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Abstract: The Heisenberg uncertainty principle is modified by the introduction of an observer-
independent minimal length. In this work, we have considered the resonant gravitational wave
detector in the modified uncertainty principle framework, where we have used the position momen-
tum uncertainty relation with a quadratic order correction only. We have then used the path integral
approach to calculate an action for the bar detector in the presence of a gravitational wave and then
derived the Lagrangian of the system, leading to the equation of motion for the configuration-space
position coordinate in one dimension. We then find a perturbative solution for the coordinate of
the detector for a circularly polarized gravitational wave, leading to a classical solution of the same
for the given initial conditions. Using this classical form of the coordinate of the detector, we finally
obtain the classical form of the on-shell action describing the harmonic oscillator–gravitational wave
system. Finally, we have obtained the free particle propagator containing the quantum fluctuation
term considering gravitational wave interaction.

Keywords: resonant bar detector; gravitational wave; generalized uncertainty principle; path integral

1. Introduction

Quantum mechanics and general relativity are the two most successful theories ex-
plaining the phenomena at the two most fundamental length scales of the universe. While
quantum mechanics explains the intricacies of the atomic length scale, general relativ-
ity [1,2] sheds light on the large-scale structure of the universe. In order to understand
the fundamental mysteries of the universe, we need a quantum theory of gravity, explaining
the analytical structure of the gravitational interaction at the quantum length scale. Theories
such as loop quantum gravity [3,4], string theory [5,6], and noncommutative geometry [7]
have provided a convincing theoretical framework explaining the Planck-scale nature of
gravity, but none of them have compelling experimental evidence to support their claim
of providing an exact description of the quantum nature of gravity. Meanwhile, all of
them prescribe the existence of an observer-independent minimal length, which can be
incorporated by the modification of the standard Heisenberg uncertainty principle (HUP),
also known as the generalized uncertainty principle (GUP). The first few attempts to im-
provise an integral relation between minimal length scale and gravity was shown in [8,9],
followed by [10]. We also obtain strong evidence of the existence of this fundamental
length scale from the various gedanken experiments in quantum gravity phenomenology
as well. This GUP framework has been used to investigate several areas of theoretical
physics, including black hole physics and its thermodynamics [11–21], various quantum
systems, such as particle in a box and simple harmonic oscillators [22,23], optomechanical
systems [24–26], and gravitational wave bar detectors [27,28]. There have been several
recent studies involving the path integral formalism of a non-relativistic particle moving
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in an arbitrary potential in the generalized uncertainty principle framework [27,29,30].
The simplest form of the modified HUP can be written in the following form [31]:

∆qi∆pi ≥
h̄
2

[
1 + γ

(
∆p2 + 〈p〉2

)
+ 2γ

(
∆p2

i + 〈pi〉2
)]

; i = 1, 2, 3 (1)

where p2 = ∑3
k=1 pk pk and qk, pk are the phase space position and its conjugate momenta.

In Equation (1), the GUP parameter γ in terms of the dimensionless parameter γ0 can be
recast as follows:

γ =
γ0

m2
pc2 (2)

where mp is the Planck mass and c is the speed of light. It is quite natural to realize that
the order of magnitude of the GUP parameter will play a significant role in providing
an understanding of the GUP effects. There have been several studies to find a bound
on the GUP parameter itself [17,22,28,32–38].

In 1969, the first proposition to detect gravitational waves was made by J. Weber [39],
which was followed by a subsequent paper in 1982 by Ferrari et al. [40]. Bar detectors cur-
rently have a sensitivity ∆L

