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Abstract: In the broader methodical framework of the quantization of gravity, the crypto-Hermitian
(or non-Hermitian) version of Dirac’s interaction picture is considered. The formalism is briefly
outlined and shown to be well suited for an innovative treatment of certain cosmological models. In
particular, it is demonstrated that the Wheeler–DeWitt equation could be a promising candidate for
the description of the evolution of the quantized Universe near its initial Big Bang singularity.
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1. Introduction

The concept of the wave function ψ of the Universe (introduced, 55 years ago, as
a solution of the Einstein–Schrödinger alias Wheeler–DeWitt (WDW) equation [1,2]) is
contradictory. On the positive side, this concept played a key role during the development
of the canonical quantization of gravity [3]. These efforts climaxed in the recent compar-
atively satisfactory and constructive formulation of the so-called loop quantum gravity
(LQG, [4–6]). At the same time, Mostafazadeh pointed out, in his review of the recent
progress in quantum theory [7], that the solutions ψ themselves remain “void of a physical
meaning”, without “finding an appropriate inner product on the space of solutions of the
WDW equation” (see p. 1291 in review [7]). In loc. cit., Mostafazadeh also emphasized that
“the lack of a satisfactory solution to this problem has been one of the major obstacles in
transforming canonical quantum gravity and quantum cosmology into genuine physical
theories”. Precisely, this obstacle is to be addressed and discussed in what follows.

In the cited review, we can further read that “in . . . quantum cosmology . . . the relevant
field equations . . . are second order differential equations in a time variable . . . [which] have
the . . . general form

d2

dt2 ψ(t) + D(t)ψ(t) = 0 (1)

where t denotes a dimensionless time variable, ψ : R → L is a function taking values
in some separable Hilbert space L , and D : L → L is a positive-definite operator that
may depend on t”. Treating the latter variable as “a fictitious evolution parameter in
quantum cosmology” (see p. 1292 in [7]), the same author later adds that “the cases in
which D is t-dependent (that arises in quantum cosmological models) require a more
careful examination”. In this sense, we are prepared to discuss some of the open questions
and subtleties of the theory.

In loc. cit., Mostafazadeh redirected interested readers to his earlier study [8]. In a
series of our subsequent unpublished comments on this topic [9] (which were later finalized
and summarized in papers [10,11]), we showed that an appropriate means of “dealing
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with these cases” is, simultaneously , less complicated and more complicated than it seems—
less complicated in the sense that some of the technical obstacles have later been found
surmountable, and more complicated because it appeared necessary to amend the overall
quantum-theoretical framework and to replace the non-Hermitian Schrödinger picture
(NSP) interpretation of the evolution of ψ (as presented, basically, in [7] or [8]) by the
more involved formalism called the interaction picture (IP) (or Dirac’s representation; see a
comprehensive review of its non-Hermitian form (NIP) in [12]).

In what follows, we intend to outline the implementation of the NIP approach in
the WDW case. The key purpose of our paper is to provide an explicit explanation of
the connection between several challenging and open physical questions (a typical one
concerns the quantum Big Bang problem, as formulated in Section 2) and the most recent
progress in the hidden unitary version of quantum mechanics (the basic features of this
theoretical innovation are reviewed). Our main message (viz, the detailed description of
the theory and of its application to the WDW equation) will finally be outlined in Section 3
(devoted to a specific schematic toy model of the quantum geometry of the Universe), in
Section 4 (on the fully fledged NIP formalism), and in Section 5 (in which the mechanism
of transition to the Big Bang singularity will be given its ultimate model-independent
construction recipe form). Our results will be discussed in Section 6 and summarized in
Section 7.

2. Challenge: Quantum Big Bang Problem

At present, it is widely believed that up to the “youngest age” of the Universe (i.e., for
times t > t1 with t1 ≈ 1032 s), the evolution (i.e., slow expansion) of the Universe is more
or less safely controlled by the classical theoretical cosmology. In contrast, in the interval of
times (t0, t1) (where t0 = 0 denotes the hypothetical time of the Big Bang), we still lack a
fully consistent and rigorous quantum theory behind the early history of the Universe [3].

2.1. Could the Degeneracy Survive Quantization? Yes, It Could

In our present study, we felt strongly motivated by the deep relevance of the under-
standing of the evolution of the Universe near its Big Bang origin, i.e., in a genuine quantum
dynamical regime. In this regime, the theoretically most ambitious LQG formalism still
seems to lead to at least some contradictory results. In one of the LQG predictions [13], for
example, the Big Bang singularity (compatible with the classical Einstein theory of gravity)
has been found to be smeared out by the quantization. In the series of papers [14–19] or in
Section 8 in [5]), for example, it is claimed that the Big Bang singularity of classical theory
must necessarily be replaced by a regularized “Big Bounce” mechanism. In contrast, more
recently, Wang with Stankiewicz [20] came forward with the opposite conclusion, claiming
that, within the scale-invariant LQG framework, “the quantized Big Bang is not replaced by
a Big Bounce”.

At first sight, the latter claim appears suspicious. In Rovelli’s words, the quantization-
related “absence of singularities” is in fact “what one would expect from a quantum theory
of gravity” (see p. 297 in [5]). An elementary support of such an intuitive expectation can
be provided by the following schematic observable

Λ(t) =


0 −1 + i t 0 0

−1− i t 0 −1 + i t 0

0 −1− i t 0 −1 + i t

0 0 −1− i t 0

 (2)

and by the inspection of its spectrum (see Figure 1). As long as the matrix is Hermitian, its
spectrum must be real. Moreover, in the generic case (i.e., unless we impose a symmetry
upon the matrix), the spectrum must remain non-degenerate. This is the reason that the
levels avoid the crossing (which would simulate the regularized Big Bounce). In our
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example, the proof of the phenomenon is elementary: up to a small vicinity of the “Big
Bang time” t(BB) = 0, the matrix as well as its spectrum are dominated by their asymptotic
components, which are strictly linear in t. One might even suspect that the eigenvalues
could cross due to an accidental symmetry emerging at t = 0, but such a symmetry is
manifestly broken by the t-independent component of the model.

λ

t

(t)

–10

0

10

–5 0 5

Figure 1. Eigenvalues of matrix (2) (avoided-crossing phenomenon).

We intend to show that, against all expectations, the latter argument is not foolproof.
Admitting that it need not necessarily lead to the wrong conclusions, we will only show that
Wang’s and Stankiewicz’s alternative scenario [20] may equally well be supported by an
equally elementary toy model. The essence of such a claim is that the Hermiticity property
(cf. relation Λ = Λ† satisfied by our toy model matrix (2), with the superscript † marking
the matrix transposition plus complex conjugation) depends on a mathematically motivated
a priori specification of the inner product in our physical Hilbert space of states [21].

A deeper abstract foundation of our “constructive scepticism” concerning the gener-
icity of the Big Bounce may be found in the literature on quantum mechanics using
non-Hermitian operators [7,22–24]. In this sense, the common requirement of the self-
adjointness of the operators of observables Λ(t) can be weakened and replaced by the
condition of their Hermitizability alias quasi-Hermiticity [22]. In many non-Hermitian
models, indeed, the Hermiticity may be restored by the mere ad hoc amendment of the
inner product [25].

