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Abstract: We employ an unregulated computation of the graviton self-energy from gravitons on the
de Sitter background to infer the renormalized result. This is used to quantum-correct the linearized
Einstein equation. We solve this equation for the potentials that represent the gravitational response
to a static, point mass. We find large spatial and temporal logarithmic corrections to the Newtonian
potential and to the gravitational shift. Although suppressed by a minuscule loop-counting parameter,
these corrections cause perturbation theory to break down at large distances and late times. Another
interesting fact is that gravitons induce up to three large logarithms, whereas a loop of massless,
minimally coupled scalars produces only a single large logarithm. This is in line with corrections to
the graviton mode function: a loop of gravitons induces two large logarithms, whereas a scalar loop
gives none.

Keywords: quantum gravity; quantum field theory on curved space Inflationary cosmology; effective
field equations
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1. Introduction

A key prediction of primordial inflation is that virtual gravitons of a cosmological
scale are ripped out of the vacuum [1,2]. The occupation number for each wave vector~k
is staggering:

N(η, k) =
π∆2

h(k)
64Gk2 × a2(η) , (1)

where ∆2
h(k) is the tensor power spectrum, G is Newton’s constant, and a(η) is the scale

factor at conformal time η. Our goal is to study how these gravitons change the force
of gravity.

We can describe the background geometry of cosmology in conformal coordinates:

ds2 = a2(η)
[
−dη2 + d~x·d~x

]
=⇒ H ≡ a′

a2 , ε ≡ − H′

aH2 , (2)

where H(η) is the Hubble parameter and ε(η) is the first slow roll parameter. A reasonable
paradigm for inflation is provided by the special case of de Sitter (ε = 0, constant H,
and a(η) = −1/Hη), which is tempting because there are analytic expressions for the
graviton propagator [3,4] and because there is no mixing between gravitons and the matter
fields that drive inflation [5,6]. One quantum-corrects the linearized Einstein equation
using the graviton self-energy −i[µνΣρσ](x; x′), which is the 1PI (one-particle irreducible)
two-graviton function,

Dµνρσhρσ(x)−
∫

d4x′
[

µνΣρσ
]
(x; x′)hρσ(x′) =

1
2

κTµν
lin (x) . (3)
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Here, κ2 ≡ 16πG is the loop-counting parameter, hµν ≡ (gµν − a2ηµν)/κ is the graviton
field, Tµν

lin (x) is the linearized stress tensor, and Dµνρσ is the graviton kinetic operator in
the same gauge that was used to compute −i[µνΣρσ](x; x′). Our two aims in this work
are (1) to infer a fully renormalized result for −i[µνΣρσ](x; x′) at one loop from an old
computation [7] that was made without regularization and (2) to work out one-loop correc-
tions to the gravitational response to a point mass.

There are four sections to this paper, of which this Introduction is the first. Section 2
describes our procedure for extracting the renormalized self-energy from the unregulated
result, with technical details consigned to an Appendix A. Section 3 solves (3) for one-
loop corrections to the gravitational potentials induced by a point mass. Our conclusions
comprise Section 4.

2. Quantum Linearized Einstein Equation

This section derives an explicit expression for the quantum-corrected Einstein
Equation (3). Our first tasks are specifying the gauge-fixed kinetic operator Dµνρσ, ex-
plaining how we represent the tensor structure of the graviton self-energy, and giving 3+ 1
decompositions of both. The main part of this section describes the process through which
we infer most of the renormalized, Schwinger–Keldysh result for the graviton self-energy
from an unregulated, noncoincident computation [7]. At the section’s end, we give a direct,
dimensionally regulated computation of the local four-point contribution, and we discuss
the need for a fully dimensionally regulated calculation.

2.1. 3 + 1 Decomposition

In the simplest gauge and D = 3 + 1 dimensions, the gauge-fixed kinetic operator
takes the form [3,4]:

Dµνρσ =
1
2

ηµ(ρησ)νDA −
1
4

ηµνηρσDA + 2a4H2δ
(µ

0ην)(ρδ
σ)

0 . (4)

Here, DA is the massless, minimally coupled scalar kinetic operator:

DA = −a2
[
∂2

0 + 2aH∂0 −∇2
]
= ∂µa2∂µ . (5)

The 3 + 1 decomposition of Dµνρσhρσ is

D00ρσhρσ =
1
4

DA(h00 + hkk)− 2a4H2h00 , (6)

D0iρσhρσ = −1
2

DBh0i , (7)

Dijρσhρσ =
1
2

DA

[
hij +

1
2

δij(h00 − hkk)
]

, (8)

where DB stands for the kinetic operator of a massless, conformally coupled scalar:

DB = −a2
[
∂2

0 + 2aH∂0 −∇2 + 2a2H2
]
= a∂2a . (9)

Note that adding (6) and the trace of (8) gives a relation for h00,
(
D00ρσ +Dkkρσ

)
hρσ = DBh00 . (10)
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Using general tensor analysis on a general cosmological background (2), we can
represent the graviton self-energy as the sum of 21 tensor differential operators [µνDρσ]
acting on scalar functions of η, η′, and ‖~x−~x′‖ [8],

− i
[

µνΣρσ
]
(x; x′) =

21

∑
i=1

[
µνDρσ

i

]
×Ti(x; x′) . (11)

The 21 basis tensors are constructed from δ
µ
0, the spatial part of the Minkowski metric

ηµν ≡ ηµν + δ
µ
0δν

0, and the spatial derivative operator ∂
µ ≡ ∂µ + δ

µ
0∂0. These 21 tensors are

listed in Table 1.

Table 1. The 21 basis tensors used in Expression (11). The pairs (3, 4), (5, 6), (7, 8), (10, 11), (14, 15),
(16, 17), and (19, 20) are related by reflection.

i [µνDρσ
i ] i [µνDρσ

i ] i [µνDρσ
i ]

1 ηµνηρσ 8 ∂
µ

∂
ν
ηρσ 15 δ

(µ
0∂

ν)
δ

ρ
0δσ

0

2 ηµ(ρησ)ν 9 δ
(µ

0ην)(ρδ
σ)

0
16 δ

µ
0δν

0∂
ρ
∂

σ

3 ηµνδ
ρ
0δσ

0 10 δ
(µ

0ην)(ρ∂
σ) 17 ∂

µ
∂

ν
δ

ρ
0δσ

0

4 δ
µ
0δν

0ηρσ 11 ∂
(µ

ην)(ρδ
σ)

0
18 δ

(µ
0∂

ν)
δ
(ρ

0∂
σ)

5 ηµνδ
(ρ

0∂
σ) 12 ∂

(µ
ην)(ρ∂

σ) 19 δ
(µ

0∂
ν)

∂
ρ
∂

σ

6 δ
(µ

0∂
ν)

ηρσ 13 δ
µ
0δν

0δ
ρ
0δσ

0 20 ∂
µ

∂
ν
δ
(ρ

0∂
σ)

7 ηµν∂
ρ
∂

σ 14 δ
µ
0δν

0δ
(ρ

0∂
σ) 21 ∂

µ
∂

ν
∂

ρ
∂

σ

Table 2 gives the 7 pairs of Ti(x; x′), which are related by reflection invariance,
−i[µνΣρσ](x; x′) = −i[ρσΣµν](x′; x).

Table 2. Scalar coefficient functions in Expression (11), which are related by reflection.

i Relation i Relation

3, 4 T4(x; x′) = +T3(x′; x) 14, 15 T15(x; x′) = −T14(x′; x)

5, 6 T6(x; x′) = −T5(x′; x) 16, 17 T17(x; x′) = +T16(x′; x)

7, 8 T8(x; x′) = +T7(x′; x) 19, 20 T20(x; x′) = −T19(x′; x)

10, 11 T11(x; x′) = −T10(x′; x)

The 3 + 1 decomposition of [µνΣρσ](x; x′)hρσ(x′) is

[
00Σρσ

]
hρσ −→ iT4hkk + iT13h00 + iT14h0k,k + iT16hk`,k` , (12)

[
0iΣρσ

]
hρσ −→

i
2

∂i

[
T6hkk + T15h00 + T18h0k,k + T19hk`,k`

]

+
i
2

T9h0i +
i
2

T10hik,k , (13)
[

ijΣρσ
]

hρσ −→ iδij

[
T1hkk + T3h00 + T5h0k,k + T7hk`,k`

]
+ iT2hij

+i∂(i
[

T11hj)0+T12hj)k,k

]
+ i∂i∂j

[
T8hkk+T17h00+T20h0k,k+T21hk`,k`

]
. (14)

Some of these relations were simplified using transition invariance to partially integrate
spatial derivatives from the coefficient functions Ti(x; x′) onto the graviton field.
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2.2. The Quantum Correction

Suppose that S[g] stands for the classical action, with ghost and gauge fixing action
Sg[h, θ, θ] and counterterms ∆S[g]. We can give an analytic expression for the one-loop
graviton self-energy using an expectation value of variations of these actions:

−i
[

µνΣρσ
]
(x; x′) =

〈
Ω

∣∣∣∣∣T
∗
[[ iδS[g]

δhµν(x)

]
hh

[ iδS[g]
δhρσ(x′)

]
hh

+
[ iδS[g]

δhµν(x)

]
θθ

×
[ iδS[g]

δhρσ(x′)

]
θθ
+
[ iδ2S[g]

δhµν(x)δhρσ(x′)

]
hh

+
[ iδ2∆S[g]

δhµν(x)δhρσ(x′)

]
1

]∣∣∣∣∣Ω
〉

. (15)

The T∗-ordering symbol indicates that derivatives are taken outside the time order-
ing symbol, and the various subscripts give the number of weak fields that contribute.
The analogous Feynman diagrams are shown in Figure 1.

