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Abstract: It was shown several years ago that dark matter halo outskirts are characterized by very
steep density profiles in a very small radial range. This feature has been interpreted as a pile-up of
different particle orbits at a similar location, namely, splashback material at half an orbit after collapse.
Adhikari et al. (2014) obtained the location of the splashback radius through a very simple model by
calculating a dark matter shell trajectory in the secondary infall model while it crosses a growing
NFW profile-shaped dark matter halo. Because they imposed a halo profile instead of calculating it
from the trajectories of the shells of dark matter, they were not able to find the dark matter profile
around the splashback radius. In the present paper, we use an improved spherical infall model taking
into account shell crossing as well as several physical effects such as ordered and random angular
momentum, dynamical friction, adiabatic contraction, etc. This allows us to determine the density
profile from the inner to the outer region and to study the behavior of the outer density profile. We
compare the density profiles and their logarithmic slope of with the simulation results of Diemer and
Kravtsov (2014), finding a good agreement between the prediction of the model and the simulations.

Keywords: dwarf galaxies; galaxy clusters; modified gravity; mass–temperature relationship

PACS: 98.52.Wz; 98.65.Cw

1. Introduction

The problem of determining the structure of dark matter haloes is an old one, and
has been studied from analytical, numerical, and observational points of view. The first
efforts were based on analytical models, in particular, on the spherical collapse model. The
first trials to study the formation of virialized structure go back to the seminal paper by [1],
after which several authors investigated the consequences of secondary infall and accretion
onto proto-structures, studying in particular the structure of the density profiles. In [2],
the authors studied the self-similar collapse of scale-free perturbations, determining important
processes in the halo profiles. Several other papers have improved on these results, e.g., [3–9].
These and other studies improved the secondary infall model (SIM) by taking into account
the effects of ordered and random angular momentum, adiabatic contraction of dark matter
(DM) produced by baryons [10–12], the effects of dynamical friction, and many more effects.
Further developments were obtained by means of DM-only N-body simulations with the
determination of the Navarro–Frenk–White profile [13,14], the Einasto profile [15,16], and
hydrodynamic simulations [17,18]. Much of the past work focused on the inner structure
of haloes and was driven by efforts to understand and solve the cusp–core problem, that
is, the discrepancy between the steep slopes predicted by DM-only simulations and the
flat-cored profiles observed in low surface brightness (LSB) and dwarf galaxies. In the last
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several years, authors (e.g., [19]) have begun to study the outer part of haloes, finding that
the outer profiles are inconsistent with typical fits such as the NFW and Einasto profiles.
Findings include that the outer density profiles are characterized over a narrow range
of radii by very steep logarithmic slopes of d log ρ/d log r ≤ −4. According to [19], the
observed local steepening is due to a caustic related to the splashback of material accreted
by the halo. The presence of caustics is due to the pile-up of different particle orbits at a
similar location. The splashback radius corresponds to the outermost caustic associated
with the first apoapse after collapse. As shown in [20], the splashback location is provided
by the relation d log ρ/d log r ≤ −3. Caustics are not a rare phenomenon; they are present
in the [2] similarity solutions, in 3D similarity solutions of the collapse of triaxial peaks [21],
and in real galaxies, where they appear as radial shells [22]. However, detecting density
enhancement related to caustics in N-body simulations of dark haloes is not easy. This is
mainly due to the presence of small-scale structures that can smear out caustics [23,24].
As material accumulates, a steepening in the outer profile is observed at the splashback
radius. A few years ago, [20] estimated the location of the splashback radius using a very
simplified secondary collapse model to obtain the secondary infall trajectory of DM shells
by means of a growing DM halo with an NFW profile. In their calculation, a shape of the
halo profile was imposed instead of being computed from the trajectories of the DM shells.
As a consequence, in their calculation they were not able to obtain the full shape of the DM
profile around the splashback radius. In the following, we introduce a much more complex
spherical collapse model which allows us to simultaneously calculate the trajectories and
the DM halo profile.

