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Abstract: In the first part of the paper, we try to identify the presence of gravity, at a microscopic level,
by introducing conical defects and maintaining an approach that assumes topological equivalence
among the underlying manifolds that form the tissue of the D-brane itself. In the second part, we will
present an alternative to the conical defects, considering the theory of teleparallel gravity, in which
the presence of the torsion and the construction of the brane always occurs within the context of our
new interpretation of emergent spaces.
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1. Introduction and Preliminaries

It is possible that at the most fundamental level, spacetime, or at least space, is not
continuous but discrete. This implies that the low-energy symmetries relying on continuous
spacetime models may break down when spacetime is probed at high enough energies.
Some models also attempt to preserve at least some remnant of the low-energy theory at
high energies. Ideas of discrete spacetime go at least back to H. Snyder’s work on Lorentz
invariant discrete spacetime [1]. Since that work, a number of interesting theories have
developed that deal in discrete spacetime. These include: nonassociative geometry [2],
causal set theory [3], causal dynamical triangulations [4], and loop quantum gravity [5].
A nice phenomenological review of the consequences of discrete spacetime can be found
in [6]. Since many of these theories claim to represent, at least to some approximation, a
quantum theory of gravity, it is therefore worthwhile to seriously study discrete theories,
as quantum gravitation is one of the most important unsolved issue in theoretical physics.
Although the discretization of spacetime should be small, it is not necessarily untestable [7],
and therefore, experimental observation could in the future rule out some discrete theories
in favor of others or steer the field in a completely new direction altogether. In the field of
nonassociative geometry, it was shown that at the Planck scales, the spacetime is described
as a “diodular discrete structure”, which at macroscopic scales resembles a differentiable
manifold [8]. In causal set theory, it naturally arises that finite volume regions in the
continuum contain only a finite number of elements of the causal set, giving spacetime a
fundamentally discrete “atomic” structure. This fundamental discreteness in causal set
theory does not violate local Lorentz invariance in the continuum approximation [9]. In
causal dynamical triangulations, it has been shown how the discrete structure allows for
a more sensible gravitational path integral [10]. In the arena of loop quantum gravity,
the discrete nature of spacetime is not a priori assumed but instead is a prediction of the
theory. This discreteness has provided a quantum gravitational explanation for the entropy
associated with black holes [11,12]. Further, the loop quantum gravity paradigm seems to
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indicate that the issue of the singularity within a black hole [13], or at the Big Bang [14],
may be resolved by this theory.

Partially negative dimensional product manifold (PNDP-manifold for short) was
introduced in [15], and the authors used PNDP-theory for a new approach to D-Branes.
Specifically, the work is about a new geometric/topological approach, in which everything
arises from fundamental spatial dimensions, and tries to propose a new possible link
between different energy scales in the context of gravity. The authors identify topological
defects (as non-orientability) with gravitational interactions, and through a mechanism
triggered by these hypotheses, they obtain an effect known in mathematics as a “parallelism
defect”, to which we associate the appearance of an effective curvature on low-energy
scales (macroscopic level).

Always keeping valid all the background present in [15] is the PNDP approach, which
determines a discrete gravity in which the latter is understood as a “defect” already present
in the D-brane tissue. In our approach, we start with the defects that are responsible for
determining gravity at the microscopic level. We will no longer consider orientability, but
we will replace this with the presence or absence of conical defects. Recall that the term
“flat” is understood in the sense of Riemann–Christoffel. Additionally, since the Riemann
tensor is a measure of intrinsic curvature, most of the statements here apply only to intrinsic
curvature, which is important for gravitation.

An easy way to visualize a flat space with an angular defect is to take a flat sheet and
to cut a wedge out of it. Then, one identifies the sides of the wedge. This is illustrated in
Figure 1.

Figure 1. A flat sheet with a wedge cut out of it and the wedge’s sides identified. Here it is drawn
circular, but this does not matter.

The 2D line-element on such a sheet is given by dl2 = r2(1− 4µ)2dφ2 + dr2, where the
angular defect vanishes when µ→ 0. It can be easily checked that the Riemann–Christoffel
tensor of this space vanishes. The φ− r submanifold of the spacetime outside of a cosmic
string has a metric similar to this.