The 3 + 1 decomposition of [µνΣρσ](x; x′)hρσ(x
′) is,80

[
00Σρσ

]
hρσ −→ iT 4hkk + iT 13h00 + iT 14h0k,k + iT 16hkℓ,kℓ , (12)

[
0iΣρσ

]
hρσ −→ i

2
∂i

[
T 6hkk + T 15h00 + T 18h0k,k + T 19hkℓ,kℓ

]

+
i

2
T 9h0i +

i

2
T 10hik,k , (13)

[
ijΣρσ

]
hρσ −→ iδij

[
T 1hkk + T 3h00 + T 5h0k,k + T 7hkℓ,kℓ

]
+ iT 2hij

+i∂(i

[
T 11hj)0+T 12hj)k,k

]
+ i∂i∂j

[
T 8hkk+T 17h00+T 20h0k,k+T 21hkℓ,kℓ

]
. (14)

Some of these relations were simplified using transition invariance to partially81
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−i
[
µνΣρσ

]
(x; x′) =

〈
Ω

∣∣∣∣T ∗
[[ iδS[g]

δhµν(x)

]
hh

[ iδS[g]

δhρσ(x′)

]
hh

+
[ iδS[g]

δhµν(x)

]
θθ

×
[ iδS[g]

δhρσ(x′)

]
θθ
+
[ iδ2S[g]

δhµν(x)δhρσ(x′)

]
hh

+
[ iδ2∆S[g]

δhµν(x)δhρσ(x′)

]
1

]∣∣∣∣Ω
〉
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Figure 1: Diagrams contributing to the one loop graviton self-energy, shown in the same
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lines are dashed.
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Figure 1. Diagrams contributing to the one-loop graviton self-energy, shown in the same order, left to
right, as the four contributions to (15). Graviton lines are wavy and ghost lines are dashed.

2.2.1. The D = 4 Result

The unregulated result [7] can best be understood by considering how a dimensionally
regulated computation of −i[µνΣρσ](x; x′) would look. The general forms of the three-
graviton and four-graviton vertices are [3,9]:1

κaD−2h∂h∂h , κHaD−1hh∂h , (16)

κ2aD−2hh∂h∂h , κ2HaD−1hhh∂h . (17)

There is a plethora of different index contractions, but contributions to the first two
(nonlocal) diagrams of Figure 1 take the general form:

κaD−2 × ∂∂′i∆(x; x′)× ∂∂′i∆(x; x′)× κa′D−2 , (18)

with i∆(x; x′) standing for a ghost or graviton propagator and the understanding that one
derivative at each vertex could be replaced by a factor of H times the appropriate scale
factor. Note also that, when an external leg happens to be differentiated, then minus the
derivative acts on everything. On the other hand, the third (four-point) diagram of Figure 1
is local:

κ2aD−2 × ∂∂′i∆(x; x′)× iδD(x−x′) , (19)

with the same understanding concerning derivatives. The last (counterterm) diagram of
Figure 1 is also local:

κ2aD−4

D−4
× ∂2∂′2 × iδD(x−x′) , (20)

with the stipulation that any number of the four derivatives could each be replaced by a
factor of Ha.

The gauge for this computation was fixed by adding [3,4]

LGF = − aD−2

2
ηµνFµFν , Fµ = ηρσ

(
hµρ,σ −

1
2

hρσ,µ + (D−2)aHhµρδ0
σ

)
. (21)
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In this gauge, the ghost and graviton propagators become sums of constant tensor factors
multiplied by simple scalar propagators:

i
[

µ∆ρ

]
(x; x′) = ηµρ × i∆A(x; x′)− δ0

µδ0
ν × i∆B(x; x′) , (22)

i
[

µν∆ρσ

]
(x; x′) = ∑

I=A,B,C

[
µνT I

ρσ

]
× i∆I(x; x′) . (23)

The various [µνT I
ρσ] are

[
µνTA

ρσ

]
= 2ηµ(ρησ)ν −

2
D−3

ηµνηρσ ,
[

µνTB
ρσ

]
= −4δ0

(µην)(ρδ0
σ) , (24)

[
µνTC

ρσ

]
=

2EµνEρσ

(D−2)(D−3)
, Eµν ≡ (D−3)δ0

µδ0
ν + ηµν . (25)

Most of the scalar propagators can be expressed using a function A(y) of the de Sitter
length function y(x; x′) ≡ aa′H2∆x2:

i∆A(x; x′) = A(y) + k ln(aa′) k ≡ HD−2

(4π)
D
2

Γ(D−1)
Γ(D

2 )
, (26)

i∆B(x; x′) = B(y) ≡ − [(4y−y2)A′(y)+(2−y)k]
2(D−2)

, (27)

i∆C(x; x′) = C(y) ≡ 1
2
(2−y)B(y) +

k
D−3

. (28)

The first derivative of A(y) is [10,11]

A′(y) = − HD−2

4(4π)
D
2

{
Γ
(D

2

)(4
y

) D
2
+ Γ

(D
2
+1
)(4

y

) D
2 −1

+
∞

∑
n=0

[
Γ(n+ D

2 +2)
Γ(n+3)

(y
4

)n− D
2 +2
− Γ(n+D)

Γ(n+ D
2 +1)

(y
4

)n
]}

. (29)

Note that the yn and yn− D
2 −2 terms cancel for D = 4, so they only contribute when

multiplied by a sufficiently singular term.
Divergences occur in the effective field Equation (3) when the integration over x′µ

carries it to coincidence, x′µ = xµ. Hence, the first two (nonlocal) diagrams of Figure 1 can
be taken to D = 4 away from coincidence, which also makes the two local diagrams vanish.
This was performed for the unregulated computation [7]. That computation was tractable
because taking D = 4 simplifies the propagators,

i
[

µ∆D=4
ρ

]
(x; x′) =

1
4π2

{
ηµρ

aa′∆x2 −
1
2

H2 ln(H2∆x2)ηµρ

}
, (30)

i
[

µν∆D=4
ρσ

]
(x; x′) =

1
4π2

{
(2ηµ(ρησ)ν−ηµνηρσ)

aa′∆x2

−H2 ln(H2∆x2)
(

ηµ(ρησ)ν−ηµνηρσ

)}
. (31)
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Because one of the propagators in the nonlocal diagrams (18) might not carry any
derivatives, the coefficient functions Ti(x; x′) in our representation (11) of the graviton
self-energy take the form:

Ti(x; x′) ≡ Ti
N(x; x′) + Ti

L(x; x′)×ln(H2∆x2) . (32)

The coefficient functions Ti
L(x; x′) are given in Table 3 and the Ti

N(x; x′) are given in Table 4.
Both are functions of a, a′, ∆η ≡ η − η′ and inverse powers of the Poincaré interval
∆x2 ≡ ‖~x−~x′‖2 − (|η − η′| − iε)2.

Table 3. Each tabulated term must be multiplied by − κ2

64π4 .

i Coefficient Functions T i
L(x; x′) in Expression (32)

1 8a2a′2H4 × [
4∆η2

∆x6 + 1
∆x4 ] + 4a3a′3H6 × [

4∆η4

∆x6 − ∆η2

∆x4 +
3

∆x2 ]

2 −16a2a′2H4 × [
4∆η2

∆x6 + 1
∆x4 ]− 4a3a′3H6 × [

8∆η4

∆x6 + 1
∆x2 ]

3 8a3a′3H6×[∆η2

∆x4− 2
∆x2 ]−4a3a′2H5×[ 4∆η3

∆x6 − ∆η
∆x4 ]

5 16a2a′2H4 × ∆η
∆x4 + 4a3a′2H5 × [

2∆η2

∆x4 + 3
∆x2 ]

7 −8a2a′2H4 × 1
∆x2 − 2a3a′3H6 × ∆η2

∆x2 − 2a3a′2H5 × ∆η
∆x2

9 −96aa′H2 × [
16∆η4

∆x10 +
12∆η2

∆x8 + 1
∆x6 ]− 4a2a′2H4 × [

24∆η4

∆x8 +
8∆η2

∆x6 − 1
∆x4 ]

10 96aa′H2×[ 2∆η3

∆x8 +
∆η
∆x6 ]+12a2a′2H4×[ 4∆η3

∆x6 +
∆η
∆x4 ]+a3a′3H6×[ 8∆η3

∆x4 − 4∆η
∆x2 ]

−8a2a′H3×[ 4∆η2

∆x6 + 1
∆x4 ]−4a3a′2H5×[ 2∆η2

∆x4 − 1
∆x2 ]

12 −8aa′H2×[ 4∆η2

∆x6 + 1
∆x4 ]−2a2a′2H4×[ 6∆η2

∆x4 − 9
∆x2 ]+4a3a′3H6 × ∆η2

∆x2

13 −96aa′H2 × [
16∆η4

∆x10 +
12∆η2

∆x8 + 1
∆x6 ] + 4a2a′2H4 × [

24∆η4

∆x8 +
56∆η2

∆x6 + 11
∆x4 ]

+8a3a′3H6 × [
4∆η4

∆x6 − 2∆η2

∆x4 + 3
∆x2 ]

14 192aa′H2 × [
2∆η3

∆x8 +
∆η
∆x6 ] + 8a2a′2H4 × [

4∆η3

∆x6 − 3∆η
∆x4 ]

−16a2a′H3 × [
4∆η2

∆x6 + 1
∆x4 ]− 16a3a′2H5 × [

∆η2

∆x4 +
1

∆x2 ]

16 −8aa′H2×[ 4∆η2

∆x6 + 1
∆x4 ]+2a2a′2H4×[− 6∆η2

∆x4 + 1
∆x2 ]−2a3a′3H6× ∆η2

∆x2

+16a2a′H3 × ∆η
∆x4 + 6a3a′2H5 × ∆η

∆x2

18 −24aa′H2 × [
4∆η2

∆x6 + 1
∆x4 ]− 2a2a′2H4 × [

6∆η2

∆x4 + 5
∆x2 ]

19 8aa′H2 × ∆η
∆x4 + 6a2a′2H4 × ∆η

∆x2 − 4a2a′H3 × 1
∆x2

2.2.2. Recovering the Renormalized Result

In [12], we presented a four-step procedure for reconstructing the dimensionally
regulated result for the first two diagrams of Figure 1:

1. Express each Ti
L(x; x′) as a sum of derivatives acting on three integrable functions:

1
∆x2 ,

∆η

∆x2 ,
∆η2

∆x2 ; (33)

2. Commute the various derivatives to the left of the multiplicative factor of ln(H2∆x2);
3. Write the sum of the remainder ∆Ti

L(x; x′) from Step 2 and Ti
N(x; x′) as the sum of

derivatives acting on the same integrable functions (33) and 1/∆x4;
4. Recognize the factors of 1/∆x4 from Step 3 as the D = 4 limit of 1/∆x2D−4, and isolate

the ultraviolet divergences on delta functions, which can be absorbed into counterterms.
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Table 4. Each of the tabulated terms must be multiplied by − κ2

64π4 .

i Coefficient Functions T i
N(x; x′) in Expression (32)