The paper is organized as follows. In Section 2, we discuss the model used to determine
the density profile and which allows us to determine of the features of the outer profile.
In Section 4 we discuss the results following from the model and compare them with the
results of [19]’s simulations. Section 5 is devoted to further discussion.

2. Model

In this section, we discuss the model that allows us to determine the density profile. It
was first introduced in [8], followed by several applications: to density profiles universality
studies [25,26], to galaxies [27,28] and clusters [28,29] density profiles, and to galaxies’ inner
surface-density distributions [30].

The semi-analytical model (SAM) used in this work encompasses several upgrades on
the SIM (e.g., [1,3–7,9,31,32]). In contrast to the anterior avatars of the SIM, it comprises
non-radial collapse effects from random angular momentum (RAM [5,6,33–40])1, ordered,
tidal angular momentum [41,42], and the impact of dynamical friction (e.g., [8,43–45]) and
of baryonically-induced DM adiabatic contraction [10–12].

This SAM evolves perturbations from their linear expansion with the Hubble flow
to turn-around before collapsing, with adiabatic central potential variations including
“shell-crossing” [2,46].

Spherical SIMs2 in the filiation from [1] describe a bound mass shell expansion from a
comoving initial radius xi to its maximum (turn-around or apapsis) radius xm = xta,

xm = g(xi) = xi/δi, (1)

with the linearly grown mean overdensity inside the shell extrapolated at current epoch t0
and with δ(y) obtained as in Appendix B of [8, Equation (B4)], results from

δi =
3
x3

i

∫ xi

0
δ(y)y2dy. (2)

More generally [47], Equation (1) extends to a pure dust Universe, with the density
parameter Ωi as

xm = g(xi) = xi
1 + δi

δi − (Ω−1
i − 1)

. (3)
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This generalisation represents the core of the SIM, for which a Lagrangian shell’s time
averaged radius remains proportional to its initial radius. Using Equation (3), the final
radius x can be written as proportional to the turn around radius, xm:

x = f (xi)xm (4)

with the scaling fitted by [48]:

f = f (α) = 0.186 + 0.156α + 0.013α2 + 0.017α3

− 0.0045α4 + 0.0032α5. (5)

Mass conservation at turn around radius yields the density profile [3,35,47]

ρta(xm) = ρi(xi)

(
xi
xm

)2 dxi
dxm

. (6)

Beyond turnaround, shell crossing effects are bypassed with the Virial theorem, yield-
ing a collapse factor f = 0.5, resulting in the final density profile through mass conservation:

ρ(x)x2dx = ρix2
i dxi. (7)

This produces the power-law density profile from [3] from the shell’s initial density
approximation

ρi(xi) = ρb,i[1 + δi(xi)], (8)

and the linear δi expansion of Equation (3), reading

ρ(x) ∝ x−3(n+3)/(n+4). (9)

However, the Virial theorem relies on energy conservation, and oscillations of collaps-
ing shells through their inner shells break up the energy integral of motion and vary the
value of f .

This modifies the SIM dynamics, which assume a “gentle” collapse, as follows: with
the conjecture of adiabatic variation of the central potential [2,46], shells near the centre
oscillate many times without significant changes in potential. In other words, inner shells’
orbital period can be neglected compared with outer shells’ collapse time [49]. In this case,
the inner shells admit the radial action

∮
v(r)dr, with the radial velocity v(r) as adiabatic

invariant. The collapse of outer shells slowly changes the potential, shrinking the inner
shells via the radial action invariant.