L ∼ 10−19[41], where ∆L is the fractional variation of the length
L (∼1 m) of the bar detector. A historical perspective on these resonant detectors is given
in [42]. The detection of gravitational waves by the LIGO [43,44] and Virgo [45] detec-
tors has unveiled a new realm of quantum gravity phenomenology. There have been
several recent investigations regarding the traces of quantum gravitational effects in these
gravitational wave detectors. A great deal of investigation has been conducted to check
if any signature of this fundamental Planck length, whether it is noncommutativity [46–51]
or GUP [28,52], is visible in GW bar detectors. We would like to point out that, to date,
there has not been a successful detection of gravitational waves in resonant bar detectors.
However, there is strong hope that the sensitivity of the detectors will increase in the future,
enabling the detection of these waves. The AURIGA (Antenna Ultracriogenica Risonante per
l’Indagine Gravitazionale Astronomica) detector at INFN, Italy is probably the only functional
bar detector. These bar detectors are sensitive to frequencies of the order of 1kHz, along
with a strain sensitivity of the order 10−19 [53]. In the case of astrophysical events, collaps-
ing and bouncing cores of supernova can be a source of huge intensities of gravitational
waves having frequencies in the vicinity of 1–3 kHz. The value of the strain sensitivity
can be calculated using Thorne’s formula [54]. The strain sensitivity (h), according to this
formula, is given by

h = 2.7× 10−20
[

∆EGW
Msc2

] 1
2
[

1kHz
f

] 1
2
[

10Mpc
d

]
(3)

where ∆EGW is the energy converted to gravitational waves, f is the characteristic frequency
of the burst, Ms is the solar mass, and d is the distance of the burst source from Earth.
A possible value of the fraction of energy converted to gravitational waves for supernova
events is around 7× 10−4. Now, for h ∼ 3× 10−19 and f ∼ 0.9 kHz, the distance d has
a value around 25 kpc. The occurrence of such a supernova event of the required magnitude
at this distance from the Earth would definitely result in the detection of gravitational waves
by the bar detectors. An effort to increase the sensitivity of these detectors to h ∼ 10−20 is
presently being carried out, and achieving this sensitivity would increase the distance of
the supernova event from the Earth to 250 kpc, which is more likely to occur. The main
motivation to work with a gravitational wave bar detector is that it is a very useful and
economic alternative to the LIGO/VIRGO detectors.

In this work, we investigate the path integral formalism of a resonant gravitational
wave bar detector interacting with the gravitational wave emitted from a distant source
in the GUP framework. The incoming gravitational waves interact with the elastic matter
in the resonant bar detector, causing tiny vibrations called phonons. Physically, we can
describe these detectors as a quantum mechanical gravitational wave–harmonic oscilla-
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tor (GW-HO) system, because we call these vibrations the quantum mechanical forced
harmonic oscillator. To calculate the perturbative solution to the system, we use the grav-
itational wave and generalized uncertainty modifications as perturbations. Our study
presents a path integral approach to look at such a system and is the first work using a
path integral. The advantage of working with path integrals is that the effective action
describing the system can be easily read off from the structure of the configuration space
path integral [55].

2. The Gravitational Wave Resonant Detector Interaction Model

To begin the discussion, we need to present the Hamiltonian for the resonant bar
detector in the presence of a gravitational wave in the generalized uncertainty princi-
ple framework. The modified commutation relation following from Equation (1) takes
the following form [31]:

[q̂i, p̂j] = ih̄
[
δij + γδij p̂2 + 2γ p̂i p̂j

]
(4)

where i, j = 1, 2, 3. The modified position and momentum operators q̂i and p̂i in terms of
the usual variables q̂0i and p̂0i read

q̂i = q̂0i , p̂i = p̂0i

(
1 + γ p̂2

0

)
. (5)

Here, p̂2
0 = ∑3

k=1 p̂0k p̂0k and [q̂0i, p̂0j] = ih̄δij. In order to write the Hamiltonian of
the system, we start by analyzing the background metric as a superposition of a small
perturbation on the flat background metric. The background metric is taken as follows:

gµν = ηµν + hµν (6)

where ηµν = diag{1,−1,−1,−1} and |hµν| � 1. We now consider a two-dimensional
harmonic oscillator with mass m and intrinsic frequency v. The geodesic deviation equation
for the aforementioned system in the proper detector frame is given as follows [56]:

mq̈k = −mRk
0l0ql −mv2qk

=⇒ q̈k =
dΓk

0l
dt

ql −v2qk ; k = 1, 2
(7)

where Rk
0l0 in terms of the background perturbation is given by

Rk
0l0 = −

dΓk
0l

dt
= − ḧkl

2
. (8)

