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Abstract: Based on the well-calibrated IBUU transport model, we have studied the dynamical
effect of incorporating rigorous angular momentum conservation in each collision of particles with
homework setups. The constraint of the rigorous angular momentum conservation requires in-plane
collisions and side jumps of particles after their collision. Since the option is not unique, we have
compared two typical prescriptions with the original one. While the results depend quantitatively
on the choice of the prescription, we found that the angular momentum conservation generally
reduces local density fluctuations and thus the collision rate and may have some influence on the
density evolution, the collective flow, and even the pion production in transport simulations of
intermediate-energy heavy-ion collisions.
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1. Introduction

Transport models are among the best tools for describing the non-equilibrium dynam-
ics in heavy-ion collisions [1,2]. While one of the main purposes of intermediate-energy
heavy-ion collisions is to extract the soft mean-field potential by comparing experimental
data with results from transport simulations, hard collisions become increasingly impor-
tant and dominate the dynamics in heavy-ion collisions at higher energies. For different
prescriptions on nucleon- = nucleon collisions in transport models, we refer the reader
to Ref. [3]. However, the angular momentum conservation in each nucleon- = nucleon
collision is mostly neglected in these prescriptions, since its effect on dynamics was found
to be small as first reported in Ref. [4].

The importance of the angular momentum conservation was recently recalled in
order to explain the “sign problem” of the local spin polarization in relativistic heavy-
ion collisions [5]. It has been found that the global spin polarization of Λ hyperons
perpendicular to the reaction plane, which can be measured experimentally through the
angular distribution of their weak decays [6], can be described well with the assumption
that the spin polarization is thermalized by the vortical field [7] produced in non-central
heavy-ion collisions. On the other hand, the thermal model predicts an opposite azimuthal
angular dependence of the local spin polarization in the beam direction compared to
the experimental data [8,9], leading to the so-called “sign problem”. While a recently
improved thermal model with thermal shear could be able to explain the measured local
spin polarization [10,11], it is remarkable to see that experimental data can be reproduced
by a chiral transport model with rigorous angular momentum conservation [5].

In the present study, we revisit in detail how the constraint of the angular momentum
conservation in the collision prescription affects the dynamics of intermediate-energy
heavy-ion collisions from transport simulations in the absence of spin degree of freedom.
Naively, one expects that the final momenta of particles after their collision should be in
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the same plane as their initial momenta in the center-of-mass (C.M.) frame in order to
conserve the direction of the angular momentum. So, this changes the azimuthal angular
dependence of each collision. To conserve the magnitude of the angular momentum, side
jumps of particles after their collision are generally needed [12,13]. Both may have some
influence on the dynamics of the heavy-ion simulation. In the present baseline calculation,
we use homework setups for the mean-field potential and collision cross sections and
try to incorporate the constraint of the angular momentum conservation into elastic and
inelastic collisions. We find that there are different options for the collision prescriptions
that conserve angular momentum, and they may affect the final nucleon observables as
well as the pion production.

2. Theoretical Framework

The simulation is carried out based on the isospin-dependent Boltzmann–Uheling–
Uhlenbeck (IBUU) transport model, and details of the code can be found in Ref. [2]. This
model has been well calibrated by the previous efforts of the transport model evaluation
project [3,14–16]. In this section, we briefly describe the basic setups of the transport
simulation in the present study and will mainly focus on the collision treatment. To
incorporate the constraint of the angular momentum conservation, we develop two collision
prescriptions and will compare them with the original one.

2.1. Basic Setups of Transport Simulation

We use simplified but reasonable setups in the IBUU transport model to illustrate
the effect of the angular momentum conservation on the dynamics of intermediate-energy
heavy-ion collisions. The simulations are mainly focused on non-central Au+Au collisions
at different beam energies. The initial coordinates of neutrons and protons are sampled
according to their density distributions in the Au nucleus obtained based on the Skyrme–
Hartree–Fock model with the MSL0 force [17], and their initial momenta are sampled
isotropically within the local isospin-dependent Fermi sphere. The nucleon momenta are
then boosted according to the beam energy, and the simulation is performed in the C.M.
frame of Au+Au collisions. We use the Skyrme-like momentum-independent mean-field
potential, including a symmetry potential linear to the density, which reproduces the
empirical nuclear matter properties, and their detailed forms are the same as those used
in Ref. [14]. To implement the mean-field potential, we employ the lattice Hamiltonian
method [18]. We use point particles in the implementation of the Coulomb force, for which
the cut-off distance is set to be 1 fm to avoid divergence.

