
Citation: Cavalcanti, R.T.; da Silva,

J.M.H. Quantum Hairy Black Hole

Formation and Horizon Quantum

Mechanics. Universe 2023, 9, 23.

https://doi.org/10.3390/

universe9010023

Academic Editors: Xue-Mei Deng

and Lorenzo Iorio

Received: 30 November 2022

Revised: 21 December 2022

Accepted: 29 December 2022

Published: 30 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Quantum Hairy Black Hole Formation and Horizon
Quantum Mechanics
Rogerio Teixeira Cavalcanti *,† and Julio Marny Hoff da Silva †

Departamento de Física, Universidade Estadual Paulista (Unesp), Guaratinguetá 12516-410, Brazil
* Correspondence: rogerio.cavalcanti@unesp.br
† These authors contributed equally to this work.

Abstract: After introducing the gravitational decoupling method and the hairy black hole recently
derived from it, we investigate the formation of quantum hairy black holes by applying the horizon
quantum mechanics formalism. It enables us to determine how external fields, characterized by hairy
parameters, affect the probability of spherically symmetric black hole formation and the generalized
uncertainty principle.
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1. Introduction

Given their intrinsic connection with intense gravitational fields, solid theoretical
basis [1–3], and several observational results corroborating their existences, black holes
play a central role in contemporary high-energy physics and astrophysics [4–7]. Despite
the characterization of the horizon of stationary black hole solutions being well-known
within general relativity [3,8], the nature of the horizons of non-stationary or stationary
solutions beyond general relativity is still a source of extensive research [9–12]. The
investigation of black holes is not restricted to astrophysical objects; they are also expected
to be formed whenever a high concentration of energy is confined to a small region of
spacetime, producing so-called quantum black holes [7,13–17]. However, the precise
formation mechanism of classical and quantum black holes is still unknown. Although
we do not have a theory of quantum gravity, phenomenology suggests that some features
of quantum black holes are expected to be model-independent [7]. From a certain scale,
candidate theories should modify the results of general relativity, giving birth to some
alternatives to Einsteins’s theory of gravity [18,19]. Examples could allow for the presence
of non-minimal coupled fundamental fields or higher derivative terms during the action,
which directly affects the uniqueness theorems of black holes in general relativity. The
famous no-hair theorem is not preserved outside the general relativity realm. These
solutions lead to effects that are potentially detectable near the horizon of astrophysical
black holes [20–22], or in quantum black holes’ formation [23,24], and may provide hints
for the quantum path.

One of the major challenges in general relativity is finding physically relevant solutions
to Einstein’s field equations. On the other hand, deriving new solutions from other previ-
ously known ones is a widespread technique. This approach is precisely what the so-called
gravitational decoupling (GD) method intends to achieve. It has recently commanded the
community’s attention due to its simplicity and effectiveness [25–27] in generating new,
exact analytical solutions by considering additional sources to the stress-energy tensor.
The recent description of anisotropic stellar distributions [28,29], whose predictions might
be tested in astrophysical observations [30–33], as well as the hairy black hole solutions
by gravitational decoupling, are particularly interesting. The latter describes a black hole
with hair sourced by generic fields, possibly of quantum nature, surrounding the vacuum
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Schwarzschild solution [27]. Exciting results have been found during investigation of this
solution [34–36].

From the quantum side, one of the key features of quantum gravity phenomenology
is the generalized uncertainty principle (GUP), which modifies the Heisenberg uncertainty
principle accordingly

∆x∆p & h̄
(

1 + ε(∆p)2
)

. (1)

This expression of the GUP, which stems from different approaches to quantum grav-
ity [37–46], characterizes a minimum scale length ∆x. This feature emerges quite naturally
in the horizon quantum mechanics formalism (HQM) [16,47]. In addition to the GUP,
HQM also provides an estimation of the probability of quantum black hole formation. In a
scenario of extra-dimensional spacetimes, the HQM gave an explanation for the null results
of quantum black hole formation in current colliders [23,24]. Could it also tell us something
about a mechanism for decreasing the fundamental scale to something near the scale of
current colliders? Our aim is to investigate the quantitative and qualitative effects of black
hole hair, regarding the probability of black hole formation and the GUP by applying the
horizon quantum mechanics formalism.