1
736

5
∆x8−aa′H2[

616∆η2

∆x8 +
220
3

∆x6 ]−a2a′2H4[
96∆η4

∆x8 +
812
3 ∆η2

∆x6 + 19
∆x4 ]−a3a′3H6[

64∆η4

∆x6 +
22∆η2

∆x4 ]

2
1952

5
∆x8 −aa′H2[

416∆η2

∆x8 +
128
3

∆x6 ]−a2a′2H4[
112
3 ∆η2

∆x6 − 56
∆x4 ]+a3a′3H6[

32∆η4

∆x6 +
12∆η2

∆x4 ]

−184[
8
5 ∆η2

∆x10 +
1

∆x8 ]+32aa′H2[
36∆η4

∆x10 +
14∆η2

∆x8 −
43
3

∆x6 ]

3 −a2a′2H4[
288∆η4

∆x8 −
1228

3 ∆η2

∆x6 + 145
∆x4 ]+4a3a′3H6[

16∆η4

∆x6 +
5∆η2

∆x4 ]

−8aH[
232∆η3

∆x10 +
203∆η

∆x8 ]+4a2a′H3[
74∆η3

∆x8 −
319
3 ∆η

∆x6 ]−a3a′2H5× 38∆η
∆x4

5

368
5 ∆η

∆x8 −32aa′H2[
9∆η3

∆x8 −
4
3 ∆η

∆x6 ]+4a2a′2H4[
8∆η3

∆x6 − ∆η
∆x4 ]

+232aH[
2∆η2

∆x8 + 1
∆x6 ]−2a2a′H3[

28
3 ∆η2

∆x6 − 23
∆x4 ]−a3a′2H5× 12∆η2

∆x4

7
−

92
15

∆x6 +aa′H2[
24∆η2

∆x6 +
7
3

∆x4 ]+a2a′2H4[
8∆η2

∆x4 − 3
∆x2 ]+a3a′3H6× ∆η2

∆x2

−aH×
116
3 ∆η

∆x6 − a2a′H3×
23
3 ∆η

∆x4 + a3a′2H5× ∆η
∆x2

9 −16[
488
5 ∆η2

∆x10 + 61
∆x8 ]+16aa′H2[

88∆η4

∆x10 − 10∆η2

∆x8 − 35
∆x6 ]+4a2a′2H4[

8∆η4

∆x8 +
2∆η2

∆x6 − 3
∆x4 ]

10

976
5 ∆η

∆x8 −16aa′H2[
8∆η3

∆x8 −
23
3 ∆η

∆x6 ]−2a2a′2H4[
16
3 ∆η3

∆x6 − 23∆η
∆x4 ]

+a3a′3H6× 4∆η3

∆x4 +aH×
64
3

∆x6 +8a2a′H3[
4
3 ∆η2

∆x6 − 5
∆x4 ]−a3a′2H5× 4∆η2

∆x4

12 −
488
15

∆x6 +
32
3 aa′H2[

∆η2

∆x6− 1
∆x4 ]−a2a′2H4[

10
3 ∆η2

∆x4 − 8
∆x2 ]−a3a′3H6× 2∆η2

∆x2

13
16[ 336∆η4

∆x12 +
336∆η2

∆x10 + 63
∆x8 ] + 4aa′H2[

336∆η4

∆x10 +
868∆η2

∆x8 + 409
∆x6 ]

+a2a′2H4[
424∆η4

∆x8 +
144∆η2

∆x6 + 557
∆x4 ]−24a3a′3H6[

4∆η4

∆x6 − ∆η2

∆x4 ]

14
−672[

8
5 ∆η3

∆x10 +
∆η
∆x8 ]−8aa′H2[

30∆η3

∆x8 +
107
3 ∆η

∆x6 ]−4a2a′2H4[
16∆η3

∆x6 − 7∆η
∆x4 ]

−16aH[
4∆η2

∆x8 +
35
3

∆x6 ]−2a2a′H3[
68
3 ∆η2

∆x6 + 137
∆x4 ]+a3a′2H5× 16∆η2

∆x4

16
4[

84
5 ∆η2

∆x8 +
13
3

∆x6 ]+aa′H2[
24∆η2

∆x6 +
127
3

∆x4 ]+a2a′2H4[
6∆η2

∆x4 + 5
∆x2 ]

−a3a′3H6× 3∆η2

∆x2 −aH× 28∆η
∆x6 +a2a′H3×

49
3 ∆η

∆x4 +a3a′2H5× ∆η
∆x2

18 8[
168
5 ∆η2

∆x8 +
29
3

∆x6 ]+4aa′H2[
12∆η2

∆x6 − 23
∆x4 ]+a2a′2H4× 10∆η2

∆x4

19 −
112
5 ∆η

∆x6 − 8aa′H2× ∆η
∆x4 − a2a′2H4× ∆η

∆x2 + aH×
50
3

∆x4

21
14
5

∆x4

Below, we explain the rationale for each step and provide details. We also implement the
various steps on T12(x; x′):

T12
L (x; x′) = −κ2 ln(H2∆x2)

64π4

{
aa′H2

[
−32∆η2

∆x6 −
8

∆x4

]

+a2a′2H4
[
−12∆η2

∆x4 +
18

∆x2

]
+ a3a′3H6

[4∆η2

∆x2

]}
, (34)

T12
N (x; x′) = − κ2

64π4

{
−

488
15

∆x6 + aa′H
[ 32

3 ∆η2

∆x6 −
32
3

∆x6

]

+a2a′2H4
[
−

10
3 ∆η2

∆x4 +
8

∆x2

]
+ a3a′3H6

[
−2∆η4

∆x2

]}
. (35)

To understand the rationale behind Step 1, note that a single factor of ln(H2∆x2) from
the propagators (30) and (31) can only contribute to one of the Ti

L(x; x′) if no derivatives
act on one of the two propagators in (18). In that case, all of the derivatives must act on the
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other propagator, and it is this differentiated propagator, multiplied by the scale factors
from the vertices, that appears in Ti

L(x; x′). It follows that we can express Ti
L(x; x′) as the

sum of products of scale factors multiplied by derivatives of the three integrable functions
(33). For example, T12

L (x; x′) in Expression (34) can be written as

T12
L (x; x′) = −κ2 ln(H2∆x2)

64π4

{
aa′H2×−4∂2

0

( 1
∆x2

)

+a2a′2H4
[
−6∂0

( ∆η

∆x2

)
+

24
∆x2

]
+ a3a′3H6

[4∆η2

∆x2

]}
. (36)

Appendix A contains a number of useful identities (A2)–(A11) for extracting derivatives.
Step 2 consists of commuting the multiplicative factor of ln(H2∆x2) through the

derivatives to multiply the three integrable functions (33). Of course, this produces a
“remainder” ∆Ti

L(x; x′) in which derivatives act on the logarithm to produce a term like
those in Ti

N(x; x′). For example, carrying out Step 2 on Expression (36) for T12
L (x; x′) gives

T12
L (x; x′) = − κ2

64π4

{
aa′H2×−4∂2

0

( ln(H2∆x2)

∆x2

)
+ a2a′2H4

[
−6∂0

×
(∆η ln(H2∆x2)

∆x2

)
+

24 ln(H2∆x2)

∆x2

]
+ a3a′3H6× 4∆η2 ln(H2∆x2)

∆x2

}

− κ2

64π4

{
aa′H2

[
−48∆η2

∆x6 −
8

∆x4

]
+ a2a′2H4×−12∆η4

∆x6

}
. (37)

Identities (A12)–(A20) in Appendix A facilitate these reductions. It is useful at this stage to
identify six integrable functions, with a factor of 2πi extracted for future convenience,

2πiA1 ≡
ln(H2∆x2)

∆x2 , 2πiA2 ≡
1

∆x2 , (38)

2πiB1 ≡
∆η ln(H2∆x2)

∆x2 , 2πiB2 ≡
∆η

∆x2 , (39)

2πiC1 ≡
∆η2 ln(H2∆x2)

∆x2 , 2πiC2 ≡
∆η2

∆x2 . (40)

Hence, we can write,

T12
L = − iκ2

32π3

{
−4aa′H2∂2

0 A1−6a2a′2H4
[
∂0B1−4A1

]
+4a3a′3H6C1

}
+∆T2

L , (41)

where the remainder term is,

∆T12
L (x; x′) = − κ2

64π4

{
aa′H2

[
−48∆η2

∆x6 −
8

∆x4

]
+ a2a′2H4×−12∆η4

∆x6

}
. (42)

The terms involving A1, B1, and C1 would be ultraviolet finite in dimensional regularization,
so it is perfectly valid to leave them in D = 4. Results for all the algebraically independent
coefficient functions are given in Table 5.
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Table 5. Each tabulated term must be multiplied by κ2

32π3 .

i Nonlocal Contributions to iT i
SK(x; x′) Which Involve A1, B1 and C1

1 4a2a′2H4 × ∂2
0 A1 + 2a3a′3H6 × [∂2

0C1−6∂0B1+10A1]

2 −8a2a′2H4 × ∂2
0 A1−4a3a′3H6 × [∂2

0C1−5∂0B1+4A1]

3 4a3a′3H6×[∂0B1−5A1]−2a3a′2H5×[∂2
0B1−4∂0 A1]

5 8a2a′2H4 × ∂0 A1+4a3a′2H5 × [∂0B1+2A1]

7 −8a2a′2H4×A1 − 2a3a′3H6×C1 − 2a3a′2H5×B1

9 −4aa′H2 × ∂4
0 A1−2a2a′2H4 × [∂3

0B1−4∂2
0 A1]

10
4aa′H2×∂3

0 A1+6a2a′2H4×[∂2
0B1−2∂0 A1]

+a3a′3H6×[4∂0C1−12B1]−4a2a′H3×∂2
0 A1−a3a′2H5×[4∂0B1−8A1]

12 −4aa′H2×∂2
0 A1−6a2a′2H4×[∂0B1−4A1]+4a3a′3H6×C1

13
−4aa′H2 × ∂4

0 A1 + 2a2a′2H4 × [∂3
0B1+8∂2

0 A1]

+4a3a′3H6 × [∂2
0C1−7∂0B1+11A1]

14
8aa′H2 × ∂3

0 A1 + 4a2a′2H4 × [∂2
0B1−6∂0 A1]

−8a2a′H3 × ∂2
0 A1−8a3a′2H5 × [∂0B1+A1]

16
−4aa′H2×∂2

0 A1−a2a′2H4×[6∂0B1−8A1]−2a3a′3H6×C1

+8a2a′H3 × ∂0 A1 + 6a3a′2H5×B1

18 −12aa′H2×∂2
0 A1−a2a′2H4×[6∂0B1+4A1]

