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Abstract: In theories with unstable particles, unitarity is satisfied by the inclusion of only stable
states in unitarity sums. Therefore, unitarity cuts are not to be taken through unstable particles. This
presents a challenge to the generalized unitarity method, whose aim is to reconstruct amplitudes by
analyzing sets of unitarity cuts. Nevertheless, under some general physical conditions, and perhaps
some methodological modifications, we prove that the method is still reliable for one-loop amplitudes
containing resonances. We discuss some simple examples which illustrate these features.
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1. Introduction

Measurement of parameters of the Standard Model to very high precision is a landmark
for the physics program of the Large Hadron Collider [1]. In recent years, these have
triggered an ongoing stream of research activities dedicated to assess precise predictions
within perturbative quantum field theories. The immediate consequence is the development
of modern tools to address the calculation of loop integrals. In this regard there is a pressing
need to obtain a better knowledge of the analytic structure of such integrals to uncover
more streamlined methods for their computation. This implies taking into account the
investigation of the so-called cuts of internal propagators associated with intermediate
particles in a given scattering amplitude. The major importance of cuts in this context is
that it allows one to efficiently probe the analytic structure of loop integrals [2,3].

From unitarity constraints, we know that Feynman integrals should be multi-valued
functions, whose discontinuities are precisely described by cuts. Actually, scattering
amplitudes can be structured in terms of their singularities, so in principle the investigation
of branch cuts and other singularities enables one to calculate loop amplitudes. Four-
dimensional amplitudes that are uniquely specified by the nature of their branch cuts are
said to be cut-constructible. Modern unitarity methods build on Landau conditions [4]
in order to use cuts to set up projectors onto a basis of master integrals [5–12]. For recent
applications, see Refs. [13–21]. A precise definition of cuts is available for given classes of
cuts. Among these, we can quote the so-called unitarity cuts which focus on a particular
external channel [22–25]. Historically, the unitarity method [26–30] was established as a
systematic framework for one-loop evaluations, and is applicable to both supersymmetric
and non-supersymmetric theories.

The standard practice of the unitarity method requires the replacement of two internal
propagators with Dirac delta functions which project the loop momenta they carry onto
their on-shell values. On the other hand, in generalized unitarity [5,6,31–37], to be briefly
reviewed below, one considers additional cut conditions to constrain other momenta to
their associated on-shell values. As a consequence, if the momenta carried by more than
two massless propagators take their on-shell values, the solutions to the cut conditions are
now complex, which implies that the associated delta functions must give zero [6,8]. This
observation has led to the concept that cuts should be computed via contour integration so
that the associated contours should be suitably deformed in such a way as to encircle the
poles of the cut propagators [8,38,39].
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The obvious requirement here is that unitarity must be satisfied to all orders in per-
turbation theory. However, we know that many of our theories possess unstable particles
which do not appear as asymptotic states. Should such unstable particles be incorporated
nevertheless in unitarity relations? This issue was addressed by Veltman [40–44]. The
conclusion is that one should not take cuts through unstable propagators1, hence unstable
particles are not enclosed by unitarity sums. This can be generalized to encompass also
unstable ghostlike resonances emerging in higher-derivative theories such as quadratic
gravity and Lee–Wick theories [45]. As the astute reader might have noticed, this might
potentially put some obstructions to unitarity methods. Notwithstanding the previous
remark, in this paper we will discuss how such methods are still solid for the calculation of
loop amplitudes that comprise resonances of any type. Here we will use units such that
h̄ = c = 1. We take the Minkowski metric as ηµν = diag(1,−1,−1,−1).

2. Loop Amplitudes and the Unitarity Method

We are going to use tree-level amplitudes to reconstruct loop-level amplitudes.
This is the so-called generalized unitarity method, a technique that we will now briefly
describe [24,26–31,46–49]2.

The knowledge of tree amplitudes can be used to find information about loop inte-
grands. The action of taking loop propagators on-shell is known as a unitarity cut. It comes
from the unitarity constraint of the S-matrix, which is a statement on the generalized optical
theorem. That is, for an arbitrary process a→ b one has that

iA(a→ b)− iA∗(b→ a) = −∑
f

∫
dΠ fA∗(b→ f )A(a→ f )(2π)4δ4(a− f ) (1)

where dΠ f is the Lorentz-invariant phase space measure [50] and the sum runs over all
possible sets f of intermediate states and there is an overall delta function associated with
energy–momentum conservation. In the above expression, theA’s are (invariant) scattering
matrix elements. In a perturbative quantum field theory, when an expansion in powers of a
small coupling constant exists, this constraint instructs us that the imaginary part of scatter-
ing amplitudes at a given order is obtained from the product of lower-order amplitudes.
For instance, in the case of one-loop processes, one finds a product of two tree amplitudes
on the right-hand side of Equation (1). Usually this product presupposes the sum over
all possible on-shell states that can cross the cut. One fundamental requirement is that
only states from the physical spectrum of the theory are allowed to be included in this sum [40,45].
In a unitarity cut, we restrict the loop-momenta to be on-shell and only physical modes
are enclosed in the two on-shell amplitudes on the right-hand side of Equation (1). The
cutting rules also consider integrals of any remaining freedom in the loop momentum after
prescribing the so-called cut constraints (and, of course, momentum conservation).

Unitarity cuts are efficient tools that enable one to relate the pole structure of the
integrand with the branch-cut structure of the associated loop integral. Unitarity cuts
can also involve more than two cut lines, which implies that several internal lines are
taken on-shell. Here we say that we are able to reconstruct amplitudes from sets of
generalized unitarity cuts. It turns out that such a set is overcomplete, which means that
we can turn to different strategies for extracting the relevant information. For example,
one interesting approach is to use the method of maximal cuts [49,51]. In this case, we
consider the maximum possible number of cut lines so that each cut furnishes a small piece
of information. That is, we begin with generalized cuts possessing the maximum number
of cut propagators. We use the information from such cuts to lay out an initial ansatz for
the amplitude. Further cuts with reduced number of cut propagators are then considered
and their information is systematically gathered in order to improve such an ansatz. The
aim is to find an integrand that reproduces all the unitarity cuts. In principle this helps
along the construction of the amplitude [49,52–54].
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Here we will study generalized unitarity cuts on the level of the integrand, which
can be written as a product of on-shell (tree-level or lower-loop) amplitudes. In partic-
ular, we are interested in considering maximal cuts consisting of only three-point tree
amplitudes, namely:

∑
states

Atree
(1) Atree

(2) Atree
(3) · · · Atree

(m). (2)

The information from unitarity cuts can be used most efficiently if a complete basis of
integrals is known. Indeed, all one-loop amplitudes in D dimensions can be written as a
sum of one-loop scalar integrals Im, m = 1, 2, 3, . . . , D [51]:

A1−loop
n = ∑

i
C(i)

D I(i)D;n + ∑
j

C(j)
D−1 I(j)

D−1;n + · · ·+ ∑
k

C(k)
2 I(k)2;n + ∑

l
C(l)

1 I(l)1;n +R (3)

where R denotes rational terms (contributions that do not have branch cuts), C(i)
D are

coefficients associated with tree-level amplitudes, and I(i)m are m-gon scalar integrals. In
D = 4, one-loop integrals reduce to a combination of box, triangle, bubble, and tadpole
scalar integrals [24,55–61]. The latter are related to the coefficients C(l)

1 ; such integrals
vanish in dimensional regularization when only massless particles circulate in the loop.
In D = 4 power counting demonstrates that the scalar box and triangle integrals do
not display UV divergences, but IR divergences due to possible massless corners. The
bubble integrals have UV divergences but no IR divergences as both corners are massive.
Integrated results of such integrals can be found in several places in the literature, see for
instance Refs. [51,57,58,60,62–65].