Note that, here, we are using the transverse traceless gauge to eliminate the unphysical
degrees of freedom. The Lagrangian from which Equation (8) can be obtained reads

L =
1
2

mq̇2
k −mΓk

0l q̇kql − 1
2

mv2q2
k . (9)

The Hamiltonian corresponding to the Lagrangian in Equation (9) reads

H =
1

2m

(
pk + mΓk

0lq
l
)2

+
1
2

mv2q2
l . (10)

To write the Hamiltonian in Equation (10) in quantum mechanical description, we sim-
ply elevate q and p to the operator prescription. Therefore, the Hamiltonian in terms of
the position and momentum operators can be expressed as follows:

Ĥ =
1

2m

(
p̂k + mΓk

0l q̂
l
)2

+
1
2

mv2q̂2
l . (11)
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Using the representation of the position and momentum operators in Equation (5),
the Hamiltonian (11) of the GW-HO system in the presence of GUP can be written as
follows:

Ĥ =

(
p̂2

0k
2m + 1

2 mv2q̂2
0k

)
+ γ

m p̂2
0k p̂2

0 +
1
2 Γk

0l

(
p̂0k q̂0l + q̂0l p̂0k

)
+ γ

2 Γk
0l

(
p̂0k p̂2

0q̂0l + q̂0l p̂0k p̂2
0

)
. (12)

Now, a typical bar is a cylinder of length L ≡ 3 m and radius R ≡ 30 cm [56]. Hence,
in a first approximation, we can treat the GW detector in the presence of GUP as a one-
dimensional HO. The Hamiltonian in Equation (12) can be recast in one dimension as follows:

Ĥ =
p2

2m
+

1
2

mv2q2 + γ
p4

m
+

1
2

Γ1
01(pq + qp) +

γ

2
Γ1

01(p3q + qp3) (13)

where, for notational simplicity, we have used p̂01 = p and q̂01 = q. In the next section,
we will proceed to construct the path integral formalism of the GW-HO system in the
presence of the GUP and calculate the propagation kernel for that system.

3. Path Integral and the Propagation Kernel

In this section, we will use the Hamiltonian in Equation (13) to calculate the propa-
gation kernel via the path integral approach. We consider the initial and the final state of
the Hamiltonian in Equation (13) at initial time ti and final time t f as |qi, ti〉 and

∣∣∣q f , t f

〉
,

respectively. The general form of the propagation kernel can be written as follows:

〈
q f , t f |qi, ti

〉
= lim

N→∞

∫ +∞

−∞
dqN−1 . . . dq1

〈
q f , t f |qN−1, tN−1

〉
〈qN−1, tN−1|qN−2, tN−2〉 . . . 〈q1, t1|qi, ti〉

= lim
N→∞

∫ +∞

−∞

N−1

∏
α=1

dqα

〈
q f

∣∣∣e− iĤ(t f −tN−1)

h̄ |qN−1〉 . . . 〈q1|e−
iĤ(t1−ti)

h̄ |qi〉

= lim
N→∞

∫ +∞

−∞

N−1

∏
α=1

dqα

N−1

∏
β=0

〈
qβ+1

∣∣e− iĤ(tβ+1−tβ)

h̄
∣∣qβ

〉
(14)

where t f = tN , ti = t0 and tN − tN−1 = ∆t. Now, we will introduce the complete set of

momentum eigenstates
(∫ +∞
−∞ dp|p〉〈p| = 1

)
in the following way:

〈
q f , t f |qi, ti

〉
= lim

N→∞

∫ N−1

∏
α=1

dqα

N−1

∏
β=0

∫
dpβ

〈
qβ+1|pβ

〉〈
pβ|qβ

〉
exp

(
−

iH(qβ, pβ)(tβ+1 − tβ)

h̄

)

= lim
N→∞

∫ +∞

−∞

N−1

∏
α=1

dqα

N−1

∏
β=0

∫ +∞

−∞

dpβ

2πh̄
exp

[
i∆t
h̄

N−1

∑
β=0

[ pβ(qβ+1 − qβ)

∆t
−
( p2

β

2m
+

1
2

mv2q2
β +

γp4
β

m

+
pβqβ(hβ+1 − hβ)