The geodesics on this sheet are still straight lines whether or not the wedge is there.
However, with the identification of the edges of the wedge, two lines that are initially
parallel and are parallelly transported on the manifold will eventually cross if they straddle
the wedge (see Figure 2). This violates Euclid’s parallellism axiom, which is known to be
violated in curved spaces, so this mimics curvature even though the manifold is flat. The
greater the angular defect (µ) is, the greater the effective curvature will be.
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Figure 2. Initially parallel lines will cross if they straddle the wedge.

If we consider the cone M = z =
√

x2 + y2 missing its vertex (0, 0, 0), the holonomy
is nonzero around any parallel z = c, and this happens since the curve does not bound
a region in M. The organization of this paper is as follows. In Section 2, we explore the
PNDP with conical defects. In Section 3, we investigate teleparallel gravity theory in the
PNDP approach. Finally, conclusions are presented in Section 4.

2. PNDP with Conical Defects

Before introducing the conical defect in PNDP manifolds, we present the definition of
a PNDP manifold, and for more details concerning the structure of the D-branes within the
PNDP theory, we refer the reader to [15] (in particular, Section 1).

A warped product manifold (M, ḡ) = (B, g)× f (F, g̈) (where (B, g) is the base mani-
fold and (F, g̈) is the fiber manifold), with ḡ = g + f 2 g̈, is Einsteinian if only if:

R̄ic = λḡ⇐⇒


Ric− d

f∇
2 f = λg

R̈ic = µg̈
f ∆ f + (d− 1)|∇ f |2 + λ f 2 = µ

(1)

where λ and µ are constants, d is the dimension of F, ∇2 f , ∆ f and ∇ f are, respectively,
the Hessian, the Laplacian and the gradient of f for g, with f : (B) → (0, ∞) a smooth
positive function.

Contracting first Equation (1), we obtain:

RB f 2 − f ∆ f d = n f 2λ (2)

where n and RB are the dimension and the scalar curvature of B, respectively, and from
third equation, considering d 6= 0 and d 6= 1, we have:

f ∆ f d + d(d− 1)|∇ f |2 + λ f 2d = µd (3)

Now, from Equations (2) and (3) we obtain:

|∇ f |2 + [
λ(d− n) + RB

d(d− 1)
] f 2 =

µ

(d− 1)
(4)

We call the PNDP manifold a warped product manifold (M, ḡ) = (B, g) × f (F, g̈)
that satisfies (1), where the base-manifold (B, g) is a Riemannian (or pseudo-Riemannian)
product-manifold B = B1 × B2 with g = Σgi, where B2 is an Einstein manifold (i.e., Ric2 =
λg2 where λ is the same for (1) and g2 is the metric for B2), with dim(B1) = n1, dim(B2) =
n2, so dim(B) = n = n1 + n2. The warping function f : B→ R+ is f (x, y) = f1(x) + f2(y)
(where each is a function on its individual manifold, i.e., f1 : B1→ R+ and f2 : B2 → R+)
and can also be a constant function. The fiber manifold (F, g̈) is a derived Riemann-flat
manifold with negative “virtual” integer dimensions m, where the derived smooth manifold
is considered a smooth Riemannian flat manifold by adding a vector bundle of obstructions.
In particular, we consider, for F, only Rd with orthogonal Cartesian coordinates such
that gij = −δij by adding a vector bundle of obstructions, E → Rd, with the dimension
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m = d − rank(E), where rank(E) = 2d. In fact, in this circumstance, if we consider a
Kuranishi neighborhood (Rd, E, S), with manifold Rd, obstruction bundle E → Rd, and
section S : Rd → E (see [16]), then the dimension of the derived smooth manifold F is
dim(Rd)− rank(E). Moreover, in the case n− d > 0 (i.e., positive “virtual” dimension),
we consider n1 = d = −m (the “virtual” dimension of M, dim(M)V , which coincides with
dim(B2)). In the special case where n− d > 0 with B1 also an Einstein manifold with the
same Einstein-λ, then we consider only the case B1 = B2.

