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Abstract: In this paper, we present a three-order, divergence-free finite volume scheme to simulate
the steady state solar wind ambient. The divergence-free condition of the magnetic field is preserved
by the constrained transport (CT) method. The CT method can keep the magnetic fields divergence
free if the magnetic fields is divergence free initially. Thus, a least-squares reconstruction of magnetic
field with the divergence free constraints is used to make the magnetic fields global solenoidality
initially. High order spatial accuracy is obtained through a non-oscillatory hierarchical reconstruction,
while a high order time discretization is achieved using a three-order Runge–Kutta scheme. This
new model of three order in space and time is validated by numerical results for Carrington rotation
2207. The numerical results show its capability for producing stable reliable results for structured
solar wind. The high-order, divergence-free properties of this method make it an ideal tool for the
simulations of coronal mass ejection in future.

Keywords: solar wind; magnetohydrodynamics; three-order; divergence free

1. Introduction

The modelling of astrophysical phenomena including jets, accretion disks, winds, solar
flares, and magnetospheres has prompted the search for efficient and accurate numerical
formulations for solving the magnetohydrodynamics (MHD) equations. The current status
of MHD simulations for space weather is reviewed in the recent book of Feng [1]. Numerical
computations based on finite volume (FV) discretization are powerful numerical methods
for solving the MHD equations. It evolves only cell averages of a solution over time and
can preserve the conservation of relevant physical quantities such as mass, momentum
and energy.

High-order numerical methods have gained popularity in the last years because they
are more efficient at capturing the rich structure in space weather phenomena than the
low-order method [2–9]. To achieve high order accuracy, the high order reconstructions
such as the k-exact reconstruction, the Essentially Non-Oscillatory (ENO) [10], Weighted
Essentially Non-Oscillatory (WENO) [11,12], Total Variation Diminishing (TVD) [13] and
Piecewise Parabolic Method (PPM) [13,14] reconstructions have been developed. In a
series of works, discontinuous Galerkin (DG) methods have been developed for nonlinear
conservation laws and related equations [15–18]. Compared to FV schemes, DG stores and
evolves every polynomial coefficient in a cell over time. When the reconstruction order
becomes higher, to remove spurious oscillations and maintain the high resolution near
discontinuities, a nonlinear limiting procedure or characteristic decomposition is usually
necessary.

Recently, ref. [19] proposed a new FV approach by using the hierarchical non-oscillatory
reconstruction to remove the spurious oscillations while maintaining the high resolution
without characteristic decomposition. First, a high degree polynomial in each cell is re-
constructed. These polynomials are not necessarily non-oscillatory. Then, the hierarchical
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reconstruction is applied to the piece-wise polynomial solution. Ref. [19] also demonstrated
that this new FV scheme does not have significant spurious oscillations even for a formal
order of accuracy as high as 5th order. Later, refs. [20,21] extends this central hierarchical
non-oscillatory reconstruction to the MHD equations. Since the FV approach proposed
by [19–21] has advantages over traditional high order numerical methods, such as its easy
operation without characteristic decomposition, it simplifies the numerical calculations.
Additionally, it has never been used to model the solar wind. Thus, we adapt the three order
FV approach combined with the hierarchical non-oscillatory reconstruction to simulate the
large-scale structure of solar wind. To maintain the positivity of density and pressure in
the reconstruction process, a self-adjusting strategy proposed by [22] is also used in the
reconstruction process.

The divergence free constraint on the magnetic field is another numerical challenge in
the simulation of MHD. In the past decades, various methods have been developed to satisfy
the ∇ · B = 0 constraint in MHD calculations [23–28]. Using stagger mashes to control
∇ · B, the constrained transport (CT) method can maintain the magnetic field divergence
around the machine round off error as long as the initial conditions are compatible with
the constraints. Thus, we use the CT method to preserve the divergence-free condition
of the magnetic field in this paper. As in [29,30], a least-squares reconstruction with the
divergence free constraints is used to get the face average magnetic fields initially. The
magnetic fields divergence error is around 10−12.

This paper is organized as follows. In Section 2, MHD equations for solar wind
plasma in spherical coordinates are described. Section 3 is devoted to a grid system and the
numerical scheme formulation. Section 4 presents the numerical results for steady-state
solar wind structure. Finally, some conclusions are presented in Section 5.