In our present paper, we will narrow the scope of the discussion to the Big Bang
and to the WDW equations. Simultaneously, we will broaden the theoretical framework,
emphasizing that, in the genuine Big Bang spatial-degeneracy context, it is necessary to
replace the most common NSP mathematics with its perceivably more complicated NIP
amendment. In a preparatory step, let us now return to the toy model (2) and let us
Wick-rotate the time t→ −it and shift the origin, t→ t− 1. The resulting new matrix

Q(t) =


0 −2 + t 0 0

−t 0 −2 + t 0

0 −t 0 −2 + t

0 0 −t 0

 (3)

is simply a hidden Hermitian (i.e., via an amendment of the inner product, Hermitizable)
candidate for a toy model observable representing, in the context of quantum cosmology,
say, a potentially measurable discrete spatial grid [26–30].

In essence, the latter example indicates that the Big-Bang-type singularities need not
necessarily be smeared out by the quantization. Indeed, at the not too large values of the
positive time parameter t > 0, the spectrum of our manifestly non-Hermitian model (3)
may be shown to be real and non-degenerate. This is illustrated in Figure 2. At t = 0, the
spectrum becomes degenerate and the matrix itself ceases to be diagonalizable.
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Figure 2. The reality of the spectrum of non-Hermitian matrix (3) at not too large t ≥ 0.

The latter simulation of the Big Bang singularity is called the exceptional point (EP) in
mathematics [31,32]. In the complementary context of physics, the spatial-grid interpreta-
tion of the time-dependent eigenvalues λn(t) as sampled in Figure 2 enables us to speak
about the “inflation period” of the history of the related hypothetical and highly schematic
(i.e., four-point) quantized Universe immediately after its birth. Naturally, the correspond-
ing internally consistent quantum theory must be reformulated accordingly [22].

2.2. Stationary Theory (Non-Hermitian Schrödinger Picture, NSP)

In the pedagogically oriented and compact review of the history of quantum mechan-
ics [33], the authors emphasized that there exists no universal version of quantum theory
and that “no formulation produces a royal road to quantum mechanics”. This explains the
incessant emergence of new versions of the theory, including its recent “non-selfadjoint-
operator” formulations [23].

Incidentally, the “non-selfadjoint-operator” characteristics of these theories could be
misleading. As we have already indicated, the mathematical concept of non-selfadjointness
(or, in the shorthand terminology used by physicists, of non-Hermiticity) is ambiguous,
covering, in various branches of physics, both the generators of the unitary evolution [22]
and of the non-unitary evolution [34]. It is necessary to emphasize that only the former
(i.e., unitarity-compatible) meaning of the word "non-Hermiticity" will be considered and
taken into account in what follows.

The disambiguation in fact deserves an early mention because the difference is often
less clear in applications. Moreover, the formulation of the hphysical background of the
problems happens to suffer from ambiguities. The details will be discussed later (see, first
of all, the introduction to the problem, as given in Appendix A). Now, let us only repeat that
the questions that we intend to discuss have their origin in the field of quantum gravity [3].
In this broad context, our attention will be paid, first of all, to the possible role played by
the WDW equation and to the questions of physics near the Big Bang (BB) singularity.

2.3. Stationary Wheeler–DeWitt Equation

In the stationary case, the WDW problem becomes formally equivalent to the Klein–
Gordon (KG) problem known in the relativistic quantum mechanics [8]. In their simplest
versions, both of these problems may be characterized, in suitable units, by the linear
differential equation. Thus, in the KG case (where the suitable units are h̄ = c = 1 and
where one omits, for the sake of simplicity, the electromagnetic field), we have, for example,(

∂2

∂t2 + D(KG)

)
ψ(KG)(~x, t) = 0 , D(KG) = −4+ m2 . (4)

The kinetic energy is represented here by the elementary Laplacian 4, and the dy-
namics can be maximally reduced to the mere scalar mass term, which may be made
position-dependent, m2 = m2(~x).
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In the simplest non-stationary WDW model, the analogue of the mass term would be
a time-dependent function (cf., e.g., Section 3.5 of review [7] for further references). The
KG–WDW analogy enables us to use the same mathematical tools. The relevant literature
is fairly extensive but, for our present purposes, it is sufficient to cite the paper by Feshbach
and Villars ([35], cf. also Ref. [36]) in which the change of variables

ψ(WDW)(~x, t) → 〈~x|ψ(FV)(t)〉 =
(

i∂tψ
(WDW)(~x, t)

ψ(WDW)(~x, t)

)
(5)

was shown to lead to a replacement of the hyperbolic partial differential Equation (4) by
the Schrödinger-like parabolic equation for the two-component wave function (5),

i
∂

∂t
|ψ(FV)(t)〉 = G(FV)(t) |ψ(FV)(t)〉 . (6)

This equation can be interpreted as controlling the unitary evolution of the system via
the generator alias FV Hamiltonian

G(FV)(t) =
(

0 D(t)
I 0

)
. (7)

Such an operator is, in the FV Hilbert space

H(FV) = L2(R3)
⊕
L2(R3)

manifestly non-Hermitian, G(FV) 6= G†
(FV). Pauli with Weisskopf [37] noticed that the same

operator can in fact be treated as selfadjoint with respect to another, indefinite inner product,

〈ψ1|ψ2〉 → (ψ1, ψ2)(Krein) = 〈ψ1|P(FV)|ψ2〉 . (8)

i.e., that it is selfadjoint in another, ad hoc Krein space. In the modern terminology, one
would say that this operator is non-Hermitian but PT -symmetric [38].

Decisive progress achieved under the stationarity assumption G(FV) 6= G(FV)(t) (or,
more precisely, after its generalized form, called the quasi-stationarity assumption) is due
to Mostafazadeh. In his papers [8,39], he imagined that the FV pseudometric P could be
replaced by the positive definite metric Θ(stationary), converting the Krein-space physics (in
which, during evolution, the usual norm is not conserved) into the fully standard and
norm-conserving Hilbert-space physics. In essence, only a straightforward change in the
inner product was needed,

(ψ1, ψ2)(Krein) → (ψ1, ψ2)(Mosta f azadeh) = 〈ψ1|Θ(stationary) |ψ2〉 . (9)

This opened the way towards a consistent picture of unitary physics in which the
stationary Hamiltonian G(FV) = H(FV) controls the NSP quantum evolution, which is, with
respect to the amended inner product (9), unitary.

After either the KG or the WDW interpretation of Equation (4) in the stationary case,
the Hilbert-space metrics in (9) can be given a formal block-diagonal-operator structure

Θ(stationary) =

(
1/
√

D 0
0

√
D

)
. (10)

This leads to the first quantization of both of these systems.