The mass inside a shell with initial radius xi at its apocenter (apapsis radius) xm can
be decomposed in the sum of its inner shells masses, i.e., with apocenters inside xm, the
permanent component mp; with the contribution from its temporarily crossing outer shells
masses, the additional mass is madd. Mass conservation yields the first component,

mp(xm) = m(xi) =
4
3

πρb,ix3
i (1 + δi), (10)

with initial time constant density ρb,i of the homogeneous Universe. From Equation (6),
the distribution of mass m(x) = m(xm) and the system radius R, its outer shell apapsis,
together with the probability Pxm(x) to find the shell with apapsis x inside the radius xm,
follows the additional component

madd(xm) =
∫ R

xm
Prm(x)

dm(x)
dx

dx, (11)
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with the resulting total mass reading

mT(xm) = mp(xm) + madd(xm). (12)

The ratio of the time spent below xm to the outer shell’s x oscillation period allows
Pxm(x) to be computed from the outer shell’s pericenter xp and vx(η), its radial velocity at
radius η, as follows:

Pxm(x) =

∫ xm
xp

dη
vx(η)∫ x

xp

dη
vx(η)

. (13)

The outer shell’s radial velocity derives from integrating its equation of motion,
including the tidal torque-generated ordered specific angular momentum3 h(r, ν), the
random angular momentum j(r, ν) (see [8,33] and follow ups), the gravitational potential
acceleration G(r), Λ (the cosmological constant), and the dynamical friction coefficient µ:

dvr

dt
=

h2(r, ν) + j2(r, ν)

r3 − G(r)− µ
dr
dt

+
Λ
3

r. (14)

Computations of µ and the angular momenta are explained in ([8], Appendices C and
D). In the restriction where µ = 0, Equation (14) integrates into the square of velocity:

v(r)2 = 2
[

ε− G
∫ r

0

mT(y)
y2 dy +

∫ r

0

h2

y3 dy +
Λ
6

r2
]

, (15)

where the shell’s specific binding energy results from the turnaround value at
v(r) = dr/dt = 0 at r = xm in Equation (15).

The µ 6= 0 case requires the numerical integration of Equation (14) for v after its
quadrature into

dv2

dt
+ 2µv2 = 2

[
h2 + j2

r3 − G
mT

r2 +
Λ
3

r
]

v. (16)

With the above computations complete, following [2,46] we obtain f (xi) the shell’s
collapse factor, which starts at radius xi and reaches apapsis xm

f (xi) =
mp(rm)

mp(rm) + madd(rm)
, (17)

from Equations (6) and (4), the corresponding density profile at Virialisation is

ρ(x) =
ρta(xm)

f 3

[
1 +

d ln f
d ln g

]−1
. (18)

The calculations above allow us to evaluate the f (xi) variations from energy integral
break up, confirmed from N-body simulations, finding its relation to the initial density
perturbation profile and its increase with initial radius. The case xi → 0 and f → 0
recovers a radial collapse [50]. The computation from Equation (17) of f via integration of
Equation (11) can proceed numerically after variable change to express them in terms of
initial radius [38,50]. Such variable change turns Equation (11) into

madd(rm) = 4πρb,i

∫ xb

xi

Pxi (x′i)[1 + δi(x′i)]x
′2
i dx′i , (19)

with Pxi (x′i) = I(xi)/I(x′i),

I(r) =
∫ r

x′p

1
vg(x′i)

(g(η))
dg(η)

dη
dη, (20)
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taking rm = g(xi), x′p = g−1(xp) and the initial x′i shell’s pericenter xp. The upper bound xb
of Equation (19)’s integration corresponds to the presently collapsed sphere’s initial radius.
A similar variable change in Equation (16) leads to the determination of the radial velocity
v for a shell characterised with apapsis x = g(xi) at radius r = g(ri) through

dv2
x(r)
dt

+ 2µv2
x = 2

[
h2

x + j2x
r3 −Ψ(r) +

Λ
3

r
]

vx(r), (21)

with the shifted gravitational potential Ψ from the initial mass profile m(xi) reading

Ψ[g(ri)] =
Gm(xb)

g(xb)
+ G

∫ xb

ri

m(xi)

g2(xi)

dg(xi)

dxi
dxi. (22)