Therefore, in four dimensions the following expansion is generically valid to any
one-loop amplitude:

A1−loop =
4

∑
n=1

∑
K

cn(K)In(K) (4)

where Ki are sums of external momenta and In are the associated scalar integrals. The
coefficients cn are calculated using generalized cuts. For instance, consider a generic one-
loop point amplitude written in the basis above. In this section, we are working with only
stable particles circulating in the loop. If we cut four propagators then the four dimensional
integral becomes trivial:

∆4 A1−loop =
∫

d4` G+(`2
1(`))G

+(`2
2(`))G

+(`2
3(`))G

+(`2
4(`))Atree

1 (`)Atree
2 (`)Atree

3 (`)Atree
4 (`) (5)

where Atree
j are tree-level amplitudes and, using a spectral representation [45],

G+(p2) = 2πθ(p0)
∫ ∞

0
ds δ(p2 − s)

σ(s)
π

(6)

are the cut propagators (or positive-frequency Wightman functions) associated with stable
particles. For brevity we have absorbed 2π factors into the definition of the loop inte-
gral in Equation (5). Since in the case of stable particles the spectral function σ(s) has
a pole at one-particle states, we can also write that (assuming we are not above a given
multi-particle threshold)

G+(p2) = 2πθ(p0)δ(p2 −m2). (7)

In other words, the “cut of a propagator” means removing its principal part while
preserving the delta function imposing the on-shell condition.

For simplicity we have taken all internal propagators to have the same mass m,
which can be zero. On the other hand, when applied to the master integrals, the quadru-
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ple cut selects the contribution from the box integral with momenta K1, K2, K3, K4 at the
corners. Therefore,

∆4 A1−loop = c4(K1, K2, K3, K4)∆4 I4(K1, K2, K3, K4). (8)

where I4(K1, K2, K3, K4) is the associated 4-point box scalar integral:

I4(K1, K2, K3, K4) =
∫ dD`

(2π)D
1

`2(`+ K1)
2(`+ K1 + K2)

2(`− K4)
2 . (9)

In particular, the quadruple cut of the scalar box integral is a Jacobian factor. This factor
appears on both sides of the equation. Hence, comparing both expressions for ∆4 A1−loop,
we see that the coefficient c4 can be expressed as a product of tree-level amplitudes [24]:

c4 =
1
2 ∑

`∈S
∑

states
Atree

1 (`)Atree
2 (`)Atree

3 (`)Atree
4 (`) (10)

where the factor of 1/2 emerges as there are exactly two solutions for the set S of cut
conditions determined by the four delta functions of the cut propagators. Hence in principle
the quadruple cut of the scalar box integral would suffice to calculate the box coefficient.
Furthermore, this implies that the maximal cut in this case reads

A1−loop integrand(`)

∣∣∣∣
Maximal cut

= ∑
states

Atree
1 (`)Atree

2 (`)Atree
3 (`)Atree

4 (`) (11)

which is a direct proof of the one-loop form of Equation (2) for stable particles.
In conclusion, equipped with the integral reduction (4) valid to all one-loop amplitudes,

and benefiting from the factorization property of the amplitude, by using unitarity methods
one is in a position to reconstruct one-loop amplitudes from tree-level information without
the often burdensome Feynman diagram expansion. Moreover, we see that the application
of the generalized unitarity method requires exploring further discontinuities, which
implies that a different number of propagators ought to be put on-shell in comparison with
textbook unitarity cuts. Furthermore, this can only be achieved if there is a contribution
of an isolated simple pole at p2 = m2 (or p2 = 0 for massless particles) coming from
one-particle states—in other words, if the cut propagators have the expected cut structure,
as given by Equation (7).

Actually, one must be more careful when resorting to generalized unitarity, since
the solutions to the cut conditions are generally complex, leading to delta functions that
trivially yield zero. The solution is to use contour integration. That is, instead of replacing
the propagators by delta functions, one must replace the original contour of integration [8].
In summary, the idea is that, as the support of the delta functions is outside the physical
region, the integration procedure is implemented in terms of contour integrals in C4,
the loop momentum is regarded as a complex vector. Such contours are such that their
product encircles the poles in the four-dimensional components of the loop momentum. By
performing the four-dimensional loop-momentum integral over each contour, the residue
at the corresponding encircled pole is attained. In fact, one defines the product of delta
functions to generate exactly this contour integral [8].

Of course, the aforementioned operation does not leave expression (4) intact, as there
are terms that integrate to zero in the original contour which no longer necessarily vanish
if we integrate over general contours in the complex plane. In order to do away with
such spurious terms, one evaluates the integral over a suitable linear combination of new
contours in such a way that such additional contributions are always projected out. This
produces the coefficients of the box integrals as given in Equation (10). For a careful survey
of all subtleties associated with this discussion, see Refs. [8,12].
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3. Unitarity Method for Unstable Particles
3.1. Possible Issues with Unstable Particles

In order to understand what could be the general issues involving unstable particles,
let us imagine a given reaction consisting of the scattering of a particles

a1 + a2 + · · ·+ an → A + c1 + c2 + · · ·+ cn (12)

producing final products given by a collection of c particles and a particle labeled A. If
all final products are described by stable particles, then in principle there is no concern in
evaluating an on-shell amplitude such as A(a→ A + c) in any given order in perturbation
theory. However, if A is heavy enough, its coupling to lighter states in the theory, say
labeled by b, makes it decay:

A→ b1 + b2 + · · ·+ bn (13)

and now the scattering process we have to consider is a→ b+ c with the associated on-shell
amplitude A(a → b + c). In this case A enters the calculation as a virtual particle, not
as an external state, which implies, by the Feynman rules, the presence of its propagator
1/(p2 −m2

A) in internal lines of given Feynman diagrams. The point is, if the phase space
contains the resonance region (∑ pb)

2 = m2
A, then the results calculated from perturbation

theory cannot be trusted close to this region.
In other words, basically a diagram with a single internal A propagator must met

one of the following conditions [42]: (i)mA < ∑ mb, which always happen if A is stable or
if A is an unstable particle with threshold E < ∑ mb such that it cannot decay into b. In
this case perturbation theory can still be trustworthy3; (i)mA > ∑ mb, which implies that
A is unstable and can decay to b-particles. In this situation, the phase space contains the
resonance, and perturbation theory can no longer be generically trusted.

The most direct approach to solve this problem is to consider a resummed form for the
propagator of the unstable particle. However, for gauge theories, the resummation proce-
dure must be performed carefully, otherwise one might expect to be confronted with issues
associated with gauge invariance and gauge-fixing parameter dependence [42–44,66–70].
Another possible approach is provided by the so-called complex-mass scheme (CMS) [71–73].
In few words, it corresponds to a suitable generalization of the on-shell renormalization
scheme. In the latter, the renormalized mass m is specified by demanding p2 = m2 to be the
pole position associated with the resummed propagator. This is fine for stable particles—for
unstable particles, the self-energy acquires an imaginary part, and as a consequence the
renormalized mass does not correspond to the pole position. The modification proposed
by the complex-mass scheme is the following: Define a complex renormalized mass m̄ by
requiring that p2 = m̄2 matches the pole position of the resummed propagator for unstable
particles. The fact that m̄ is complex, and therefore cannot be associated with a physical
entity, should be of no concern as renormalized parameters in the Lagrangian do not carry
any physical meaning [42]. For a recent discussion on the definition of the mass and width
of a normal unstable particle, see Ref. [74].

One can show that this modification put forward by the complex-mass scheme avoids
the aforementioned issues appearing in gauge theories as it renders unnecessary the
resummation of internal propagators [42–44]. Indeed, the bare propagator of the unstable
particle A (or its scalar part) within this method acquires the form (in momentum space)

DCMS(p2) =
1

p2 − m̄2
A

. (14)
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By writing m̄2
A = m2

A − imAΓ̄, where mA and Γ̄ are real, one can prove that the above
propagator can be envisaged as the resummed form of the following propagator in a scheme
in which the renormalized mass is given by mA [42]:

1
p2 −m2

A + Σ(p2)
. (15)

The self-energy obeys Σ(m̄2
A) = imAΓ̄. That is, the bare propagator within the complex-

mass scheme is intrinsically resummed. In addition, notice that, as mAΓ̄ is evaluated
throughout the renormalization procedure, we must envisage this quantity as a function
of the coupling constant λ describing the interaction between the unstable particle and
the lighter states, mAΓ̄ ∼ O(λ). For more technical details concerning the complex-mass
scheme, we refer the reader to Refs. [42–44].