19 4aa′H2 × ∂0 A1 + 6a2a′2H4 × B1 − 4a2a′H3 × A1

In Step 3, we first combine Ti
N(x; x′) with the remainder ∆Ti

L(x; x′). For our example
of T12(x; x′), we add (35) and (42),

T12
N (x; x′) + ∆T12

L (x; x′) = − κ2

64π4

{
−

488
15

∆x6 + aa′H
[
−

112
3 ∆η2

∆x6 −
56
3

∆x4

]

+a2a′2H4
[
−

46
3 ∆η2

∆x4 +
8

∆x2

]
+ a3a′3H6×−2∆η2

∆x2

}
. (43)

These sums typically contain ultraviolet divergences. If we again employ the Appendix A
identities (A2)–(A11) to extract derivatives, the result involves factors of 1/∆x4 in addition
to the three integrable functions (33). For example, Expression (43) gives

[
T12

N + ∆T12
L

]
(x; x′) = − κ2

64π4

{
−∂2

( 61
15

∆x4

)
+ aa′H2

[
−∂2

0

( 14
3

∆x2

)
−

28
3

∆x4

]

+a2a′2H4
[
−∂0

( 23
3 ∆η

∆x2

)
+

47
3

∆x2

]
+a3a′3H6×−2∆η2

∆x2

}
. (44)

The ultraviolet finite factors of A2, B2, and C2 are reported in Table 6, whereas we retain
the factors of 1/∆x4 for further analysis,

T12
N +∆T12

L = − iκ2

32π3

{
−14

3
aa′H2∂2

0 A2+a2a′2H4
[
−23

3
∂0B2+

47
3

A2

]

−2a3a′3H6C2

}
− κ2

64π4

{
−∂2

( 61
15

∆x4

)
−aa′H2

28
3

∆x4

}
. (45)
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Table 6. Each of the tabulated terms must be multiplied by κ2

32π3 .

i Nonlocal Contributions to iT i
SK(x; x′) Which Involve A2, B2 and C2

1 −a2a′2H4[2∂3
0B2+

95
6 ∂2

0 A2]−a3a′3H6[5∂2
0C2−12∂0B2+2A2]

2 − 50
3 a2a′2H4∂2

0 A2−a3a′3H6[2∂2
0C2−16∂0B2+12A2]

3
3aa′H2∂4

0 A2−a2a′2H4[6∂3
0B2− 523

6 ∂2
0 A2]+a3a′3H6[8∂2

0C2

−26∂0B2+10A2]+
37
6 a2a′H3∂3

0 A2−a3a′2H5[3∂2
0B2+8∂0 A2]

5
−6aa′H2∂3

0 A2+a2a′2H4[4∂2
0B2−6∂0 A2]

− 7
3 a2a′H3∂2

0 A2−2a3a′2H5[∂0B2−A2]

7
3aa′H2∂2

0 A2+a2a′2H4[4∂0B2−7A2]+a3a′3H6C2

− 23
6 a2a′H3∂0 A2+a3a′2H5B2

9 − 14
3 aa′H2∂4

0 A2−a2a′2H4[3∂3
0B2−13∂2

0 A2]

10
14
3 aa′H2∂3

0 A2+a2a′2H4[ 23
3 ∂2

0C2+6∂0 A2]+a3a′3H6[6∂0C2−12B2]

− 14
3 a2a′H3∂2

0 A2−6a3a′2H5[∂0B2−A2]

12 − 14
3 aa′H2∂2

0 A2−a2a′2H4[ 23
3 ∂0B2− 47

3 A2]−2a3a′3H6C2

13
− 29

6 aa′H2∂4
0 A2+a2a′2H4[ 25

2 ∂3
0B2−15∂2

0 A2]

−a3a′3H6[6∂2
0C2−34∂0B2+22A2]

14 29
3 aa′H2∂3

0 A2−a2a′2H4[2∂2
0B2−8∂0 A2]− 53

3 a2a′H3∂2
0 A2

16
−3aa′H2∂2

0 A2−a2a′2H4[3∂0B2−8A2]−3a3a′3H6C2

+ 97
6 a2a′H3∂0 A2+a3a′2H5B2

18 −12aa′H2∂2
0 A2−a2a′2H4[∂0B2−A2]

19 −a2a′2H4B2

In Step 4, we isolate the logarithmic ultraviolet divergence implicit in the factors of
1/∆x4 produced by Step 3. We first note that factors of 1/∆x4 would appear as 1/∆x2D−4

had dimensional regularization been retained. Extracting a d’Alembertian from this uncov-
ers an explicit factor of 1/(D− 4):

1
∆x4 −→

1
∆x2D−4 =

∂2

2(D−3)(D−4)

[ 1
∆x2D−6

]
. (46)

The ultraviolet divergence is localized by adding a term proportional to the flat space
background massless propagator equation [10,11]:

1
∆x4 −→

∂2

2(D−3)(D−4)

[ 1
∆x2D−6

]

=
∂2

2(D−3)(D−4)

[ 1
∆x2D−6 −

µD−4

∆xD−2

]
+

µD−44π
D
2 iδD(x−x′)

2(D−3)(D−4)Γ(D
2 −1)

. (47)

The nonlocal part of (47) is both integrable and finite for D = 4. We can take the unregulated
limit of the nonlocal part of (47):

∂2

2(D−3)(D−4)

[ 1
∆x2D−6 −

µD−4

∆xD−2

]
−→ −∂2

4

[ ln(µ2∆x2)

∆x2

]
≡ −∂2

4

[
2πiA3

]
. (48)

These ultraviolet finite terms are given in Table 7.
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Table 7. Each of the tabulated terms must be multiplied by κ2

32π3 .

i Nonlocal Contributions to iT i
SK(x; x′) Which Involve A3

1 − 23
120 ∂6 A3+aa′H2[ 77

12 ∂2
0− 11

12 ∂2]∂2 A3− 49
6 a2a′2H4∂2 A3

2 − 61
120 ∂6 A3+aa′H2[ 13

3 ∂2
0− 5

6 ∂2]∂2 A3− 55
3 a2a′2H4∂2 A3

3
23
120∇2∂4 A3+aa′H2[ 52

12 ∂2
0+

173
12 ∂2]∂2 A3+

425
6 a2a′2H4∂2 A3

+aH[ 29
12 ∂3

0+
29
6 ∂0∂2]∂2 A3+

215
6 a2a′H3∂0∂2 A3

5 − 23
60 ∂0∂4 A3− 35

3 aa′H2∂0∂2 A3− 29
6 aH[∂2

0+∂2]∂2 A3− 38
3 a2a′H3∂2 A3

7 23
120 ∂4 A3+

11
12 aa′H2∂2 A3+

29
12 aH∂0∂2 A3

9 61
60∇2∂4 A3+aa′H2[ 29

3 ∂2
0+

41
3 ∂2]∂2 A3+4a2a′2H4∂2 A3

10 − 61
60 ∂0∂4 A3− 29

3 aa′H2∂0∂2 A3− 2
3 aH∂4 A3+

29
3 a2a′H3∂2 A3

12 61
60 ∂4 A3+

7
3 aa′H2∂2 A3

13 − 7
10∇4∂2A3−aa′H2[ 86

3 ∂2
0+

431
12 ∂2]∂2A3−139a2a′2H4∂2A3

14 7
5∇2∂0∂2 A3+

43
3 aa′H2∂0∂2 A3+aH[ 2

3 ∂2
0+

11
2 ∂2]∂2A3+

191
3 a2a′H3∂2 A3

16 −[ 7
10 ∂2

0+
23

120 ∂2]∂2 A3− 121
12 aa′H2∂2 A3+

7
4 aH∂0∂2 A3

18 −[ 14
5 ∂2

0+
61
60 ∂2]∂2 A3+23aa′H2∂2 A3

19 7
5 ∂0∂2 A3− 25

6 aH∂2 A3

21 − 7
10 ∂2 A3

It remains to renormalize the local divergence in Expression (47). This turns out to
always produce a finite local term proportional to ln(a). It arises from the incomplete
cancellation between primitive divergences like (47) and counterterms, which contain an
extra factor of aD−4 from the measure:

µD−44π
D
2 iδD(x−x′)

2(D−3)(D−4)Γ(D
2 −1)

− aD−4µD−44π
D
2 iδD(x−x′)

2(D−3)(D−4)Γ(D
2 −1)

−→ −2π2i×ln(a)δ4(x−x′) . (49)

These local terms are reported in Table 8.
To see that primitive divergences are free of D-dependent scale factors, note first that

the two nonlocal diagrams of Figure 1, corresponding to the generic expression (18), acquire
a factor of (aa′)D−2 from the two three-point vertices. The D-dependence of these vertex
scale factors is canceled by scale factors from the two propagators. The most singular part
of each propagator is

HD−2Γ(D
2 −1)

(4π)
D
2

(4
y

) D
2 −1

=
Γ(D

2 −1)

4π
D
2

( 1
aa′∆x2

) D
2 −1

. (50)

Less singular terms differ among the various propagators, but their scale factors all have the
form (aa′)1− D

2 × (aa′)N necessary to cancel the D-dependence of the vertex scale factors.

