possible to show that the description of string theory below the length ls = α′ is the
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same as its description above ls = α′. In this framework, the physics of four dimensions
can be obtained by compactifying the other dimensions. For a single compact dimension
with radius R, one can use the boundary conditions by writing

X4(τ, σ + 2π) = X4(τ, σ) + 2πwR, (1)

where w is known as the winding number. Furthermore, for the mass spectrum for such a
system, we have

m2 =
1

2α′

(
n2 α′

R2 + w2 R2

α′

)
+ . . . , (2)

where n is known as the Kaluza–Klein excitation level. The main idea behind T-duality is
that the above spectrum does not change if we exchange the winding number w and the
Kaluza–Klein excitation level n; namely, we can write [18],

w→ n, R→ α
′2/R. (3)

On physical grounds, this also suggests that the description of string theory below
a certain length is equivalent to its description above it [17]. Furthermore, by means of
T-duality, one can show that Green’s function is invariant under w→ n, R→ α

′2/R. In par-
ticular, for the Green’s function in the momentum space, the following was found [17–20],

G(k) = −2πR√
k2

K1(2πR
√

k2), (4)

in which K1(k) is a modified Bessel function of second kind. The zero-point length
(l0 = 2πR) is, therefore, produced by means of the compactified extra dimension of ra-
dius R and cannot be probed below this length. Taking the limit l0k2 → 0, we obtain the
standard relation for the Green’s function, i.e., G(k) = −k−2. In such a limit, the stringy
effects are very small and can be totally neglected. Using the modified Green’s function,
it was also shown that the point-like source distribution is replaced by a smearing matter
density. Specifically, using the regularized potential due to the zero-point length l0, and by
solving the Poisson equation, one can obtain the energy density and the stress-energy tensor
describing the smearing matter distribution [18]. The static and spherically symmetric
metric that solves the Einstein field equations with stringy effect is given by [18]

ds2 = −
(

1− 2Mr2

(r2 + l2
0)

3/2

)
dt2 +

dr2

1− 2Mr2

(r2+l2
0)

3/2

+ r2dΩ2, (5)

where M denotes the Komar mass. This is a very important solution because it is a non-
perturbative solution that describes a static and spherically symmetric black hole geometry.
For M > 3

√
3 l0/4, there exist two roots: the inner and outer horizon, which are r− and r+,

respectively. We can also say that such a metric describes two possible phases of matter, the
particle sector (M < 3

√
3 l0/4) and the black hole sector (M > 3

√
3 l0/4). For a very large

mass, the solution is effectively the Schwarzschild black hole. The regularized electrostatic
potential in T-duality was obtained in [21]. Recently, such non-perturbative modifications
were used to find a charged black hole solution in T-duality [22], regular black holes in
three dimensions [23], entropic corrections to Friedmann’s equations [24], regular black
strings, and torus-like black holes [25]. By considering Hawking evaporation, it was argued
that black remnants should occur due to stringy theoretical effects [26]. In the present work,
we would like to study, in more detail, gravitational collapse and the final stage of the
collapse using such stringy corrections.

This paper is outlined as follows. In Section 2, we study the gravitational collapse of
the interior of star. In Section 3, we discuss the Planck star radius using an infalling observer
point of view. In Section 4, we discuss Hawking evaporation and the final Planck-size
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remnants. In Section 5, we study the bouncing Planck star scenario. We comment on our
results in Section 6.

2. Gravitational Collapse and Planck Stars in T-Duality

Let us start by considering a spherically symmetric star composed of matter (dust) with
vanishing pressure, which undergoes gravitational collapse. In general, the stress-energy
tensor of the collapsing matter is given by