Given the result (14), one can be tempted to think that the complex-mass scheme
allows for an adequate spectral representation for the propagator of the unstable particle
such that an unambiguous one-particle state contribution can be identified. That this is
not straightforward can be seen as follows. Within the complex-mass scheme, the positive-
frequency Wightman function associated with the unstable particle in momentum space
reads [42–44]

D+,CMS(p2) = −Im
[

1
p̄0

1
p0 − p̄0

]
(16)

where
( p̄0)2 = p2 + m̄2

A. (17)

Observe that the CMS cut propagator does not quite have the correct cut structure
as given by Equation (7) and, as a result, in principle we cannot connect D+,CMS with
physical particles carrying positive energy forward in time. However, at leading order
Γ̄/m̄A ∼ λ this is possible; when taking the limit Γ̄→ 0, D+,CMS(p2) turns into a nascent
delta function,

D+,CMS(p2)

∣∣∣∣
Γ̄→0
→ 2πθ(p0)δ(p2 −m2

A) (18)

thereby recovering the standard cut structure for the cut propagator, which allows us to
associate with the propagation of positive-energy physical particles. In general, we can
write [42–44]

D+,CMS(p2) =

{
2πθ(p0)δ(p2 −m2

A) +O(λ) near resonance,
F(p2, Γ̄/m̄A) off resonance,

(19)

where the first equality is valid to leading order, and

F(p2, Γ̄/m̄A) =
∞

∑
n=1

an(p2, Γ̄/m̄A)

(
Γ̄

m̄A

)n

. (20)

So, we see that F(p2, Γ̄/m̄A) corresponds to higher-order contributions. For the phase
space as a whole, the function D+,CMS(p2) is suppressed because the imaginary part
of p̄0 is small. However, in the region of resonance the small imaginary part yields a
non-negligible contribution given by the nascent delta function above. This means that,
outside the resonance region, where the CMS cut propagator does not have the correct
cut structure (i.e., far from the poles of D+,CMS), the cut of the CMS propagator of the
unstable particle will produce a contribution of higher order in perturbation theory, which
can thus be neglected. Only when one is close to the resonance region—which can take
place depending on the external momentum configuration of a diagram—is the CMS
cut propagator non-negligible. These features persist when including corrections to the
leading-order result [42–44]. In any case, to leading order the cut of the unstable particle
propagator is simply the cut through its one-loop correction; in other words, through stable
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particle propagators. This is a consequence of the fact that at one-loop order the widths in
the complex-mass scheme and the traditional on-shell scheme coincide.

3.2. When the Unitarity Method Works for Unstable Particles

As shown in Refs. [40,45], in a theory with unstable particles (of any kind), unitarity
is satisfied by the sole inclusion of asymptotically stable states. This means that cuts
should not be taken through the unstable particles. Unitarity-based methods represent a
kind of generalization of the optical theorem in that they investigate discontinuities of an
amplitude in several kinematical channels in order to fully reconstruct loop amplitudes.
However, if discontinuities of a given loop amplitude are given by the cutting rules, how
can one make sense out of the method when one is to cut a propagator associated with an
unstable particle?

Let us suppose that all internal propagators of a given one-loop amplitude describe
unstable particles. Naively one would conclude that one cannot apply directly unitarity
methods to unstable particles. Fortunately, this is not the end of the story. That the
method can still be applied to these cases can be observed by recalling the aforementioned
discussion of unstable particles within the complex-mass scheme. Indeed, as we have
mentioned, at leading order the cut propagator reproduces the nascent delta function
typical of stable particles when one is close to the resonance region. Therefore in the
complex-mass scheme we write

∆4 A1−loop =
∫

d4` D+,CMS(`2
1(`))D+,CMS(`2

2(`))D+,CMS(`2
3(`))D+,CMS(`2

4(`))Atree
1 (`)Atree

2 (`)Atree
3 (`)Atree

4 (`) (21)

so that, at leading order and close to the resonance region, we find that

∆4 A1−loop
∣∣∣∣
Γ̄→0

=
∫

d4` δ(`2
1(`)−m2)θ(`0

1)δ(`
2
2(`)−m2)θ(`0

2)δ(`
2
3(`)−m2)θ(`0

3)δ(`
2
4(`)−m2)θ(`0

4)

× Atree
1 (`)Atree

2 (`)Atree
3 (`)Atree

4 (`). (22)

This implies that the coefficient c4 of the box integral is still given by Equation (10) at
leading order. In particular, the maximal cut of the one-loop amplitude is also given by the
one-loop form of Equation (2), which represents a proof of this result at leading order to the
case of unstable particles running in the loop. Moreover, it is also clear when this procedure
cannot be trusted—this is when is off resonance, so that we are not able to put the internal
momenta on-shell, see Equation (19). So, when cutting an internal line corresponding to an
unstable particle off resonance, the result we obtain is not a contribution to the imaginary
part of the scattering amplitude, and, as a consequence, not a valid contribution to the
coefficients of the scalar integrals in the above expansion given by Equation (4). So it is
not at all clear whether generalized cuts of propagators associated with unstable particles
produce sensible results in this case. We will get back to this off-resonance topic shortly.

At higher orders, as the cut of a propagator associated with unstable particles must
correspond to the cut through a loop of stable particles when one is close to the resonance
region, again we find the correct cut structure. As a result, we believe that Equation (2)
must still be valid to all orders in perturbation theory, but a general proof of this result is
beyond the scope of the present work. This is an interesting exploration, and we hope to
return to this calculation in the near future.

This discussion shows us that the unitarity method still makes sense in the case of
unstable particles running in the loops; in order to implement the technique in a straightfor-
ward way, one must ensure that external momentum configurations of an amplitude allows
the unstable particle propagator to become resonant. In this case, the unstable particle cut
propagator will have the correct cut structure to guarantee that unitarity is satisfied. In
turn, from previous discussions, we know that the correct strategy for the cut of several
propagators is to interpret the corresponding loop integral as a contour integral in C4.
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Moreover, the determination of the contours is such that it must encircle one-particle poles
so that we can define the result of integrating over the product of delta functions as given
by this contour integral. This is a necessary requirement on the grounds of unitarity—cuts
are applied only on the stable particles of the theory so that the sum in Equation (10) is
guaranteed to be over only asymptotically stable states. It is only in this case that one
can assert that the result of the integration over the contour |p2 − m̄2

A| = ε that encircle
p2 − m̄2

A = 0 will represent an on-shell particle carrying positive energy forward in time.
However, it is also clear that when one is off resonance, then one is also away from the pole
of the propagator; the associated contour integration must have a vanishing residue in this
case. To obtain a finite result, one must be close to the resonance region; in this case, the
operation described in the previous section will yield a well-defined residue.

On the other hand, there is also other situation that the method can be applied without
further issues—this is the so-called narrow-width approximation (NWA). In this situation,
the coupling to the decay products is taken to be sufficiently small so that only resonance
production is significant. In this limit, we can take

iD(q) =
i

q2 −m2 + iγ
. (23)

Here γ = Γm, where Γ is the width of the resonance. In the narrow-width approxima-
tion, Γ� m and hence

Im[D(q)] ∼ −πδ(q2 −m2), (24)

that is, near the resonance, we can treat the resonant particle as being on-shell. This means
that in this limit the cut taken through the unstable particle with Γ→ 0 recovers the result
from the cut through the decay products4. So, effectively the NWA allows us to regard a
long-lived resonance as being approximately a stable particle. Moreover, for gauge theories,
the NWA does not suffer either from the gauge invariance problem alluded to above [42].
Therefore in this situation the usual reasoning that lies behind the generalized unitarity
method can be fully applied.

In other words, for unstable particles the present practice of the unitarity method is
valid if the assumption of a resonant unstable propagator is warranted. This can happen
depending on external momentum configurations (and this can be proved at least in the
complex-mass scheme, as discussed above) or else one should verify whether the narrow-
width approximation holds in the particular case under studied. In the complex-mass
scheme, for a resonant unstable propagator, one can show that the cut of this propagator
follows through the cut of only stable particles, preserving unitarity in Veltman’s sense
(i.e., by using the Largest Time Equation and employing suitably defined cut propagators).
At higher-orders life will not be so simple, but in any case one can still prove that unitarity
is satisfied.