This paper is organized as follows: Section 2 is dedicated to reviewing the gravitational
decoupling procedure, the metric for GD hairy black holes, and an approximation for the
horizon radius. In Section 3, we apply the horizon quantum mechanics formalism to
the hairy black hole solution of the previous section. We compare the probability of
quantum black hole formation and the GUPs of hairy black holes for a range of hair
parameters, unveiling the effects of the hair fields. Finally, Section 4 is dedicated to
conclusions and discussion.

2. Hairy Black Holes and Horizon Radius

Starting from Einstein’s field equations

Gµν = 8π Ťµν, (2)

where Gµν = Rµν − 1
2 Rgµν denotes the Einstein tensor, the gravitational decoupling

(GD) [25] method takes the energy–momentum tensor decomposed as

Ťµν = Tµν + Θµν. (3)

Here, Tµν is the source of a known solution to general relativity, while Θµν introduces
a new field or extension of the gravitational sector. From ∇µ Gµν = 0, we also have
∇µ Ťµν = 0. The effective density and the tangential and radial pressures can be determined
by examining the field equations

ρ̌ = ρ + Θ 0
0 , (4a)

p̌t = p−Θ 2
2 , (4b)

p̌r = p−Θ 1
1 . (4c)

The idea is to deform a known solution to split the field equations in a sector containing
the known solution with source Tµν and a decoupled one governing the deformation,
encompassing Θµν. In fact, assuming a known spherically symmetric metric,

ds2 = −eκ(r)dt2 + eζ(r)dr2 + r2dΩ2, (5)

and deforming κ(r) and ζ(r) as

κ(r) 7→ κ(r) + α f2(r), (6a)

e−ζ(r) 7→ e−ζ(r) + α f1(r), (6b)
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the resulting decoupled field equations read

8π Θ 0
0 = α

(
f1

r2 +
f ′1
r

)
, (7a)

8π Θ 1
1 − α

e−ζ f ′2
r

= α f1

(
1
r2 +

κ′(r) + α f ′2(r)
r

)
, (7b)

8πΘ 2
2 −α f1Z1(r) = α

f ′1
4

(
κ′(r) + α f ′2(r)+

2
r

)
+αZ2(r), (7c)

where [25]

Z1(r) = α2 f ′2(r)
2 + 2 α

(
f ′2(r)κ

′(r) +
f ′2(r)

r
+ f ′′2 (r)

)
+ κ′(r)2 +

2 κ′(r)
r

+ 2 κ′′(r), (8a)

Z2(r) = αe−ζ
(

2 f ′′2 + f 2′
2 +

2 f ′2
r

+ 2κ′ f ′2 − ζ′ f ′2

)
. (8b)

The above equations state that if the deformation parameter α goes to zero, then Θµν

must go to zero. It is worth mentioning that for extended geometric deformation, that is, for
f2 6= 0, the sources are not individually conserved in general. However, as discussed in [26],
in this case, the decoupling of the field equations without an exchange of energy is allowed
in two scenarios: (a) when Tµν is a barotropic fluid whose equation of state is T0

0 = T1
1 or

(b) for vacuum regions of the first system Tµν = 0. When minimal geometric deformation
is applied, on the other hand, the sources are shown to be individually conserved [25,26].