2. Governing Equations

The magnetic field B is split as a sum of a time-independent potential magnetic field
B0 and a time-dependent deviation B1 [27,31]. In the present paper, this physical splitting
of the MHD equations into the fluid part and the magnetic part are considered in order
to design efficient FV schemes with spatial discretization for the fluid equations and the
magnetic induction equation adopted from [27]. The fluid part with the magnetic field
becomes a source term in an extended Euler system reading as follows :

∂U
∂t

+
1
r2

∂

∂r
r2F +

1
r sin θ

∂

∂θ
sin θG +

1
r sin θ

∂

∂φ
H = S (1)

F =



ρvr

ρv2
r + p +

−B2
1r+B2

1θ+B2
1φ

2µ +
−B1r B0r+B1θ B0θ+B1φB0φ

µ

ρvrvθ − B1r B1θ+B1r B0θ+B0r B1θ
µ(

ρvrvφ −
B1r B1φ+B1r B0φ+B0r B1φ

µ

)
r sin θ

( 1
2 ρv2 + γp

γ−1 )vr +
B1θ
µ (vrBθ − vθ Br) +

B1φ

µ (vrBφ − vφBr)



G =



ρvθ

ρvrvθ − B1r B1θ+B1r B0θ+B0r B1θ
µ

ρv2
θ + p +

B2
1r−B2

1θ+B2
1φ

2µ +
B1r B0r−B1θ B0θ+B1φB0φ

µ(
ρvθvφ −

B1θ B1φ+B1θ B0φ+B0θ B1φ

µ

)
r sin θ

( 1
2 ρv2 + γp

γ−1 )vθ +
B1r
µ (vθ Br − vrBθ) +

B1φ

µ (vθ Bφ − vφBθ)


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H =



ρvφ

ρvrvφ −
B1r B1φ+B1r B0φ+B0r B1φ

µ

ρvθvφ −
B1θ B1φ+B1θ B0φ+B0θ B1φ

µ(
ρv2

φ + p +
B2

1r+B2
1θ−B2

1φ

2µ +
B1r B0r+B1θ B0θ−B1φB0φ

µ

)
r sin θ

( 1
2 ρv2 + γp

γ−1 )vφ + B1r
µ (vφBr − vrBφ) +

B1θ
µ (vφBθ − vθ Bφ)



S =


0

ρ
v2

θ+v2
φ

r + 2p
r +

B2
1r+2B1r B0r

rµ − ρ GMs
r2 + ρΩ sin θ(2vφ + Ωr sin θ) + SM

S3
−2ρΩ(vθ cos θ + vr sin θ)r sin θ

ρvr(−GMs
r2 + Ω2r sin2 θ) + ρvθΩ2r sin θ cos θ + SE + vrSM


where

U =
(
ρ, ρvr, ρvθ , ρvφr sin θ, e

)T , e =
1
2

ρv2 +
p

γ− 1
+

1
2

B2
1

S3 = (p + ρv2
φ +

B2
1r + 2B1rB0r + B2

1θ + 2B1θ B0θ − B2
1φ − 2B1φB0φ

2µ
)

cot θ

r

+
1
r
(

B1θ B1r + B1θ B0r + B0θ B1r
µ

− ρvrvθ) + ρΩ cos(2vφ + Ωr sin θ).

Here, e corresponds to the modified total energy density consisting of the kinetic,
thermal, and magnetic energy density (written in terms of B1). ρ is the mass density,
v = (vr, vθ , vφ) are the flow velocity in the frame rotating with the Sun, p is the ther-
mal pressure, and B = B0 + B1 denotes the total magnetic field consisting of the time-
independent potential magnetic field B0 and its time-dependent derived part B1. t and
r are time and position vectors originating at the center of the Sun. µ = 4 × 10−7π,
G = 6.673× 10−11 m3s−2kg−1 is the gravitational constant, Ms = 1.99 × 1030 kg is the
solar mass, and |Ω| = 2π/26.3 rad day−1 is the solar angular speed. γ = 1.05 is the ratio
of specific heats. SM and SE stand for the momentum and energy source terms, which
are responsible for the coronal heating and solar wind acceleration. Following [27,31], the
source terms SM and SE are given as follows:

SM = M(
r

Rs
− 1) exp(− r

LM
)

SE = Q1 exp(− r
LQ1

) + Q2(r− 1) exp(− r
LQ2

)

where Q2 = Q0Ca, M = M0Ca, Ca = C′a/max(C′a)with C′a =
(5.8−1.6e[1−(θb/8.5)3 ])3.5