3.3. Lee–Wick Theories

Now let us discuss Lee–Wick-type theories [75–79]. As well known, these class of
theories have a ghost mode which can be directly seen from the propagator, which has
the form

1

q2 − q4

M2

=
1
q2 −

1
q2 −M2 . (25)

The overall negative sign in the second term signals that this pole is ghost-like. How-
ever, the coupling to light particles of the theory makes the heavy ghost state unstable. As
discussed above, this implies that generically the associated propagator must be resummed
to ensure the validity of perturbation theory. A spectral representation of the corresponding
cut propagator can be written as [45]

D̃±LW(p2) = −2πθ(±p0)
∫ ∞

0
ds δ(p2 − s)

ρ̃(s)
π

. (26)
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Following the same reasoning employed for normal unstable particles, we find that
the cut of internal Lee–Wick propagators of a given one-loop amplitude cannot produce in
general a contribution to its discontinuity. However, recall that the structure of a normal
resonance propagator is given by

iD(q) =
i

q2 −m2 + Σ(q)
(27)

with Im[Σ(q)] > 0. Now if the Lagrangian obtains modified with a �2 term, the propagator
accordingly is changed to

iD(q) =
i

q2 −m2 + Σ(q)− q4/Λ2 . (28)

Setting Λ→ ∞, we obtain the normal resonance. However for large finite Λ we find a
heavy-mass resonance, when q2 ∼ Λ2. Near this resonance, the propagator behaves as

iD(q) ∼ −i
q2 −Λ2 − iγ

. (29)

The residue at this pole is always negative. Furthermore, the sign of the width is
always opposite from normal. That is, for both finite m and Λ, we verify the appearance
of resonances of both types in the same propagator. In both cases, the imaginary part
of the self-energy arising from the coupling to stable states is the same; nonetheless, it
manifests itself in distinct ways near the resonances. This means that ghost resonances also
obey a unitarity relation as a consequence of the fact that normal resonances satisfy this
constraint [45].

The above discussion shows us how to implement unitarity-based methods to one-
amplitudes involving unstable ghost modes. In the complex-mass scheme we write the
Lee–Wick propagator as

DCMS
LW (p2) = − 1

p2 − M̄2 (30)

where M̄2 = M2 − iMΓ̄. On the other hand, as the aforementioned discussion indicates,
normal resonances and ghost-like resonances have a similar structure [45]

iD(q) ∼ Zi
q2 −m2 + iZγ

(31)

with Z = +1 for a normal resonance and Z = −1 for the ghost resonance. The imaginary
part is Z-independent,

Im[D(q)] ∼ −γ

(q2 −m2)2 + γ2 . (32)

This implies that the CMS Lee–Wick cut propagator will have the same structure as
the propagator associated with a normal unstable particle within the complex-mass scheme.
In particular, close to the resonance region, at leading order it will have the form given
by Equation (18), producing the correct cut structure. Hence Equation (2) is also valid for
Lee–Wick theories when one is close to the resonance region.

We finally remark that again we can also resort to the NWA in order to apply unitarity
techniques to one-loop amplitudes with unstable ghost modes running in the loop. Never-
theless, we emphasize that one must be very careful when dealing with ghost modes in
the NWA; in order to reproduce correctly the cuts one must resort to a modification of the
contour in performing the loop momentum integration, as originally discussed by Lee and
Wick [45].
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3.4. When the Unitarity Method Does Not Seem to Work for Unstable Particles

Suppose we wish to study a particular process a + b → c + d which takes place
exclusively through loops of unstable particles (of any type) and let us assume that we are
off resonance. As asserted above, when one is off resonance the cut through the propagator
of an unstable particle will always violate the cut structure. That is, the cut of an unstable
particle propagator off resonance yields a contribution of higher order in perturbation
theory—such cuts can surely be disregarded. Hence if we use the reasoning above, the
cuts of internal unstable propagators will produce a vanishing contribution, resulting
in a vanishing amplitude by employing the current practice of the unitarity method to
reconstruct it. This is obviously an unsatisfactory answer since we know that amplitudes
can be built using standard Feynman rules and Feynman diagrams. So, can we take this
as an indication that the unitarity method cannot be trusted in this case, as it seems that
the associated amplitude (or some of its contributions) could not be determined from the
knowledge of its cuts?

There are ways to circumvent this issue. For instance, recall that, in a theory containing
unstable particles, unitarity is satisfied by the inclusion of only stable states in unitarity
sums. This suggests that, in order to generically implement the generalized unitarity
method to a theory containing unstable particles, we must consider the inclusion of only
cuts from stable states in unitarity sums. This means that in general one must be able to
reformulate the theory in terms of the stable particles only, eliminating from the outset any
unstable fields in the Lagrangian. However, this will actually introduce non-local vertices
in our description. There is one constraint that we should impose in this situation. In order
to preserve unitarity, the only acceptable poles in tree-level amplitudes are the ones that
come from propagators. Since non-local vertices may generate unphysical poles that would
not be be consonant with an exchange of a physical particle, we must impose that such
poles have zero residue. Or we must claim that the residues of all such spurious poles
must cancel to give zero. Of course other constraints can also be imposed on the non-local
vertices, such as proper infrared behavior, valid Ward identities, etc. For a recent interesting
discussion of tree-level scattering amplitudes of a particular category of non-local field
theories see Ref. [80]. One-loop unitarity for a class of perturbative scalar quantum field
theories with non-local operators of fractional order was established in Ref. [81].

4. Examples of the Use of the Unitarity Method for Unstable Particles

We now proceed to discuss with some detail three examples which can be relevant
for particle physics in order to see how one can implement the unitarity method when
unstable particles run inside loops in scattering amplitudes.

4.1. Normal Unstable Particles

Let us begin our discussions with normal unstable particles. Here we wish to inves-
tigate the one-loop helicity amplitude A1−loop(+ +++) associated with γ− γ scattering
via W loops in the Standard Model [82–86]. It is known that the reaction γγ → γγ via
W-boson at one-loop is finite [87]. The standard Feynman-diagram formulation proceeds
via box, triangle, and bubble diagrams in which one must allow also for unphysical Higgs
bosons (when working in a suitable non-linear Rξ gauge) and Faddeev–Popov ghosts in
the loops (besides, of course, the W particles). For our study we do not need to consider
the unphysical particles; the finiteness of the amplitude will be easily established as we
will see. We will use the method of maximal cuts in order to evaluate the amplitude in the
expansion in terms of one-loop master integrals. The diagram is depicted in Figure 1.
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Figure 1. The box diagram related to the one-loop corrections to the process γγ→ γγ via W-boson loops.

Since the W boson is heavy, it is unstable and hence in principle we may not be allowed
to cut the W internal lines. However, the W mass M is about 80 GeV and its decay width
Γ is about 2 GeV [88], hence Γ � M and in principle one is justified in resorting to the
narrow-width approximation, at least in a primary analysis. In this case, the production
and decay of the resonance can be treated approximately in a separate way. As discussed
above, the propagator in the NWA has the correct cut structure and hence one can safely
use the unitarity method in order to reconstruct the aforementioned box amplitude. On
the other hand, as mentioned, all one-loop integrals can be written in terms of a basis of
scalar one-loop integrals as in Equation (3), so we are in safe ground here—we can trust the
results obtained here. In any case, we can also contemplate our results as an independent
check of the helicity amplitude calculated in Refs. [85,89].

Using the method of maximal cuts, in the narrow-width approximation the coefficient
of the scalar box function may be calculated from the formula

c4(p1, p2, p3, p4) =
1
2 ∑

`∈S
∑
pol.