Assuming the Schwarzschild solution to be the known one and requiring a well-
defined horizon structure [27], from grr = − 1

gtt
follows(

1− 2M
r

)(
eα f2(r) − 1

)
= α f1(r). (9)

Therefore, one is able to write

ds2 = −
(

1− 2M
r

)
eα f2(r)dt2+

(
1− 2M

r

)−1
e−α f2(r)dr2 + r2 dΩ2. (10)

Further, assuming strong energy conditions,

ρ̌ + p̌r + 2 p̌t ≥ 0, (11a)

ρ̌ + p̌r ≥ 0, (11b)

ρ̌ + p̌t ≥ 0, (11c)

and managing the field equations, a new hairy black hole solution was found [27]

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2dΩ2, (12)

where
f (r) = 1− 2GM + α`

r
+ αe−

r
GM . (13)

The dimensionless parameter 0 ≤ α ≤ 1 tracks the deformation of the Schwarzschild
black hole, e is the Euler constant, and ` is the direct effect of the nonvanishing additional
font Θµν. Notice that by taking α = 0, the Schwarzschild solution is restored. Further,
the ` parameter is limited to 2GM/e2 ≤ ` ≤ 1 due to the assumption of a strong energy
condition. In extreme cases, ` = 2GM/e2 and

fe(r) = 1− 2GM
r

+ α

(
e−

r
GM − 2GM

e2 r

)
. (14)
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The hairy black hole has a single horizon, located at r = rH , such that(
1 + αe−

rH
GM

)
rH = 2GM + α`. (15)

Such an equation has no analytical solution. Nevertheless, a very accurate analytical
approximation is found by Taylor expanding it around the Schwarzschild horizon radius
rS = 2GM,

rH
GM

≈ 4
(
α`e2/GM− 3 α + e2)

α`e2/GM− 4 α + 2 e2 . (16)

Figure 1 shows a comparison between the exact and approximated horizon radii for
different values of the hairy parameters. In the following section, we are going to use
Equation (16) for the analytical expression of the hairy black hole’s horizon radius.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

`
GM

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

r H G
M

α = 0.00
α = 0.20
α = 0.40
α = 0.60
α = 0.80
α = 1.0
Exact

Figure 1. The radius of the hairy black hole horizon rH as a function of ` for different values of the
parameter α. The colored dashed lines represent the approximated radius, and the gray lines are the
exact ones. It shows how the hairy horizon deviates from the Schwarzschild horizon for an increasing
α and `. The ranges for α and ` were fixed due to the assumption of a strong energy condition [27].

3. The Horizon Quantum Mechanics Formalism

Horizon quantum mechanics (also known as horizon wave function formalism) is
an effective approach capable of providing the signatures of black hole physics to the
Planck scale [48–51] (see [47] for a comprehensive review). The main idea is to extend
quantum mechanics and gravity further than the current experimental limits. In such
an approach, we face the conceptual challenge of consistently describing classical and
quantum mechanical objects, such as horizons and particles. This is achieved by assigning
wave functions to the quantum black hole horizon. This association allows the use of
quantum mechanical machinery to distinguish between particles and quantum black holes
and to estimate the GUPs. Nevertheless, first, we must choose a model describing the
particle wave function to derive the results. Due to the previous results’ simplicity and
efficiency, we shall use the Gaussian model.

From classical general relativity, we know that the horizons of black holes are described
by trapping surfaces, whose locations are determined by

gij∇ir∇jr = 0 , (17)
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where ∇ir is orthogonal to the surfaces of the constant area A = 4πr2. A trapping surface
then exists if there are values of r and t such that the gravitational radius RH satisfies

RH(r, t) ≥ r . (18)

Considering a spinless point-particle of mass m, an uncertainty in the spatial particle
localization of the same order of the Compton scale λm ' h̄/m = lp mp/m follows from
the uncertainty principle, where lp and mp are the Planck length and mass, respectively.
Arguing that quantum mechanics gives a more precise description of physics, RH makes
sense only if it is larger than the Compton wavelength associated with the same mass,
namely RH & λm. Thus, for the Schwarzschild radius RS = 2Gm = 2 lp

mp
m,

lp m/mp & lp mp/m =⇒ m & mp . (19)

This suggests that the Planck mass is the minimum mass such that the Schwarzchild radius
can be defined.