3. Fine-Tuned Nature of the Quantum Big Bang

The conventional mental operation called “quantization of the classical theory” does
really very naturally lead to the conclusion that the singularity is “smeared out” near t ≈ 0
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due to “quantum effects” [40,41] (see also the four-by-four Hermitian matrix (2)). In our text,
we pointed out that the support of such a regularization hypothesis is only unavoidable in
the conventional “textbook” quantum mechanics. In a more general, hiddenly Hermitian
theory, such an assumption is artificial and unfounded (cf. Appendix A or toy model
(3)). Once one overcomes the mental barrier, one reveals that the inner product may start
playing the central descriptive role.

3.1. The N-Grid-Point Toy Model of Kinematics

In the literature, the manifestly non-Hermitian but Hermitizable Wheeler–DeWitt
equation has only been considered in the stationary (or, better, quasi-stationary) mathe-
matical NSP regime (cf. [7] or Section 2.2 above). In Section 4, we will turn attention to the
conceptual necessity of keeping the WDW-related Hilbert space time-dependent. In the
overall context of the canonical quantization of gravity, we have to be prepared to address,
therefore, a number of purely technical questions and tasks.

In the first one, the point-like Big Bang must be made compatible with a consequent
theoretical unitary evolution scenario. Thus, we have to complement the abstract ar-
gumentation of Section 2 with a detailed description of a suitable concrete toy model.
In the model, the measurable values of the spatial grid points (say, the necessarily real
and time-dependent values qj(t) with j = 1, 2, . . . N) will have to be assumed obtainable,
in principle at least, as eigenvalues of a suitable non-Hermitian geometry-representing
“effective kinematical input” operator (say, Q(N)(t)).

Secondly, we have to keep in mind that, in a way indicated by our four-by-four
matrix (3), we may assume that the general N by N matrix Q(N)(t) will still be real and
tridiagonal. Indeed, in a way explained in [42], the reality and tridiagonality is an important
merit of any candidate for an observable because it enables one to construct the metric
algebraically, in a recurrent manner. In this sense, we may recall the existing results in linear
algebra [43] and choose the one-parametric family of our N by N toy model “effective
kinematics” as follows:

Q(N)(z) =



−i (N − 1)z −
√

N − 1 0 0 . . . 0

−
√

N − 1 −i (N − 3)z −
√

2(N − 2) 0
. . .

...

0 −
√

2(N − 2) −i (N − 5)z
. . . . . . 0

0 0 −
√

3(N − 3)
. . . −

√
2(N − 2) 0

...
. . . . . . . . . i (N − 3)z −

√
N − 1

0 . . . 0 0 −
√

N − 1 i (N − 1)z


. (11)

The non-triviality of this matrix and the arbitrariness of its dimension N in combination
with its non-numerical tractability [44] will enable us to show how the requirement of
the existence of the quantum Big Bang singularity becomes supported by a consistent
reconstruction of the related physical time-dependent Hilbert-space metric. As long as
z = z(t) can be any suitable function of time, we may restrict our considerations to the
interval of z ∈ (−1, 1) in the interior of which the grid-point-coordinate spectrum of
Q(N)(z) remains non-degenerate, real, and discrete, and at the boundaries of which one can
visualize the realization of the Big Bang. Thus, after the simplest choice of z(t) = −1+ t, we
obtain an immediate N−level analogue of the graphical evolution pattern of Equation (2),
where we had N = 4.

One of the main constraints imposed upon our toy model “geometry operator” (11)
is its compatibility with the unitarity of the quantum evolution, i.e., with the existence
of the Hilbert-space metric. Naturally, the process of the evolution of the corresponding
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schematic Universe will have to start at the Big Bang single-point-degeneracy singularity,
which is such that

lim
t→0+

qn(z(t)) = q1(z(0)) , n = 1, 2, . . . , N (12)

On the technical level, one can really speak about a challenge because even the purely
formal construction of a highly schematic “Big-Banging” model of the quantum Universe
must remain compatible with the basic theoretical requirement of compatibility between
the kinematical input information (12) and the dynamical input information as represented
by the WDW Hamiltonian operator. The details will be discussed below. For the time
being, let us only assume that with the kinematical spatial-grid input (12) adapted to any
phenomenological requirements, the dynamics of the WDW-related Universe will remain
reflected by a suitable non-stationary form of the operator D in its form entering the non-
stationary analogue of the stationary (or, if you wish, adiabatic) form (10) of the WDW
Hilbert-space metric.

3.2. The Fine-Tuned Nature of the Hilbert-Space Metric Θ(z)

One of our most important WDW-related model-building tasks can be seen in the
generalization of the qualitative and consistent picture of the quantum Big Bang singularity
as mediated by its N = 4 grid-point realization via Equation (3) above (cf. also Figure 2).
In such a project, we encounter the two main technical obstacles. The first one lies in the
necessity of the guarantee of the existence of the metric Θ at all times t > 0 (i.e., in our
model, at all of the sufficiently small positive times) up to the very Big Bang birth-of-the-
Universe EP limit t→ 0+. In our toy model, due to its exact solvability [43], such a guarantee
will have an exact, non-numerical form.

The means of circumventing the second technical obstacle (viz., the necessity of a
guarantee that the Hilbert-space metric remains, at all of the relevant times, non-singular
and positive definite) is equally difficult to find. In our model, we shall see that, for the
model in question, this goal can be achieved by non-numerical means as well.

The respective solutions of both of the above-mentioned problems are closely interre-
lated. Their essence can be identified with the necessity of the coexistence of the singularity
in the grid with the singularity-free nature of the metric Θ(z). The most universal approach
to this problem has been promoted by Scholtz et al. [22], who proposed to use the complete
information about the set of the observables Λ1(z), Λ2(z), . . . . Such an “extreme” model-
building strategy yielded a unique physical metric Θ(N)(z). In principle, its applicability is
strongly N-dependent of course. Thus, our methodical considerations will only concern
the systems with the smallest dimensions.

3.2.1. The Eligible Hilbert-Space Metrics at N = 2

At N = 2, the grid-point operator (11) reads

Q(2)(z) =

[
−iz −1

−1 iz

]
, z ∈ (0, 1) . (13)

with the four real parameters a, c, d and χ ∈ (0, 2π), with, for the sake of definiteness,
positive z ∈ (0, 1), and with the general ansatz

Θ(ansatz)(a, c, d, χ) =

[
a c e−iχ

c eiχ d

]
(14)

For the Hilbert-space metric, the condition of quasi-Hermiticitiy degenerates to the two
elementary relations,

d = a = z−1 c sin χ .



Universe 2022, 8, 385 8 of 21

and without any loss of generality, we may set c = z and evaluate the eigenvalues of matrix
of Equation (14),

λ± = sin χ± z .

Thus, this matrix may be declared acceptable as a metric if and only if it is positive
definite, i.e., if and only if

sin χ > z . (15)

This relation clearly indicates that near the EP limit z → 1, the range of variability
of the admissible parameter χ (numbering the admissible Hilbert-space metrics) becomes
extremely narrow. Moreover, whenever the dynamics-controlling parameter z moves closer
to the EP singularity, the interval quickly shrinks so that our choice of the metric must be,
in the Big Bang vicinity, very precisely “fine-tuned”.