Atree
1 (p1,−`KL

2 , `I J
1 )Atree

2 (p2,−`MN
3 , `KL

2 )Atree
3 (p3,−`PQ

4 , `MN
3 )Atree

4 (p4,−`I J
1 , `PQ

4 ). (33)

The above on-shell tree amplitudes involve one photon and two W bosons. The latter
carry explicit SU(2) little-group indices associated with massive spinors. A review of the
formalism designed to deal with massive particles can be found in the Appendix A. In
addition, S is the solution set for the four delta functions of the cut propagators:

S = {`|`2
1 = `2 = M2, `2

2 = (`+ p1)
2 = M2, `2

3 = (`+ p1 + p2)
2 = M2, `2

4 = (`3 + p3)
2 = (`− p4)

2 = M2}
where we took all external momenta incoming. Notice that the cut conditions imply that

2p1 · ` = (`+ p1)
2 − `2 − p2

1 = 0

2p3 · `3 = (`3 + p3)
2 − `2

3 − p2
3 = 0. (34)

Let us calculate the 3-particle amplitude that appears above. Feynman rules will tell
us that

iA3(ps
1, kKL

2 , kI J
1 ) = ie

[
(k1 − k2)ρηµν + (k2 − p1)µηνρ + (p1 − k1)νηρµ

]
εµI J(k1)ε

νKL(k2)ε
ρs(p1; r)

= ie
{[

(k1 − k2) · εs(p1; r)
][

εI J(k1) · εKL(k2)
]
+
[
(k2 − p1) · εI J(k1)

][
εKL(k2) · εs(p1; r)

]
+

[
(p1 − k1) · εKL(k2)

][
εI J(k1) · εs(p1; r)

]}
. (35)
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Let us first choose s = +. Resorting to a bold notation for massive spinors, one finds

A3(p+1 , k2, k1) =
e√

2M2〈r1〉

{
−
(
〈k1Ar〉

[
1kA

1
]
− 〈k2Ar〉

[
1kA

2
])
〈k1k2〉

[
k2k1

]
+

(
〈k1kA

2 〉
[
k2Ak1

]
− 〈k11〉

[
1k1
])
〈k2r〉

[
1k2
]

+
(
〈k21〉

[
1k2
]
− 〈k2kA

1 〉
[
k1Ak2

])
〈k1r〉

[
1k1
]}

= −
√

2e
M2

〈r|k1|1
]

〈r1〉 〈k1k2〉2 (36)

where we used the Schouten identities and the following relations (which follow from the
Schouten identities) [90]

〈r|k1|1
]
〈k1k2〉 = M

(
〈rk1〉

[
1k2
]
+ 〈rk2〉

[
1k1
])

〈r|k1|1
][

k1k2
]

= M
(
〈rk1〉

[
1k2
]
+ 〈rk2〉

[
1k1
])

+ 〈r1〉
[
1k1
][

1k2
]
. (37)

With an almost identical calculation for the s = − case, one finds that

A3(p−1 , k2, k1) = −
√

2e
M2

[
r|k1|1〉[

1r
] [

k1k2
]2. (38)

For concreteness, let us choose a specific set of helicities for the external photons. Now
the cut reads (sum over repeated SU(2) little-group indices is implicit)

A1−loop integrand
4 (`)

∣∣∣∣
quadruple cut

= Atree
1 (p+1 ,−`2KL, `I J

1 )Atree
2 (p+2 ,−`3MN , `KL

2 )Atree
3 (p+3 ,−`4PQ, `MN

3 )Atree
4 (p+4 ,−`1I J , `

PQ
4 )

=
4e4

M8
〈r1|`1|1

]
〈r11〉 〈`1`2〉2

〈r2|`2|2
]

〈r22〉 〈`2`3〉2
〈r3|`3|3

]
〈r33〉 〈`3`4〉2

〈r4|`4|4
]

〈r44〉 〈`4`1〉2

= − 4e4

M4
s12s23

〈12〉〈23〉〈34〉〈41〉M6〈`4`4〉2 = − 4e4

M4
s12s23

〈12〉〈23〉〈34〉〈41〉M8
(

δP
P δQ

Q + δP
QδQ

P

)
= −24e4 M4 s12s23

〈12〉〈23〉〈34〉〈41〉 (39)

where we used the on-shell conditions, symmetrization of SU(2) little-group indices, and
also that |λI〉α〈λI |β = −Mδα

β and 〈λIλJ〉 = MδI
J . In addition, we have chosen r1 = p2,

r2 = p1, r3 = p4 and r4 = p3 and, as usual, sij = (pi + pj)
2. The convention we use here is

the following:

| − p〉 = −|p〉, 〈−p| = −〈p|
| − p

]
= |p

]
,
[
−p| =

[
p|. (40)

We have so far calculated the coefficient associated with the scalar box integral. In
order to calculate the coefficients of triangles, bubbles, and tadpoles, one must resort to
lower-order cuts. For instance, a triple-cut reads

A1−loop integrand
4 (`)

∣∣∣∣
triple cut

= Atree
3 (p+1 ,−`2KL, `I J

1 )Atree
3 (p+2 ,−`3MN , `KL

2 )Atree
4 (p+4 ,−`1I J , `MN

3 , p+3 ). (41)
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The other possible three-particle cut diagrams are obtained from this one by cyclic
relabeling of the external particles. The cut conditions are given by

`2
1 = `2 = M2

`2
2 = (`+ p1)

2 = M2

`2
3 = (`+ p1 + p2)

2 = M2. (42)

Notice that these imply that ` · p1 = 0. One finds that

A1−loop integrand
4 (`)

∣∣∣∣
triple cut

= −24e4M4 s12s23

〈12〉〈23〉〈34〉〈41〉
1

(`− p4)2 −M2 (43)

where we have chosen r1 = 2 and r2 = 1, and we used the cut conditions. As for the
two-particle cut, we find

A1−loop integrand
4 (`)

∣∣∣∣
double cut

= Atree
4 (p+2 ,−`3MN , `I J

1 , p+1 )Atree
4 (p+4 ,−`1I J , `MN

3 , p+3 ). (44)

As above, the other possible two-particle cut diagrams are obtained from this one by
cyclic relabeling of the external particles. The cut conditions are given by

`2
1 = `2 = M2

`2
3 = (`+ p1 + p2)

2 = M2. (45)

One finds that

A1−loop integrand
4 (`)

∣∣∣∣
double cut

= −24e4M4 s12s23

〈12〉〈23〉〈34〉〈41〉
1

(`+ p1)2 −M2
1

(`− p4)2 −M2 (46)

where we used momentum conservation and the cut conditions.
Now let us discuss our results. Concerning the triple cut, there are two possible

integrals that can contribute, namely the box integral and the triangle integral. However,
our result shows the presence of one uncut propagator. So, this would exclude triangle
integrals from the expansion. To confirm this, let us analyze the 2-particle cut. Again box
and triangle integrals contribute, and now also bubble integrals can contribute. Neverthe-
less, our result shows the presence of two uncut propagators. This confirms the exclusion
of triangle integrals from the expansion, and also states the absence of bubble integrals.
We can perform a single cut to confirm that there will remain three uncut propagators in
the result. Hence, the final answer is that only the box integral is present. So, finally we
can write

A1−loop
4 (+ +++) = −24e4M4 s12s23

〈12〉〈23〉〈34〉〈41〉 I4(p1, p2, p3, p4) + Perm. +R (47)

where Perm. indicates permutations of external particles,R comprise rational terms and

I4(p1, p2, p3, p4) =
∫ dD`

(2π)D
i

[`2 −M2 + iMΓ]
i

[(`+ p1)
2 −M2 + iMΓ]

× i

[(`+ p1 + p2)
2 −M2 + iMΓ]

i

[(`− p4)
2 −M2 + iMΓ]

(48)

with, as already quoted, Γ� M. We can think of the presence of Γ in the above equation as
a consequence of the fact that, for unstable particles, we should use a resummed form for
its propagator. In any case, one should bear in mind that, as we are considering the decay
width to be very small, one must envisage I4(p1, p2, p3, p4) in the limit Γ→ 0, which ought
to be taken at the end of the calculations. Otherwise, one can prove that the coefficient of the
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box will also display a finite Γ-dependence which is not captured by the unitarity method.
As well known, the inclusion of the appropriate dependence on Γ both in the propagators
as well as in the corresponding coefficients of the integral is mandatory to ensure the correct
gauge cancellations. Nevertheless, as we are considering in this calculation a situation
which is dominated by production of on-shell unstable particles with a vanishingly small
decay width, finite-width effects are negligible as long as the required precision is taken to
be small in comparison with Γ/M5.

Rational terms are not detected by unitarity cuts. Hence the above result have potential
ambiguities in rational functions. In order to remove such ambiguities one may consider
dimensionally regularized representations for the tree amplitudes. This means considering
d-dimensional cuts, with d = (4− 2ε). Photons live in four dimensions, whereas the loop
momentum is d-dimensional. In this case one has to be careful when dealing with the
summation over states.

A crucial component of generalized unitarity cuts is the sum over physical states. One
must be careful in the sum over the physical states of gauge bosons in d dimensions [92]. It
is given by the so-called physical state projector:

Pµν = ∑
pols.