Now, let us consider the PNDP := I1 × I2 × (I3 + E) deprived of the point P :=
{0, i2, i3}, where ii ∈ Ii are the coordinates of the point. Then, P ∈ I2 × I3 (note that
(I2 × I3)/{P} is similar to consider R2/{P}), and the missing point is the “fragility” place
of the PNDP manifold. If the attached string strongly interacts (also here, as seen in [17],
the authors’ approach considers the emergent parts of the PNDP manifolds as topologically
equivalent to open or closed strings), that is, it vibrates, then from the “puncture” (missing
point) the underlying manifold (I2 × I3)/{P} “splits”, creating a missing sector with an
arbitrary small µ angle, i.e., a wedge is cut out of it. However, being a topological approach,
it seems entirely sensible to us to require that nature wants to maintain the topological
equivalence between the underlying manifolds that make up the D-brane, i.e., (at least)
a homeomorphism that preserves the topological properties between them, dealing with
differentiable manifolds, we will consider diffeomorphism. Therefore, the sides of the
wedge will glue together, creating a conical defect without a vertex (this is illustrated in
Figure 3), and it is well-known that there is a homeomorphism between R2/{P} and the
cone without its vertex; for example, as subsets of R3, there is a diffeomorphism in the
most intuitive way: (x, y) → (x, y,

√
(x2 + y2)). With this imposition, the differentiable

structure of R2/{P} is carried to the cone, and as we said at the end of the previous section,
this allows us to consider that some (I2 × I3)/{P}, which have the conical defect, have a
non-zero holonomy.

Figure 3. The vibrating string from the “puncture” (missing point) splits the underlying manifold
(I2 × I3)/{P}, creating a missing sector with an arbitrary small angle µ; a wedge is cut of it. To
preserve the topological properties, the sides of the wedge glue together to create a conical defect
without a vertex.

If instead the attached string does not interact, i.e., it does not vibrate, then the
“puncture” does not break, and the underlying manifold will not have a conical defect.

The conical defect obtained will in any case emerge as a point-like manifold due to
its interacting dimensions that compose it, and therefore, only the string (I1) will remain
attached to the point-like manifold.

At this point, returning to the scenario described in [15], in which the PNDP manifolds
glue together to form the flat D-brane, instead of having Möbius strips or cylinders, now
we have PNDP manifolds with arbitrarily small conical defect µ (described above) and
others without. A vector placed on the point manifold will undergo the holonomy detected
on the underlying surface (as in [15], the point-like manifold is equivalent to the underlying
surface; it corresponds only to the way it emerges, so there will be a closed curve on
the underlying surface if it has a conical defect, such that the vector detects a nonzero
holonomy, while if the underlying one has no conical defect, then the holonomy will be
zero). Again, as in [15], not knowing a priori the effective connection that will be mimicked
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at the macroscopic level, we cannot parallelly transport a vector. For this reason, we want
to consider a closed loop on the D-brane as a plane curve (the D-brane has a flat connection
and will only mimic the curvature on a macroscopic level) and define our parallel mode of
transport. The vector to be transported on the D-brane at each point (point-like manifold)
will have a direction influenced by the holonomy present on the underlying surface. As the
vector slips to the next point, it adds the holonomy detected in the previous point with that
detected on the current one (because the vector will start the loop on the underlying surface
of the new point with the direction acquired at the end of the loop on the underlying surface
of the previous point), and so on until the cycle on the D-brane is complete. Thus, the more
conical defects there are, the greater the holonomy at the end of the loop on the D-brane.

3. Conus Geometry
3.1. Conus with Torsion

The conus coordinate can be expressed in the form

x = ar cosϕ (5)

y = ar sinϕ− b
2π

ϕ (6)

z = cr (7)

where b describes the strength of the “dislocation defect”, and the metrics are

ds2 = grrdr2 + gϕϕdϕ2 (8)

where grr = a2 + c2 and gϕϕ = a2r2 − arb cos(ϕ)/π + b2/4π2. The missing angle to create
a conus is (see Figure 1)

Ω = 2π

(
1− a√

a2 + c2

)
(9)

In this case, the only nonzero torsion components are

Tϕ
ϕr = −

b
2π

1
√grrgϕϕ

δ(r) = −Tϕ
rϕ (10)