Equation (15) becomes further simplified when we reparametrize the strength of the
non-Hermiticity z = sin β in terms of the new variable β ∈ (0, π/2) . Now, the Hermitian
limit corresponds to β = 0 while the singular EP (or, if you wish, Big Bang or Big Crunch)
extreme is reached at β = π/2. Ultimately, formula

Θ(β, χ) =

[
sin χ e−iχ sin β

eiχ sin β sin χ

]
, χ ∈ (β, π − β) (16)

defines, up to an inessential overall factor, all of the eligible correct metric operators at
N = 2.

3.2.2. N = 3 and the Requirement of Positivity

Once we move to the next geometry operator (11) with N = 3, the general ansatz for
the metric may be reduced to a six-parametric Hermitian matrix

Θ =


a beiφ ceiχ

be−iφ f beiφ

ce−iχ be−iφ a

 . (17)

This reveals that the construction of the metric remains a purely routine linear-
algebraic problem. At the same time, the weakness of the construction is found to lie
in the less easy determination of the domain of parameters for which the metric operator Θ
remains positive definite. Although the domain of positivity of the metric is still implicitly
defined by the N = 3 secular determinant and by the relation

λ3 +(− f − 2 a)λ2 +
(
−2 b2 − c2 + a2 + 2 f a

)
λ+ c2 f − f a2 + 2 ab2− 2 b2c cos(2 φ− χ) = 0

the N = 3 analogue of the N = 2 Equation (16) would be complicated for an explicit
display. The task still remains non-numerical because the secular polynomial remains
linear in the parameters b2, f , and/or cos(2 φ− χ). This still allows the determination of
the range of the admissible parameters to be straightforward. A typical example of such a
determination is provided by Figure 3.
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0
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π/20 β

λ

Figure 3. Eigenvalues of our singularity-free metric (17) as functions of one of the parameters at
N = 3.

In this illustrative picture, we see that the eigenvalues of the metric remain real
and non-degenerate in a large interval of one of the dynamical N = 3 parameters β. In
a small vicinity of the singular EP/BB limit β→ π/2, we may deduce that the rank of the
metric becomes approximately equal to one. The picture even shows the confluence of the
eigenvalues of the metric in the trivial-metric Hermitian-system limit Θ→ I, i.e., very far
from the EP/BB dynamical regime.

Naturally, the technical difficulties will grow with the dimension. At the larger N, the
construction has to be given an alternative, purely graphical form. This strategy has been
used in paper [45], where it has been shown that the use of the graphical method remains
feasible even for the higher-order secular polynomials (cf. Figures 16 and 17 in loc. cit.).
Nonetheless, one has to expect that at the truly large matrix dimensions, the construction
becomes purely numerical.

3.3. Candidates for the Other Observables

For any given non-Hermitian grid-point operator Q(N)(z) with the real and nonde-
generate spectrum {qn(z)}, one can construct the arbitrarily normalized eigenvectors,

Q(N)(z) |n(z)〉 = qn(z) |n(z)〉 , n = 1, 2, . . . , N . (18)

For the same spectrum, the arbitrarily normalized double-bra-marked left eigenvectors
may be also defined as the standard right eigenvectors of a Hermitian conjugate operator,[

Q(N)(z)
]†
|n(z)〉〉 = qn(z) |n(z)〉〉 , n = 1, 2, . . . , N . (19)

It is easy to deduce that 〈〈m|n〉 = 0 for m 6= n. In the generic case, the overlaps 〈〈m|m〉
will be real and non-vanishing. Whenever N is finite, the resulting biorthogonal basis can
be used in a generalized spectral representation of the operator

Q(N)(z) =
N−1

∑
n=0
|n(z)〉 qn(z)

〈〈n(z)|n(z)〉 〈〈n(z)| . (20)

We may conclude that the general (though not necessarily invertible or positive
definite) N-parametric Hilbert-space metric can be then defined by formula

Θ(N) =
N−1

∑
n=0
|n〉〉 κn 〈〈n| . (21)

The parameters κn must be all real. The acceptability of the matrix in the role of the
physical Hilbert-space metric (i.e., the necessary invertibility and positivity properties) is
then guaranteed if and only if 0 < κn < ∞ at all n [46]. In such a setting, one can easily use
an analogous generalized spectral representation to define also any other operator of an
acceptable quantum observable.
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4. Mathematics: Non-Hermitian Interaction Picture (NIP)

Naturally, the (quasi-) stationarity restriction becomes, in the WDW case, hardly
acceptable, especially if one tries to deal with the quantum dynamics near a singularity
such as the Big Bang. In such a case, a much deeper modification of the formalism of the
non-Hermitian quantum theory is needed.

After one decides to relax the assumptions of stationarity, an increase in the complexity
of the system of equations is partially compensated by the clarification of several conceptual
problems. In this sense, our main methodical recommendation is that, in analogy with
the Hermitian interaction picture of textbooks, one still keeps in mind the necessity of the
description of the dynamics in terms of both the operators and wave functions. In other
words, it is necessary to avoid several existing and widespread misunderstandings that
can be found in the current literature. Paradoxically, the root of these misunderstandings
may be seen in an insufficiently careful use of the terminology (see, e.g., the explanatory
“Rosetta-stone-like” Table 1 in [12]). Indeed, once we replace a stationary NSP model
by its non-stationary IP and/or NIP alternative and extension, the concept of quantum
Hamiltonian ceases to be unique and adequate.

4.1. Non-Stationary Quantum Systems

In the non-stationary quantum theory, the use of the time-dependent metric is known
to lead to the loss of the unitarity of the evolution or to the loss of the observability of the
NSP Hamiltonian [7]. In fact [9], the puzzle is artificial and purely terminological. The
problem disappears when one employs the non-Hermitian version of Dirac’s interaction
picture (NIP, [12]).

4.1.1. Evolution Law for the NIP Ket Vectors

In the non-stationary non-Hermitian cases, there is no need for the observability of the
generator of the evolution of the ket vectors [47–50]. Easily, the stationary version of the
Dyson map (A3) can be replaced by its time-dependent generalization

|ψ(t)� = Ω(t) |ψ(t)〉 ∈ H(T) , |ψ(t)〉 ∈ H(F) . (22)

InH(F), similarly, Schrödinger Equation (A4) acquires the form

i
∂

∂t
|ψ(t)〉 = G(t) |ψ(t)〉 (23)

in which the generator is only one of the two unobservable components of the observable
instantaneous-energy operator

H(t) = G(t) + Σ(t) . (24)

Only the sum will be called Hamiltonian in what follows. The other component of the
Hamiltonian can be defined directly in terms of the Dyson map,

Σ(t) = iΩ−1(t) Ω̇(t) , Ω̇(t) =
d
dt

Ω(t) (25)

(see [10–12] for details).
In the unitary evolution case, the observable version of the non-Hermitian but Hermi-

tizable Hamiltonian (24) is connected with its selfadjoint partner by formula

H(t) = Ω(−1)(t) h(NSP)(t)Ω(t) . (26)

InH(F), operator (26) has the property of quasi-Hermiticity,

H†(t)Θ(t) = Θ(t) H(t) , Θ(t) = Ω†(t)Ω(t) . (27)
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In an internally consistent theory of a unitary (or hidden unitary) quantum system, the
Hamiltonian still has to have the real and discrete spectrum representing the instantaneous
(but still observable) bound-state energies.