Tµν = (ρ + p)uµuν + pgµν, (6)

in which ρ is the energy density, uµ is the fluid 4-velocity, and p is the pressure, which,
in our case, vanishes. For such a fluid, we have to consider the energy conservation, i.e.,
∇αTαβ = 0, along with the Einstein equations. For the interior region, having a spherically
symmetric star, we can write, in general [27],

ds2
int = −e2φ(r,τ)dτ2 + eλ(r,τ)dr2 +R(r, τ)2dΩ2, (7)

in whichR(r, τ) is the area radius. In addition, we take φ′(r, τ) = 0, which follows from
the Einstein equations for the case of homogeneous dust [27]. To study the gravitational
collapse, we are going to use the well-known Tolman–Bondi spacetime by introducing the
following function [28–33]

eλ(r,τ) =
[R(r, τ)]2,r
1−K(r) , (8)

which leads to

ds2
int = −dτ2 +

[R(r, τ)]2,r
1−K(r) dr2 +R(r, τ)2dΩ2. (9)

For the exterior metric, we shall use the modified vacuum solution due to the stringy
effects given by Equation (5) and rewritten as

ds2
ext = −

(
1− 2Mr2

(r2 + l2
0)

3/2

)
dt2 +

dr2

1− 2Mr2

(r2+l2
0)

3/2

+ r2dΩ2. (10)

At this point, we utilize the Misner–Sharp mass function, which is defined by using
the area radius, which, at fixedR, reads

gµν(∇µR)(∇νR) = 1− 2MR2

(R2 + l2
0)

3/2
, (11)

from this equation, it follows that

[R(r, τ)]2,τ =
2MR2

(R2 + l2
0)

3/2
−K(r). (12)

A very important result that follows from the Tolman–Bondi spacetime is that one
can obtain the Friedmann equations as a special case. To see this, we need to introduce the
following relations

R(r, τ) = a(τ)r and K(r) = k r2. (13)

It can be easily seen how the FRW universe metric is obtained

ds2 = −dτ2 + a(τ)2
(

dr2

1− k r2 + r2dΩ2
)

. (14)
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Here, k denotes the curvature of space, with k = 0, 1,−1 corresponding to flat, closed,
and open universes, respectively. Using this equivalence, we can model and study the
interior spherically symmetric homogeneous stars. Using Equations (12) and (13), we
can find (

ȧ
a

)2
+

k
a2 =

8πρ

3

(
1 +

l2
0
R2

)−3/2

. (15)

It is important to note here that we shall neglect the backreaction effect of pre-Hawking
radiation during the gravitational collapse. In particular, it has been shown that such an
effect is small and cannot prevent the formation of the apparent horizon (see for exam-
ple [34]). The dynamical apparent horizon, a marginally trapped surface with vanishing
expansion, is determined by the relation

hµν
(
∂µR

)
(∂νR) = 0, (16)

where the two-dimensional metric reads

hµν = diag(−1,
a2

1− kr2 ). (17)

It is a simple calculation to find out the relation for the apparent horizon radius of the
FRW universe

R = a r =
1√( ȧ

a
)2

+ k
a2

. (18)

We are going to simplify the work; since l0 is a very small number, we can consider a
series expansion around l0 via[

1 +
l2
0

r2a2

]−3/2

= 1− 3
2

l2
0

r2a2 + . . . (19)

Then, using the Friedmann Equation (15), we obtain, in leading order terms,(
ȧ
a

)2
+

k
a2 =

8πρ

3

[
1−

3l2
0

2

((
ȧ
a

)2
+

k
a2

)]
. (20)

The last equation can be further written as(
ȧ
a

)2
+

k
a2 =

8πρ

3
[1− Γρ], (21)

where Γ is a constant defined as

Γ ≡
4l2

0π

3
. (22)

This result is nothing but the corrected Friedmann equation reported recently in
Ref. [24] using a different approach (Verlinde’s entropic force scenario). In fact, it coincides
with [24] by taking ω = 0 (dust). It is quite remarkable that we found a bridge between
two different and competing directions in quantum gravity. On one hand, by considering
string T-duality effects, we found the modified Friedmann Equation (21), which coincides
with the conclusions obtained from the loop quantum gravity approach [35](

ȧ
a

)2
+

k
a2 =

8πρ

3

[
1− ρ

ρc

]
, (23)

where ρc is the critical energy density
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ρc ≡
3

8πγ2λ2 , (24)

where λ ∼ 5.2l2
Pl [35] is the area gap that sets the discreteness scale of loop quantum gravity,

and γ is the Immirzi parameter. The correspondence is achieved by identifying Γ = ρ−1
c . A

direct computation yields γ = 0.310086 l0/lPl . Using l0 = 23/4/33/4lPl = 0.73778lPl [18],
we obtain γ = 0.2287783, which is in perfect agreement with the value proposed in loop
quantum gravity γ = 0.2375.