(1+ fs)2/7 , M0, Q0, Q1

in this paper are given as 7.9× 10−14 Nm−3, 1.18× 10−7 Jm−3s−1, 1.5× 10−9 Jm−3s−1 re-
spectively. LQ1 , LQ2 , LM are set to be 1 Rs, fs is the magnetic expansion factor, which reads

fs = ( 1
R )

2 BRs
BR

where BRs and BR are magnetic field strength at the solar surface and at the
heliocentric distance R = 2.5 Rs. θb is the minimum angular separation between an open
magnetic field foot point and its nearest coronal hole boundary.

The magnetic fields equations runs as follows:

∂B1r
∂t

+
1

r sin θ

∂

∂θ
sin θEφ −

1
r sin θ

∂

∂φ
Eθ = 0 (2)

∂B1θ

∂t
− 1

r
∂

∂r
(rEφ) +

1
r sin θ

∂

∂φ
Er = 0 (3)

∂B1φ

∂t
+

1
r

∂

∂r
(rEθ)−

1
r

∂

∂θ
Er = 0. (4)
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ρ, v, p, B, r and t are normalized by the characteristic values ρs, as, ρsa2
s ,
√

µρsa2
s , Rs and

Rs/as, where ρs, as are the density and sound speed at the solar surface.

3. Mesh Grid System and Numerical Scheme Formulation

Our simulated region is from 1 Rs to 20 Rs. The six-component grids system (Figure 1)
consisting of six identical component meshes with partial overlap on their borders is used
in this paper [27,28,31]. The following grid partitions are employed: Nθ = Nφ = 42.
∆r(i) = 0.01 Rs if r(i) < 1.1 Rs; ∆r(i) = min(A × log10(r(i − 1)), ∆θ × r(i − 1)) with
A = 0.01/log10(1.09) if r(i) < 3.5 Rs; ∆r(i) = ∆θ × r(i− 1) if r(i) > 3.5 Rs.

X

Y

Z

Figure 1. The six-component meshes on the sphere.

The simulation domain is partitioned into the sliding cells i, j, k with
im = i− 1/2(jm = j− 1/2, km = k− 1/2) and ip = i + 1/2(jp = j + 1/2, kp = k + 1/2)
marking the bounding faces of the cell. The volume-averaged coordinates (ri, θ j, φk) of

a cell i, j, k are: ri =
3r4

ip−3r4
ip

4r3
ip−4r3

ip
, θ j =

sin θjp−sin θjm−(θjp cos θjp−θjm cos θjm)

cos θjm−cos θjp
. The coordinates of

six face centers of a cell i, j, k are noted as (rim, θr
j , φk), (rip, θr

j , φk), (rθ
i , θjm, φk), (rθ

i , θjp, φk),

(rφ
i , θ

φ
j , φkm), (r

φ
i , θ

φ
j , φkp) with rθ

i = rφ
i =

2r3
ip−2r3

im

3r2
ip−3r2

im
, θr

j = θ j, θ
φ
j =

θjp+θjm
2 .

The Equation (1) is solved by averaging over cells, and Equations (2)–(4) are solved by
averaging over facial areas. The FV discretization can be written as follows:

dUi,j,k

dt
=−

3(r2
ip〈F〉nip,j,k − r2

im〈F〉nim,j,k)

(r3
ip − r3

im)
−

sin θjp〈G〉ni,jp,k − sin θjm〈G〉ni,jm,k

rθ
i (cos θjm − cos θjp)

−

∆θ(j)

rφ
i (cos θjm − cos θjp)

〈H〉ni,j,kp − 〈H〉
n
i,j,km

∆φ(k)
+ Si,j,k

(5)

d〈br〉im,j,k

dt
= − 1

rim

sin θjpẼφ,im,jp,k − sin θjmẼφ,im,jm,k

cos θjm − cos θjp
+

∆θ

rim(cos θjm − cos θjp)

Ẽθ,im,j,kp − Ẽθ,im,j,km

∆φ
(6)

d〈bθ〉i,jm,k

dt
= − 2

sin θjm(rim + rip)

Ẽr,i,jm,kp − Ẽr,i,jm,km

∆φ
+

2(ripẼφ,ip,jm,k − rimẼφ,im,jm,k)

r2
ip − r2

im
(7)
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d〈bφ〉i,j,km

dt
= −

2(ripẼθ,ip,j,km − rimẼθ,im,j,km)

r2
ip − r2

im
+

2
rim + rip

Ẽr,i,jp,km − Ẽr,i,jm,km

∆θ
. (8)

The 〈br〉im,j,k, 〈bθ〉i,jm,k and 〈bφ〉i,j,km is the face averages magnetic fields at face (im, j, k),
(i, jm, k), and (i, j, km).