εµ(−p)εν(p) = −ηµν + · · · (49)

where the ellipsis stand for terms depending on an arbitrary null reference momentum (for
massless particles) or on the mass of the particle (for massive particles). In the present case,
we will only be concerned with the maximal cut since we already know that only the box
integral is present. Here we simply adopt the four-dimensional helicity scheme [93,94] in
which all internal and external states (and also polarization vectors) are four dimensional
and loop momentum and phase-space integrals are in d = 4− 2ε dimensions. There are no
remaining ambiguities to be considered in our case as the amplitude under consideration
vanishes at tree level and there are no ultraviolet divergences.

In general, in the evaluation of the quadruple-cut, we have to discriminate between
the dimension of loop momenta and the dimension of the space of physical states; in other
words, we should envisage any factor of D emerging from contracting Lorentz indices
(δµ

µ = D) as a different quantity in comparison with the dimension d of the loop momenta
for which we take d = 4− 2ε. In the limit that D → d one should obtain the same result as
before, except that the mass has undergone the shift M2 → M2 + µ2, where µα is a vector
associated with the (−2ε)−dimensional part of the loop momentum. This means that we
should use the following modified cut conditions

`2
1 = `2 = M2 + µ2

`2
2 = (`+ p1)

2 = M2 + µ2

`2
3 = (`+ p1 + p2)

2 = M2 + µ2

`2
4 = (`3 + p3)

2 = (`− p4)
2 = M2 + µ2. (50)

The final result is given by

A1−loop
4 (1+, 2+, 3+, 4+) = −24e4 i

(4π)2−ε

s12s23

〈12〉〈23〉〈34〉〈41〉I4[(M2 + µ2)2] + Perm. (51)

where [48,94,95]
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Id
n [µ

2r] = i(−1)n+1(4π)d/2
∫ d−2εµ

(2π)−2ε

∫ d4`

(2π)4
µ2r

(`2 −M2 − µ2)((`+ p1)2 −M2 − µ2) · · · ((`+ ∑n−1
i=1 pi)2 −M2 − µ2)

= −ε(1− ε) · · · (r− 1− ε)Id+2r
n [1]

Id
n [1] = i(−1)n+1(4π)d/2

∫ d−2εµ

(2π)−2ε

∫ d4`

(2π)4
1

(`2 −M2 − µ2)((`+ p1)2 −M2 − µ2) · · · ((`+ ∑n−1
i=1 pi)2 −M2 − µ2)

(52)

and hence

I4[(M2 + µ2)2] = M4Id=4−2ε
4 [1]− 2M2εId=6−2ε

4 [1]− ε(1− ε)Id=8−2ε
4 [1]

−εId=6−2ε
4 [1] = 0 +O(ε)

−ε(1− ε)Id=8−2ε
4 [1] = −1

6
+O(ε). (53)

We recall that for a complete removal of the ambiguity associated with the rational
terms, additional procedures should be carried out [94]; however, such procedures are
trivial in the present case since the associated tree-level amplitude vanishes and there are
no ultraviolet divergences. Scalar box integrals were explicitly calculated in Refs. [60,64,94].
Furthermore, as promised, the helicity amplitude is free from UV divergences. Finally, by
exploring the fact that ∣∣∣∣ −is12s23

〈12〉〈23〉〈34〉〈41〉

∣∣∣∣2 = 1

and taking into account the different permutations over the external photons, one can easily
see that our result agrees perfectly with the ones given in the literature [85,89], apart from
an overall phase factor (which is unimportant); one simply needs to be careful with the
different conventions on external momenta.

4.2. Lee–Wick QED

Now we will discuss a simple example coming from higher-derivative QED. The
Lagrangian for the gauge sector reads [78]

L = −1
4

FµνFµν +
1

2M2 ∂µFµν∂λFλ
ν. (54)

As is well known, Lee–Wick Lagrangians can be rewritten by introducing auxiliary
gauge bosons with a very large mass M, which are much larger than any other particle
masses in our problem. As extensively discussed elsewhere, the coupling of these auxiliary
massive gauge bosons to light fields makes them decay, and positive energy is required
to excite this resonance [45,96]. Furthermore, this resonance has a “backwards in time”
feature in that the propagator has the approximate form (close to the resonance)

iD(q) ∼ −i
q2 − M̄2 − iγ

(55)

where we have suppressed Lorentz indices. Notice that there are two minus sign differences
from a normal resonance, the −i in the numerator and the −iγ in the denominator. These
combined sign differences lead to the distinguishing property of a time-reversed version of
a usual unstable particle propagator. This unusual resonance was dubbed a Merlin mode in
Refs. [45,97]. There are evidences that point to the stability of theories containing Merlin
modes [45,96].

Here we are interested in using the unitarity method to calculate a scattering amplitude
involving Merlin particles circulating in the loop. For simplicity, we will consider the
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narrow-width approximation, Γ � M, where Γ is the width of the Merlin particle. The
process we have in mind is the muon-electron scattering e+e− → µ+µ− at next-to-leading
order, which is one of the simplest in QED processes, but a crucial one in the comprehension
of all reactions in e+e− colliders [98]. The calculations with photons running in the loop
were carried out in a number of places, see for instance Refs. [99–107]. Here we wish to
consider solely the one-loop box diagram depicted in Figure 2. We show how to calculate
the coefficient associated with scalar boxes when internal gauge lines are associated with
Merlin propagators.

e− µ−

e+ µ+

Figure 2. The box diagram related to the one-loop corrections to the process e+e− → µ+µ−. Curly
lines represent photons or Merlin particles and straight lines are fermions.

For simplicity, consider the high-energy scattering limit in which the fermions are
massless. The three-particle amplitude involving a fermion, an anti-fermion, and a Merlin
particle reads (all momenta incoming)

iA3( f̄−1/2
1 , f+1/2

2 , p) = v̄−(1)ieγµu+(2)ε
I J
µ

= ie〈1|γµ|2
] 1√

2

〈p|σµ|p
]

M

=
√

2ie
〈1p〉

[
p2
]

M
(56)

where we used that ηµνσαα̇
µ σ

ββ̇
ν = 2εαβεα̇β̇. Notice that both fermions need to have opposite

helicity to give a non-vanishing result. Since 〈p|γµ|q
]
=
[
q|γµ|p〉, one also obtains

A3( f̄+1/2
1 , f−1/2

2 , p) =
√

2e
〈2p〉

[
p1
]

M
. (57)

The three-point amplitudes involving fermions and a Merlin particle can be computed similarly.
In order to calculate the associated contribution to the coefficient of the scalar box

integral, we will resort to the maximal-cut technique, which in the present case means
evaluating a quadruple cut. We choose the associated helicities to be he− = hµ− = −1/2
and he+ = hµ+ = +1/2. We have that

Cut-max = ∑
{K},{L}

A3(2′, `−1/2
4 ,−`1{K})A3(1′, `−1/2

2 , `{K}1 )A3(−`1/2
2 , 1, `{L}

3 )A3(−`1/2
4 , 2,−`3{L}) (58)
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with the following cut conditions:

`2
1 = `2 = M2

`2
2 = (−`− p′1)

2 = 0

`2
3 = (`2 − p1)

2 = (−`− p′1 − p1)
2 = M2

`2
4 = (−`3 + p2)

2 = (`− p′2)
2 = 0 (59)

where p1, p′1 (p2, p′2) are the momenta associated with external µ− and µ+ (e− and e+),
respectively. Using the 3-particle amplitudes derived above, we find that

Cut-max =
4e4

M4 〈`4`I〉
[
`J2′

]
〈`2`

I〉
[
`J1′

]
〈1`K

3 〉
[
`L

3 `2
]
〈2`3K〉

[
`3L`4

]
= 4e4〈12〉〈1′2′〉

[
1′2′

]2
= −4e4 s12s2

1′2′

〈1′2′〉
[
12
] . (60)

As a simple check, one can easily prove that we obtain the same result by resorting to
the standard evaluation in terms of polarization sums:

Cut-max = e4〈`4|γµ|2′
]
〈`2|γν|1′

](
ηµν −

`µ`ν

M2

)
〈1|γα|`2

]
〈2|γβ|`4

](
ηαβ −

`3α`3β

M2

)
= e4

(
2〈`4`2〉

[
1′2′

]
− 〈`4|`|2′

]
〈`2|`|1′

]
M2

)(
2〈12〉

[
`4`2

]
− 〈1|`3|`2

]
〈2|`3|`4

]
M2

)
= 4e4〈12〉〈1′2′〉

[
1′2′

]2 (61)

where we used the Fierz identity and momentum conservation at each vertex. So, we can
write that

A1−loop(e+e− → µ+µ−) = −4e4 s12s2
1′2′

〈1′2′〉
[
12
] I4(p1, p′1, p2, p′2) + Triangles + Bubbles + Tadpoles +R (62)

for the contribution coming from Merlin particles running inside the loop, and now

I4(p1, p′1, p2, p′2) =
∫ dD`

(2π)D
−i

[`2 −M2 − iMΓ]
i(

`+ p′1
)2

+ iε

× −i

[
(
`+ p′1 + p1

)2 −M2 − iMΓ]

i(
`− p′2

)2
+ iε

. (63)

Observe the change in the overall sign of the Merlin propagators—as well as in their
imaginary parts—in comparison with the W-boson propagators discussed in the previous
subsection. Moreover, the presence of Γ can be understood along the same lines as in the
normal case—it is important for defining the contour associated with the loop integration
but it cannot appear in the final answer obtained after performing the loop integral. Indeed,
integrals associated with the Merlin propagators have to be evaluated using the Lee–Wick
prescription for integration in the complex `0 plane so that the Wick rotation remains well
defined [75–79].