2∆t
+

γp3
βqβ(hβ+1 − hβ)

2∆t

)]]
(15)

where we have used h11 = h . The final form of Equation (15) in the ∆t → 0 limit can be
recast as follows: 〈

q f , t f |qi, ti

〉
=
∫
DqDp exp

(
i
h̄
S
)

(16)

where S is the phase space action. The phase space action is given as follows:

S =
∫ t f

ti

dt
[

pq̇−
(

p2

2m
+

ḣ11

2
pq +

1
2

mv2q2 +
γp4

m
+

γḣ11

2
p3q
)]

. (17)

To obtain the configuration space Lagrangian, we will simplify Equation (15) as
follows:
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〈
q f , t f |qi, ti

〉
∼= lim

N→∞

∫ +∞

−∞

N−1

∏
α=1

dqα

N−1

∏
β=0

∫ +∞

−∞

dpβ

2πh̄

[
1− iγ∆t

mh̄

(
p4

β +
hβ+1 − hβ

2∆t
p3

βqβ

)
+O(γ2)

]
(18)

× exp

[
i∆tm

2h̄

[( qβ+1 − qβ

∆t
−

hβ+1 − hβ

4∆t
qβ

)2

−v2q2
β

]]
exp

[
− i∆t

2mh̄

[
pβ −

(m(qβ+1 − qβ)

∆t
−

m(hβ+1 − hβ)qβ

4∆t

)]2]
.

To perform the momentum integral for each β value, we shall perform the following
coordinate transformation:

p̄β = pβ −
(m(qβ+1 − qβ)

∆t
−

m(hβ+1 − hβ)qβ

4∆t

)
. (19)

Using Equation (19) in Equation (18), the propagation kernel up to ∼ γ, h can be recast
as

〈
q f , t f |qi, ti

〉
∼= lim

N→∞

∫ +∞

−∞

N−1

∏
α=1

dqα

N−1

∏
β=0

∫ +∞

−∞

dp̄β

2πh̄

[
1− iγ∆t

mh̄

[(
p̄β +

(m(qβ+1 − qβ)

∆t
−

m(hβ+1 − hβ)qβ

4∆t

))4

+

hβ+1 − hβ

2∆t

(
p̄β +

(m(qβ+1 − qβ)

∆t
−

m(hβ+1 − hβ)qβ

4∆t

))3

qβ

]
+O(γ2)

]
exp

[
− i∆t

2mh̄
p̄2

β

]
× exp

[
i∆tm

2h̄

[( qβ+1 − qβ

∆t
−

hβ+1 − hβ

4
qβ

)2

−v2q2
β

]]
.

(20)

The momentum integral in Equation (20) can be obtained as follows:

〈
qβ+1, tβ+1|qβ, tβ

〉 ∼=√ m
2πih̄∆t

{
1− 6γm2

( qβ+1 − qβ

∆t
−

hβ+1 − hβ

4∆t
qβ

)2

−
3γm2(hβ+1 − h− β)

2∆t

( qβ+1 − qβ

∆t

−
(hβ+1 − hβ)

4∆t
qβ

)
qβ +

3iγmh̄
∆t

}
exp

[
im∆t

2h̄

[( qβ+1 − qβ

∆t
−

(hβ+1 − hβ)qβ

4

)2

− 2γm2

×
[( qβ+1 − qβ

∆t
−

(hβ+1 − hβ)qβ

4

)4

+
(hβ+1 − hβ)qβ

2

( qβ+1 − qβ

∆t
−

(hβ+1 − hβ)qβ

4

)3]
−v2q2

β

]]
.

(21)

Using Equation (21) in Equation (20), we obtain the form of the propagation kernel up
to some constant factor as follows:

〈
q f , t f |qi, ti

〉
=
∫ +∞

−∞

N−1

∏
α=1

dqα exp
[ N−1

∑
β=0

im∆t
2h̄

{( qβ+1 − qβ

∆t
−

(hβ+1 − hβ)qβ

4

)2

− 2γm2
(( qβ+1 − qβ

∆t

−
(hβ+1 − hβ)qβ

4

)4

+
(hβ+1 − hβ)qβ

2

( qβ+1 − qβ

∆t
−

(hβ+1 − hβ)qβ

4

)3)
−v2q2

β

}]
.