It is unfortunate that, in the literature, only too many people assign the name of
a Hamiltonian also to both of the other operators G(t) and Σ(t), neither of which represents
an observable quantity [9,11,49]. We prefer calling operator G(t) a “generator” (which
does not represent an observable, while still controlling and generating the evolution of
the IP/NIP wave functions). In parallel, we would also propose calling operator Σ(t), say,
a “Coriolis force”.

4.1.2. Evolution Law for the NIP Bra Vectors

Equation (22) has a dual-space alternative

|ψ(t)� =
[
Ω†(t)

]−1
|ψΘ(t)〉 ∈ H(T) , |ψΘ(t)〉 ≡ Θ(t) |ψ(t)〉 ∈ H(F) . (28)

This enables us to treat the new states |ψΘ(t)〉 ≡ Θ(t) |ψ(t)〉 as solutions of another
Schrödinger equation inH(F) [10,11],

i
∂

∂t
|ψΘ(t)〉 = G†(t) |ψΘ(t)〉 . (29)

The process of the solution of the two Schrödinger equations is maximally economical.
The key merit of this recipe (see also more commentaries in [12]) is that it circumvents the
necessity of the technically much more complicated direct construction of the metric as
used, e.g., in papers [49,51–54].

The present version of the process must be initiated by the specification of the re-
spective states |ψ(t)〉 and |ψΘ(t)〉 at t = ti = 0. Thus, Equations (23) and (29) have to be
complemented by the specification of the initial values represented by the kets |ψ(ti)〉 and
|ψΘ(ti)〉. Naturally, such values must obey constraints (22) and (28) at t = ti = 0. This,
in turn, is closely connected with the experiment and with the preparation of the system
in question.

4.2. Non-Hermitian Operators in Interaction Picture

It is well known that even in the conventional Hermitian version of IP, the Coriolis-
force operators obey the Heisenberg-type equations. These equations control the evolution
of every relevant operator of an observable.

In the non-Hermitian NIP formalism, the role of Σ(t) is analogous. In both of the IP
and NIP cases, the ultimate goal of the theory lies in the derivation of the predictions of
the results of measurements. In our present version of the recipe, this merely requires the
evaluation of the overlaps

〈ψΘ(t f ) |Q(t f ) |ψ(t f )〉 . (30)

Due to the identity

i
∂

∂t
Θ(t) = Θ(t)Σ(t)− Σ†(T)Θ(t) (31)

or due to its alternative version (cf. Equation (27)),

i
∂

∂t
Θ(t) = G†(t)Θ(t)−Θ(t) G(t) (32)

the NIP formalism is internally consistent, indeed. At the same time, one has to keep in
mind that the operators of the IP or NIP observables are manifestly time-dependent and
that their time dependence is not arbitrary.
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4.2.1. Evolution Law for the Density Matrices

In the non-Hermitian but unitary pure-state quantum systems of our present interest,
the state is defined by a pair of the ket vectors, i.e., by the projectors

πψ,Θ(t) = |ψ(t)〉
1

〈ψΘ(t) |ψ(t)〉
〈ψΘ(t)| . (33)

Alternatively, one can speak about the non-Hermitian density matrix

$̂(t) = ∑
k
|ψ(k)(t)〉 pk

〈ψ(k)
Θ (t) |ψ(k)(t)〉

〈ψ(k)
Θ (t)| , ∑

k
pk = 1 . (34)

Due to Equations (23) and (29), this operator has to obey the specific evolution equation

i ∂t $̂(t) = G(t) $̂(t)− $̂(t) G(t) (35)

which opens the way towards the formulation of quantum statistics in the non-Hermitian
Liouvillean picture [12].

4.2.2. The Evolution of Observables

The requirement
Q†(t)Θ(t) = Θ(t) Q(t) (36)

guarantees the observability status of any operator Q(t). This relation is equivalent, due to
Equation (A7), to the NSP Hermiticity of q(t) inH(T) since

Q(t) = Ω(−1)(t) q(NSP)(t)Ω(t) (37)

The Heisenberg-type evolution equation follows:

i
∂

∂t
Q(t) = Q(t)Σ(t)− Σ(t) Q(t) + K(t) , K(t) = Ω(−1)(t) i q̇(NSP)(t)Ω(t) . (38)

It is recommendable to assume that the partial derivatives q̇(NSP)(t) vanish so that the
related operator K(t) would be vanishing as well, making the process of the solution of
Equation (38) more user-friendly.

Given the generator G(t), the choice of the Coriolis force Σ(t) is far from arbitrary.
First of all, it is constrained by the experiment-related initial state vectors. Secondly, it
must be compatible with its relation (24) to the initial instant energy H(NIP)(ti) and to its
evolution law

i
∂

∂t
H(NIP)(t) = H(NIP)(t)Σ(NIP)(t)− Σ(NIP)(t) H(NIP)(t) + K(NIP)(t) (39)

or, equivalently,

i
∂

∂t
H(NIP)(t) = G(NIP)(t) H(NIP)(t)− H(NIP)(t) G(NIP)(t) + K(NIP)(t) . (40)

Next, one will also frequently decide to accept the important simplification obtained
for the vanishing NSP-time-derivative operators

K(NIP)(t) = Ω(−1)(t) i ḣ(NSP)(t)Ω(t) .

As long as Σ(NIP)(t) = H(NIP)(t)− G(NIP)(t), there remains no freedom left. In par-
ticular, as long as we have the definition

i
∂

∂t
Ω(NIP)(t)〉 = Ω(NIP)(t)Σ(NIP)(t) , (41)
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the only ambiguity of Ω(NIP)(t) is contained in its initial-value specification.

5. The Construction of Non-Stationary WDW Universe Admitting Big Bang

In our present study of the applicability of the NIP approach to the various models in
cosmology, we felt particularly interested in a guarantee of the Big Bang degeneracy prop-
erty

lim
t→0−

qj(t) = 0 , j = 0, 1, . . . (42)

which, in the formal context of quantum mechanics, prescribes and restricts the behavior of
certain time-dependent eigenvalues qj(t) of a suitable operator characterizing the spatial
geometry (or at least the size) of the Universe, sampled, say, by Q(t) of Equation (37), or of
Equation (3), with the spectrum as sampled in Figure 2. For this purpose, let us now return
to some less general, simplified WDW models.