For any function gi,j,k corresponding volume averages are defined as:

gi,j,k =
1

∆Vi,j,k

∫ ip

im

∫ jp

jm

∫ kp

km
g(r, θ, φ)dV =

2

∑
ı=1

2

∑
=1

2

∑
`=1

ωıωω`g(rı, θ, φ`),

where ∆Vi,j,k is the volume of cell i, j, k, the subscripts ı, , ` = 1, 2 correspond to differ-
ent gaussian integration points rı, θ, φ` and weights ωı, ω, ω`. For any function 〈h〉ip,j,k
corresponding face averages at face (ip, j, k) are defined as:

〈h〉ip,j,k =
1

∆Sr,ip,j,k

∫ jp

jm

∫ kp

km
h(rip, θ, φ)dS =

2

∑
=1

2

∑
`=1

ωω`h(rip, θ, φ`).

∆Sr,ip,j,k denote the areas ip surfaces of cell i, j, k. For any function q̃r,i,jm,km correspond-
ing line averages at line (i, jm, km) are defined as:

q̃r,i,jm,km =
1

∆r

∫ ip

im
qr,i,jm,kmdr =

2

∑
ı=1

ωıqr(rı, θjm, φkm).

Thus, the second step in evaluating the fluxes is to reconstruct the point-wise values of
the solution from cell averages and face averages to obtain high-order accurate approxima-
tions of the values of U and B at the integration points. After the reconstruction is carried
out, we have two sets of values of U and B at each face, and four sets of values of U and
B at each line. Then, the flux at the point of each interface is calculated using the HLL
numerical flux as in [27].

3.1. Reconstruction for Cell Average Variables over the Cell

The three order polynomial in cell (i, j, k) can be written as:

U(r, θ, φ) = u0 + ur(r− ri) + uθ(θ − θ j) + uφ(φ− φk) +
1
2

urr(r− ri)
2 + urθ(r− ri)(θ − θ j)

+ urφ(r− ri)(φ− φk) +
1
2

uθθ(θ − θ j)
2 + uθφ(θ − θ j)(φ− φk) +

1
2

uφφ(φ− φk)
2.

(9)

Now integrate this underlying polynomial in the neighboring cells (i + 1, j, k), (i−
1, j, k), (i, j + 1, k), (i, j− 1, k), (i, j, k + 1), and (i, j, k− 1), we can obtain the following linear
system: ∫

Vα

U(r, θ, φ)dV = Uα,

with α denoting the neighboring cells. From these equations, we can calculate the ur, uθ

and uφ. Since the reconstructed polynomial can be oscillatory near discontinuities of the
solution, the next step is to apply the non-oscillatory hierarchical reconstruction to remove
possible spurious oscillations.

First, we take the derivative with respect to r, which yields:

L(rI , θj, φk) = ur + urr(r− rI) + urθ(θ − θ j) + urφ(φ− φk), I = i− 1, i, i + 1.

Second, we calculate the volume-average of L(rI , θj, φk) on the cell (rI , θj, φk) to obtain
L(rI , θj, φk) = ur, I = i− 1, i, i + 1. With the three new volume averages, we can apply the
minmod limiter function to calculate a new ũrr, which is:
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ũrr = minmod{
L(ri+1, θj, φk)− L(ri, θj, φk)

ri+1 − ri
,

L(ri, θj, φk)− L(ri−1, θj, φk)

ri − ri−1
}.

Similarly,

L(ri, θJ , φk) = ur + urr(r− ri) + urθ(θ − θ J) + urφ(φ− φk), J = j− 1, j, j + 1

We calculate the volume-average of L(ri, θJ , φk) on the cell (ri, θJ , φk) to obtain
L(ri, θJ , φk) = ur, J = j− 1, j, j + 1. With the three new volume averages, we can apply the
minmod limiter function to calculate a new ũrθ , which is:

ũrθ = minmod{
L(ri, θj+1, φk)− L(ri, θj, φk)

θ j+1 − θ j
,

L(ri, θj, φk)− L(ri, θj−1, φk)

θ j − θ j−1
}

ũrφ = minmod{
L(ri, θj, φk+1)− L(ri, θj, φk)

φk+1 − φk
,

L(ri, θj, φk)− L(ri, θj, φk−1)

φk − φk−1
}.