3.2. Conus with Curvature

The another possibility of a conus with a defect is

x = ar cosϕ (11)

y = ar sinϕ (12)

z = cr− b
2π

ϕ (13)

The metrics in this case are

ds2 = (a2 + c2)dr2 + (a2r2 + b2/4π2)dϕ2 (14)

The nonzero curvature tensor components are

Rr
ϕ = − a2

a2 + c2

(
1− a2r2

a2r2 + (b/2π)2

)
dr ∧ dϕ (15)

Rϕ
r =

a2

a2r2 + (b/2π)2

(
1− a2r2

a2r2 + (b/2π)2

)
dr ∧ dϕ (16)
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We can see that when the parameter b = 0, both the torsion and the curvature are zero.

Remark 1. We consider the theory presented in this work as a “fundamental” theory and we say
that at the fundamental (microscopic) level the “fabric” appears as an “irregular forest” of cones, each
PNDP emerges as point-like, but in reality it is a conical defect, and by gluing the PNDPs together,
we will have a fabric that punctually “hides” conical defects that are not necessarily identical to each
other (each PNDP will glue to the other, and each of them is a conical defect).

In this section, we have a hypothetical parameterization and explain how to obtain the curvature
or torsion of each conical defect. Each conical defect presents holonomy, and we describe it (in the
previous section) as a hypothetical vector that completes a closed loop on the brane passing through
the underlying conical defects of the brane, which will provide us with an effective curvature at the
macroscopic level. Therefore, we might think that the “hidden” conical defects, which make up this
irregular “forest of cones”, are actually (in our interpretation) quantum foam, which exists as an
underlying manifold of the brane tissue, upon which we are allowed to measure/precisely describe its
geometry because it is possible to define a parameterization.

We used the term “irregular forest of cones”, because (as described in Section 2) the conical
defects are not the same; they depend on the "crack" that the string creates by vibrating on the
PNDP. The wider the crack, the greater the conical defect. Thus, for a single cone, we know the
curvature point by point, or the torsion, because we associate it with a map that parameterizes it, but
it is the transition to an adjacent cone that will occur with discontinuous, i.e., discrete, curvature
(or torsion), because if we think like a manifold (in which each point of the collector corresponds
to a cone), it will be composed of cones all different from each other. In fact, we could pass from a
cone (point) almost devoid of curvature to an adjacent one with the highest curvature value. The
manifold will emerge flat, but at a microscopic level, it is composed of underlying cones, some
flatter, others steeper. The holonomy of the conical defect derives directly from its curvature, i.e.,
the curvature at one point of the defect is interpreted as the infinitesimal holonomy over a closed
loop, the infinitesimal parallelogram on the conical defect. Due to the random nature of the bonding
between PNDPs, it is reasonable to think that there will be areas of the brane in which this discrete
“jump” of the curvature (or torsion) between point and point will be more consistent than others
where it will be more pronounced.

4. Teleparallel Gravity Theory in PNDP Approach

In this section, we want to consider a different scenario from both [15] and Section 2.
In particular, this approach will not be aimed at string theory, and furthermore, the

PNPD manifolds that we consider the “fundamental components at the microscopic level”
will be a type of PNDP manifold, which in this context we call Type-α := (I1 × I2) ×
[(I3 × I4) + E], where Ii ⊂ R are closed intervals with Planck length (therefore, the entire
underlying manifold has four dimensions) and with rank(E) = 4. Therefore, its dimension
is zero, and thus, it emerges as a point-like manifold.

As in both [15] and Section 2, we continue to consider that the brane has a Levi–Civita
flat connection and is composed of flat PNDP manifolds glued together. Since it is a
geometrical/topological approach, we want nature to act with a certain rigidity, supposing
that the gluing that takes place determines the formation of smooth structures.

The gluing that occurs between the emerging point-like manifolds is the topological
gluing (theory of surgery) and takes place between the underlying manifolds with boundary.
An important result of Morse theory states that:

Let Mi with i = 1, 2 be smooth manifolds with a boundary, let Ni ⊆ ∂Mi be unions of
connected components of the boundaries of M1 and M2, respectively, and let φ : N1 → N2
be a diffeomorphism. Then, there exists a smooth structure on the space M1 ∪φ M2 that
arises by gluing M1 to M2 along N1 ' N2. This structure is unique up to a diffeomorphism
that leaves all points from the original boundaries of M1, including N1 ' N2, fixed.