Once the gravitational collapse takes place, we can now use the modified Friedmann
equations and explore the possibility that the collapse stops at some point due to the stringy
corrections. To do so, we have to use the condition

ȧ = 0|(a=amin,ρ=ρcrit.)
, (25)

along with k = 1. From this condition, we can obtain the critical density; in fact, we obtain
two branches of solution for the critical density

ρcrit. =
1

2Γ

(
1±

√
1− 3Γ

2πa2
min

)
. (26)

From this result, it follows that

1− 3Γ
2πa2

min
≥ 0, (27)

which basically allows us to find the minimal quantity for the scale factor

amin =

√
3Γ
2π

=
√

2 l0. (28)

Again, this is in perfect agreement with what has been found in Ref. [24]. Such a
critical density is, thus, inversely proportional to the minimal length

ρcrit. ∼
1
l2
0

. (29)

The above arguments show that during the gravitational collapsing phase, the sin-
gularity is never reached, and the interior solution of the black hole (black hole core) is a
kind of very dense star. The possibility that a very dense star or Planck star exists inside
the black hole was proposed in Ref. [36]. The radius of such a star was conjectured to be
proportional to the collapsed mass [36]. It is very interesting that, as we shall see, such
Planck stars hidden inside the stringy-corrected regular black holes can naturally appear in
our analyses. In what follows, we are going to compute the radius of such a star. First, we
need to rewrite the FRW metric in a simple form. Let us define the proper time τ using

τ =
∫

a(η)dη, (30)

where η is the conformal time, along with radial coordinate defined as

r(τ) = a(τ) sin χ. (31)

From these equations, we obtain the FRW metric as

ds2
int = −dτ2 + a2(τ)

[
dχ2 + sin2 χdr2

]
= a2(η)

[
−dη2 + dχ2 + sin2 χdr2

]
. (32)
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Choosing a surface Σ with fixed χ = χ0, by matching the metrics, we can obtain the
first equation

R(τ) = a(τ) sin χ0, (33)

along with the second equation

−
(

1− 2MR2

(R2 + l2
0)

3/2

)(
dt
dτ

)2
+

(
dR
dτ

)2

1− 2MR2

(R2+l2
0)

3/2

= −1. (34)

From the last equation, it is not difficult to show that

dt
dτ

= ±

√
Ṙ2 + 1− 2MR2

(R2+l2
0)

3/2

1− 2MR2

(R2+l2
0)

3/2

. (35)

Although we use a rather simple and idealized model of collapse, it highlights the
main features of the interior dynamics of the interior of the star. Using the matching
procedure of the interior and exterior metrics at the surface of the star, it is possible to study
the motion of the star’s surface. In what follows, we shall show some important results;
first, we are going to approximate the last equation as

dt ' ± dR
1− 2MR2

(R2+l2
0)

3/2

, (36)

where the plus/minus sign corresponds to the case of expansion or collapse. Because we
are interested in the collapse, we chose the minus sign (R decreases with time), and by
doing further simplifications, we obtain

R(t) ' 2M− exp

(
−

4tM + 8M2 + 8M2Ξ + 3l2
0Ξ

8M2 + 3l2
0

)
, (37)

where

Ξ = LabertW

−4Me
− 4M(t+2M)

8M2+3l20

8M2 + 3l2
0

. (38)

We see that from the point of view of the outside observer, it takes an infinite amount
of time t→ ∞ to see the formation of the black hole horizonR → 2M. The whole process
is viewed in “very slow motion”. However, from the point of view from the inside, it takes
a finite proper time for particles to reach the minimal distance. In the Oppenheimer–Snyder
model [1], the surface of a gravitationally collapsing spherically symmetric star made up
of dust with radius Rs can be obtained via Equation (33). At this point, let us define the
following constant quantity

a0 ≡
8πρa3

3
|(τ=0) = const. (39)

where a0 = a(τ = 0) is the scale factor in the initial moment of collapse. We can see that
this quantity is constant simply by taking ρ = ρ0a−3 for the dust matter. At the initial time,
we also have τ = η = 0, along with the radius of the star Rs(0) = R0. Furthermore, one
can show that
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a0 =