5.1. The Evolution of the WDW Ket Vectors

Even in the non-stationary cases, many KG and WDW models remain formally equivalent.
For this reason, let us now return to Equation (4), replaced by its non-stationary generalization(

∂2

∂t2 + D(t)
)

ψ(WDW)(~x, t) = 0 , D(t) = −4+ m2(~x, t) . (43)

Using the same amendment of the wave functions as before,

〈~x|ψ(NIP)(t)〉 =
(

i∂tψ
(WDW)(~x, t)

ψ(WDW)(~x, t)

)
(44)

we are able to replace Equation (43) by an analogue of Equation (23), i.e., by the correct NIP
Schrödinger equation

i
∂

∂t
|ψ(NIP)(t)〉 =

(
0 D(t)
I 0

)
|ψ(NIP)(t)〉 . (45)

Here, the spectrum of the WDW generator G(NIP)(t) need not be real of course (see,
for example, an elementary illustrative example as given in [11]).

5.2. The Evolution of the WDW Bra Vectors

It is obvious that the time dependence of the metric Θ(t) may be highly sensitive to its
initial value at t = ti [49,51,52,55]. Unfortunately, the direct analysis of this dependence
via the solution of Equation (32) is complicated. For this reason, we recommended, in [12],
to follow the guidance of papers [47,55] and to circumvent the solution of the auxiliary
operator evolution Equation (32) (which was characterized, in [49], as the “time-dependent
quasi-Hermiticity relation”) and to solve the second Schrödinger equation (for the mere
bra vectors) instead.

This leads to the implementation of the NIP recipe with the evolution of

|ψ(NIP)
Θ 〉 = Θ(t) |ψ(NIP)〉 (46)

controlled by Schrödinger Equation (29),

i
∂

∂t
|ψ(NIP)

Θ (t)〉 =
(

0 I
D∗(t) 0

)
|ψ(NIP)

Θ (t)〉 . (47)

Here, it is necessary to emphasize that once we identified the NIP generator G(t)
with the WDW generator in Equations (45) and (47), we made, in effect, a certain highly
nontrivial decision. It has two aspects. In the phenomenological context, such a decision
implies that the WDW generator does not represent an observable. We believe that there are
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many reasons for such a preference, especially in the context of the possible quantization of
gravity, because, in such a context, the WDW eigenstates are usually treated as a means of
specification of the Hilbert space, rather than as the observable states that would be directly
connected with the energy [5].

5.3. Reconstruction of the Metric Θ(t) from the Generator G(t)

In the NIP framework, it is sufficient to admit that only the sum (24) of the generator
G(t) and of the Coriolis force Σ(t) (of a purely kinematical origin) can be interpreted as the
observable Hamiltonian. In such a non-stationary NIP scenario, several open questions
emerge and have to be resolved, of course.

5.3.1. Big Bang Rendered Possible by the Time Dependence of the Metric

Let us now accept the model-building strategy in which one is given the kinematical
input operator G(t). Then, the general non-Hermitian interaction picture can be declared
exceptional because only this picture is in fact a candidate for a realization of the quan-
tum Big-Bang-like phase transitions via a unitary evolution process [43,56,57]. Naturally,
the details of such a realization remain nontrivial even when we restrict our attention to
the Wheeler–DeWitt form of the most elementary differential-operator generators G(t)
and to the Big-Bang-like quantum phase transitions. Nevertheless, what we achieve is
that we avoid and eliminate the danger of the Big-Bounce smearing after quantization.
In Hermitian theory, this smearing is unavoidable, caused by an effective level repulsion,
as sampled in Figure 1 above. In the quasi-Hermitian NIP context, the Big-Bang-related
exceptional-point degeneracy is rendered possible via the “fine-tuning” of the metric: a few
non-numerical, exactly solvable simulations of such a fine-tuning may be found described,
e.g., in [56].

A complementary word of warning has been formulated in our brief methodical
note [47]. We revealed there that in the Heisenberg picture (HP), the Big Bang degeneracy
cannot be realized at all. Indeed, the underlying constant choice of vanishing G(HP)(t) = 0
has been shown to imply the stationarity of the HP metric, Θ(HP) 6= Θ(HP)(t) (recall
Equation (32) for the quick proof). The HP form of Equation (24) implies that we have
Σ(HP)(t) = H(HP)(t) so that only the solution of the Heisenberg Equations (38) is needed.
The only advantage of using the HP simplification is that both of the underlying Schrödinger
equations remain trivial. Nevertheless, as long as the realization of the Big Bang degeneracy
necessarily requires that the Hilbert-space metric Θ(t) has to vary with time, the use of the
NIP formalism with nontrivial G(NIP)(t) is unavoidable.

Unfortunately, no help has been reached in an extended Heisenberg picture (EHP, [55]).
In a slightly amended formalism, we proposed the use of a constant-operator choice of
a non-vanishing generator G(EHP)(t) = G(EHP)(0) 6= 0. We found that the EHP formalism
can already describe the evolution equivalent to the one generated by the manifestly time-
dependent selfadjoint quantum Hamiltonians h(t) (cf. Abstract of Ref. [55] or a rediscovery
of this possibility in [54]). Nonetheless, the description of the phase transitions (such as the
Big Bang) remains beyond the capacity of the amended EHP approach. The fully fledged
NIP is needed.

5.3.2. The Detailed WDW NIP Recipe

In [12], we outlined some of the details of the constructive treatment of the quantum
phase transitions. We pointed out that our “dynamical input” knowledge of the non-
observable Hamiltonian G(t) enables us to solve the pair of our Schrödinger Equations (23)
and (29) at any initial conditions. In this sense, every initial N-plet

|ψ1(0)〉 , |ψ2(0)〉 , . . . , |ψN(0)〉 (48)

and
|ψ1,Θ(0)〉 , |ψ2,Θ(0)〉 , . . . , |ψN,Θ(0)〉 (49)
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chosen at t = 0 can be used to construct the time-dependent N-plets of the kets

|ψ1(t)〉 , |ψ2(t)〉 , . . . , |ψN(t)〉

and
|ψ1,Θ(t)〉 , |ψ2,Θ(t)〉 , . . . , |ψN,Θ(t)〉 .

Under an elementary working hypothesis of a finite-, N-dimensional Hilbert space,
the additional initial bi-orthonormality assumption

〈ψm,Θ(0) |ψn(0)〉 = δm,n , m, n = 1, 2, . . . , N (50)

and the completeness
N

∑
n=1
|ψn(0)〉〈ψn,Θ(0)| = I (51)

become immediately extended to all times t > 0,

N

∑
n=1
|ψn(t)〉〈ψn,Θ(t)| = I , 〈ψ1,Θ(t) |ψn(t)〉 = δm,n , m, n = 1, 2, . . . , N . (52)

Moreover, the time-dependent metric operator Θ(t) acquires the standard representa-
tion inH(F),

Θ(t) =
N

∑
n=1
|ψn,Θ(t)〉 〈ψn,Θ(t)| . (53)

This means that the choice of a suitable generator G(t) and of the two suitable initial
vector sets (48) and (49) with properties (50) and (51) does not leave too much space for the
further requirements concerning the dynamics.