2.2.3. The Schwinger–Keldysh Result

Even though the graviton field is Hermitian, the nonlocal factors (48) and (38)–(40) are
neither real, nor causal because the Feynman diagrams from which they derive are in–out
matrix elements rather than expectation values. We can derive true expectation values
using the Schwinger–Keldysh formalism [13–17], which is a diagrammatic technique that
is almost as simple as the Feynman rules. These expectation values obey effective field
equations that are real and causal, albeit nonlocal [18–20].
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Table 8. Each of the tabulated terms must be multiplied by κ2 ln(a)
32π2 .

i Local Contributions to iT i
SK(x; x′)

1 − 23
30 ∂4δ4(x−x′)+aa′H2[ 77

3 ∂2
0− 11

3 ∂2]δ4(x−x′)− 98
3 a2a′2H4δ4(x−x′)

2 − 61
30 ∂4δ4(x−x′)+aa′H2[ 52

3 ∂2
0− 10

3 ∂2]δ4(x−x′)− 220
3 a2a′2H4δ4(x−x′)

3
23
30∇2∂2δ4(x−x′)+aa′H2[ 52

3 ∂2
0+

173
3 ∂2]δ4(x−x′)+ 850

3 a2a′2H4

×δ4(x−x′)+aH[ 29
3 ∂3

0+
58
3 ∂0∂2]δ4(x−x′)+ 430

3 a2a′H3∂0δ4(x−x′)

5
− 23

15 ∂0∂2δ4(x−x′)− 140
3 aa′H2∂0δ4(x−x′)

− 58
3 aH∇2δ4(x−x′)− 152

3 a2a′H3δ4(x−x′)

7 23
30 ∂2δ4(x−x′)+ 11

3 aa′H2δ4(x−x′)+ 29
3 aH∂0δ4(x−x′)

9 61
15∇2∂2δ4(x−x′)+aa′H2[ 116

3 ∂2
0+

164
3 ∂2]δ4(x−x′)+16a2a′2H4δ4(x−x′)

10
− 61

15 ∂0∂2δ4(x−x′)− 116
3 aa′H2∂0δ4(x−x′)− 8

3 aH∂2δ4(x−x′)
+ 116

3 a2a′H3δ4(x−x′)

12 61
15 ∂2δ4(x−x′)+ 28

3 aa′H2δ4(x−x′)

13 − 14
5 ∇4δ4(x−x′)−aa′H2[ 344

3 ∂2
0+

431
3 ∂2]δ4(x−x′)−556a2a′2H4δ4(x−x′)

14
28
5 ∇2∂0δ4(x−x′)+ 172

3 aa′H2∂0δ4(x−x′)
+aH[ 8

3 ∂2
0+22∂2]δ4(x−x′)+ 764

3 a2a′H3δ4(x−x′)

16 −[ 14
5 ∂2

0+
23
30 ∂2]δ4(x−x′)− 121

3 aa′H2δ4(x−x′)+7aH∂0δ4(x−x′)

18 −[ 56
5 ∂2

0+
61
15 ∂2]δ4(x−x′)+92aa′H2δ4(x−x′)

19 28
5 ∂0δ4(x−x′)− 50

3 aHδ4(x−x′)

21 − 14
5 δ4(x−x′)

There is no point to deriving the rules for converting the 1PI N-point functions such as
−i[µνΣρσ](x; x′) from in–out amplitudes to the Schwinger–Keldysh formalism. We merely
list the rules [21]:

• Spacetime points carry a ± polarity.
• Because propagators have two points, each with two polarities, there are four Schwinger–

Keldysh propagators i∆±±(x; x′). The ++ case is just the Feynman propagator,
whereas the −− case is its conjugate. The −+ propagator is the free expectation
value of the field at xµ times the field at x′µ, and the +− propagator is the free
expectation value of the reverse-ordered product.

• Each vertex has a ± polarity. The + vertices are the same as those of the in–out
formalism, while the − vertices are complex conjugates.

• Every in–out 1PI N-point function gives rise to 2N N-point functions in the Schwinger–
Keldysh formalism.

• The factor of [µνΣρσ](x; x′) in the linearized quantum Einstein Equation (3) is replaced
by the sum of [µνΣρσ

++](x; x′), which is the same as the in–out result, and [µνΣρσ
+−](x; x′).

• On our simple background (2), one can infer the result for [µνΣρσ
+−](x; x′) from that

for [µνΣρσ](x; x′) by dropping all the local contributions of Table 8, multiplying the
nonlocal terms by −1, and converting the coordinate interval ∆x2 from

∆x2
++(x; x′) ≡

∥∥∥~x−~x′
∥∥∥

2
−
(
|η−η′| − iε

)2
, (51)

to

∆x2
+−(x; x′) ≡

∥∥∥~x−~x′
∥∥∥

2
−
(

η−η′ + iε
)2

. (52)

Implementing these rules is straightforward. First, recall that the only dependence
on the coordinate interval ∆x2 in the nonlocal results of Tables 5–7 comes through the inte-
grable functions A1−3, B12, and C1−2, which were defined in Expressions (38)–(40) and (48).
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We can eliminate the factors of 1/∆x2 using the identities (A21)–(A29) of Appendix A.
For example, the ++ and +− versions of 2πi× A1 are

2πi×A1 =
ln(H2∆x2

+±)
∆x2

+±
=

∂2

8

[
ln2(H2∆x2

+±)−2 ln(H2∆x2
+±)

]
. (53)

Because the scale factors and derivatives are identical in the ++ and +− contributions, we
just need to consider the differences of logarithms:

ln(H2∆x2
++)− ln(H2∆x2

+−) = 2πi×θ(∆η−r) , (54)

ln2(H2∆x2
++)− ln2(H2∆x2

+−) = 4πi×θ(∆η−r) ln[H2(∆η2−r2)] , (55)

where r ≡ ‖~x−~x′‖. For example, the factors of A1 in Table 5 have the Schwinger–Keldysh
correspondence:

A1 −→ +
∂2

4

{
θ(∆η−r)

[
ln[H2(∆η2−r2)]−1

]}
. (56)

Identities (A30)–(A36) in Appendix A give the reductions needed for any of the integrable
functions A1−3, B1−2, and C1−2.

2.3. The Four-Point Contribution

The previous discussion concerned the two nonlocal diagrams of Figure 1 and the local
counterterms needed to renormalize them. There are also finite local contributions from
the third diagram. It derives from the 42 four-graviton interactions given in Equation (4.1)
of [9]. One connects two of the graviton fields to the external legs and then replaces the
remaining two fields by the graviton propagator. The procedure is tedious, and we shall
content ourselves with simply sketching it and giving the final result.

As an example, we reduce the first of the 42 interactions:

S1 ≡
κ2

32

∫
dDx aD−2h2h,θh,θ , (57)

where a comma denotes differentiation and the trace of the graviton field is h ≡ hα
α ≡

ηαβhαβ. We first take variational derivatives of the action integral with respect to hµν(x)
and hρσ(x′) as in Expression (15):

iδ2S1

δhµν(x)δhρσ(x′)
=

κ2

32
ηµνηρσ

{
−∂θ

[
2aD−2hα

α(x)hβ
β(x)∂θ iδD(x−x′)

]

+4aD−2hα
α(x)hβ

β,θ(x)∂θ iδD(x−x′)−4∂θ
[

aD−2hα
α(x)hβ

β,θ(x)iδD(x−x′)
]

+2aD−2hα
α,θ(x)hβ

β,θ(x)
]
iδD(x−x′)

}
. (58)

Now, we compute the expectation value of the T∗-ordered product, which amounts to
replacing the remaining two graviton fields of each term by the appropriate coincident
(and sometimes, differentiated) propagator:
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〈
Ω
∣∣∣T∗
[ iδ2S1

δhµν(x)δhρσ(x′)

]∣∣∣Ω
〉
=

κ2

32
ηµνηρσ

{
−∂θ

[
2aD−2×i

[
α
α∆β

β

]
(x; x)

×∂θ iδD(x−x′)

]
+4aD−2×∂′θ i

[
α
α∆β

β

]
(x; x′)

∣∣∣
x′=x
×∂θ iδD(x−x′)−4∂θ

[
aD−2

×iδD(x−x′)×∂′θ i
[

α
α∆β

β

]
(x; x′)

]
+2aD−2iδD(x−x′)×∂θ∂′θ i

[
α
α∆β

β

]
(x; x′)

}
. (59)

Finally, we express the tensor structure using the 21 basis tensors of Table 1:

ηµνηρσ =
(

ηµν−δ
µ
0δν

0

)(
ηρσ−δ

ρ
0δσ

0

)
, (60)

=
[

µνDρσ
1

]
−
[

µνDρσ
3

]
−
[

µνDρσ
4

]
+
[

µνDρσ
13

]
. (61)

The coincidence limits of the three propagators that appear in the graviton propagator (23)
are

i∆A(x; x) = k
[
−πcot

(πD
2

)
+2 ln(a)

]
, i∆B(x; x) = − k

D−2
, (62)

i∆C(x; x) =
k

(D−2)(D−3)
, k ≡ HD−2

(4π)
D
2

Γ(D−1)
Γ(D

2 )
. (63)

Note that only the undifferentiated A-type propagator is ultraviolet-divergent in dimen-
sional regularization. The undifferentiated A-type propagator is also the only way to obtain
a factor of ln(a). The first derivatives of coincident propagators are all finite:

∂αi∆A(x; x′)
∣∣∣
x′=x

= aHkδ0
α , ∂αi∆B(x; x′)

∣∣∣
x′=x

= 0 = ∂αi∆C(x; x′)
∣∣∣
x′=x

. (64)

The mixed second derivatives are also finite,

∂α∂′βi∆A(x; x′)
∣∣∣
x′=x

= −
(D−1

D

)
kH2gαβ , (65)

∂α∂′βi∆B(x; x′)
∣∣∣
x′=x

=
1
D

kH2gαβ , (66)

∂α∂′βi∆C(x; x′)
∣∣∣
x′=x

= − 2
D(D−2)

kH2gαβ . (67)

Note that all primitive contributions have factors of aD−2, aD−1, or aD. The coun-
terterms that absorb ultraviolet divergences possess the very same dependence on a, so
renormalization engenders no finite factors of ln(a) the way it did for the nonlocal dia-
grams of Expression (49). It does produce factors of ln(H/µ), but we report only the ln(a)
contributions in Table 9.

2.4. Anomalous Local Contributions

Our result for the renormalized self-energy consists of the local contributions, collected
in Tables 8 and 9, plus the nonlocal contributions of Tables 5–7. The nonlocal contributions
obey the Ward identity, just as did the noncoincident, D = 4 result [7] from which they
were inferred. However, it turns out that the local contributions do not. It is possible that
the missing terms are associated with contributions from the first two (nonlocal) diagrams
of Figure 1 in which an A-type propagator is undifferentiated and the derivatives on the
other propagator are contracted into one another:

κaD−2 × i∆A(x; x′)× ∂µ∂′µi∆(x; x′)× κa′D−2 . (68)
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In that case, the contracted derivatives would produce a delta function not recovered by
the noncoincident, D = 4 result [7]:

∂µ∂′µi∆(x; x′) = − iδD(x−x′)
aD−2 + O

( 1
∆xD−2

)
. (69)

It is also possible that the Feynman rules need to include contributions from the functional
measure factor. A fully dimensionally regulated calculation would seem to be necessary
to resolve this. One should also re-examine the contribution from a loop of massless,
minimally coupled scalars [22] to see if it shows similar anomalous local contributions. In
the meantime, we can proceed with the nonlocal contributions because it turns out that the
local contributions do not affect the potentials as strongly at late times and large distances.