This result indicates that a diffeomorphism between the connected components of
the boundaries is sufficient to obtain a smooth structure on the resulting manifolds. In
this approach, as in Section 2, it is believed that there is a search for a certain regularity on
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the part of nature capable of preserving the topological characteristics. Therefore, being
differentiable manifolds, diffeomorphisms are considered rather than homeomorphisms.

Let us assume there are multiple brane-universes. Suppose that these branes-universes
can collide with each other and create an effective torsion on their connection.

NOTE 1: The PNDP theory is developed on the basis of the Einstein warped product manifold,
and everything is executed in a "canonical" way with the Levi–Civita connection. In this case,
we consider that the collisions suffered between the branes, which is an n-dimensional Euclidean
spaceform, will affect the connection—not the connection of the PNDP manifolds that compose it,
but the connection of the D-branes themselves. In particular, it is as if the collision "rotates" the
affected PNDP manifolds, making the tangent spaces twist about a geodesic when they are parallelly
transported because the tangent space of the underlying manifold of the point-like manifolds (PNDP
Type-α), which is affected and makes up the D-brane, could be no longer, consequently, aligned with
that of the others.

Therefore, having chosen a point P on the D-brane, and having chosen two tangent
vectors u and v, we can experience the torsion, performing an infinitesimal parallel transport
of u and v in the direction of v and u, respectively, at the end of which they do not close.

Therefore, we obtain a connection without curvature but with torsion (see Figure 4).

Figure 4. The effect of torsion is shown.

We can summarize what has been said with the following points:
(1) The PNDPs have a Levi–Civita connection and therefore have no torsion.
(2) Here, we assume a kind of PNDP manifold called Type-α.
(3) The Type-α is a 4D flat manifold (it is 4D microscopic Euclidean spatial form) that

emerges as point-like manifold. They can glue together (topological gluing) and form the
brane preserving the flat Levi–Civita connection of the Type-α (as also hypothesized in [15]).
The brane will be a D-dimensional Euclidean space form.

(4) When two or more branes collide with each other, they alter their connection.
(5) Since the branes are formed with the gluing of the PNDP manifolds of Type-α that

emerge as point-like manifolds (point-like PNDP manifolds), in each point (i.e., the glued
point-like manifold) of the brane, the tangent space is the tangent space of the point-like
PNDP manifold.

(6) We consider the 4-dimensional brane, therefore, as mentioned in the previous point
(5); we can consider that punctually, the tangent space to the 4-brane is the tangent space to
the point-like PNDP-manifold that emerges as that point. Therefore, it is clear that when
the 4-brane is impacted by another one or more branes, this collision will create a shock
wave that will involve their PNDP manifolds Type-α (which make up the 4-branes) by
rotating them and then rotating their tangent space; consequently, the tangent spaces of the
branes will show torsion (Figure 5).
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Figure 5. Torsion along a geodesic.

NOTE 2: A Euclidean space is an affine space; therefore, it is parallelizable, but it is torsion-free.
We consider the 4-brane as a 4-dimensional Euclidean space. If it is composed of PNDP manifolds,
so that each of its points corresponds to a point-like manifold (with its own tangent space), where the
underlying PNDP manifold at each point-like manifold is a microscopical portion of 4-dimensional
Euclidean space, we can see these last as the parallelization of the 4-brane at every point-like Pi
because the vectors of the tangent space of the PNDP manifold can be trivially considered the base of
the tangent space of 4-brane at every Pi. Rotating the PNDP-manifold as in our speculative case
(as described in point (6)), it happens that by parallel transporting, at the microscopic level on the
4-brane, two vectors of that base in P, one in the direction of the other, we experience a torsion.
Therefore, using PNDP-manifolds in this speculative way, the Euclidean space can mimic a flat,
not-torsion-free effective connection, as well.