We use the modified Bertsch’s prescription [3,19] for nucleon-nucleon collisions. The
minimum distance of two colliding particles in their C.M. frame perpendicular to their
relative velocity is

d?⊥
2 = (~r?1 −~r?2)2 −

[(~r?1 −~r?2) ·~v?12]
2

v?12
2 , (1)

where~r?1 and~r?2 are positions of the two particles, and~v?12 = ~v?1 −~v?2 is their relative velocity,
with the asterisk representing the quantity in the C.M. frame of the colliding particles. The
collision can happen if the condition

πd?⊥
2 < σ (2)

is satisfied, and we use a constant and isotropic baryon–baryon elastic cross section
σ = 40 mb in the present study. Whether the collision happens in this time step is de-
termined by the condition of the closest approach, i.e.,

|(~r?1 −~r?2) ·~v?12/v?12
2| < 1

2
δt. (3)
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We set δt = ∆t/γ, where γ = 1/
√

1− ~β2 is the Lorentz factor with ~β being the
average velocity of the colliding pair in the computational frame. We have also removed
the spurious collisions by setting that the two particles, which have collided once, cannot
collide again unless one of them has collided with a third particle. We use point nucleons
in the implementation of the Pauli blocking, where the cubic local phase–space occupation
probability with the dimension ∆r = 2 fm and ∆p = 0.1 GeV/c is calculated to evaluate
the Pauli blocking probability together with the interpretation method. If the collision is
Pauli blocked, both the momenta and coordinates of the colliding particles are retained.
Besides elastic N + N → N + N collisions, we have also incorporated the channels for the
pion production, including N + N ↔ N + ∆ and ∆↔ N + π channels for different isospin
states of nucleons, ∆ resonances, and pions. The detailed inelastic cross sections, decay
width, and ∆ and pion masses are exactly the same as those in the homework setups of
Ref. [15].

2.2. Collision Prescriptions

For the ease of discussion on the collision prescription for Particle 1 and Particle 2,
we first give the basic quantities and their relations in their C.M. (collision) frame and
computational (heavy-ion simulation) frame. The momentum ~p?1 , the coordinate~r?1 , the
time t?1 , and the energy E?

1 of Particle 1 before collision in the C.M. frame can be expressed
in terms of those in the computational frame as follows

~p?1 = ~p1 + a1~β,

~r?1 = ~r1 + b1~β,

t?1 = γ(t1 −~r1 · ~β),
E?

1 = γ(E1 − ~p1 · ~β),

with a1 = γ( γ
γ+1~p1 · ~β− E1) and b1 = γ( γ

γ+1~r1 · ~β− t1). For Particle 2, the same relations
hold with the subscript 1→ 2. In the C.M. frame, the momenta satisfy ~p?1 = −~p?2 ≡ ~p?. We
assume that the collision occurs at the same time (t1 = t2 = 0) in the computational frame,
but generally at different times in the C.M. frame (t?1 6= t?2). Similarly, the corresponding
quantities in the computational frame after collision can be expressed in terms of those in
the C.M. frame as

~p′1 = ~p′
?

1 + a′?1~β,

~r′1 = ~r′
?
1 + b′?1~β,

t′1 = γ(t′?1 +~r′
?
1 · ~β),

E′1 = γ(E′?1 + ~p′
?

1 · ~β),

with a′?1 = γ( γ
γ+1

~p′
?

1 · ~β + E′?1) and b′?1 = γ( γ
γ+1

~r′
?
1 · ~β + t′?1). As is seen, quantities with a

prime represent those after collisions. Similarly, ~p′
?

1 = −~p′?2 ≡ ~p′
?

is satisfied. In order to
set the same time t′1 = t′2 = 0 for particles after collision in the computational frame, we set
t′?1 = −~r′?1 · ~β and t′?2 = −~r′?2 · ~β.

Defining the average and relative coordinates before collision in the C.M. frame as

~R? = (~r?1 +~r?2)/2, ~r? = (~r?1 −~r?2)/2,

the angular momentum before collision in the computational frame can be expressed as
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~J = ~r1 × ~p1 +~r2 × ~p2

= (~r?1 + b?1~β)× (~p?1 + a?1~β) + (~r?2 + b?2~β)× (~p?2 + a?2~β)

= ~J? + (b?1 − b?2)~β× ~p? + (a?1 + a?2)~R
? × ~β + (a?1 − a?2)~r

? × ~β

= ~J? + γ(t?1 − t?2)~β× ~p? + γE?~R? × ~β + γ(E?
1 − E?