Table 9. Each of the tabulated terms must be multiplied by κ2 ln(a)
32π2 .

i Nonzero Contributions to iT i
SK(x; x′) from the 4-Point Diagram

1 −8a2H2(∂0+2aH)∂0δ4(x−x′)

2 8a2H2(∂0+2aH)∂0δ4(x−x′)

3 −8a2H2[∇2+aH∂0+3a2H2]δ4(x−x′)

5 16a2H2(∂0+2aH)δ4(x−x′)

9 16a2H2∇2δ4(x−x′)

10 −16a2H2∂0δ4(x−x′)

13 −72a4H4δ4(x−x′)

14 −16a3H3δ4(x−x′)

16 8a2H2δ4(x−x′)

18 −16a2H2δ4(x−x′)

3. The Effect on the Force of Gravity

In this section, we solve the effective field Equation (3) to find one-loop corrections
to the gravitational response to a point mass. Our first step is to specialize the general
Equation (3) appropriately for a perturbative determination of the potentials. We next
compute the source terms induced by integrating the one-loop self-energy against the
classical potentials. We close the section by solving for the leading one-loop corrections at
late times and large distances.

3.1. Equations for the Potentials

The linearized stress–energy for a static point mass is

8πGTµν
lin (x) = 8πGMaδ3(~x) . (70)

The gravitational response to such a source is given by four scalar potentials:

κh00 ≡ −2Ψ , κh0i ≡ −∂iΩ , κhij ≡ −2δijΦ− 2∂i∂jχ . (71)

We can derive an equation for Ψ from the sum of µ = 0 = ν and the spatial trace:
[
D00ρσ+Dkkρσ

]
κhρσ(x) = −2DBΨ(x) = 8πGMaδ3(~x)

+
∫

d4x′
{[

00Σρσ
]
(x; x′)+

[
kkΣρσ

]
(x; x′)

}
κhρσ(x′) , (72)
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where DB is the kinetic operator of a conformally coupled scalar (9). The µ = 0, ν = i
components give an equation for Ω:

D0iρσκhρσ =
∂i
2

DBΩ(x) = 0 +
∫

d4x′
[

0iΣρσ
]
(x; x′)κhρσ(x′) . (73)

The equation for χ and Ψ−Φ is
[
Dijρσ−δijDkkρσ

]
κhρσ = −∂i∂jDAχ + δijDA(Ψ−Φ) = 0

+
∫

d4x′
{[

ijΣρσ
]
(x; x′)−δij

[
kkΣρσ

]
(x; x′)

}
κhρσ(x′) , (74)

where DA is the kinetic operator of a massless, minimally coupled scalar (5).
Although Equations (72)–(74) are correct, they cannot be solved exactly because we

only possess one-loop results for the graviton self-energy. This means we must develop
perturbative solutions:

Ψ = Ψ0 + κ2Ψ1 + κ4Ψ2 + . . . , (75)

and so on, for the other potentials. The zeroth-order solutions are

Ψ0(x) = Φ0(x) =
GM
ar

, Ω0(x) = χ0(x) = 0 . (76)

It is only these zeroth-order potentials that appear on the right-hand side of Equations (72)–(74).
If we use the symbol Ti(x; x′) to stand for just the one-loop contribution to the graviton self-
energy, then the one-loop correction to Ψ is given by,

−2DBκ2Ψ1(x) =
∫

d4x′
{[

9iT1+3iT2+3(iT3+iT4)+iT13
]

+
[
3(iT7+iT8)+iT12+(iT16+iT17)

]
∇′2 + iT21∇′4

}
×−2Ψ0(x′) . (77)

The equations for Ω1 and χ1 are

DBκ2Ω1(x) =
∫

d4x′
{[

3iT6+iT10+iT15
]
+ iT19∇′2

}
×−2Ψ0(x′) , (78)

DAκ2χ1(x) = −
∫

d4x′
{[

3iT8+iT12+iT17
]
+ iT21∇′2

}
×−2Ψ0(x′) . (79)

The equation for the gravitational slip is

DAκ2
[
Ψ1(x)−Φ1(x)

]
= −

∫
d4x′

{[
6iT1+2iT2+2iT3

]

+
[
2iT7+3iT8+iT12+iT17

]
∇′2 + iT21∇′4

}
×−2Ψ0(x′) . (80)

3.2. Performing the Source Integrations

From Equation (77), we see that Ψ1 is sourced by various combinations of the Schwinger–
Keldysh coefficient functions multiplied by zero, one or two powers of ∇′2 acting on
−2Ψ0(x′). Having a factor of ∇′2 simplifies the source integration enormously because

∇′2 ×−2Ψ0(x′) =
8πGMδ3(~x′)

a′
(81)
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The ∇′4 source comes entirely from iT21
SK = κ2

32π3 × A3. Table 10 gives the combination that

multiplies ∇′2.

Table 10. Contributions for 3(iT7+iT8)+iT12+(iT16+iT17). Each tabulated term must be multiplied
by κ2

32π3 .

Operator Factor

−12aa′H2∂2
0 + 8aa′(a−a′)H3∂0 − 8a2a′2H4 A1

−18a2a′2H4∂0 B1

−12a3a′3H6 C1

22
3 aa′H2∂2

0+
14
3 aa′(a−a′)H3∂0− 31

3 a2a′2H4 A2

31
3 a2a′2H4∂0+4a2a′2(a−a′)H5 B2

−2a3a′3H6 C2

−( 7
5 ∂2

0− 107
60 ∂2)∂2+9(a−a′)H∂0∂2− 37

3 aa′H2∂2 A3

− ln(a)( 28
5 ∂2

0− 107
15 ∂2)− 100

3 ln(a)a2H2 δ4(∆x)

These ∇′2 source integrations can be evaluated exactly, for example,

κ2

32π3

∫
d4x′[−8a2a′2H4]A1(x; x′)× 8πGMδ3(~x′)

a′

= −GMκ2H4a2∂2

2π2

∫ η−r

ηi

dη′a′
{

ln
[

H2(∆η2−r2)
]
− 1
}

, (82)

=
GMκ2H3a2∂2

2π2

{
ln2
(

Hr+
1
a

)
− ln

(
Hr+

1
a

)
+

∞

∑
n=1

1
n2

[
1−

(
Hr+

1
a

)n]

+
∞

∑
n=1

1
n2

[(Hr− 1
a

Hr+ 1
a

)n
−
(

Hr− 1
a

)n]
}

. (83)

However, all that really matters for us is the limiting form for aHr � 1 with Hr � 1,

κ2

32π3

∫
d4x′[−8a2a′2H4]A1(x; x′)× 8πGMδ3(~x′)

a′

−→ 2GMκ2H3a2 ln(Hr)
π2r2 . (84)

Table 11 gives the combination of coefficient functions contributing to Ψ1(η, r) that
carry no factors of ∇′2. These terms cannot be evaluated exactly, but there is no problem
obtaining them in the limit aHr � 1 and Hr � 1. Consider the example:

κ2

32π3

∫
d4x′[56a3a′3H4]A1(x; x′)×−2GM

a′r′

= −7GMκ2H4a3∂2

8π3

∫
d4x′

a′2θ(∆η−r′)
‖~x+~x′‖

{
ln
[

H2(∆η2−r′2)
]
− 1
}

, (85)

= −7GMκ2H4a3∂2

2π2

∫ η

ηi

dη′a′2
∫ ∆η

0
dr′r′2

[ θ(r−r′)
r

+
θ(r′−r)

r′
]

×
{

ln
[

H2(∆η2−r′2)
]
− 1
}

, (86)

−→ 7GMκ2H4a3∂2
0

2π2r

∫ η

ηi

dη′a′2
∫ ∆η

0
dr′r′2

{
ln
[

H2(∆η2−r′2)
]
− 1
}

, (87)

−→ −7GMκ2H2a3 ln2(a)
π2r

. (88)



Universe 2022, 8, 376 18 of 26

When all the Ψ1 source contributions are included, the leading late time result is

− 2DBκ2Ψ1 −→ −
3GMκ2H4a4[ln2(a)− ln(Hr)]

π2ar
+ O(a2) . (89)

Table 11. Contributions for 9iT1+3i2+3(iT3+iT4)+iT13. Each tabulated term must be multiplied
by κ2

32π3 .

Operator Factor

−4aa′H2∂4
0+28a2a′2H4∂2

0+24a2a′2(a−a′)H5∂0+56a3a′3H4 A1

2a2a′2H4∂3
0−6a2a′2(a−a′)H5∂2

0−52a3a′3H6∂0 B1

10a3a′3H6∂2
0 C1

79
6 aa′H2∂4

0+
37
2 aa′(a−a′)H3∂3

0+
631

2 a2a′2H4∂2
0 A2−24a2a′2(a−a′)H5∂0−16a3a′3H6

− 83
2 a2a′2H4∂3

0−9a2a′2(a−a′)H5∂2
0+34a3a′3H6∂0 B2

−9a3a′3H6∂2
0 C2

−( 7
10 ∂4

0+
1
4 ∂2

0∂2+ 14
5 ∂4)∂2+ 29

4 (a−a′)H(∂2
0+2∂2)∂0∂2

A3
+aa′H2( 817

12 ∂2
0+

478
12 ∂2)∂2+ 215

2 aa′(a−a′)H3∂0∂2+ 315
2 a2a′2H4∂2

− ln(a)( 14
5 ∂4

0+∂2
0∂2+ 56

5 ∂4)+ln(a)a2H2( 529
3 ∂2

0+
334
3 ∂2)

δ4(∆x)−96 ln(a)a3H3∂0+486 ln(a)a4H4

Equation (89) shows a source term for Ψ1, which grows like a3; we ignore sources with
fewer factors of a. Table 12 gives the combinations of the coefficient function that contribute
to Ω1 and involve no factors of ∇′2. There is an additional source involving iT19 ×∇′2.
When the various source integrations are evaluated, and the late time form taken, the result
is no contributions of order a3,

DBκ2Ω1 −→ 0 + O(a2) . (90)

Table 13 gives the Ω1 source contributions, which contain no factors of ∇′2. There is an
additional contribution involving iT21∇′2. When the source integrations are performed,
the result is,

DAκ2χ1 = −GMκ2H2a4[5−ln(16)]
8π2ar

+ O(a2) . (91)

Table 12. Contributions for 3iT6+iT10+iT15. Each tabulated term must be multiplied by κ2

32π3 .