(22)

Imposing the ∆t→ 0 limit in Equation (22), the final form of the propagation kernel
has the usual configuration space path integral structure as follows:〈

q f , t f |qi, ti

〉
= N (T, γ, ḣ)

∫
Dqe

i
h̄ S . (23)

In the above equation, the configuration space structure of the action S is given as follows:

S =
∫ t f

ti

dt

(
m
2

(
q̇− ḣq

4

)2

− 1
2

mv2q2 − γm3
(

q̇− ḣq
4

)4

− γm3ḣq
2

(
q̇− ḣq

4

)3)
∼=
∫ t f

ti

dt
(

m
2

q̇2 − 1
2

mv2q2 − mḣq̇q
4
− γm3q̇4 +

1
2

m3γḣq̇3q
)

.

(24)
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In the last line of the above Equation (24), we have kept terms up to O(h, γ). The La-
grangian can be easily read off from Equation (24) as follows:

L =
m
2

q̇2 − 1
2

mv2q2 − mḣq̇q
4
− γm3q̇4 +

1
2

γm3ḣq̇3q . (25)

The equation of motion following from the Lagrangian reads

q̈− ḧq
4

+ v2q− 12m2γq̈q̇2 + 3γm2ḣq̈q̇q +
3
2

γm2ḧq̇2q + γm2ḣq̇3 = 0 . (26)

In the next section, we calculate the classical solution for the above equation of motion.

4. Obtaining the Classical Solution for a Periodic Circularly Polarized
Gravitational Wave

To obtain the classical solution, we shall consider a circularly polarized gravitational
wave in the transverse traceless gauge. Now, for a periodic circularly polarized gravitational
wave, the perturbation term h containing the polarization information reads

hkl(t) = 2 f0

(
ε×(t)σ1

kl + ε+(t)σ3
kl

)
; k, l = 1, 2 (27)

where 2 f0 is the amplitude of the gravitational wave (here, f0 is very small), and σ1 and σ3

are the Pauli spin matrices. In Equation (27), (ε+(t), ε×(t)) are the two possible polarization
states of the gravitational wave satisfying the condition ε+(t)2 + ε×(t)2 = 1. In this particular
scenario, the chosen functional forms of the polarization states can be written as follows:

ε+(t) = cos(Ωt) , ε×(t) = sin(Ωt) (28)

with Ω being the frequency of the gravitational wave. In our case, we will consider
that the only non-zero polarization state is ε+(t) = cos(Ωt). Therefore, in one dimen-
sion, the perturbation term can be written as h = 2 f0 cos(Ωt). The equation of motion
in Equation (26) up to O( f0, γ) takes the form as follows:

q̈ + ω2q− 12m2γq̈q̇2 = 0 (29)

where ω2 = v2 − ḧ
4 . For the equation of motion in Equation (29), we consider a solution

up to O( f0, γ) as
q(t) = q0(t) + f0q f0(t) + γqγ(t) . (30)

For the form q(t) in the above equation, we obtain the solution of Equation (26) as a lin-
ear combination as q0(t), q f0(t) and qγ(t). The analytical forms of q0(t), q f0(t) and qγ(t) are
given as follows:

q0(t) = A1 cos(vt) +A2 sin(vt), (31)

q f0(t) = A3 cos(vt) +A4 sin(vt)− Ω
2(4v2−Ω2)

[Ω cos(Ωt){A1 cos(vt) +A2 sin(vt)}
−2v sin(Ωt){A2 cos(vt)−A1 sin(vt)}] ,

(32)

qγ(t) = A5 cos(vt) +A6 sin(vt)− 3m2v2

2 [tvA1(A2
1 +A2

2) sin(vt)− tvA2(A2
1 +A2

2) cos(vt)
+A1

4 (A2
1 − 3A2

2) cos(3vt)− A2
4 (A2

2 − 3A2
1) sin(3vt)]