4.3. Non-Local Theories

Previously we have claimed that we can work only with stable particles at the expense
of locality. That is, when one is off resonance, a way to deal with the problem of unstable
particles is to eliminate them altogether and as a consequence we introduce a non-local
description of the problem, albeit one containing only stable modes. Let us briefly discuss
this method for the case of light-light scattering. A similar reasoning can also be used
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for the case of Lee–Wick theories. Since what one has is a non-local interaction, we will
discuss the process γγ → γγ within a non-local effective theory. We consider a variant
of the theory described in Ref. [108], i.e., we will consider a non-local scalar QED. This
effective context should account for the issues that one will face when dealing with unstable
particles off resonance. The non-local interaction between complex scalars and photons is
described by the following Lagrangian density

LNL = φ∗(x)Σ(x− y)U(x, y)φ(y) (64)

where the non-local coefficient Σ(x− y), which plays the role of a scalar self-energy term,
is assumed to be a function of the scalar invariant (x− y)2. In addition, the path-ordered
exponential U(x, y) is defined as

U(x, y) = P exp
[
−ie

∫ y

x
dωµ Aµ(ω)

]
(65)

where dωµ is the element of integration along a path connecting points x and y. The path
ordering in the definition of U(x, y) is necessary to maintain the gauge-transformation
property of U(x, y) for the non-Abelian case. In any case, the path ordering is not required
for the photon case [109]. There are also further conditions that should be imposed on the
path [108]. The non-local gauge–boson–scalar–scalar vertex can be derived in the standard
way and the result is (assuming that the non-local coefficient has analyticity properties
resembling standard self-energy functions)

iΓµ(q, p,−p′) = ie(2p + q)µS(p, p′)(2π)4δ(q + p− p′) (66)

where

S(p2, p′2) =

[
Σ(p′2)− Σ(p2)

]
p′2 − p2 , (67)

Σ(p2) being the Fourier transform of the self-energy Σ. It is easy to verify that, for the full
vertex (containing also the local part, which is not of interest to us here), the Ward identity
for dressed scalar propagators is respected [108]. As discussed above, any poles coming
from non-local vertices should have zero residues. It is easy to see that this is the case.
Furthermore, notice also that

lim
p2→p′2

S(p2, p′2) =
∂Σ(p′2)

∂p′2
≡ F(p′2). (68)

This implies the following three-particle amplitudes involving two complex scalars
and one photon:

Atree
3 [p, q+, p′] = 2eF(m2)

〈ξ|p|q
]

〈ξq〉

Atree
3 [p, q−, p′] = 2eF(m2)

〈q|p|ξ
][

qξ
] (69)

where m is the mass of the scalars. Observe that this is a gauge-invariant amplitude. Since
the other gauge interactions are determined from the condition of off-shell gauge invariance,
they should not comprise any new on-shell information. Hence, calculation of higher-point
tree-level amplitudes may proceed via the usual BCFW recursion relations6.

The one-loop contribution to the process γγ→ γγ proceeding through scalar loops
with the above non-local interaction can be calculated in the same way as in the previous
case with the W boson. For instance, for the all-plus helicity amplitude one finds that
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A1−loop
4 (+ +++) = −32e4m4[F(m2)]4

s12s23

〈12〉〈23〉〈34〉〈41〉 I4(p1, p2, p3, p4) + Perm. +R (70)

where an extra factor of two was taken into account due to the fact that there is a complex
scalar propagating in the loop.

5. Summary

Herein we have discussed the use of unitarity methods in field theories containing
resonances. We have shown, through the detailed assessment of three physical situations,
how the technique can still be put in practice to such theories at one-loop. Our purpose
was to provide an one-loop proof of the validity of unitarity-based methods for unstable
particles as a consequence of unitarity itself. That is, generically speaking, if unitarity
is satisfied by the inclusion of only stable states in unitarity sums, this implies that, for
the unitarity method, one must sum over only the asymptotic states of the theory in
Equation (2). In the complex-mass scheme, this means that, to leading order and close
to the resonance region, the cut of the unstable propagator proceeds through the cut of
the loop of stable particles. On the other hand, in the NWA, the cut taken through the
unstable particle (setting its width to zero) recovers the same result as a cut through the
stable decay products. This is the basic requirement for a four-dimensional amplitude
involving unstable particles to have cut-constructible parts. Without it, unitarity cuts could
not enable one to establish a relationship between the pole structure of the integrand and
the branch-cut structure of the loop integral.

Our aim here was not to devise a complete account of all the aspects of the method
for unstable particles. Indeed, even though the proof of applicability of unitarity-based
methods might be extended to higher orders in perturbation theory, in the present study
we have limited ourselves to one-loop order. This is because unitarity cuts provide useful
information that can be used in the most efficient way when a complete basis of integrals
is known, and this is somewhat straightforward at one loop; the set of master integrals
necessary to perform the reduction in generic one-loop tensor integrals is well known, as
discussed above. On the other hand, at leading order and close to the resonance region, the
CMS cut propagator of the unstable particle turns into a nascent delta function, reproducing
the stable particle result, and hence we are allowed to associate the outcome with physical
particles carrying positive energy. Such observations allow one to prove Equation (2) in
a straightforward way. In turn, through the examination of simple one-loop examples,
we demonstrated explicitly how powerful the method still is when constructing one-loop
amplitudes with unstable particles. Further work is recommended to better understand
the application of such methods to these theories. One should establish the validity of
the method to higher loops. In principle, the proof to higher orders proceeds in much the
same way—however, in this case other methods (such as integration-by-parts techniques)
should also be employed as integral reduction in the loop integral in terms of a set of
master integrals is no longer straightforward and the cuts of internal propagators become
more involved.

We have tried to fill this aforementioned gap in the literature of unitarity methods with
this primary exploration, and we believe that our study can be useful in the investigations
of the Standard Model Effective Field theory (SMEFT) [110] or the Higgs Effective Field
Theory (HEFT) [111]. Indeed, the calculation of loop amplitudes of massive on-shell
SMEFT amplitudes focusing on the electroweak sector will obviously involve internal
resonances, and an understanding of the unitarity method as a framework to tackle this
computation would be most welcome. On the other hand, loop amplitudes of higher-
derivative theories also contains resonances, the Merlin modes, and now a careful treatment
of those within unitarity methods is available. We believe this will have an important impact
on the evaluation of amplitudes of quadratic gravity, a promising conservative ultraviolet
completion of quantum gravity. This would indeed be interesting to investigate, and we
hope to explore this calculation in subsequent works [112,113].
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Appendix A. Quick Review of the Spinor-Helicity Formalism

Here we quickly review some basic aspects concerning the spinor-helicity formalism. For a
more detailed discussion concerning massless particles, we refer the reader to Refs. [50,51,55].