√
R3

0
2M

, sin χ0 =

√
2M
R0

. (40)

From the corrected Friedmann equation (setting k = 1), we obtain

ȧ(τ) + 1 =
a0

a(τ)

(
1−

a0l2
0

2a(τ)3

)
(41)

or, in terms of η, we obtain

ȧ(η) + a(η)2 = a0a(η)

(
1−

a0l2
0

2a(η)3

)
. (42)

Solving the last two equations, exactly, is not an easy task. One simple guess is to
try and generalize the parametric form a(η) = a0(1 + cos η)/2, which is a solution when
l0 = 0, then by using the following equation

a(η) =
a0

2
(1 + ξ(η)) (43)

we obtain

ξ(η) = η ±
∫

(1 + a(η))a0da(η)√
(1− a(η))(1 + a(η))3 − 8l2

0

+ C. (44)

There are two branches in this solution that can describe the contraction and expansion.
Again, finding an exact solution in closed form is outside the scope of the present work.
Because the mass is conserved during the gravitational collapse (having in mind the
Hawking radiation is very small), we must also have

a(τmax) ≡
8πρa3

3
|(τmax) = const. (45)

once the Planck star is formed. At the surface of the star when the gravitational collapse
stops, we also have

a(τmax) =

√
R3

τmax

2M
, sin χτmax =

√
2M

Rτmax

, (46)

Note here that a(τmax) = amin =
√

2 l0. This means that we can obtain the proportion-
ality

ρ0a2
0 = ρ(τmax)a2

min, (47)

where we can identify ρ(τmax) = ρcrit. Put in other words, during the gravitational collapse,
the scale factor decreases, but the density per unit volume increases. Another way of stating
this result is to say the mass of the collapsing matter is constant

ρ0R3
0 = ρcritR2

τmax . (48)

When the gravitational collapse stops, we can find the radius of the Planck star using
Rs|τmax ,amin = a(τmax) sin χτmax ; namely, we obtain

Rs|τmax,amin ∼ amin(2M)1/2R−1/2
τmax . (49)
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Using Rs = Rs|τmax,amin = Rτmax , we estimate the radius of the Planck star as follows

Rs ∼ 22/3 M1/3 l2/3
0 . (50)

The above value for the radius is in good agreement with Ref. [36], having set n = 1/3.
The phenomenological aspects of Planck stars have been studied in Refs. [37–40]. For
a stellar mass black hole with mass M ∼ 10× Msun and l0 ∼ 10−34 m, we can obtain
the radius of the Planck star (by restoring the constants G and c) Rs ' [GMl2

0/c2]1/3 ∼
10−22 m. Although a small value, this shows that the radius of such a star is many orders
of magnitudes greater compared to l0. Such a star is hidden inside the event horizon of the
black hole, with the geometry described by the metric (5).

3. A Free-Falling Observer and Planck Star Radius

Let us now study the whole process, as seen from a free-falling observer. To do this,
we can use the Painlevé–Gullstrand coordinates through the definition of a new time
coordinate as

dtp = dt +
√

1− f (r)
f (r)

dr (51)

for some arbitrary function f (r), along with the new metric

ds2 = − f (r)dt2
p + 2

√
1− f (r)dtpdr + dr2 + r2dΩ2 . (52)

We see that there is no coordinate singularity at the horizon. The time coordinate of
the Painlevé–Gullstrand metric is the same as the proper time of a freely falling observer
who starts from infinity at zero velocity. We denote the Painlevé–Gullstrand coordinates as
(tp, rp) and the Schwarzschild coordinates as (t, r). One can use the Jacobian to relate these
coordinates given by [41]

∂(tp, rp)

∂(t, r)
=

(
∂tp
∂t

∂tp
∂r

∂rp
∂t

∂rp
∂r

)
=

(
1
√

1− f (r)
f (r)

0 1

)
,

along with the inverse of the transformation matrix

∂(t, r)
∂(tp, rp)

=

(
∂t

∂tp
∂t

∂rp
∂r
∂tp

∂r
∂rp

)
=

(
1 −

√
1− f (r)
f (r)

0 1

)
.