From quantum mechanics, the spectral decomposition of a spherically symmetric
matter distribution is given by the expression

|ψS〉 = ∑
E

C(E)|ψE〉 , (20)

with the usual eigenfunction equation

Ĥ|ψE〉 = E|ψE〉 , (21)

regardless of the specific form of the actual Hamiltonian operator Ĥ. Using the energy
spectrum and inverting the expression of the Schwarzschild radius, we have

E = mp
rH

2lp
. (22)

Putting it back into the wave function, one can define the (unnormalized) horizon wave
function as

ψH(rH) = C
(

mp
rH

2lp

)
(23)

whose normalization is fixed, as usual, by the inner product

〈ψH | φH〉 = 4π
∫ ∞

0
ψ∗H(rH)φH(rH)r2

HdrH. (24)

However, the classical radius RH is thus replaced by the expected value of the operator R̂H .
From the uncertainty of the expectation value, it follows that the radius will necessarily be
“fuzzy”, similar to the position of the source itself. The next aspect one has to approach to
establish a criterion for deciding if a mass distribution does or does not form a black hole is
if it lies inside its horizon of radius r = rH. From quantum mechanics, one finds that it is
given by the product

P<(r < rH) = PS(r < rH)PH(rH), (25)

where the first term,

PS(r < rH) = 4π
∫ rH

0
|ψS(r)|2r2dr, (26)
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is the probability that the particle resides inside the sphere of radius r = rH, while the
second term,

PH(rH) = 4πr2
H|ψH(rH)|2 (27)

is the probability density that the value of the gravitational radius is rH. Finally, the
probability that the particle described by the wave function ψS is a BH will be given by the
integral of (25) over all possible values of the horizon radius rH. Namely,

PBH =
∫ ∞

0
P<(r < rH)drH, (28)

which is one of the main outcomes of the formalism.

3.1. Gaussian Sources

The previous construction can be made explicit by applying the Gaussian model for
the wave function. To implement this idea, let us recall that spectral decomposition is also
assumed to be valid for momentum. Therefore, from (20), 〈p|ψS〉 = C(p) ≡ ψH(p). The
Gaussian wave function for ψS scales as r2 in the position space and leads to a Gaussian
wave function in the momentum space, scaling as p2, naturally. Finally, since the dispersion
relation relates p2 with energy, we are able to have 〈p|ψS〉 = ψH(rH) via (22). Hence,
starting with a Gaussian wave function, we can describe a spherically symmetric massive
particle at rest, such as

ψS(r) =
e−

r2

2 l2

(l
√

π)3/2 . (29)

The corresponding function in momentum space is thus given by

ψ̃S(p) = 4π
∫ ∞

0

sin(rp)√
8π3rp

e−
r2

2 l2

(l
√

π)3/2 r2dr

=
e−

p2

2 ∆2

(∆
√

π)3/2 , (30)

where ∆ = mp lp/l is the spread of the wave packet in momentum space, whose width l
the Compton length of the particle should diminish,

l ≥ λm ∼
mp lp

m
. (31)

In addition to the straightforward handling of a Gaussian wave packet, it is also relevant
to recall that the Gaussian wave function leads to a minimal uncertainty for the expected
values computed with it. Had we used another wave function, it would certainly imply a
worsening uncertainty, eventually leading to unnecessary extra difficulties relating to the
HQM and GUP (see next section). Back to our problem, assuming the relativistic mass-shell
relation in flat space [48]

p2 = E2 −m2 , (32)

the energy E of the particle is expressed in terms of the related horizon radius rH = RH(E),
following from Equation (16),

E =
αmp`e2 +

(
α− e2)mprH

2 (2 α− e2)lp
. (33)
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Thus, from Equations (30) and (33), one finds the the horizon wave function of the hairy
black hole

ψH(rH) = NHΘ(rH − RH) e(C2r2
H+C1rH+C0),

where

C0 = −
α2l2m2

p`
2e4

8 (2 α− e2)
2l2

p
, C1 = −

(
α− e2)αl2m2

p`e2

4 (2 α− e2)
2l2

p
, C2 = −

(
α− e2)2l2m2

p

8 (2 α− e2)
2l2

p
. (34)

The Heaviside step function Θ appears above due to the imposition E ≥ m. The normalisa-
tion factor NH is fixed according to

N−2
H = 4π

∫ ∞

0
|ψH(rH)|2 r2

H drH.