We use Pauli matrices when representing lightlike momenta such as bispinors:

pαα̇ = σαα̇
µ pµ =

(
p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

)
. (A1)

Since pµ is lightlike, det pαα̇ = 0 and hence pαα̇ has rank 1. This means that it can be
written as an outer product of helicity spinors:

pαα̇ = λαλ̃α̇. (A2)

Inner products between helicity spinors are carried out with the two-dimensional
Levi-Civita symbol as well as the raising and lowering of spinor indices. Helicity spinors
can also be represented as

λα = |p〉, λα = 〈p|
λ̃α̇ =

[
p|, λ̃α̇ = |p

]
. (A3)

Hence
pαα̇ = |p〉

[
p|, pα̇α = |p

]
〈p|. (A4)

We take all momenta incoming, so conservation of momentum reads ∑i pµ
i = 0. Since

pµ =
1
2

σµαα̇ pα̇α

conservation of momentum in terms of helicity spinors reads

n

∑
j=1
|j〉
[
j| = 0. (A5)

In order to write photon polarizations in terms of helicity spinors, one introduces a
reference lightlike momentum rµ. Except for the fact that it must not be aligned with the
associated momentum of the particle, rµ is arbitrary. For the two physical polarizations,
one finds

[
ε−p (r)

]αα̇
=
√

2
|p〉
[
r|[

pr
] ,

[
ε−p (r)

]
α̇α

=
√

2
|r
]
〈p|[

pr
]

[
ε+p (r)

]αα̇
=
√

2
|r〉
[
p|

〈rp〉 ,
[
ε+p (r)

]
α̇α

=
√

2
|p
]
〈r|
〈rp〉 (A6)
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where [
ε±p (r)

]αα̇
= σαα̇

µ ε
µ
±(p; r).

and

ε
µ
−(p; r) =

1√
2

〈p|γµ|r
][

pr
]

ε
µ
+(p; r) =

1√
2

〈r|γµ|p
]

〈rp〉 . (A7)

The Ward identity in QED is assured by the freedom of choice of reference momentum.
Left-handed (h = −1/2) and right-handed (h = +1/2) Dirac spinors can be written as

|p〉 =

(
λα

0

)
, |p

]
=

(
0

λ̃α̇

)
(incoming fermion, outgoing anti-fermion)

〈p| =
(
λα 0

)
,
[
p| =

(
0 λ̃α̇

)
(outgoing fermion, incoming anti-fermion). (A8)

The gamma matrices in the Weyl basis read

γ
µ
αα̇ =

(
0 σµαα̇

σ̄
µ
α̇α 0

)
(A9)

where σµ = (1 σ) and σ̄µ = (1 − σ).
Let us briefly discuss the formalism for massive particles that we used in this

work [90,114–117]. This is obtained by noting that det pαα̇ = m2 in the massive case
and now pαα̇ has rank 2. So it can be written as the sum of two rank-one matrices:

pαα̇ = λα I λ̃α̇
I . (A10)

The index I = 1, 2 indicates a doublet of the SU(2) little group. Since det pαα̇ =
det λ det λ̃ = m2, we simply take det λ = det λ̃ = m. Just like spinor indices, the little
group indices are raised and lowered by the SU(2)-invariant tensor εI J , ε I J . It implies that

pαα̇ = λα I λ̃α̇
I = −λα

I λ̃α̇ I = |pI〉
[
pI |

pα̇α = −λ̃I
α̇λα I = λ̃α̇ Iλ

I
α = −|pI]〈pI |. (A11)

By definition, the massive spinor helicity variables satisfy

pαα̇λ̃I
α̇ = mλα I , pα̇αλα I = mλ̃I

α̇. (A12)

Comparing this with the usual Dirac equations of motion one is led to the natural
identifications for the Dirac spinors:

uI(p) =

(
λα I

λ̃I
α̇

)
vI(p) =

(
λα I

−λ̃I
α̇

)
(A13)

and similarly for the conjugate spinors

ūI(p) =
(
−λα I λ̃α̇

I
)

v̄I(p) =
(
λα I λ̃α̇

I
)
. (A14)
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Since the massive spinor bilinears satisfy

〈λIλJ〉 = mδI
J , 〈λIλJ〉 = −mεI J , 〈λIλJ〉 = mε I J[

λ̃I λ̃J
]

= −mδI
J ,
[
λ̃I λ̃J] = mεI J ,

[
λ̃I λ̃J

]
= −mε I J

λI αλI β = |λI〉〈λI | = −mδα
β, λ̃I

α̇λ̃
β̇
I = |λI][λI | = mδ

β̇
α̇ (A15)

it is easy to see that the Dirac spinors obey the usual spin sums. Let us introduce a bold
notation to indicate symmetric compositions of the SU(2) little-group indices of massive
spinors. One has that

pαα̇ = |p〉
[
p|

pα̇α = −|p
]
〈p| (A16)

and the Dirac equation can be rewritten as

pαα̇|p
]

= m|p〉
pα̇α|p〉 = m|p

][
p|pα̇α = −m〈p|
〈p|pαα̇ = −m

[
p|. (A17)

In addition:

〈31〉〈32〉 = 〈3I1〉〈3I2〉 (I = J)

〈31〉〈32〉 =
1√
2

(
〈3I1〉〈3J2〉+ 〈3J1〉〈3I2〉

)
(I 6= J). (A18)

We can alternatively write the massive momentum as

pµ = kµ + qµ (A19)

where k2 = q2 = 0 and p2 = 2k · q = 〈kq〉
[
qk
]
= m2. In terms of bispinors:

pαα̇ = kαα̇ + qαα̇

pα̇α = kα̇α + qα̇α. (A20)

One has the following identifications

|p1〉 = |q〉, |p1
]
= |q

]
|p2〉 = |k〉, |p2

]
= |k

]
|p1] = |k

]
, |p1〉 = −|k〉

|p2] = −|q
]
, |p2〉 = |q〉. (A21)

Also

〈kq〉 =
[
qk
]
= m

pαα̇|k
]

= m|q〉
pα̇α|k〉 = −m|q

]
pαα̇|q

]
= −m|k〉

pα̇α|q〉 = m|k
]
. (A22)
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The polarization vector of a massive vector boson of momentum p and mass m is
given by

εI J
µ =

1√
2

〈p|σµ|p
]

m
(A23)

or, in terms of bispinors: [
εI J]αα̇

=
√

2
|p〉
[
p|

m
. (A24)

There is an implicit symmetrization on SU(2) indices. These polarizations correspond
to transverse and longitudinal modes:

ε+µ = ε11
µ =

1√
2

〈p1|σµ|p1]
m

ε−µ = ε22
µ =

1√
2

〈p2|σµ|p2]
m

ε0
µ = ε12

µ = ε21
µ =

1
2
〈p1|σµ|p2]+ 〈p2|σµ|p1]

m
. (A25)

These massive polarization vectors satisfy the traditional normalization for the vector boson.
Under little group scaling, one finds that

|p〉 → z|p〉, |p
]
→ z−1|p

]
(A26)

for massless spinors, whereas for massive spinors we have the following SL(2) transformation:

λI →W I
J λJ λ̃I → (W−1)J

I λ̃J . (A27)

Notes
1 The terminology “unstable propagator” is actually a misnomer because what we mean by “unstable” is that the particle associated

with this propagator. However, as the reader can easily check, this parlance is employed in the specialized literature. Therefore for
brevity we will stick with this terminology. Henceforth, the expression “unstable propagator” will be understood as “propagator
associated with an unstable particle/state”.

2 For a much more extensive body of research on the unitarity method, please check references within [24,31,46–49].
3 For a nice discussion of some additional subtleties that can be encountered in this situation, see Ref. [42] and references

cited therein.
4 Incidentally, this implies that the expansion (4) is also valid in the NWA as Γ → 0 and the full energy dependence of the

self-energy does not need to be taken into account.
5 Recall this is the narrow-width approximation we are using, not a fixed-width scheme, which is known to introduce gauge

dependence. Indeed, fixed-width schemes are known to violate SU(2) × U(1) Ward identities—see for instance the discussion
in Ref. [91]. Perhaps, in order to avoid further confusion, a better terminology for the narrow-width approximation would be
“zero-width approximation”, as first suggested by John F. Donoghue in a private communication with the author, because after all
it comes from taking the width to zero.

6 We recall that a four-scalar interaction is also possible in scalar QED and this interaction provides independent gauge-invariant
data. As a consequence, the amplitude calculated with the BCFW recursion relation is the one associated with choosing the scalar
self-coupling constant to be proportional to e2. For more details regarding this issue in scalar QED—which is independent of the
addition of the non-local interaction—see Ref. [51].
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