In summary (see [50], Section 4), the equation of motions of a shell (21), given the
angular momentum distribution, dynamical friction coefficient, and initial conditions,
integrates to compute Pxi , the probability from Equation (20), which then yields the transient
part of the gravitating mass acting on the shell madd from Equation (19) and the collapse
factor f from Equation (17) to obtain the final density profile through Equation (18) (as
in [5], Section 2.1). Our model’s ordered angular momentum formation follows ([8],
Appendix C1), its random angular momentum computation agrees with ([8], Appendix C2),
its dynamical friction coefficient and the baryon dissipative collapse are described in ([8],
Appendix D), the baryon’s adiabatic contraction is the object of ([8], Appendix E), and [8,
Appendix B] describes initial condition generation. More explicitly, the model’s “ordered
angular momentum” h derives from the tidal torque theory (TTT) [41,42,51–53], which uses
processes from the tidal torques exerted on smaller-scale structures by larger-scale objects.
On the other hand, the “random angular momentum” j is computed from the orbital axis
ratio between the pericentric and apocentric radii rmin and rmax; note that e =

(
rmin
rmax

)
[54],

modified according to the system’s dynamical state following simulations [5] into

e(rmax) ' 0.8
(

rmax

rta

)0.1
, (23)

a function of the ratio of rmax to the turnaround radius, where rmax < 0.1rta. As for the
dynamical friction effects, they are introduced into the equation of motion with a dynamical
friction force, as computed in ([8], Appendix A; see Equation (A14)). Finally, for density
profile steepening from adiabatic compression, the methods in [11] were followed.

3. Population of Haloes

The model is the principle that transforms from initial conditions to charateristics of
the galaxy. Generating a population of galaxies requires use of the model as well as an
initial range of parameters, a population of initial parameters, which provides the statistical
distribution of galaxies given a sufficiently large number of the generated population. For
the initial conditions and determination of the density profile of galaxies, it is necessary
to calculate the initial overdensity, δi(xi), which can be calculated when the spectrum of
perturbations is known. It is widely accepted that structure formation in the universe is
generated through the growth and collapse of primeval density perturbations originating
from quantum fluctuations in an inflationary phase of early Universe. The growth in time of
small perturbations is due to gravitational instability. The statistics of density fluctuations
originating in the inflationary era are Gaussian, and can be expressed entirely in terms of
the power spectrum of the density fluctuations:

P(k) = 〈|δk|2〉 (24)

where
δk =

∫
d3k exp(−ikx)δ(x) (25)
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δ(x) =
ρ(x)− ρb

ρb
(26)

and ρb is the mean background density. In biased structure formation theory it is assumed
that cosmic structures of linear scale R f form around the peaks of the density field δ(x),
and are smoothed on the same scale. According to the hierarchical scenario of structure
formation, haloes should collapse around maxima of the smoothed density field; see below.
The statistics of peaks in a Gaussian random field were studied in the classic paper by ([55],
hereafter BBKS). A well known result is the expression for the radial density profile of a
fluctuation centered on a primordial peak of arbitrary height ν:

〈δ(r)〉 = νξ(r)
ξ(0)1/2 −

ϑ(νγ, γ)

γ(1− γ2)

[
γ2ξ(r) +

R2∗
3
∇2ξ(r)

]
· ξ(0)−1/2 (27)

(Ref. [33,55], with [33] hereafter RG87), where ν = δ(0)/σ (see the following for a definition
of σ) is the height of a density peak and ξ(r) is the two-point correlation function

ξ(r) =
1

2π2r

∫ ∞

0
P(k)k sin(kr)dk, (28)

γ and R∗ are two spectral parameters respectively provided by

γ =

∫
k4P(k)dk

[
∫

k2P(k)dk
∫

k6P(k)dk]1/2 (29)

R∗ =

[
3
∫

k4P(k)dk∫
k6P(k)dk

]1/2

(30)

and ϑ(γν, γ) is

ϑ(νγ, γ) =
3(1− γ2) +

(
1.216− 0.9γ4) exp

[
−
( γ

2
)( νγ

2
)2
]

[
3(1− γ2) + 0.45 +

( νγ
2
)2
]1/2

+ νγ
2

(31)

Then, δi is calculated from Equation (27) similarly to [5] (see their Section 2.2). In order
to calculate δ(r) we need a power spectrum, P(k). The CDM spectrum used in this paper is
that of BBKS, with the transfer function