From the point of view of a static observer located far away from the black hole, the
total energy momentum is the sum of the energy momentum of the black hole core or
the Planck star energy density, and for the renormalized stress-energy tensor, we add the
effect of Hawking radiation. For example, one can choose the Unruh vacuum stat (see [41]).
Hence, we can write

Ttot.
µν = TCore

µν + TRSET
µν (53)

For a freely falling observer, we can write the components in Painlevé–Gullstrand
coordinates by means of a coordinate transformation

TGP
αβ =

∂xµ

∂xα

∂xν

∂xβ
Ttot

µν . (54)
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As we did in the last section, we shall neglect here too the Hawking radiation effect as
perceived by a freely falling observer and focus only on TCore. For simplicity, we work in
1 + 1 dimensions; this yields

Ttptp = f (r)ρ(r) (55)

Ttprp = −
√

1− f (r)ρ(r), (56)

Trprp = −ρ, (57)

with the components of the energy–momentum for the black hole core in Schwarzschild
coordinates, given by

TCoreµ
ν = (−ρ, Pr) (58)

For a freely falling observer, the velocity in Painlevé–Gullstrand coordinates is given
by

Va =

(
1,−

√
1− f (r)

)
. (59)

Using this velocity, we find that the energy density as measured by such an observer
is given by

ρGP = TabVaVb = ρ . (60)

In other words, the energy density stays an invariant quantity. At this point, we use
the condition

VaVa = −1 =⇒ f (r)′|r=rmin = 0, (61)

and after solving this equation, we obtain the minimal value at

rmin =
√

2 l0. (62)

This is in perfect agreement with the minimal scale factor found in the last section. We
can now compute the total time measured by such a free-falling observer using∫ T

0
dtp = −

∫ rmin

r+

dr√
1− f (r)

(63)

where we approximate r+ ' 2M. After solving this integral, we obtain

T ' 4
3

M +
21/4l2/3

0

12
√

M
−

3l2
0

4M
+ . . .. (64)

The proper time of a particle is, therefore, finite. We can show that the time for light
reaching the minimal distance, say, from the event horizon, is also finite. In this case, one
can use ds2 to find the radial equations, then using the integrating the equation, we obtain∫ T

0
dtp = −

∫ rmin

rmax

dr
1 +

√
1− f (r)

(65)

where, again, we can use the approximation rmax ' 2M. After solving this integral, we
obtain a finite amount of time

T ' 2M ln M + 6M ln 2− 2M + 2
√

2M
√

l0
√

2

−
√

2l0 − 4M ln(
√

2M
√

l0
√

2) (66)
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Let us now use Equation (51) to find the time t measured by an observer located far
away from the black hole

t = T −
∫ √

1− f (r)
f (r)

dr (67)

which yields

t ' T + 2
√

2M
(√

2M arctan−1
(√

r
2M

)
−
√

r
)
+ C (68)

where C is an integration constant. In the limit r → 2M, we obtain t → ∞, meaning that
from the observer’s point of view, it takes an infinite amount of time to see the collapsing
of matter. Due to the quantum gravitational effect, or the zero-point length effect, we found
that the particles never reach the singularity, but this also implies the existence of Plank
stars. This can be seen from Einstein field equations and using ρ(r) = ρcrit., we must have

R ∼ 8πρcrit.(r) ∼
3
l2
0

. (69)

This shows that there is no singularity in the expression for the Ricci scalar, provided
l0 > 0. One can calculate one more scalar invariant, known as the Kretschmann scalar,
given by the following result K ∼ l−4

0 . To estimate the radius of the Planck star, here we
recall that the Ricci scalar (R) for the above black hole given is found

R =
2M
(
2r4 − 11l2

0r2 + 2l2
0
)

(l2
0 + r2)7/2

. (70)

From these two equations, we obtain

2M
(
2r4 − 11l2

0r2 + 2l2
0
)

(l2
0 + r2)7/2

− 3
l2
0
= 0, (71)

considering a series expansion around l0, and by setting the radial coordinate to be the
Planck star radius (we call it r = Rs), we obtain

4M
R3

s
− 3

l2
0
= 0. (72)

Solving Rs, we obtain

Rs ∼ 22/33−1/3M1/3l2/3
0 , (73)

which is in perfect agreement with Equation (50) found in the last section in leading
order terms.