2 )~r
? × ~β

= ~J? + [−γ(t?1 − t?2)~p
? + γE?~R? + γ(E?

1 − E?
2 )~r

?]× ~β, (4)

and the angular momentum after collision in the computational frame can be expressed
similarly as

~J′ = ~J′
?
+ [−γ(t′?1 − t′?2)~p′

?
+ γE′?~R′ + γ(E′?1 − E′?2)~r′

?
]× ~β. (5)

In the above, E? = E′? = E?
1 + E?

2 = E′?1 + E′?2 is satisfied from the energy conservation
condition. ~J? = 2~r? ×~p? and ~J′

?
= 2~r′

? × ~p′
?

are the angular momentum in the C.M. frame
before and after collision, respectively. To assure the conservation of the angular momentum
in the computational frame (~J = ~J′), we require the angular momentum conservation in
the C.M. frame (~J? = ~J′

?
) as well as that from the C.M. motion, i.e., the rest parts in

Equations (4) and (5) should be equal. The latter requires a shift of the C.M. coordinate

∆~R? =
1

E?
[(t′?1 − t′?2)~p′

? − (t?1 − t?2)~p
?

− (E′?1 − E′?2)~r′
?
+ (E?

1 − E?
2 )~r

?]. (6)

Therefore, the coordinates of Particle 1 and Particle 2 after collision in their C.M. frame
can be respectively written as

~r′
?
1 = ∆~R? + ~R? +~r′

?
, (7)

~r′
?
2 = ∆~R? + ~R? −~r′

?
, (8)

representing the so-called “side jump”.
We illustrate with Figure 1 how to conserve the angular momentum (~J? = ~J′

?
) in

the C.M. frame of an elastic collision. In the original collision prescription, as shown in
Figure 1a, the coordinates of colliding particles are unchanged after collision, and their
momenta are sampled in the 4π solid angle according to the differential cross section. In
this way, both the direction and the magnitude of the angular momentum in the C.M.
frame of the collision are generally changed. To conserve the angular momentum, the
coordinates of the particles after collision should generally be changed, once the directions
of their momenta after collision are determined. Given |~p?1 | = |~p′

?

1 | = |~p?2 | = |~p′
?

2 |,
the constraint of the angular momentum conservation requires an in-plane collision, i.e.,
without changing the azimuthal angle, and the distance between the horizontal blue dashed
lines, representing the direction of the initial momenta, should be the same as that between
the inclined blue dashed lines, representing the directions of the final momenta. Then, there
are infinite options to achieve that, and in the present study we consider two typical options.
Figure 1b shows a similar collision prescription as in Ref. [5], where both the coordinates
and the momenta of the colliding particles rotate around their C.M. with a certain angle,
and we dub this prescription as “rotation” in the following discussion. Figure 1c shows
a collision prescription that the coordinates of particles after collision move vertically to
the blue dashed line, and we dub it as “vertical”, which is identical to the prescription in
Ref. [4]. In the “vertical” prescription, we have the least change of the coordinates after
collision in the C.M. frame, so in principle this prescription should be most similar to the
original one, except that an in-plane collision is required.
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Figure 1. Cartoons for three different prescriptions in the C.M. frame of the collision.

The above prescription for elastic collisions can be easily generalized to inelastic
collisions. For the N + N ↔ N + ∆ channel in the present study, we have |~p?| 6= |~p′?|,
and the distance between the inclined blue dashed lines should be modified to satisfy
~r? × ~p? = ~r′

? × ~p′
?
. In the ∆→ N + π process, N and π are produced at the same position

as ∆, and the angular momentum is always conserved. We are unable to conserve the
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angular momentum in the N + π → ∆ process without further incorporating spin degree
of freedom and leave this channel as it is in the original IBUU model.

3. Results and Discussions

We now compare in detail simulation results from the three collision prescriptions
as shown in Figure 1. We first present basic tests on the collision rate in a box calculation,
compare the total angular momentum in non-central Au+Au collisions, and display the
distribution of the side-jump distance for colliding particles after collisions. We then
compare in detail the nucleon dynamics and nucleon observables as well as the pion
production from the three collision prescriptions in non-central Au+Au collisions.