T(k) =
[ln(1 + 2.34q)]

2.34q
· [1 + 3.89q + (16.1q)2 + (5.46q)3

+ (6.71)4]−1/4 (32)

where q = kθ1/2

ΩXh2Mpc−1 . Here, θ = ρer/(1.68ρfl) represents the ratio of the energy density
in relativistic particles to that in photons (θ = 1 corresponds to photons and three flavors
of relativistic neutrinos). The spectrum is connected to the transfer function through
the equation

P(k) = PCDMe−1/2k2R2
f (33)

where R f is the smoothing (filtering) scale and PCDM is provided by

PCDM = AkT2(k) (34)
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where A is the normalization constant. We normalized the spectrum by imposing the mass
variance of the density field as

σ2(M) =
1

2π2

∫ ∞

0
dkk2P(k)W2(kR) (35)

convolved with the top hat window

W(kR) =
3

(kR)3 (sin kR− kR cos kR) (36)

of radius 8 h−1 Mpc−1 being σ8 = 0.76. Throughout this paper, we adopt a ΛCDM
cosmology with WMAP3 parameters [56], Ωm = 1−ΩΛ = 0.24, ΩΛ = 0.76, Ωb = 0.043,
and h = 0.73, where h is the Hubble constant in units of 100 km s−1 Mpc−1.

The mass enclosed in R f is calculated, as in RG87, as M = 4π/3ρbR3
f , such that for

R f = 0.12 Mpc we can say that M ' 109M�.4 Structure such as Galaxies form from high
peaks in the density field, high enough that they stand out above the “noise" and dominate
the infall dynamics of the surrounding matter.

The amplitude of a given peak is expressed in terms of its σ deviation, where
σ = ξ(0)1/2. Thus, the central density contrast of an νσ peak is νξ(0)1/2 and the peak
height is provided by ν = δ(0)/σ. As galaxies are rather common, they must have formed
from peaks that are not very rare, say, 2–4 σ peaks (RG87). In [8] (Figure 6 of Appendix B),
the authors show the density profiles δ(x) plotted for ν = 2, 3, and 4. We generated a set
of galaxies starting from the initial conditions and using the model. The different masses
are related to the filtering radius R f and peak height ν. As seen in Figure 6 of Appendix B
in [8], the value of δ(x), and thus the final density profile, changes with changing ν. The
halo characteristics are modified by the tidal torque (ordered angular momentum), random
angular momentum (Equation (C17) in [8]), dynamical friction (Appendix D in [8]), and
adiabatic compression (Appendix E in [8]).

In summary, the statistics of our model’s halo populations are provided by the BBKS
Gaussian random field fluctuations. The generated sample size is the result of computing
power constraints versus stability of the median density profile, and was set after verifying
that an increase in sample size would not significantly affect the results.

4. Results

Before describing the results, we provide several commonly used definitions here. The
three-dimensional radius with respect to the center of the halo is indicated by r, while R
is used to indicate radii related to the mass of the halo. The critical density is indicated
by ρc and the mean matter density by ρm. Masses at specific overdensities are denoted by
M∆m = M(< R∆m). For example, the mass with overdensity at ∆ = 200 is M200m, while
that corresponding to the critical density M200c reads M∆c = M(< R∆c). In addition, Mvir
and Rvir are related to ∆(z), which at z = 0 corresponds to ∆vir(z = 0) ≈ 358. Instead of
using masses, haloes are binned using the mean values of the peak height ν, as at fixed ν
the halo properties across redshifts should be similar. The definition of the peak height
follows the usual

ν ≡ δc

σ(M, z)
=

δc

σ(M, z = 0)× D+(z)
, (37)

where the critical density is provided according to the spherical top hat model by δc = 1.686
and D+(z) represents the linear growth factor normalized to unity at z = 0. For a sphere of
radius R, the rms density fluctuation is provided by