The normalized horizon wave function is thus given as follows

ψH(rH) = −
2 C

3
2
2 e

A(rH )
2

√
π

√
4 C1C2eA(RH) −

(
2
√

2C2Γ
( 3

2 ,−A(RH)
)
+
√

2πC2
1

(
erf
(√

2(2 C2RH+C1)
2
√−C2

)
− 1
))√−C2

, (35)

A(x) =
4 C2

2 x2 + 4 C1C2x + C2
1

2 C2
.

Here, Γ(s, x) denotes the upper incomplete Euler–Gamma function and erf(x) the error
function. The expression above has two classes of parameters. Two of these, α and `, are
related to the hairy black hole, and two are non-fixed a priori: the particle mass m, encoded
in RH , and the Gaussian width l. The resulting probability PBH = PBH(l, m, `, α) will also
depend on the same parameters.

According to the previous discussion, before finding the probability distribution, we
have first to find the probability that the particle resides inside a sphere with the radius
r = rH. From Equations (26) and (29), one obtains

PS(r < rH) = 4π
∫ rH

0
|ψS(r)|2r2dr =

2√
π

γ

(
3
2

,
r2

H
l2

)
,

with γ(s, x) = Γ(s)− Γ(s, x), the lower incomplete Gamma function. Equations (27) and (35)
yield PH(rH), as depicted in Figure 2.

Combining the previous results, one finds that the probability density for the particle
resides within its own gravitational radius

P<(r < rH) = 8
√

πγ

(
3
2

,
r2

H
l2

)
r2

H|ψH(rH)|2.

The probability of the particle described by the Gaussian to be a black hole is finally
given by

PBH(l, m, `, α) = 8
√

π
∫ ∞

RH

γ

(
3
2

,
r2

H
l2

)
r2

H|ψH(rH)|2, (36)

which has to be calculated numerically. Assuming the Gaussian width has the same order as
the particle Compton length, we could set l ∼ m−1 on Equation (36) and find the probability
depending on either l or m. On the other hand, by departing again from Equation (31), we
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may set values for m in terms of the Planck mass and find the probability in this scenario.
Applying l ∼ m−1 yields

PBH(l, `, α) = 8
√

π
∫ ∞

RH

γ

(
3
2

,
r2

H
l2

)
r2

H|ψH(rH)|2, (37)

or

PBH(m, `, α) = 8
√

π
∫ ∞

RH

γ

(
3
2

, r2
Hm2

)
r2

H|ψH(rH)|2. (38)

The resulting probabilities are shown in Figure 3 below. Figure 4 displays the probability
for m given as a fraction of the Planck mass.

0 1 2 3 4 5
mprH
lpm

0

1

P H
(r
H

)

l = 0.50
l = 1.0
l = 1.5
l = 2.0

Figure 2. The probability density for the value of the gravitational radius is rH for α = `/(GM) = 0.5
and different values of the Gaussian width.

0 1 2 3 4 5

l
lp

0

1

P
B
H

`mp
lpm

= α = 0.00
`mp
lpm

= α = 0.30
`mp
lpm

= α = 0.60
`mp
lpm

= α = 0.90

1 2
m
mp

0

1

P
B
H

`mp
lpm

= α = 0.00
`mp
lpm

= α = 0.30
`mp
lpm

= α = 0.60
`mp
lpm

= α = 0.90

Figure 3. The probability of a “particle” being a black hole depending on the Gaussian width or mass,
assuming l ∼ m−1.
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1 2 3 4 5

l
lp

0

1

P
B
H

`mp
lpm

= α = 0.00
`mp
lpm

= α = 0.30
`mp
lpm

= α = 0.60
`mp
lpm

= α = 0.90

Figure 4. The probability of a “particle” being a black hole depending on the Gaussian width and
mass m given as a fraction of the Planck mass, with m = mp (solid), m = 3mp/4 (dashed), and
m = mp/2 (dotted).