If we take the derivative with respect to θ and φ, we can calculate the ũθθ , ũθφ and
ũφφ. We will use the second-degree remainder technique to calculate ũr, ũθ , ũφ. Inserting
ũrr, ũrθ , ũrφ, ũθθ , ũθφ, ũφφ into the parabola, we then calculate the volume averages for the
linear part of the reconstruction,

LI(ri, θj, φk) = u0 + ur(r− ri) + uθ(θ − θ j) + uφ(φ− φk)

+
1
2
(urr − ũrr)(r− ri)

2 + (urθ − ũrθ)(r− ri)(θ − θ j) + (urφ − ũrφ)(r− ri)(φ− φk)

+
1
2
(uθθ − ũθθ)(θ − θ j)

2 + (uθφ − ũθφ)(θ − θ j)(φ− φk) +
1
2
(uφφ − ũφφ)(φ− φk)

2,

on the cells I = i− 1, i, i + 1, which yields:

LI(ri, θj, φk) = UI,j,k

− 1∫ Ip
Im

∫ jp
jm

∫ kp
km r2 sin θdrdθdφ

∫ Ip

Im

∫ jp

jm

∫ kp

km
{1

2
ũrr(r− ri)

2 + ũrθ(r− ri)(θ − θ j)}r2 sin θdrdθdφ

− 1∫ Ip
Im

∫ jp
jm

∫ kp
km r2 sin θdrdθdφ

∫ Ip

Im

∫ jp

jm

∫ kp

km
{ũrφ(r− ri)(φ− φk) +

1
2

ũθθ(θ − θ j)
2}r2 sin θdrdθdφ

− 1∫ Ip
Im

∫ jp
jm

∫ kp
km r2 sin θdrdθdφ

∫ Ip

Im

∫ jp

jm

∫ kp

km
{ũθφ(θ − θ j)(φ− φk) +

1
2

ũφφ(φ− φk)
2}r2 sin θdrdθdφ.

We again apply a minmod procedure to evaluate ũr, which yields:

ũr = minmod{
Li+1(ri, θj, φk)− Li(ri, θj, φk)

ri+1 − ri
,

Li(ri, θj, φk)− Li−1(ri, θj, φk)

ri − ri−1
}.

We can get ũθ , ũφ in the same way. To preserve the volume-averaged value, we set:

ũ0 = Ui,j,k −
1
2

ũrr

(
(r2

i )− (ri)
2
)
− 1

2
ũθθ

(
(θ2

j )− (θ j)
2
)
− 1

24
ũφφ(∆φ)2,

with

(r2
i ) =

3r5
ip − 3r5

im

5r3
ip − 5r3

im

(θ2
j ) =

2(cos θjp + θjp sin θjp)− 2(cos θjm + θjm sin θjm)− ((θjp)
2 cos θjp − (θjm)

2 cos θjm)

cos θjm − cos θjp
.
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Finally, we obtain the non-oscillatory reconstruction:

U(r, θ, φ) = ũ0 + ũr(r− ri) + ũθ(θ − θ j) + ũφ(φ− φk) +
1
2

ũrr(r− ri)
2 + ũrθ(r− ri)(θ − θ j)

+ ũrφ(r− ri)(φ− φk) +
1
2

ũθθ(θ − θ j)
2 + ũθφ(θ − θ j)(φ− φk) +

1
2

ũφφ(φ− φk)
2.

3.2. Reconstruction for Face Average Magnetic Fields at Cell Faces

The three order polynomial for the magnetic fields at faces (im, j, k) can be written as:

br,im(θ, φ) = a0 + aθ(θ − θr
j ) + aφ(φ− φk) +

1
2

aθθ(θ − θr
j )

2 + aθφ(θ − θr
j )(φ− φk) +

1
2

aφφ(φ− φk)
2.