σ2(R) =
1

2π2

∫ ∞

0
k2P(k)|W̃(kR)|2dk. (38)
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Here, W is the spherical top hat filter function and W̃(kR) is its Fourier transform. The
linear power spectrum P(k) is provided by the formula of [57], with the normalization
σ(8 h−1Mpc) = σ8 = 0.82; σ(M) = σ(R[M]) indicates the variance at a given mass, and the
calculation of ν uses M = Mvir. The relation between ν and the virial mass is represented
in ([19], Figure 1). Halo mass can be translated to ν by means of Rvir, as that radius
corresponds to the largest for which the density profile scatter remains relatively small at
fixed mass. For this reason, we prefer Rvir to R200m for computing the difference in mass
accretion rate between two redshifts. The mean or median profiles in rescaled radial units
are obtained by rescaling the individual halo profiles using the R∆ of the halo. The mean
and median are obtained from the rescaled profiles. The slope profiles are obtained using
the fourth-order Savitzky–Golay smoothing algorithm over the fifteen nearest bins [58], and
the functional fits are obtained by means of the Levenberg–Marquart algorithm. Median
profiles are used because they are a good approximation of the typical profile and can be
used to study trends in the density profiles.

In this paper, we use the model described in Section 2 to generate a population of
haloes from which to build up median density profiles of haloes binned by peak height.

We compare the results of our model with those of the simulations of [19]. The goal is
to show that the model provides a correct description of the outer density profile of haloes.

In Figure 1, we plot the median density profiles of two different halo samples, either
from [19] (solid lines) or from our model (dotted lines), as well as their logarithmic slope
profiles γ(r) ≡ d log ρ/d log r. The top panels show the median density profiles of low-
mass (top left) and very massive (top right) haloes at z = 0. The shaded band represents
the interval around the median containing 68% of the profiles of individual halos in the ν
bin from[19]. The bottom panel represents the logarithmic slope profiles corresponding to
the top panels. The NFW and Einasto fits of the profiles are indicated as well. The low mass
sample (left panels) is characterized by 0.5 < ν < 0.7, while the high mass sample contains
haloes with ν > 3.5. The solid lines represent the results from [19]. The dotted lines in
the top panels represent the median density profiles while the bottom panels show the
logarithmic slope profile, both obtained with our model. The plot shows a good agreement
between the profiles predicted by the model and the result of the simulated model [19],
only differing by a very small offset and lower numerical noise in our model’s case. The
very small difference in slope cannot be perceived in the density plots. The low-ν sample
median profile’s slope changes slowly until r >∼ Rvir. A large scatter is visible at larger
radii. The high-ν sample presents a steep profile at r & 0.5Rvir. The slope varies from −2
to −4 over a radius range restricted to ≈ 4 rescaled radius, as shown in the bottom panel
representing the slope profiles. The plot shows that the NFW and Einasto profiles provide a
good description of the low-ν sample out to r ≈ Rvir, while the fast steepening of the slope
of the high-ν sample is poorly described. The NFW and Einasto profiles present radically
different behaviors for the outer density profiles of haloes. They are able to fit the low-ν out
to r ≈ Rvir for the high-ν haloes, and r ≈ 0.5Rvir in the case of the high-ν haloes. In order
to fit the logarithmic slope profile, it is necessary to use a different fitting formula, such as
that presented by [19] (Section 3.3 and Appendix). In the case of both the low-ν and high-ν
samples, the profiles flatten to a slope of ≈ −1 at r & 2Rvir.
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Figure 1. Median density profiles of low-mass (top left) and very massive haloes (top right) at
z = 0. The shaded band represents the interval around the median containing 68% of the profiles of
individual halos in the ν bin. The bottom panel shows the logarithmic slope profiles from the top
panel profiles. The NFW and Einasto fits of the profiles are indicated as well. The solid lines represent
the results from [19]. The dotted lines in the top panels represent the median density profiles, while
the bottom panels show the logarithmic slope profile, both obtained with our model.

The previous plots in Figure 1 show the profiles of a ν bin at z = 0. In general, it could
be expected that the profiles of a given ν when density and radii are rescaled in the correct
way would be self-similar in shape. The problem is to find the radii and density to be used
for rescaling.