4. Planck-Size Remnants

In this last section, we would like to speculate about the final state of the Planck star
hidden inside the black hole. Assuming that the black hole has been formed along with
a Planck star inside it due to the presence of the horizon, we can now take into account
Hawking radiation and its back reaction effect. Viewed from the outside region, we have
the outer horizon [18]

r+ ' 2M−
3l2

0
4M

, (74)
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and the inner horizon

r− '
l0√

2

(
l0
M

)1/2
(75)

Hawking radiation is computed via [18]

TH =
f ′(r)
4π
|r=r+ =

1
4πr+

(
1−

3l2
0

l2
0 + r2

+

)
. (76)

Due to the backreaction effect of Hawking evaporation, the mass of the black hole
decreases M(t); this means that we have a slowly shrinking outer horizon, but at the same
time, the inner horizon increases (as can be seen from Equations (74) and (75)). For instance,
we can compute the evaporation time viewed from the outside using

−dM(t)
dt

∼ A σ T4
H (77)

where A = 4πr2
+ is the area of the black hole horizon, and σ is the Stefan–Boltzmann

constant. For the evaporation time, it is not difficult to show that

tevapo. ' A
(

M3 −M3
ext

)
+ l2

0B(M−Mext). (78)

where A and B are two constants of proportionality. The stringy effects are small, and the
evaporation time will be very long. It was shown that for some extremal configuration,
with M = Mext = 3

√
3l0/4, the outer and inner horizon coincide r− = r+ =

√
2l0 (see [18]

for details). This is interesting because it coincides exactly with the minimal scale factor
obtained in the present work. There is a significant difference compared to the classical
Schwarzschild black hole case; namely, instead of getting increasingly hotter and eventually
with a final explosion due to the stringy effect, here, it cools down and eventually vanishes
(TH = 0) at the extremal configuration. This offers a possibility that the final state, which is
the result of a very long time, may be a stable remnant with

Rext
s ∼ r− = r+ =

√
2 l0, (79)

The small mass of the remnant is nothing but a particle, and it is speculated to be a
candidate for dark matter.

5. Bouncing Planck Star: Black-Hole-to-White-Hole Transition

There is another possibility—perhaps a more interesting one—in which the Planck star
bounces instead of decreasing its radius. This is due to the fact that the inner core (Planck
star) solution may not be a stable state after all. Mathematically, bouncing at the critical
point can be stated using the conditions: amin > 0, H|a=amin = 0, along with the condition
ä|a=amin > 0. This shows that there is a great level of similarity between the physics that
describes the cosmic bounce and the possible bounce inside black holes. One can use the
second modified Friedmann equation that describes the dynamical evolution reported in
Ref. [24]

ä
a
= −

(
4π

3

)
(ρcrit + 3pcrit)

[
1− 3

2
l2
0

a2
min(ω)

+ . . .

]
, (80)

where the minimal scale factor given by [24]

amin(ω) =
√

2

√
1 + 3ω

1 + ω
l0. (81)
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We see that, in general, if we have matter with non-vanishing pressure, then the
scale factor can be a function of ω. Imposing the condition amin > 0, we obtain the
interval ω ∈ (−∞,−1) ∪ (−1/3, ∞). On the other hand, if we use the equation of state via
pcrit = ωρcrit, along with ρcrit = 1/(2Γ), we obtain