Operator Factor

12aa′H2∂3
0−4aa′(a−2a′)H3∂2

0−12a2a′2H4∂0+8a2a′2(a−2a′)H5 A1

10a2a′2H4∂2
0−4a2a′2(a+a′)∂0−12a3a′3H6 B1

4a3a′3H6∂0 C1

− 11
3 aa′H2∂3

0−aa′( 14
3 a− 74

3 a′)H3∂2
0−4a2a′2H4∂0+6a2a′2(a−a′)H5 A2

53
3 a2a′2H4∂2

0−6a2a′2(a−a′)H5∂0−12a3a′3H6 B2

6a3a′3H6∂0 C2

( 7
5 ∂2

0− 23
30 ∂2)∂0∂2+ 1

6 ∂2(83a′∂2
0−4a∂2+54a′∂2)H A3− 91

3 aa′H2∂0∂2+aa′( 29
3 a− 77

3 a′)H3∂2

ln(a)[( 28
5 ∂2

0− 46
15 ∂2)∂0+aH( 166

3 ∂2
0+

100
3 ∂2)− 268

3 a2H2∂0−48a3H3] δ4(∆x)
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Table 13. Contributions for 3iT8+iT12+iT17. Each tabulated term must be multiplied by κ2

32π3 .

Operator Factor

−8aa′H2∂2
0−8aa′2H3∂0+8a2a′2H4 A1

−12a2a′2H4∂0 B1

−4a3a′3H6 C1

4
3 aa′H2∂2

0− 14
3 aa′2H3∂0+

8
3 a2a′2H4 A2

4
3 a2a′2H4∂0−4a2a′3H5 B2

−2a3a′3H6 C2

−( 7
10 ∂2

0− 7
5 ∂2)∂2−9a′H∂0∂2−5aa′H2∂2 A3

− ln(a)( 14
5 ∂2

0− 28
5 ∂2)−36 ln(a)aH∂0−12 ln(a)a2H2 δ4(∆x)

Tables 14 and 15 give the source combinations for the gravitational slip that contain no
factor of ∇′2 and one factor of it, respectively. When the iT21 ×∇′4 contribution is added,
the leading late time result is

DAκ2
[
Ψ1 −Φ1

]
=

GMκ2H4a4[4 ln2(a)−3 ln(Hr)]
π2ar

+ O(a2) . (92)

3.3. Solving for the Potentials

Equations (89)–(92) determine one-loop corrections to the various potentials. It would
be straightforward to express the potentials as integrals over the sources because we possess
the exact Green’s functions for DA and DB:

GA(x; x′) = − 1
4π

{
δ(∆η−∆r)

aa′∆r
+ H2θ(∆η−∆r)

}
, (93)

GB(x; x′) = − 1
4π

δ(∆η−∆r)
aa′∆r

. (94)

Table 14. Contributions for 6iT1+2iT2+2iT3. Each tabulated term must be multiplied by κ2

32π3 .

Operator Factor

8a2a′2H4∂2
0+16a3a′2H5∂0+48a3a′3H6 A1

−4a3a′2H5∂2
0−24a3a′3H6∂0 B1

4a3a′3H6∂2
0 C1

6aa′H2∂4
0+

37
3 a2a′H3∂3

0+46a2a′2H4∂2
0−16a3a′2H5∂0−16a3a′3H6 A2

−24a2a′2H4∂3
0−6a3a′2H5∂2

0+52a3a′3H6∂0 B2

−18a3a′3H6∂2
0 C2

( 23
60 ∂2

0− 107
60 ∂2)∂4+ 29

6 aH(∂2
0+2∂2)∂0∂2+aa′H2( 335

6 ∂2
0+

65
3 ∂2)∂2

A3
+ 215

3 a2a′H3∂0∂2+56a2a′2H4∂2

ln(a)[( 23
15 ∂2

0− 107
15 ∂2)∂2+ 58

3 aH(∂2
0+2∂2)∂0+a2H2( 526

3 ∂2
0+

212
3 ∂2)

δ4(∆x)
+ 620

3 a3H3∂0+176a4H4]
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Table 15. Contributions for 2iT7+3iT8+iT12+iT17. Each tabulated term must be multiplied by κ2

32π3 .

Operator Factor

−8aa′H2∂2
0−8aa′2H3∂0−8a2a′2H4 A1

−12a2a′2H4∂0−4a3a′2H5 B1

−8a3a′3H6 C1

22
3 aa′H2∂2

0−aa′( 23
3 a+ 14

3 a′)H3∂0− 34
3 a2a′2H4 A2

28
3 a2a′2H4∂0+2a2a′2(a−2a′)H5 B2

0 C2

−( 7
10 ∂2

0− 107
60 ∂2)∂2+( 29

6 a−9a′)H∂0∂2− 19
6 aa′H2∂2 A3

− ln(a)( 14
5 ∂2

0− 107
15 ∂2)− 50

3 ln(a)aH∂0− 14
3 ln(a)a2H2 δ4(∆x)

However, this would be overkill because the various sources are only known for
late times. It is better instead to change the temporal variable from η to the scale factor a
and then extract a factor of −a4H2 from the two differential operators:

DA = −a4H2
[

a2 ∂2

∂a2 + 4a
∂

∂a
− ∇2

a2H2

]
, (95)

DB = −a4H2
[

a2 ∂2

∂a2 + 4a
∂

∂a
+ 2− ∇2

a2H2

]
. (96)

The advantage of this form is that the temporal differential operators inside the brackets
neither increase nor decrease the number of scale factors, while the effect of the spatial
derivatives is sub-dominant at late times. It is therefore trivial to invert DA and DB to the
leading late time form for the relevant sources:

DA f (a) = −a4H2 × [α ln2(a)+β ln(Hr)]
ar

, (97)

=⇒ f (a) −→ − [α ln2(a)+β ln(Hr)]
2ar

, (98)

DBg(a) = −a4H2 × [γ ln2(a)+δ ln(Hr)]
ar

, (99)

=⇒ g(a) −→ [ 1
3 γ ln3(a) + δ ln(a) ln(Hr)]

ar
. (100)

Applying Expression (100) to Equations (89) and (90) gives

κ2Ψ1(η, r) −→ 2GM
ar

{
−4GH2 ln3(a)

π
+

12GH2 ln(a) ln(Hr)
π

}
, (101)

κ2Ω1(η, r) −→ 0 . (102)

The last two potentials come from using Expression (98) to invert DA in Equations (91)
and (92):

κ2χ1(η, r) −→ 2GM
ar

{ [−5+ln(16)]G
2π

}
, (103)

κ2(Ψ1−Φ1) −→
2GM

ar

{16GH2 ln2(a)
π

− 12GH2 ln(Hr)
π

}
. (104)

4. Epilogue

As long as the two points do not coincide, xµ 6= x′µ, no regularization is needed for the
one-loop graviton self-energy −i[µνΣρσ](x; x′). In Section 2 of this paper, we exploited an
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old, unregulated computation of the graviton contribution to the graviton self-energy [7] to
infer the fully renormalized result. Our answer is expressed as a sum (11) of 21 coefficient
functions Ti(x; x′), multiplied by the basis tensors listed in Table 1. Our results for the
renormalized coefficient functions are expressed in Tables 5–9, as derivative operators
and functions of the two scale factors, acting on δ4(x− x′) and seven nonlocal functions
A1,2,3(x; x′), B1,2(x; x′), and C1,2(x; x′), which are defined in Expressions (A30)–(A36).

Although the nonlocal contributions obey the Ward identity away from coincidence,
there is a local obstacle proportional to ln(a)δ4(x − x′). This obstacle might originate
from anomalous contributions (68) to the first two diagrams of Figure 1. Such diagrams
would contribute ln(a)δ4(x − x′) terms, which we would not be able to recognize from
the unregulated, noncoincident result. It is also possible that we have missed some exotic,
local contributions to the Feynman rules associated with the functional measure factor or
time-ordering. More work is required to resolve this issue, and we believe a good venue
for this study is the much simpler contribution to −i[µνΣρσ](x; x′) arising from a loop of
massless, minimally coupled scalars [22]. Fortunately, the missing local terms do not make
leading-order contributions to the gravitational potentials.

In Section 3, we applied our result to work out the gravitational response to a static
point mass (70) at one loop. Because the graviton self-energy was computed in a fixed
gauge, we had to solve the effective field equations using the same gauge fixing func-
tional [3,4]. This resulted in there being four scalar potentials (71), instead of the usual
two. Our final results for the leading late time forms of the four potentials were given in
Equations (101)–(104). Of particular interest are the Newtonian potential and the gravita-
tional slip:

Ψ −→ GM
ar

{
1 +

8GH2

π

[
− ln3(a) + 3 ln(a) ln(Hr)

]
+ . . .

}
, (105)

Ψ−Φ −→ GM
ar

{
0 +

8GH2

π

[
4 ln2(a)− 3 ln(Hr)

]
+ . . .

}
. (106)

It is interesting to compare the effect of graviton contributions to the Newtonian
potential (105) with that from a loop of massless, minimally coupled scalars [23]:

ΨMMCS −→
GM
ar

{
1− GH2

10π

[1
3

ln(a) + 3 ln(aHr)
]
+ . . .

}
. (107)

In both cases, the one-loop correction reduces the gravitational potential, but gravitons
induce two additional factors of ln(a). The same pattern is evident for the gravitational
slip, which obtains two factors of ln(a) from gravitons, but none at all from scalars [23].
Similarly, the one-loop correction to the graviton mode function is enhanced by ln2(a) [12],
but is not affected at all by scalars [24]. We therefore conclude that loops of inflationary
gravitons contribute more strongly than matter loops by two large logarithms. It is also
noteworthy that graviton loop corrections to gravity are much stronger than graviton loop
corrections to fermions [25–27], to electrodynamics [28–32], and to massless, minimally
coupled scalars [33–35]. The key difference seems to be that graviton loop corrections to
gravity can involve two graviton propagators, whereas graviton corrections to other fields
involve only one.

The appearance of very large logarithms in graviton loop corrections implies the
breakdown of perturbation at late times and large distances. It has been difficult to devise a
resummation procedure because these logarithms derive from two sources: the “tail” part
of the graviton propagator and logarithmic ultraviolet divergences of the form (49) [36].
This led to the speculation that resummation might be accomplished by combining a
variant of Starobinsky’s stochastic formalism [37,38] with a variant of the renormalization
group. This speculation was recently confirmed in the context of nonlinear sigma models
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on a nondynamical de Sitter background [39], which possess the same kinds of derivative
interactions as quantum gravity and exhibit the same mixture of “tail” and ultraviolet
logarithms. The technique has been applied to explain graviton loop corrections to the
exchange potential of a massless, minimally coupled scalar [35], and strenuous efforts are
underway to devise similar explanations for the collection of large graviton logarithms that
have been patiently accumulated by direct computation over the course of two decades.