Figure 2 shows the self-similarity of the redshift evolution of the profiles for both [19]
(solid lines) and for our model (dotted lines). The left panel displays the redshift evolution
of the median density profiles for a peak with ν > 3.5 as a function of the radius rescaled
by R200m, with the density rescaled by ρm. The central panel represents the same density
profiles rescaled by Rvir and ρvir, respectively. The right panel represents the same density
profiles rescaled by Rc and ρc, respectively. The black lines correspond to z = 0 and the red
lines to z = 6.

We emphasize that the figure plot profiles are in physical units, rescaled in the three
panel from left to right by R200c, Rvir, and R200m, respectively, while the densities are
rescaled by the corresponding quantities ρc, ρvir, and ρm. The plot shows clearly that the
halo structure is approximately self-similar after rescaling with R∆. It is further evident
that the self-similarity depends on the kind of rescaling chosen. The most self-similar
inner structures of haloes are obtained by rescaling radii and densities with ρc and R200c.
Conversely, the most-self-similar outer profiles are obtained by rescaling with R200m and
ρm. In order to present a more readable figure, we only plotted the haloes at two redshifts,
z = 0, and z = 6. We compared the result of our model (dotted line) in Figure 3 with [19],
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and found again that both sets of results are in agreement, confirming the discussed self-
similarity. In order to obtain a better understanding of the self-similarity, it might be
possible to use logarithmic slope profiles, as they clearly reveal the radii at which rapid
changes in slopes happen.
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Figure 2. Self-similarity of the redshift evolution of the profiles. In all panels, solid lines represent
the results from [19] while dotted lines show results obtained with our model. Left panel: redshift
evolution of the median density profiles for a peak with ν > 3.5 as a function of the radius rescaled
by R200m and with density rescaled by ρm. Central panel: the same density profiles rescaled by Rvir

and ρvir, respectively. Right panel: the same density profiles rescaled by Rc, and ρc, respectively.
The black lines correspond to z = 0 and the red lines to z = 6.

Figure 3 plots the logarithmic slope of three ν bins at different redshifts rescaled by
R200m (top row) and R200c (bottom row). The left panels of Figure 3 present results for
the ν > 3.5 sample of Figure 2. The central and right panels refer to the ν bins shown
in [19], Figure 5. The radii in the top panels are rescaled in units of R200m, while those in
the bottom panel are expressed in units of R200c. The dotted lines represent the result of
our model. The solid lines stand for the [19] simulations. The dashed lines provide fits
using the Einasto profile. Black and red lines correspond to different redshifts indicated
in the legends of the top panels. In all cases, the slopes show a sharp steepening followed
by a flattening. In units of R200m, such sharp variations of the slope occur at the same
radii with almost no sign of evolution of the transition. The radius of the steepest slope
occurs around ≈ 1− 1.2R200m for all ν and redshifts. Furthermore, for haloes rescaled
in units of R200m the outer flattening displays almost no evolution or variation with ν.
The situation is different in the case where r < R200m. In this case, a variation of the slopes
of the profiles at a given r/R200m with ν and z is observed. If radii and densities are rescaled
by ρc and R200c, the opposite is valid. While the shapes of low-ν and high-ν profiles are
different, in any case they show a certain degree of uniformity at r > R200m when rescaled
by R200m and at r < R200c when rescaled by R200c. The previous discussion allows us to
reach the conclusion that the inner profiles are self-similar in units of r/R200c while the
outer profiles are self-similar in units of r/R200m. It is interesting to note that one might
expect a concentration of haloes to be more universal in terms of ν if the radius definition
were related to the critical density. As in the previous figure, we only plotted two redshift
dependencies in order to obtain a more readable plot. Again, the dotted lines represent the
result of our model, which is in agreement with that of [19]. Another issue studied by [19]
is the dependence on the mass accretion rate. As mentioned, our main goal was to show
that the predictions of the simulated model [19] were in agreement with our model, that
is, that our model is able to capture the main characteristics of the density profiles and
their logarithmic slope to correctly describe the behavior of the outer region of the density
profiles. For this reason, we do not discuss the dependence on the mass accretion rate. The
comparisons shown here are sufficient to establish that our model can adequately describe
the outer region of the density profile.
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Figure 3. Logarithmic slope of three ν bins at different redshifts. The left panels are related to the
ν > 3.5 sample of Figure 2. The central, and right panels refer to the ν bins shown in [19], Figure 5.
The radii in the top panels are rescaled in units of R200m, while those in the bottom panel are expressed
in units of R200c. Again, the solid lines stand for the simulations in [19], the dashed lines provide fits
using the Einasto profile, and the dotted lines represents the result of our model. The black and red
lines correspond to different redshifts indicated in the legends of the top panels.