3.1. Basic Tests

Before simulating heavy-ion collisions, we first check with the elastic nucleon–nucleon
collision rate in a box with the periodic boundary condition. The box has a size of
20× 20× 20 fm3. Initial coordinates of 640 neutrons and 640 protons are sampled uni-
formly within the box, and their initial momenta are sampled within the Fermi sphere.
Thus, the system is initialized at zero temperature and at the saturation density. Without
incorporating the mean-field potential, Pauli blocking, or Coulomb potential, the system
evolves with only elastic nucleon–nucleon collisions, and the momentum distribution grad-
ually changes to a Boltzmann distribution at the temperature of about T = 14.28 MeV as a
result of energy conservation, as in Ref. [3]. Figure 2a compares the collision rates from the
three collision prescriptions as in Figure 1 with the theoretical limit dNcoll/dt = 111.4 c/fm.
The increase of the collision rate at an early stage represents the slightly higher collision rate
from the Boltzmann distribution than the initial Fermi–Dirac distribution. The “original”
collision prescription overestimates the theoretical limit, as shown in Ref. [3], as a result of
higher-order correlations. The “rotation” prescription leads to a collision rate consistent
with the theoretical limit, while the “vertical” prescription underestimates the theoretical
limit. On the other hand, it is remarkable to see that the new prescriptions reproduce the
theoretical limit within 5%. We have checked that the three prescriptions lead to exactly
the same momentum distribution after reaching thermal equilibrium. To understand the
different collision rate, we have further checked the distribution of nucleon coordinates.
While the coordinates are generally uniformly distributed within the box, there are always
local density fluctuations, and different collision prescriptions may lead to different local
density fluctuations and thus different collision rates. We use the event average value of
the neighboring distance for each nucleon ∆rmin = ∑N

i=1 min{|~ri −~rj|}/N, where Particle j
is in the same event of Particle i, and N = 1280 is the total nucleon number in each event
to qualify the local density fluctuation. As shown in Figure 2b, the initial value of ∆rmin
is about 1.02 fm, while it soon becomes stable at different values for different collision
prescriptions. Prescriptions of in-plane collisions, especially the “vertical” prescription
which has the minimum change of the coordinate after collision, lead to larger ∆rmin, thus
weaker local density fluctuations and lower collision rates. We note that for a simple and
face-centered cubic lattice, ∆rmin can be as large as 1.842 and 2.067 fm at the saturation
density in a box system, respectively.

We then move to simulations of non-central Au+Au collisions and compare the total
angular momentum from three collision prescriptions at different collision energies in
Figure 3. In the Cascade mode with only elastic and inelastic collisions as well as Pauli
blockings, the angular momentum Ly perpendicular to the reaction plane is exactly con-
served for the “rotation” and “vertical” prescriptions at 100 AMeV and slightly violated
at higher collision energies. The latter is due to the difficulty of conserving the angular
momentum in the N + π → ∆ channel without incorporating spin degree of freedom, as
mentioned before. The violation becomes even larger after incorporating the mean-field
potential in the Full-mode calculation, but after all the violations are at the 0.1% level.
Incorporating the Coulomb potential between point-charged particles in the present study
always conserves the angular momentum. For the “original” collision prescription, al-
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though the angular momentum violation in one collision may cancel with that in another
collision, the violation of the total angular momentum is much larger (3% at higher col-
lision energies) compared to the “rotation” and “vertical” prescriptions. The violation
of the total angular momentum in the “original” collision prescription is mostly due to
nucleon–nucleon collisions at 400 and 1000 AMeV but is seen to be much enhanced by the
mean-field interaction at 100 AMeV.
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Figure 2. (a): Nucleon–nucleon elastic collision rates from three collision prescriptions in the box
calculation compared with the theoretical limit; (b): Event average values of the neighboring distance
for each nucleon from three collision prescriptions in the box calculation.
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three collision prescriptions without (Cascade) and with (Full) nucleon mean-field potentials in
non-central Au+Au collisions at Elab = 100 (a); 400 (b); and 1000 (c) AMeV.
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The constraint of the angular momentum conservation generally requires the change
of the coordinates of colliding particles after collision. Figure 4 compares the distribution
of the side-jump distance ∆r in the computational frame from the “rotation” and “vertical”
prescriptions in non-central Au+Au collisions at Elab = 100 AMeV, and the results are
found to be insensitive to the collision energy. One sees that ∆r is smaller than 1.2 fm in all
collisions and is smaller in the “vertical” prescription than in the “rotation” prescription
even if the distance is now calculated in the computational frame.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 20

1

2
dN

/Nd
∆r 

(fm
-1 )

∆ r  ( f m )

 r o t a t i o n
 v e r t i c a l

A u + A u @ 1 0 0 M e V
b  =  7  f m

Figure 4. Comparison of the histograms for the side-jump distance of particles in the computational
frame from two collision prescriptions in non-central Au+Au collisions at Elab = 100 AMeV. The
distributions are normalized to 1.