Fortunately, we come to the conclusion that the space left by the NIP formalism is
still sufficient for our present purposes. Indeed, in our construction, we started from the
assumption of the knowledge of a preselected WDW form of the generator G(t). Such
specific “kinematical-like” input information is still not in conflict with the Big Bang
dynamics. Indeed, such a version of the general NIP formalism still admits the use of the
formal spectral representation of the observables. In this sense, there exist the two most
important operators of our present interest. The first one is the “dynamical”, observable-
energy-representing operator H(t) called Hamiltonian. In its spectral representation of
the form

H(t) =
N

∑
n=1
|ψn(t)〉En(t)〈ψn,Θ(t)| (54)

the choice of the energy eigenvalues En(t) remains unrestricted.
In the climax of the story, an entirely analogous expansion should be finally introduced

in order to define the complementary, “kinematical”, background-representing operator of
a suitable “geometry” or “spatial-grid” operator (37). In its analogous spectral representation

Q(t) =
N

∑
n=1
|ψn(t)〉qn(t)〈ψn,Θ(t)| (55)

we are free to require the validity of the Big Bang constraint (42) imposed upon all of its
spatial-background-representing eigenvalues qn(t).

6. Discussion

The non-Hermitian innovation of the NSP framework opened, in [8], the way to-
wards a deeper understanding of the KG- and WDW-like quantum systems in stationary
approximation. Later, the birth of the more sophisticated non-Hermitian version of Dirac’s
interaction picture [10] seemed to be, initially, merely an artificial mathematical exercise.
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Nobody seemed to be willing to admit that the NIP formalism might find application in
quantum gravity. The main reason was that in the most advanced version of quantum
gravity (i.e., in the canonical LQG approach), virtually all the results seemed to indicate that
the classical Big Bang singularity has to be replaced by its quantized Big Bounce alternative.

Even among mathematicians, it has been firmly believed that the quantization must
necessarily smear out the singularities of the classical Einstein’s general relativity [3]. In this
sense, before any return to the quantum Big Bang hypothesis, it was necessary to wait for a
renewal of its support in the realistic LQG context [20]. Naturally, the problem is technically
complicated. In this sense, the present methodical support of the latter hypothesis is also
merely schematic and incomplete. In its framework, we had to leave many important
phenomenological requirements aside. Let us now mention some of them in the form of
brief comments.

6.1. The Background Independence Requirement

In Isham’s foreword preceding Thiemann’s comprehensive 2007 monograph on canon-
ical quantum gravity [3], the Hamiltonian constraint Ĥψ = 0 alias “the famous Wheeler–
DeWitt equation” is characterized as “arguably one of the most elegant equations in
theoretical physics, and certainly one of the most mathematically ill-defined”. In the intro-
ductory part of the book itself, one reads, indeed, that the sufficiently rigorous specification
of a suitable Hilbert space in which the Wheeler–DeWitt operator Ĥ would be defined
represents one of the most important unresolved theoretical challenges.

The latter Hilbert-space problem may be found thoroughly discussed in Section 9.2
of Mostafazadeh’s 2010 study [7]. Even the authors of the LQG study admit that such
an approach does not yet provide a fully consistent description of the physical reality.
Nonetheless, their approach addresses, successfully, the necessary background indepen-
dence of the theory [5]. In some sense, such a requirement should be incorporated into any
theory that pretends to be “fundamental” rather than merely “effective”.

From the perspective of our present approach based on the drastically simplified
WDW equation, the constructions that would be background-independent were found
feasible. In some sense, such a requirement can be perceived as lying in the very center
of the NIP approach, in which, admittedly, one starts from the knowledge of the explicit
WDW form of the operator G(t), but in which the theory admits the introduction of
an “observable background”. Although our present spectral representation definition
(55) of such an independent kinematical background may appear rather abstract, a more
specific example may be sought, say, in [58], where a nontrivial coordinate/background
has constructively been obtained in an elementary dynamical model.

In our considerations, the role of a geometric background has been played by the
“dynamical input” operator Q(t) sampled by a matrix in Equation (3), with the spectrum
qn(t) simulating the “observable” spatial grid points and guaranteeing the existence of
the Big Bang singularity at t = 0 (cf. Equation (42) or Figure 2). In discussion, one only
has to emphasize the mathematical subtlety of the correspondence between the hidden
Hermiticity of Q(t) and the fine-tuned nature of the corresponding Hilbert-space metric
Θ(t), which guarantees the unitarity of the system (i.e., of the evolution of the Universe
from the very beginning of its observability and existence).

In the latter considerations, the truly drastic simplifications of the picture seem still
absolutely necessary at present, skipping, typically, the Lorentz-covariance requirements
and working with the models in which the time is a parameter and in which, for methodical
reasons, the “Universe” is one-dimensional and discretized via a finite mesh of the time-
dependent grid points qj(t), j = 1, 2, . . . , N. In such a “Universe”, only the degeneracy
qj(t)→ 0 in the classical physics Big Bang limit t→ 0− is asked for.

6.2. Problems with Terminology

The conventional belief that the avoided crossings of the eigenvalues are generic is
equivalent to the (usually, only tacit) assumption of the time independence of the physical
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inner-product metric Θ. In the opposite direction, once we replace the conventional
selfadjoint grid matrix q(t) with its isospectral but merely hidden Hermitian partner Q(t),
we discover the existence of a new freedom in the formalism as carried by the Dyson map
Ω(t). As a consequence, the existence of the singular Big Bang grid-point limit (42) is
rendered possible.

In the language of mathematics, the innovation lies in the enhancement of the flexibility
of the dynamical laws. One arrives at the less usual, non-Hermitian NIP formulation of
quantum mechanics. In its framework, the unitary and closed quantum systems may be
defined via structures using more than one inner product, i.e., strictly speaking, more than
one Hilbert space.

One of the most welcome consequences is an enhancement of the flexibility, while,
on the other hand, one may find terminological misunderstandings. In the phenomeno-
logically oriented literature, several similar terms denote more or less the same theory.
Thus, in different papers, one encounters, e.g., a reference to the quasi-Hermitian quan-
tum theory [22,59], to the pseudo-Hermitian quantum theory [7], to the non-Hermitian
but PT -symmetric quantum theory (usually also with P = parity and with T = time
reversal [38]), to the three-Hilbert-space quantum theory [11], or to the crypto-Hermitian
quantum theory [60], etc.

6.3. The Danger of an Over-Determination of the Dynamical Input

All of the latter approaches lead to a perceivable gain in flexibility of the realistic
models of various quantum systems. This is to be countered merely by the necessity of
keeping trace of the more sophisticated forms of Hermitian conjugations. One can conclude
that the subject is still relevant. On a model-independent level of discussion, it is worth
adding that the consistency of the dynamical input need not in fact be easily guaranteed.
In review [22], for example, the authors stressed that in the over-determined cases, the
necessary Hilbert-space metric (and, hence, the theory itself) need not exist at all. In [61],
such a non-existence has been shown to occur even in some fairly popular realistic models.
An abstract analysis of such an unpleasant possibility was presented in [62]. Only recently,
more encouraging results were obtained in [25], offering a certain systematic guide to the
construction of the mutually compatible non-Hermitian observables.