It is well known that classical modified gravity models also correct the force of grav-
ity [40] and can induce nonzero gravitational slip [41,42]. One is therefore led to wonder
if our results (105) and (106) could be reproduced by some local, metric-based model.
The answer seems to be no because the only stable, local, invariant, and metric-based
modification of gravity is f (R) gravity [43]. However, the modified force induced by these
models on the de Sitter background depends only on the combination aHr [40] and cannot
reproduce the distinct ln3(a) and ln(a) ln(Hr) terms of our result (105). It should also be
noted that neither the scalar nor the tensor amplitudes in these models experience secular
growth after horizon crossing [44], unlike the ln2(a) dependence we found previously [12].

We close by commenting on the gauge issue. On a flat space background, the graviton
self-energy is known to be highly gauge dependent [45]. Because the H → 0 limit of our
result agrees with the flat space limit, our de Sitter graviton self-energy must inherit this
gauge dependence. The large logarithms we have found all derive from terms that carry
factors of H2, and their gauge dependence is not known, although indications from gravity
plus electromagnetism suggest that there is some [32]. A procedure was developed for
removing this gauge dependence [46], which has been successfully applied on a flat space
background to graviton loop corrections to the massless, minimally coupled scalar [46]
and to electromagnetism [47]. The massless, minimally coupled scalar exchange potential
was identified as the simplest venue for generalizing this technique to the de Sitter back-
ground [35], and it is hoped that a result will be available later this year. Based on flat
space background experience [46,47], we expect that the elimination of gauge dependence
will not eliminate large graviton logarithms, but might change their numerical coefficients.
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Appendix A. Derivative Identities

This Appendix summarizes the various derivative identities we employed to convert
the unregulated results of Tables 3 and 4 to the renormalized Schwinger–Keldysh results of
Tables 5–8.

Appendix A.1. Extracting Derivatives

We begin with the relations needed to write each term as derivatives acting on the
four fundamental expressions:

1
∆x4 ,

1
∆x2 ,

∆η

∆x2 ,
∆η2

∆x2 . (A1)
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Terms with large inverse powers of ∆x2 all reach 1
∆x4 :

∆η4

∆x12 =
[ ∂4

0
1920

− ∂2
0∂2

640
+

∂4

5120

] 1
∆x4 ,

∆η2

∆x10 =
[∂2

0∂2

384
− ∂4

1536

] 1
∆x4 , (A2)

∆η3

∆x10 =
[ ∂3

0
192
− ∂0∂2

128

] 1
∆x4 ,

∆η

∆x8 =
∂0∂2

48

( 1
∆x4

)
, (A3)

∆η2

∆x8 =
[ ∂2

0
24
− ∂2

48

] 1
∆x4 ,

1
∆x8 =

∂4

192

( 1
∆x4

)
, (A4)

∆η

∆x6 =
∂0

4

( 1
∆x4

)
,

1
∆x6 =

∂2

8

( 1
∆x4

)
. (A5)

Terms with ∆η4 divided by fewer than six powers of ∆x2 involve all four of the fundamental
expressions (A1):

∆η4

∆x10 =
∂4

0
384

( 1
∆x2

)
−
[ ∂2

0
32
− ∂2

128

]( 1
∆x4

)
, (A6)

∆η4

∆x8 =
∂3

0
48

( ∆η

∆x2

)
− ∂2

0
8

( 1
∆x2

)
+

1
8

( 1
∆x4

)
, (A7)

∆η4

∆x6 =
∂2

0
8

(∆η2

∆x2

)
− 5

8
∂0

( ∆η

∆x2

)
+

3
8

( 1
∆x2

)
. (A8)

The last relations we require involve fewer powers of both ∆η and ∆x2:

∆η3

∆x8 =
∂3

0
48

( 1
∆x2

)
− ∂0

8

( 1
∆x4

)
,

∆η3

∆x6 =
∂2

0
8

( ∆η

∆x2

)
− 3

8
∂0

( 1
∆x2

)
, (A9)

∆η2

∆x6 =
∂2

0
8

( 1
∆x2

)
− 1

4

( 1
∆x4

)
,

∆η2

∆x4 =
∂0

2

( ∆η

∆x2

)
− 1

2

( 1
∆x2

)
, (A10)

∆η

∆x4 =
∂0

2

( 1
∆x2

)
,

∆η3

∆x4 =
∂0

2

(∆η2

∆x2

)
−
( ∆η

∆x2

)
. (A11)

Appendix A.2. Absorbing the Factor of ln(H2∆x2)

The next step is passing derivatives through the factor of ln(H2∆x2) that multiplies
all terms in Table 3. This is facilitated by the identities:

∂0

( 1
∆x2

)
×ln(H2∆x2) = ∂0

[ ln(H2∆x2)

∆x2

]
+

2∆η

∆x4 , (A12)

∂2
0

( 1
∆x2

)
×ln(H2∆x2) = ∂2

0

[ ln(H2∆x2)

∆x2

]
+

2
∆x4 +

12∆η2

∆x6 , (A13)

∂3
0

( 1
∆x2

)
×ln(H2∆x2) = ∂3

0

[ ln(H2∆x2)

∆x2

]
+

36∆η

∆x6 +
88∆η3

∆x8 , (A14)

∂4
0

( 1
∆x2

)
×ln(H2∆x2) = ∂4

0

[ ln(H2∆x2)

∆x2

]
+

36
∆x6 +

528∆η2

∆x8 +
800∆η4

∆x10 , (A15)

∂0

( ∆η

∆x2

)
×ln(H2∆x2) = ∂0

[∆η ln(H2∆x2)

∆x2

]
+

2∆η2

∆x4 , (A16)

∂2
0

( ∆η

∆x2

)
×ln(H2∆x2) = ∂2

0

[∆η ln(H2∆x2)

∆x2

]
+

6∆η

∆x4 +
12∆η3

∆x6 , (A17)

∂3
0

( ∆η

∆x2

)
×ln(H2∆x2) = ∂3

0

[∆η ln(H2∆x2)

∆x2

]
+

6
∆x4 +

72∆η2

∆x6 +
88∆η4

∆x8 , (A18)

∂0

(∆η2

∆x2

)
×ln(H2∆x2) = ∂0

[∆η2 ln(H2∆x2)

∆x2

]
+

2∆η3

∆x4 , (A19)

∂2
0

(∆η2

∆x2

)
×ln(H2∆x2) = ∂2

0

[∆η2 ln(H2∆x2)

∆x2

]
+

10∆η2

∆x4 +
12∆η4

∆x6 . (A20)
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The “remainder” terms, which carry no logarithms, are combined with the appropriate en-
tries in Table 4 and then reduced to derivatives acting on the fundamental expressions (A1)
using Relations (A2)–(A11).

Appendix A.3. Eliminating Inverse Powers

Reducing Table 3 according to this scheme results in a series of derivatives acting on
the product of a single factor of ln(H2∆x2) times the last three terms in Expression (A1).
The inverse powers can be eliminated using:

ln(H2∆x2)

∆x2 ≡ 2πi×A1 = +
∂2

8

[
ln2(H2∆x2)−2 ln(H2∆x2)

]
, (A21)

∆η ln(H2∆x2)

∆x2 ≡ 2πi×B1 = −∂0

4

[
ln2(H2∆x2)

]
, (A22)

∆η2 ln(H2∆x2)

∆x2 ≡ 2πi×C1 = +
∂2

0
8

[
∆x2

(
ln2(H2∆x2)−2 ln(H2∆x2)+2

)]

+
1
4

ln2(H2∆x2) . (A23)

The terms of Table 4 produce a series of derivatives acting on the four fundamental expres-
sions (A1). We eliminate the last three terms using:

1
∆x2 ≡ 2πi×A2 = +

∂2

4

[
ln(H2∆x2)

]
, (A24)

∆η

∆x2 ≡ 2πi×B2 = −∂0

2

[
ln(H2∆x2)

]
, (A25)

∆η2

∆x2 ≡ 2πi×C2 = +
∂2

0
4

[
∆x2

(
ln(H2∆x2)−1

)]
+

1
2

ln(H2∆x2) . (A26)

The factor of 1
∆x4 is divergent. When combined with the appropriate counterterm, it gives

1
∆x4 −→ − ∂4

32

[
ln2(µ2∆x2)−2 ln(µ2∆x2)

]
− ln(a)×2π2iδ4(x−x′) , (A27)

≡ 2πi×
[
−∂2

4
A3

]
− ln(a)×2π2iδ4(x−x′) . (A28)

Note that any derivatives that act on Expression (A28) occur to the right of the factor of
ln(a), for example,

∂2
[ 1

∆x4

]
−→ 2πi×

[
−∂4

4
A3

]
− ln(a)×2π2i∂2δ4(x−x′) . (A29)

Appendix A.4. Schwinger–Keldysh Reductions

Each of the in–out logarithms in (A21)–(A27) gives rise in the Schwinger–Keldysh
formalism to real and causal expressions for A1,2,3, B1,2, and C1,2:
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A1 −→ +
∂2

4

{
θ(∆η−∆r)

[
ln[H2(∆η2−∆r2)]−1

]}
, (A30)

B1 −→ −∂0

2

{
θ(∆η−∆r) ln[H2(∆η2−∆r2)]

}
, (A31)

C1 −→ +
∂2

0
4

{
θ(∆η−∆r)(∆r2−∆η2)

[
ln[H2(∆η2−∆r2)]−1

]}

+
1
2

θ(∆η−∆r) ln[H2(∆η2−∆r2)] , (A32)

A2 −→ +
∂2

4

{
θ(∆η−∆r)

}
, (A33)

B2 −→ −∂0

2

{
θ(∆η−∆r)

}
, (A34)

C2 −→ +
∂2

0
4

{
θ(∆η−∆r)(∆r2−∆η2)

}
+

1
2

θ(∆η−∆r) , (A35)

A3 −→ +
∂2

4

{
θ(∆η−∆r)

[
ln[µ2(∆η2−∆r2)]−1

]}
. (A36)

(A37)

Here, ∆r ≡ ‖~x−~x′‖.

Note
1 Vertices involving ghosts take the same form as (16).
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