ä
a
= − 1

l2
0

1 + 9ω

8
, (82)

which is further rewritten as

ä(τ)− ζ2 a(τ) = 0, (83)

where

ζ2 = − 1
l2
0

1 + 9ω

8
> 0, (84)

provided ω < −1/9. However, we must also have in mind that amin > 0; therefore, we are
left with the allowed interval −1/3 < ω < −1/9. The general solution in this interval is
given by

a(τ) = B1 exp (ζτ) + B2 exp (−ζτ), (85)

where we can take the interval amin ≤ a(τ) ≤ amax. At the initial moment τ = 0, one
has a(τ = 0) = amin = B1; hence, we can fix the constant B2 = 0, which yields a(τ) =
amin exp(ζτ). The interior metric now reads

ds2
in = −dτ2 + a2

mine2ζτ
[
dχ2 + sin2 χdr2

]
(86)

As was argued in [24], this metric can describe the bouncing universe. For reasons
we elaborated above, we need a special form of matter with a specific interval for EoS
parameter ω in order to justify the bouncing effect. Coming back to our case, where we
studied the collapsing of matter (dust) with zero pressure, i.e., pcrit = 0, along with ω = 0,
this means that the above bouncing condition is not satisfied. At this point a natural
question arises: even if we have collapsing dust, which clearly does not satisfy the above
bouncing condition, can we still say that the final state of the internal core of the black
hole will be eternally stable? Of course, we do not know the answer to this question, but
from a quantum mechanical point of view, we may speculate that the bouncing effect can
also be a consequence of the black-hole-to-white-hole transition (BHWH). In other words,
instead of the bouncing condition given by Equation (84), which is a classical effect, we
can have a purely quantum mechanical bounce due to the quantum tunneling effect. The
idea behind the BHWH transition is not new; for example, in [42], the authors tried to
compute the probability amplitude between two configurations, say h− and h+, with the
corresponding hypersurfaces Σ− and Σ+. In particular, the probability amplitude for the
BHWH transition can be computed from [42]

PBH→WH(M, ∆0) =
∫ ∆0

0
| 〈WH|BH〉M,∆′0

|2 d∆′0, (87)

where ∆0 is a parameter measuring the width of the interpolating region. Furthermore, it
was estimated for the BHWH transition probability an exponential decay law [42]

PBH→WH(M, ∆0) ' 1− e−M∆0 , (88)

with a mean lifetime τ ≤ 1/2M. There are other other arguments about the black-hole-
to-white-hole transition. For instance, the probability increases with time if we take into
account Hawking radiation (see [38,43]). This can be explained from the fact that as the
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mass of the Planck star decreases with time and the bouncing mass becomes smaller
compared to the initial Planck mass, then, in accordance with the semiclassical standard
tunneling factor∼ e−SE/h̄ [38,43], the probability for the black-hole-to-white-hole transition
increases as the mass decreases. Here, we note that SE is the Euclidean action, where
SE = M2. The tunneling probability per unit time can also be written (here, we restore h̄
for a moment) PBH→WH ∼ e−M2/h̄/M [38,43]. Here, let us consider again the Painlevé–
Gullstrand coordinates that relate the time measured by an outside observer and the time
measured by an outgoing observer, given by

dtp = dt−
√

1− f (r)
f (r)

dr, (89)

along with the white hole metric

ds2
WH = − f (r)dt2

p − 2
√

1− f (r)dtpdr + dr2 + r2dΩ2 . (90)

Due to the bouncing effect, the black hole becomes essentially a white hole with an
explicit time-reversal symmetry. In that sense, a white hole is a solution in general relativity
with a spacetime region that cannot be entered from the outside. From the point of view of
an outside observer measuring in Schwarzschild coordinates, the time-reversed solution
or the white hole geometry is the same as a black hole. As we saw, it takes a finite proper
time to form a Planck star from the gravitational collapse, and yet, from the point of view
of outside observer, due to the strong redshift effect, the gravitational collapse appears
"frozen" in time due to the formation of the horizon. The same can be shown for the
bouncing process. An outside observer sees the collapse/bouncing in “very slow motion”,
and the entire process takes a long time. To see this, let us consider a white hole region
with a time-reversed solution, i.e., t→ −t in Equation (89), then the time measured outside
the white hole is given by

t =
∫

dtp +
∫ √

1− f (r)
f (r)

dr. (91)

The first terms is finite proper time measured by the outgoing observer and can be
computed via

T =
∫ T

0
dtp =

∫ rmax

rmin

dr√
1− f (r)