At this point, we can consider that the 4-brane mimics a 4-manifold with a flat con-
nection that is not torsion-free. For example, a 4-manifold that admits a flat connection
that is not torsion-free can be R× S3; in fact, R, S3 both admit lie group structures, so their
product admits a lie group structure and hence admits a flat connection, the one that makes
left invariant vector fields parallel. Since we have an extra spatial dimension, we can think
that the 4-brane mimics I × S3, where I ⊆ R is a closed linear microscopic interval.

Being microscopic, the extra spatial dimension is not perceived. We could think that
it is superfluous to life; in fact, the 3D-spatial dimensions are the minimum sufficient to
support life, and the fourth spatial dimension exists only for construction reasons, that is,
to obtain point-like PNDP-manifolds. Due to this, it has no reason to grow in size.

The universe, therefore, as it is perceived by everyday experience, could be considered
a 3-sphere (equipped with a flat connection with torsion) plus time.

Another example is that if we consider R4 minus the origin O, we obtain the same
thing, that is, a flat connection with torsion.

Since the 4th dimensions is microscopic, we could also consider the scenario in which
the 4-brane mimics (I × R3)/{O} plus time.

A theory that predicts the absence of curvature, attributing gravity to torsion only,
is the teleparallel gravity theory. As mentioned in [18], the teleparallel gravity theory
considers a non-degenerate matrix eµ

a composed of components of four vector fields ea,
a = 0, 1, 2, 3, which form an orthonormal basis in the tangent space at each point. The
inverse matrix is denoted by ea

µ, and the metric components can be calculated as:

gµν = ea
µeb

νηab, gµν = eµ
a eνbηab.

Very importantly, if we are given a metric, the tetrad fields ea
µ are only defined up to

an arbitrary local Lorentz rotation ea
µ(x)→ Λa

b(x) · eb
µ(x), since this is the natural freedom

of choosing an orthonormal basis.
In the classical formulation of teleparallel gravity, one uses the Weitzenböck connec-

tion given by ωa
µb = 0, or equivalently Γα

µν = eα
a ∂µea

µ, which is obviously curvature-free,
Rα

βµν = 0, and has the following torsion: Tα
µν = Γα

νµ − Γα
µν.
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We can denote the determinant of ea
µ by ||e|| = √−g, and under the Weitzenböck

assumption (i.e., ωa
µb = 0), the action is S = −

∫
d4x||e||T , where T is the torsion scalar.

Remark 2. As described at the end of Section 3, for curvature, similarly, we can use the parameter-
ization shown to think that at the fundamental (microscopic) level, there is an underlying quantum
foam of the branal tissue, which is an irregular forest of cones and has a discrete torsion other than
zero, which determines a further new interpretation at the teleparallel gravity.

5. Conclusions

In this the paper, we tried to identify the presence of gravity at a microscopic level
by introducing conical defects and maintaining an approach that assumes topological
equivalence among the underlying manifolds that form the tissue of the D-brane itself.
Furthermore, we presented an alternative to the conical defects, considering the theory of
teleparallel gravity, in which the presence of the torsion and the construction of the brane
always occurs within the context of our new interpretation of emergent spaces. Indeed, it
is our intention to understand the study of gravity, considering approaches that respect
the topological equivalence between the structures involved. Working with differentiable
manifolds, this equivalence is certainly respected with the presence of a diffeomorphism. We,
therefore, show how conical and torsion defects can arise in this context in order to define
a discrete, alternative, theory of gravity. The onset of a torsion in a scenario that foresees
the clash between branes arises with the intention of being able to consider teleparallel
gravity theory from a new point of view. In recent years, the main motivation to study
teleparallel gravity and its extension (the so-called f (T) gravity, where T is the torsion scalar
in teleparallelism) is to explain the late-time cosmic acceleration, namely, the issue of dark
energy and modified gravity theories (for recent reviews, see, e.g., Refs. [19–31]). There
have been proposed a number of methods for the modification of teleparallel gravity and
cosmological investigations in them. In the light of fundamental physics’ point of view, it is
significant to find some clue as to the theoretical conditions (or requirements) of the form
of f (T), in other words, the effective theory of modified teleparallel gravity.

In conclusion, we also show two possible scenarios for quantum foam as an underlying
presence of the brane tissue.
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