5. Conclusions

DM halo outskirts are characterized by very different density profiles than the inner density
profile, which are usually fitted with models such as the NFW or the Einasto profile. The outer
density profile is very steep over a small radial range. This kind of behavior has been interpreted
as due to a pile-up of the orbits of particles and splashback of material located near half an orbit
after collapse. Modeling spherical haloes, such radii provide a sharp separation of infalling
matter from material just orbiting the halo, including its satellites. For exact spherical symmetry,
a caustic, in this case an infinitely sharp density drop, characterises the splashback radius. In
realistic halos, this caustic is smoothed out. The complexity of orbits in ΛCDM halos along
with their non-sphericity and substructures make splashback radius identification in each halo
non-trivial. However, it has been observed in weak lensing as well as around stacked clusters in
satellite galaxy density profiles.

Theoretically, the location of the splashback radius can be obtained through the very
simple model of [20] by calculating the secondary infall of DM shell trajectories within
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a growing NFW-profiled DM halo. As they imposed the halo profile a priori instead of
calculating it from trajectories of DM shells, they were not able to find the DM profile around
the splashback radius. A more complete model was proposed by [59], who extended the self-
similar collapse model of [2] to a ΛCDM universe, allowing for simultaneous calculation
of the trajectories and DM halo profile. Furthermore, [19] used simulations to study the
density profiles of ΛCDM haloes, focusing on the outer regions of the halo. They found
noteworthy deviations of the outer profile from the classical distributions, such as the NFW
and Einasto profiles, in the form of sharper steepening of the density profile’s logarithmic
slope than had been predicted. They found that the outermost density profiles at r ≥ R200m
are self-similar if the radii are rescaled by R200m. At the same time, the inner density profiles
are the most self-similar if the radii are rescaled by R200c.

In the present paper, we have proposed an improved spherical infall model that, unlike
the model of [20], takes into account shell crossing and several other effects, including
ordered and random angular momentum, dynamical friction, and adiabatic contraction.
Using this model, we obtained the halo density profile, and studied the behavior of the
profile in its outer regions. From Gaussian initial conditions, we generated populations
of haloes that can be statistically compared with other models and observations. A com-
parison of the profile and the logarithmic slope profile with the results of the simulations
in [19] shows good agreement. We were able to reobtain the results of [19] concerning the
characteristics of the density profile and its logarithmic slope.
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Notes
1 RAM results from random velocities in the self-gravitating object [33].
2 An overdense perturbation sphere within the homogeneous background Universe provides a useful non-linear model (top hat toy

model). Birkhoff’s theorem is usually invoked to argue that such top hat overdensity collapses exactly as a closed sub-universe.
The Newtonian approach stands on stronger justification with Gauß theorem. A more refined model divides the sphere into
spherical “shells", defined as the set of particles sharing the same orbit phase at a given radius (see [39]).

3 Defined in ([8], Appendix B), with ν = δ(0)/σ, and σ, the mass variance averaged on a scale R f .
4 For precision’s sake, the mass scale M is connected to the smoothing scale by MG = (2π)(3/2)R

¯
3
f for Gaussian smoothing

(P(k, R f ) = e−R2
f k2

P(k)) and by MTH = 4π/3R
¯

3
TH for top hat smoothing. The mass enclosed by the smoothing function applied

to the uniform background is the same for R f = 0.64RTH (see BBKS).
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