3.2. HQM and GUP

Since the horizon quantum mechanics formalism applies the standard wave function
description for particles, a natural question is whether it affects the Heisenberg uncertainty
principle. As mentioned, it produces a GUP similar to that produced by Equation (1). In
quantum mechanics, the uncertainty principle may be derived by calculating the uncer-
tainty associated with the wave function. Here, we start from the same point. From the
Gaussian wave function (29), the particle size uncertainty is given by

∆r2
0 = 〈r2〉 − 〈r〉2

= 4π
∫ ∞

0
|ψS(r)|2r4dr−

(
4π
∫ ∞

0
|ψS(r)|2r3dr

)2

=
3π − 8

2π
l2. (39)

One might find the uncertainty of the horizon radius in an analogous way,1

∆r2
H = 〈r2

H〉 − 〈rH〉2. (40)

The total radial uncertainty can now be taken as a linear combination of the quantities
calculated above, ∆r = ∆r0 + ε∆rH. For the uncertainty in momentum, we have

∆p2 = 〈p2〉 − 〈p〉2 =
3π − 8

2π

m2
pl2

p

l2 .

Note that the momentum uncertainty and the width l are related such that ∆p ∼ 1/l. Using
this fact in ∆r = ∆r0 + ε∆rH, one is able to find

∆r
lp

=
3π − 8

2π

mp

∆p
+ ε∆H

(
∆p
mp

)
, (41)

which is similar to the GUP discussed previously. The function ∆H also depends on the
wave function and hairy black hole parameters. Figure 5 shows the behavior of the GUP



Universe 2023, 9, 23 10 of 12

as a function of the momentum uncertainty, taking ε = 1. There, we can see a minimum
∆r placed around the Planck scale. From the GUP expression, it is straightforward to see
that a larger ε means significant correction to the quantum mechanics’ uncertainty. The
hairy parameters, however, have a small qualitative effect on fixing the minimum scale. As
shown in Figure 5, their effects become prominent for a large ∆p.

1 2

∆p
mp

1

2

∆
r
l p

`mp
lpm

= α = 0.00
`mp
lpm

= α = 0.30
`mp
lpm

= α = 0.60
`mp
lpm

= α = 0.90

Figure 5. GUP profile emerged from the horizon wave function formalism for ε = 1. The dotted line
represents the particle size uncertainty ∆r0, the dashed line represents the uncertainty of the horizon
radius ∆rH, and the solid lines describe the GUP.

4. Discussion

A few years ago, effective theories suggested lowering the scale of quantum black hole
formation to TeV. Thus, in principle, it became experimentally accessible. In spite of no
quantum black holes being detected, solid theoretical results point out that such objects
should exist in nature [7,14]. They could give us valuable hints about quantum gravity
features [7,13,14]. One of this paper’s motivating questions was whether a generic black
hole hair could significantly change the scale of quantum black hole formation. However,
regarding the analysis carried out here, the hairy black holes look qualitatively similar to
the Schwarzschild one, with a probability PBH of a similar shape and a related GUP, leading
to the existence of a minimum length scale. Nevertheless, one of the main results of the
present paper is that the existence of hair increases the probability PBH . This is indeed a
point to be stressed. Its explanation rests upon the fact that the hairy black hole radius
is slightly larger than the one for Schwarzschild. This implies that, although the scale of
quantum black hole formation is still beyond the current experimental scale, additional
fields may lower such scale. Those results might impact future colliders’ estimations of
quantum black holes coming from alternative theories of gravity and potentially stimulate
investigations of specific models of quantum hairy black holes [17].
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1 The analytical expression of ∆r2
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