(33)

whereA1,A2,A3,A4,A5 andA6 are arbitrary constants, which we will calculate for the qcl(t).
To obtain the form of the above constants, we will apply the following set of the initial conditions:

q(t) =
{

q0 for t = 0
q f for t = T . (34)
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Using the initial conditions in Equation (34), the constants can be obtained as follows:

A1 = q0 , A2 =
q f−q0 cos(vT)

sin(vT) , (35)

A3 = A1Ω2

2(4v2−Ω2)
, (36)

A4 = Ω{cos(vT)[ΩA1 cos(ΩT)−2vA2 sin(ΩT)]+sin(vT)[ΩA2 cos(ΩT)+2vA1 sin(ωT)]}
2(4v2−Ω2) sin(vT) −A3 cot(vT) , (37)

A5 = 3
8 m2v2A1

(
A2

1 − 3A2
2
)

, (38)

A6 =
3m2v2

[
vT(A1 sin(vT)−A2 cos(vT))(A2

1+A
2
2)+

A1(A
2
1−3A2

2) cos(3vT)
4 −A2(A2

2−3A2
1) sin(3vT)

4

]
2 sin(vT) −A5 cot(vT). (39)

Using Equation (30) along with Equations (35)–(39) in Equation (24) (with h being
replaced by 2 f0 cos(Ωt)), we obtain the form of the classical action up toO(γ, f ) as follows:

SC = S(0)
C + S(γ)

C + S( f0)
C (40)

where S(0)
C , S(γ)

C , and S( f0)
C are given by the following equations:

S(0)
C = mv

2 sin(vT)

(
(q2

0 + q2
f ) cos(vT)− 2q0q f

)
, (41)

S(γ)
C = − γm3v3

32 sin4(vT)

[
12vT

(
q4

f + 4q2
f q2

0 + q4
0

)
− 48q0q f vT cos(vT)(q2

f + q2
0) + 24q2

0q2
f vT cos(2vT)

−44q0q f sin(vT)(q2
0 + q2

f ) + 4 sin(2vT)
(

2q4
0 + 15q2

0q2
f + 2q4

f

)
− 12q0q f sin(3vT)(q2

0 + q2
f ) + sin(4vT)(q4

0 + q4
f )

]
,

(42)

S( f0)
C = − f0mvΩ

2 sin(vT)(4v2−Ω2)

[
v sin(ΩT)
sin(vT)

(
q2

0 − 2q0q f cos(vT) + q2
f cos(2vT)

)
+ 2q0q f Ω cos2

(
ΩT

2

)
−Ω cos(vT)

(
q2

0 + q2
f cos(ΩT)

)]
.

(43)

Therefore, we now have the final form of the propagator for the resonant bar detector
interacting with a gravitational wave as follows:〈

q f , T|q0, 0
〉
=

√
mv

2πih̄ sin(vT)
Ñ (T, γ, f0)e

i
h̄ Scl . (44)

To obtain an overall structure of the fluctuation parameter in the above equation,
we consider the free particle structure involving gravitational wave (GW) interaction only.
In this case, the infinitesimal propagator considering the particle GW interaction from
Equation (15) can be extracted as follows (in the v → 0 limit):

〈q1, ∆t|q0, 0〉 =
∫ ∞

−∞

dp0

2πh̄
exp

[
i∆t
h̄

(
p0

(q1 − q0)

∆t
−
(

p2
0

2m
+

γp4
0

m
+

p0q0 f0

∆t
(cos(Ω∆t)− 1)

))]

'
√

m
2πih̄∆t

e
im

2h̄∆t (q1−q0)
2
[

1 +
3imγh̄

∆t
− 6γm2

(
q1 − q0

∆t

)2
− iγm3(q1 − q0)

4

h̄∆t3

− i f0q0

h̄

(
m(q1 − q0)

∆t

)
(cos(Ω∆t)− 1)

]
.