Integrate this underlying polynomial in the neighboring faces (im, j, k), (im, j + 1, k),
(im, j− 1, k), (im, j, k + 1), and (im, j, k− 1), we can get the following linear system:∫

Sα

br,im(θ, φ)dS = 〈br〉α,

with α denote the neighboring cells. From these equations, we can calculate the aθ , and aφ.
The next step is to apply the non-oscillatory hierarchical reconstruction for the magnetic
fields at faces.

First we take the derivative with respect to θ, which yields:

L(θJ , φk) = aθ + aθθ(θ − θr
J) + aθφ(φ− φk), J = j− 1, j, j + 1.

Second, we calculate the face-average of L(θJ , φk) on the faces (rim, θJ , φk) to obtain
L(θJ , φk) = aθ , J = j − 1, j, j + 1. With the three new face averages, we can apply the
minmod limiter function to calculate a new ãθθ , which is:

ãθθ = minmod{
L(θj+1, φk)− L(θj, φk)

θr
j+1 − θr

j
,

L(θj, φk)− L(θj−1, φk)

θr
j − θr

j−1
}.

Similarly,

L(θj, φK) = aθ + aθθ(θ − θr
j ) + aθφ(φ− φK), K = k− 1, k, k + 1.

We calculate the face-average of L(θj, φK) on the faces (rim, θj, φK) to obtain
L(θj, φK) = aθ , K = k− 1, k, k + 1. With the three new face averages, we can apply the
minmod limiter function to calculate a new ãθφ, which is:

ãθφ = minmod{
L(θj, φk+1)− L(θj, φk)

φk+1 − φk
,

L(θj, φk)− L(θj, φk−1)

φk − φk−1
}.

If we take the derivative with respect to φ, we can calculate the ãφφ. We will use
the second-degree remainder technique to calculate ãθ , ãφ. Inserting ãθθ , ãθφ, ãφφ into the
parabola, we then calculate the face averages for the linear part of the reconstruction:

LJ(θj, φk) = a0 + aθ(θ − θr
j ) + aφ(φ− φk) +

1
2
(aθθ − ãθθ)(θ − θr

j )
2

+ (aθφ − ãθφ)(θ − θr
j )(φ− φk) +

1
2
(aφφ − ãφφ)(φ− φk)

2

on the three faces J = j− 1, j, j + 1, which yields:
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LJ(θj, φk)

= 〈Br〉rim,J,k −
∫ Jp

Jm

∫ kp
km{

1
2 ãθθ(θ − θr

j )
2 − ãθφ(θ − θr

j )(φ− φk)− 1
2 ãφφ(φ− φk)

2}r2 sin θdθdφ∫ Jp
Jm

∫ kp
km r2 sin θdθdφ

.

We again apply a minmod procedure to evaluate ãθ , which yields:

ãθ = minmod{
Lj+1(θj, φk)− Lj(θj, φk)

θr
j+1 − θr

j
,

Lj(θj, φk)− Lj−1(θj, φk)

θr
j − θr

j−1
}.

We can get ãφ in the same way. To preserve the face-averaged value, we set:

ã0 = 〈br〉im,j,k −
1
2

ãθθ((θ
2)r

j − (θr
j )

2)− 1
24

ãφφ(∆φ)2

with

(θ2)r
j =

2(cos θjp + θjp sin θjp)− 2(cos θjm + θjm sin θjm)− ((θjp)
2 cos θjp − (θjm)

2 cos θjm)

cos θjm − cos θjp
.

Finally, we obtain the non-oscillatory reconstruction

br,im(θ, φ) = ã0 + ãθ(θ − θr
j ) + ãφ(φ− φk) +

1
2

ãθθ(θ − θr
j )

2 + ãθφ(θ − θr
j )(φ− φk) +

1
2

ãφφ(φ− φk)
2.

Similarly, we can get the the non-oscillatory reconstruction for br,ip(θ, φ), bθ,jp/jm(r, φ)
and bφ,kp/km(r, θ).

3.3. The Third Order Reconstruction for Magnetic Fields over a Cell

The reconstruction for magnetic fields over a cell can be written as:

Br(r, θ, φ) = a0 + ar(r− ri) + aθ(θ − θr
j ) + aφ(φ− φk) +

1
2

arr(r− ri)
2 + arθ(r− ri)(θ − θr

j )

+ arφ(r− ri)(φ− φk) +
1
2

aθθ(θ − θr
j )

2 + aθφ(θ − θr
j )(φ− φk) +

1
2

aφφ(φ− φk)
2

+
1
6

arrr(r− ri)
3 +

1
2

arrθ(r− ri)
2(θ − θr

j ) +
1
2

arrφ(r− ri)
2(φ− φk)

+
1
2

arθθ(r− ri)(θ − θr
j )

2 + arθφ(r− ri)(θ − θr
j )(φ− φk) +

1
2

arφφ(r− ri)(φ− φk)
2

+
1
6

aθθθ(θ − θr
j )

3 +
1
2

aθθφ(θ − θr
j )

2(φ− φk) +
1
2

aθφφ(θ − θr
j )(φ− φk)

2 +
1
6

aφφφ(φ− φk)
3.