Once we restrict attention to the applicability of the NIP approach in cosmology,
encouragement may be sought in the progress and simplifications of the canonical quanti-
zation [3,5]. The latter two reviews of the state of the art differ by the language, with the
former one being more mathematically oriented. Nonetheless, both of these monographs
share the traditional philosophy interpreting the quantum theory as a result of a modi-
fication of its classical predecessor. In our final remark, we would like to point out that
one could also try to weaken our dependence on the classical-physics-based intuition by
treating, as primary, the tentative quantum hypotheses in a way defended, e.g., by Brody
and Hughston [63].

7. Summary

The core of our present message is that the consistency of the quantum-mechanical
interpretation of the non-stationary WDW systems requires that the Schrödinger equation
ceases to be perceived as offering a complete picture of the evolution. In this sense, it is
necessary to add a parallel and fully fledged description of the evolution of the operators
of observables using the Heisenberg-like evolution equations. In the natural physical
quantum-gravity context, the unitarity of the WDW-controlled evolution can be then
guaranteed. The apparently non-unitary evolution of the left and right wave functions
(controlled by the respective two Schrödinger-type equations) is precisely compensated by
the apparent non-unitarity of the evolution of the operators representing the observables
(controlled, in parallel, by non-Hermitian Heisenberg-type equations).

Having accepted such a philosophy, our present paper can be read as a more or
less purely methodical return to the question of whether, in the framework of quantum
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cosmology, the birth of our Universe should be perceived as a point-like Big Bang or as
a smeared Big Bounce. In essence, we have presented here a few arguments supporting
our persuasion that, in the purely theoretical NIP framework, such a question remains, at
present, open.
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Appendix A. Two Hilbert Spaces in Quantum Mechanics

In the conventional quantum mechanics of textbooks [21], the predictions of the
results of experiments have their mathematical background, in NSP , in the evaluation of
matrix elements

≺ψ(NSP)(t f ) |q(NSP)(t f ) |ψ(NSP)(t f )� . (A1)

The symbol q(NSP) denotes here a selfadjoint operator of the observable in question;
usually, this operator is time-independent, q(NSP) 6= q(NSP)(t). All information about the
evolution of the system in time is carried, in the pure state regime, by a ket vector element
|ψ(NSP)(t)� of a Hilbert space of states H(textbook). This state is assumed prepared at
tinitial = 0 and measured at t = t f inal = t f . Prediction (A1) is probabilistic and contains
only the NSP wave-ket solutions |ψ(NSP)(t)� of Schrödinger equation

i
∂

∂t
|ψ(t)� = h(NSP) |ψ(t)� , |ψ(t)� ∈ H(textbook) . (A2)

Due to the Stone theorem, the evolution is unitary if and only if the Hamiltonian is
selfadjoint inH(textbook), h(NSP) = h†

(NSP) [64].
One of many efficient simplifications of the practical solution of Equation (A2) is due to

Dyson [65]. He revealed that, in many cases, one has to work with a technically unfriendly
Hamiltonian, which can be perceivably simplified via a suitable isospectral preconditioning
h(NSP) → H(NSP) = Ω−1 h(NSP) Ω. This is formally equivalent to the transformation of the
ket vector wave functions,

|ψ(textbook)
n � = Ω |ψ(auxiliary)

n 〉 , n = 0, 1, . . . . (A3)

Operator Ω has to be n-independent and stationary (Ω 6= Ω(t)). Dyson also rec-
ommended to make the choice of Ω non-unitary (Ω†Ω = Θ 6= I). In analogy with the
so-called coupled-cluster method based on a similar idea [66], one may also treat the sim-
pler partner of the Hilbert space H(textbook) as formally different, denoted by a different
dedicated symbol, say,H( f riendlier).

Schrödinger Equation (A2) becomes replaced, in the majority of applications of
the Dyson-recommended and Ω-mediated change of space H(textbook) → H( f riendlier), by
a friendlier equation

i
∂

∂t
|ψ(Dyson)(t)〉 = H(Dyson) |ψ(Dyson)(t)〉 , |ψ(Dyson)(t)〉 ∈ H( f riendlier) . (A4)

The transformed Hamiltonian is de-Hermitized since H = Ω−1 hΩ 6= H† inH( f riendlier).
In the early review [22] of the procedure, a change in the philosophy has been proposed,
resulting in a reformulation of the textbook NSP approach called, in the spirit of the
mathematician’s terminology [59], quasi-Hermitian quantum mechanics. In this framework,
the model-building process has to start directly from Equation (A4) and from a guarantee
of the user-friendliness of the preconditioned Hamiltonian H. Whenever necessary, one
may, after all, re-Hermitize the model, say, via a reconstruction of Ω [7].

The non-unitarity of the map Ω implies, for the manifestly auxiliary Hilbert space
H( f riendlier), the loss of its physical-space status. Fortunately, it appeared sufficient to amend
the inner product and to convert H( f riendlier) into a fully acceptable and physical Hilbert
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spaceH(standard). By construction, the latter space has to be unitary equivalent toH(textbook),
with the most straightforward method being the reconstruction of the so-called metric
Θ = Ω† Ω. The mathematical details can be found in reviews [22] and [7]. The essence of
the trick is that the correct spaceH(standard) can be represented via the mere amendment of
the bra vectors inH( f riendlier),

〈ψ| → 〈ψ|Θ ≡ 〈ψΘ| for H( f riendlier) → H(standard) . (A5)

In the terminology of functional analysis, the definition of the dual alias bra vector
space of the linear functionals is merely amended and transferred back, from H(standard) to
H( f riendlier), via formula V ′ → V ′Θ . In other words, one simply converts the conventional,
unphysical bra-ket inner product 〈ψ|χ〉 into its physical alternative,

〈ψ|χ〉 → 〈ψ|Θ|χ〉 ≡ 〈ψΘ|χ〉 . (A6)

In light of this relation, it is possible to perform all calculations inH( f riendlier). Nonethe-
less, in practice, the redundancy of the introduction of the manifestly unphysical Hilbert
spaceH( f riendlier) must be well motivated. The expense must be more than compensated
by the simplification of the evaluation of the experimental predictions. Moreover, the loss
of the direct connection withH(textbook) has to be taken into account because, in this space,
we usually define the operators of observables using the principle of correspondence [21].

One can often pull at least some of the necessary operators fromH(textbook) up to the
auxiliary Hilbert space H( f riendlier) (see, e.g., [58]), e.g., whenever one knows the Dyson
map, one can define the necessary operators inH( f riendlier) using formula

Q(Dyson) = Ω(−1)
(Dyson) q(NSP) Ω(Dyson) 6= Q†

(Dyson) . (A7)

The experiment-predicting NSP equation (A1) then acquires the upgraded form,

≺ψ(NSP)(t f ) |q(NSP)(t f ) |ψ(NSP)(t f )� = 〈ψ(Dyson)
Θ (t f ) |Q(Dyson)(t f ) |ψ(Dyson)(t f )〉 (A8)

in which one can use, at worst, merely some reasonably precise approximate form of the
physical Hilbert-space metric Θ = Ω† Ω in Equation (A5) (cf. [22,67]).
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