3.2. Nucleon Dynamics

We now compare the nucleon dynamics and nucleon observables in detail from three
collision prescriptions in non-central Au+Au collisions. The comparisons are only in
the Full-mode calculation with elastic and inelastic collisions as well as Pauli blockings,
mean-field potential, and Coulomb potential.

Figure 5 compares the central density evolution from three collision prescriptions in
non-central Au+Au collisions at different collision energies. As shown in Figure 2, in-plane
collisions, i.e., without changing the azimuthal angle after collisions, generally lead to a
larger average distance between nucleons, thus a faster expansion of the system and a
lower density. For the “rotation” prescription, the coordinates of the colliding particles
are effectively pulled back a little after collisions, so this prescription leads to a slower
expansion and a higher density compared to the “vertical” prescription, which happens to
result in a central density evolution closer to that from the “original” prescription.

Figure 6 compares the C.M. energy dependence of the successful elastic nucleon–
nucleon collision rate from three collision prescriptions. With the same Pauli blocking
implementation, the successful collision rate is dominated by the density evolution as
shown in Figure 5. One sees that the “vertical” prescription leads to the fewest collisions
compared with the other two prescriptions. The relative successful collision rates from the
three prescriptions are qualitatively consistent with those in Figure 2a where Pauli blockings
are not implemented. We note that the correlation between the successful collision number
and the dynamics becomes different in different collision prescriptions.



Universe 2023, 9, 36 9 of 14

0 4 0 8 0 1 2 00

1

2

3

2 0 4 0 6 0

(ρ/
ρ 0) ce

n

A u + A u @ 1 0 0 M e V
b  =  7  f m

3 0 6 0 9 0
t  ( f m / c )

A u + A u @ 4 0 0 M e V
b  =  7  f m

( c )( b )

 o r i g i n a l
 r o t a t i o n
 v e r t i c a l

A u + A u @ 1 0 0 0 M e V
b  =  7  f m

( a )

Figure 5. Time evolution of the central density from three collision prescriptions in non-central
Au+Au collisions at Elab = 100 (a); 400 (b); and 1000 (c) AMeV.
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Figure 6. C.M. energy dependence of the successful elastic nucleon–nucleon collision rate from three
collision prescriptions in non-central Au+Au collisions at Elab = 100 (a); 400 (b); and 1000 (c) AMeV.

Figures 7 and 8 compare the rapidity dependence of the directed flow v1 = 〈px/pT〉
and the transverse momentum dependence of the elliptic flow v2 = 〈(p2

x − p2
y)/p2

T〉 for
free nucleons, which are determined by a cut-off density ρ < 0.15ρ0 at their freeze-out. We
note that v1 from the three prescriptions are very similar, consistent with the smaller effect
on the transverse flow found in Ref. [4], and the slightly stronger v1 from the “vertical”
prescription is likely due to the fast expansion of the system as mentioned above. The
negative v2 at large transverse momenta manifests the expansion of the participant matter
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blocked by the spectator matter and the squeeze-out of energetic nucleons perpendicular
to the reaction plane. It seems that such squeeze-out effect is strongest from isotropic
nucleon–nucleon collisions in the “original” prescription, since in non-central collisions
nucleons are more likely to stay in the reaction plane with in-plane collisions. The “rotation”
prescription has an effective pulling-back movement, so nucleons are more likely to stay in
the participant region. This further weakens the squeeze-out effect and makes the v2 less
negative at high transverse momenta, especially at higher collision energy.
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Figure 7. Rapidity dependence of the directed flow of free nucleons from three collision prescriptions
in non-central Au+Au collisions at Elab = 100 (a); 400 (b); and 1000 (c) AMeV.
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Figure 8. Transverse momentum dependence of the elliptic flow of midrapidity (|y| < 0.2) free
nucleons from three collision prescriptions in non-central Au+Au collisions at Elab = 100 (a); 400 (b);
and 1000 (c) AMeV.
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For all results from Figures 5–8, the difference among results from different colli-
sion prescriptions increases with increasing collision energy. This is expected since the
Pauli blocking becomes less important and there are more successful nucleon–nucleon
collisions at higher collision energies. This also shows the importance of properly incor-
porating the angular momentum conservation in the simulation of heavy-ion collisions at
higher energies.