, (92)

and the result is similar to Equation (64). For the time measured by the outside observer,
we obtain

t ' T + 2
√

2M
(√

2M arctan−1
(√

r
2M

)
−
√

r
)
+ C, (93)

meaning that for a particle to reach the event horizon r ∼ 2M, we need t→ ∞. Put in other
words, the bouncing effect of the star appears in “very slow motion” when observed from
the outside. We can basically deduce the same conclusion using the matching of the interior
and exterior metrics. To do such a computation, we need, of course, the explicit form of
the scale factor. Let us take, just for fun, the exponential law, i.e., a(τ) ∼ exp(ζτ), then we
obtain

R(τ) = amin exp(ζτ)

√
2M
Rs

, (94)

where ζ = C/l0; here, C is some constant. In the initial time of expansion τ = 0, we must
have R(τ = 0) = Rs, i.e., R should coincide with the radius of the Planck star. Now,
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assuming that during the expansion we reach the classical horizon radius withR → 2M,
we obtain the total proper time

τ ' l0
2C

ln

(
2MRs

a2
min

)
. (95)

Because we have an expansion in this case, we need to take the plus sign in the right-
hand side of Equation (36), along with the time-reversed condition t → −t. In doing so,
we obtain

dt ' dR
2MR2

(R2+l2
0)

3/2 − 1
' dR

2M
R − 1

. (96)

Solving this equation for the time leads to the following result

t = −2M ln

(
M
√

2− e
Cτ
l0 amin

√
M
Rs

)
− e

Cτ
l0 amin

√
2M
Rs

. (97)

If we replace the expression for the proper time τ, we finally obtain

t = −2M lim
x→0

ln(x)− 2M. (98)

The first term goes like limx→0 ln(x) → −∞, and again, this confirms the fact that
the time measured from the outside observer will be very large, i.e., t → ∞, which is in
agreement with Equation (93). At this point, one can ask whether white holes can be stable
remnants. Authors in [43] argued that such a unitary process may not violate any known
physics. This question is outside the scope of the present work, but if there is surrounding
matter, most probably the white holes are unstable objects too and collapse again to black
holes. According to [43], there is a difference in the lifetime between black holes and white
holes. The former is described by the law τBH ∼ M3 and the latter by τWH ∼ M4. If such a
spacetime bounce happens, there is a possibility that strings can increase the size. This is
similar to the so-called fuzzball structure of the black hole, speculated in Ref. [44].

6. Conclusions

In this paper, we studied the gravitational collapse of matter (dust) under the effect
of zero-point length l0. Initially, we neglected the backreaction effect of pre-Hawking
radiation, then we found that the internal metric of a collapsing star is precisely modeled
as a closed FRW universe. Using the modified Friedmann equations and by matching the
interior and exterior metrics, we studied the dynamics of the collapsing star and found that
the gravitational collapse stops at some minimal scale factor, meaning that the particles
never hit the singularity. We argue that such objects emerging at the end of the gravitational
collapse are Planck stars hidden inside the event horizon of the black hole with a radius
proportional to Rs ∼ (GMl2

0/c2)1/3. To enhance this conclusion, we found the same result
for the radius of the Planck star using a free-falling observer point of view.

In the final part of this work, we speculated about the final stage and pointed out
two possibilities: (i) The first possibility is that black holes (and the Planck stars inside the
core of the black hole), due to the backreaction effect of Hawking evaporation, decrease
their mass to a specific value where there exists an extremal configuration; at this point,
the Hawking temperature vanishes, and the resulting object is a Planck-size remnant (a
particle). (ii) The second possibility is that the inner core (Planck star) might be unstable. In
particular, due to the quantum tunneling effect, the spacetime can undergo a black-hole-to-
white-hole transition (a bouncing Planck star). We also showed that, from the outside point
of view, the collapse/bounce are viewed in very slow motion due to the strong redshift
effect. For stellar mass black holes, we estimated a Planck star radius of 10−22 m; hence, it
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is natural to expect the generation of gravity weaves, along with electromagnetic radiation
during the bouncing effect. In the near future, we are planing to study more about the
phenomenological aspects of the Planck stars.
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