(45)

Now, the total propagator can be written using the set of infinitesimal propagators as follows:
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〈
q f , T|q0, 0

〉
'
( m

2πih̄∆t

) N
2
∫

dq1dq2 · · · dqN−1e
im

2h̄∆t [(q1−q0)
2+(q2−q1)

2+···+(q f−qN−1)
2]
[

1 +
3iγmh̄N

∆t
− 6γm2

∆t2 ((q1 − q0)
2

+ (q2 − q1)
2 + · · ·+ (q f − qN−1)

2)− iγm3

h̄∆t3 ((q1 − q0)
4 + (q2 − q1)

4 + · · ·+ (q f − qN−1)
4)

− i f0m
h̄∆t2

[
q0(q1 − q0)(cos(Ω∆t)− 1) + · · ·+ qN−1(q f − qN−1)(cos(NΩ∆t)− cos((N − 1)Ω∆t))

]]
.

(46)

In the absence of the gravitational wave [29], the form of the propagator
in Equation (46) reads

〈
q f , T|q0, 0

〉
=
√

m
2πih̄T e

im
2h̄T (q f−q0)

2
(

1 + 3iγmh̄
T − 6γm2

( q f−q0
T

)2
− iγm3

h̄T3 (q f − q0)
4
)

. (47)

In the presence of the gravitational wave, the propagator has the form given as

〈
q f , T|q0, 0

〉
'
√

m
2πih̄T

e
im

2h̄T (q f−q0)
2
(

1 +
3iγmh̄

T
− 6γm2

( q f − q0

T

)2
− iγm3

h̄T3 (q f − q0)
4

+
i f0mT

h̄

(
(q f − q0)

T

)2

[cos(ΩT)− 1]−
i f0q f

h̄

(
m(q f − q0)

T

)
[cos(ΩT)− 1]

)
'
√

m
2πih̄T

Ñ (T, γ, f0)e
i
h̄ S( f )

cl

(48)

where S( f )
cl is the classical action involving free particles and gravitational waves given by

S( f )
cl =

m
2T

(q f − q0)
2 − γm3

T3 (q f − q0)
4 − m f0

2T
(q f − q0)

[
(q f cos[ΩT]− q0)− (q f − q0)

sin[ΩT]
ΩT

]
(49)

and the form of the fluctuation term is given as follows:

Ñ (T, γ, f0) ' 1 +
3iγmh̄

T
− 6γm2

[ q f − q0

T

]2
+

i f0mT
h̄

[ q f − q0

T

]2
[cos(ΩT)− 1]−

i f0mq f

h̄

[ q f − q0

T

]
[cos(ΩT)− 1]

−
im f0(q f − q0)

2h̄T

[
(q f − q0) sin(ΩT)

ΩT
− (q f cos(ΩT)− q0)

]
.

(50)

5. Summary

In this work, we have constructed the path integral formalism of the propagation
kernel for a resonant bar detector in the presence of a gravitational wave in the generalized
uncertainty principle framework. In this framework, we have considered only quadratic-
order correction in the momentum. We have obtained the configuration space action for
this system using the path integral formalism. With the action in hand, we have then ob-
tained the equation of motion of the system. From the equation of motion, we observe that
the overall frequency of the resonant detector shifts due to interaction with the gravitational
wave. Next, we have used the form of the perturbation term for a circularly polarized
gravitational wave to calculate the classical solution of the detector coordinate q(t). Using
this form of q(t), we have finally obtained the classical action for a resonant bar detector
interacting with a gravitational wave in the generalized uncertainty principle framework.
We have then investigated the quantum fluctuation parameter of the bar detector in the
presence of a circularly polarized gravitational wave. In order to obtain the final form of
the fluctuation, we have considered a free particle interacting with the gravitational wave.
The final form of the fluctuation picks up correction terms due to both GUP correction
and gravitational wave interaction. In this process, we have neglected cross terms consid-
ering both GUP and GW interactions as it would result in a much smaller correction to
the fluctuation factor than the other corrections present in the analytical form of the quan-
tum fluctuation. It would also be important to carry out the above analysis in a linear
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GUP framework. However, we would like to report this in future. From an observational
point of view, the importance of our work lies in the fact that resonant bar detectors have
the potential for detecting gravitational waves with their present sensitivity at distances
of the order of 102 kpc from the Earth. The propagator captures the quantum effects also.
Hence, detectability of such quantum effects in resonant bar detectors is also a possibility
in the near future. Knowledge of the propagator of the detector coordinates is therefore
necessary, if not absolutely essential.
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