3.3. Pion Production

We now compare with the pion productions from three collision prescriptions in
non-central Au+Au collisions by turning on the N + N ↔ N + ∆ and ∆↔ N + π channels
for different isospin states. We neglect potentials for ∆s and pions as well as the possible
threshold effect in the present calculation and only illustrate the effect of the angular
momentum conservation in the collision prescription on the pion multiplicity and π−/π+

yield ratio.
Figure 9 compares the time evolutions of the ∆ and pion multiplicities from three

collision prescriptions at different collision energies. The peak values of the ∆ multiplicities
in the three collision prescriptions are consistent with their maximum densities as shown
in Figure 5. Compared with the “original” prescription, both channels of N + N → N + ∆
and N + ∆→ N + N are suppressed in the “vertical” prescription due to the larger ∆rmin
as shown in Figure 2b. Since the ∆ in the N + ∆ → N + N channel is farther from the
nucleon in the “vertical” prescription compared to the “original” prescription, the ∆ has a
larger chance to decay. Therefore, the “vertical” prescription leads to a pion multiplicity
that is about 20% larger than that from the “original” prescription. Such effect is stronger
at 400 AMeV but weaker at 1000 AMeV, due to the higher density and thus the weaker
∆rmin effect at higher collision energies. For the “rotation” prescription, there are more ∆s
produced compared with the “vertical” prescription, and the larger pion multiplicity than
the “original” prescription can also be explained by the above ∆rmin effect.
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Figure 9. Time evolution of the multiplicities of ∆ resonances and pions from three collision
prescriptions in non-central Au+Au collisions at Elab = 400 (a) and 1000 (b) AMeV.
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Figure 10 compares the time evolutions of the ratio (π−/π+)like = (π− + ∆− +
1
3 ∆0)/(π+ + ∆++ + 1

3 ∆+) from three collision prescriptions at different collision energies.
While the (π−/π+)like ratios are similar at Elab = 400 AMeV from different prescriptions
within statistical error, the “vertical” prescription leads to a ratio which is about 1.5% larger
than those from the other two prescriptions at Elab = 1000 AMeV. The effect is smaller
than that from the symmetry energy [20,21] but not negligible. The larger (π−/π+)like
ratio from the “vertical” prescription is likely due to the stronger suppression on the
p + ∆− → n + n channel as a result of less protons in the high-density region compared
with other prescriptions with smaller ∆rmin as shown in Figure 2b.
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Figure 10. Time evolution of the (π−/π+)like ratio from three collision prescriptions in non-central
Au+Au collisions at Elab = 400 (a) and 1000 (b) AMeV.

4. Summary and Outlook

Based the framework of the IBUU transport model that is well calibrated by the
previous efforts of the transport model evaluation project, we have revisited the dynamical
effect of incorporating the rigorous angular momentum conservation with simple but
reasonable homework setups. In order to conserve the angular momentum in each collision
rigorously, the azimuthal angles of colliding particles should not be changed, while their
coordinates should be adjusted, after each collision. We found that the option is not unique
and have compared results from two typical prescriptions, i.e., “vertical” and “rotation”,
with those from the “original” prescription. The “vertical” prescription requires the least
change of the particle coordinates in the collision frame and leads to a faster expansion of
the system and a lower collision rate, and thus a lower central density and a slightly stronger
directed flow in intermediate-energy heavy-ion collisions. This prescription also leads
to a larger pion multiplicity and a larger π−/π+ yield ratio. The “rotation” prescription
rotates the particle coordinates with respect to their center of mass and leads to a similar
but smaller effect as the “vertical” prescription, except that the “rotation” prescription
results in a weaker elliptic flow.

The present study serves as an illustration of possible effects from the angular mo-
mentum conservation without introducing spin degree of freedom. In previous studies,
we have investigated the spin dynamics [22] as well as the spin polarization [23] induced
by the spin-dependent potential in intermediate-energy heavy-ion collisions. It is of great
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interest to incorporate the constraint of total angular momentum conservation including the
orbital contribution and the spin contribution and to study the effect on the spin dynamics
as well as the spin polarization. Such a study is in progress.
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