(10)

Bθ(r, θ, φ) and Bφ(r, θ, φ) can be written similarly. The reconstructed field in the interior
of the cell must matches the parabolic profile on the cell faces. This is achieved by enforcing
the following conditions:

1. Br(r, θ, φ) exactly matches br,im(θ, φ) and br,ip(θ, φ) on (im, j, k) and (ip, j, k) faces;
2. Bθ(r, θ, φ) exactly matches bθ,jm(r, φ) and bθ,jp(r, φ) on (i, jm, k) and (i, jp, k) faces;
3. Bφ(r, θ, φ) exactly matches bφ,km(r, θ) and bφ,kp(r, θ) on (i, j, km) and (i, j, kp) faces;
4. Any coefficients in Br(r, θ, φ), Bθ(r, θ, φ) and Bφ(r, θ, φ) that remain as free parameters

are set to zero.

3.4. Three-Order Runge–Kutta Scheme

To retain uniformly high order of time accuracy, the solution is advanced in time
by means of Runge–Kutta methods, such as the following third order method [32]. The
discretized fluxes and source terms for Equation (1) and Equations (2)–(4) are defined
as RU[U, B̂] and RB[U, B̂] respectively. U denotes volume average, and B̂ = (Br, Bθ , Bφ)
denotes area average for magnetic field (Br, Bθ , Bφ). Then, the following three stages are
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used to solve the full system:

U1
= Un

+ ∆tRU[U
n, B̂n]

B̂1 = B̂n + ∆tRB[U
n, B̂n]

U2
=

3
4

Un
+

1
4

(
U1

+ ∆tRU[U
1, B̂1]

)
B̂2 =

3
4

B̂n +
1
4

(
B̂1 + ∆tRB[U

1, B̂1]
)

U3
=

1
3

Un
+

2
3

(
U2

+ ∆tRU[U
2, B̂2]

)
B̂3 =

1
3

B̂n +
2
3

(
B̂2 + ∆tRB[U

2, B̂2]
)

.

The time step length is prescribed by the Courant–Friedrichs–Lewy (CFL) stability
condition:

∆t = CFL/max

√(
|vr|+ c f r

∆r
)2 + (

|vθ |+ c f θ

r∆θ
)2 + (

|vφ|+ c f φ

r sin θ∆φ
)2

.

Here, c f r, c f θ , c f φ are the fast magnetosonic speeds in (r, θ, φ) directions respectively.

c f r =
1
2

√
c2

s + c2
A + ((c2

s + c2
A)

2 − 4c2
s

B2
r

µρ
)

1
2

c f θ =
1
2

√
c2

s + c2
A + ((c2

s + c2
A)

2 − 4c2
s

B2
θ

µρ
)

1
2

c f φ =
1
2

√
c2

s + c2
A + ((c2

s + c2
A)

2 − 4c2
s

B2
φ

µρ
)

1
2 ,

where cs =
√

γp
ρ , cA =

√
B2

r +B2
θ+B2

φ

µρ are the sound and Alfvénic speeds. We employ the

simultaneous time integration with CFL = 0.5 in the following run.

3.5. Initial-Boundary Value Conditions

Initially, we specify the magnetic field by the line-of-sight photospheric magnetic
data from the Wilcox Solar Observatory to produce a 3-D global magnetic field in the
computational domain by the potential field source surface (PFSS) model. The PFSS model
begins with the synoptic magnetogram of the Sun and extrapolates the magnetic field to
a sphere called the source surface where the coronal magnetic field is purely radial. The
source surface height Rss is taken to be 2.5 Rs. Given the WSO magnetogram data at 1 Rs,
a poisson equation ∇2Φ = 0 is solved using the spherical harmonic expansion approach.
Then, the potential magnetic field solution is obtained as B = ∇Φ. It should be known that
the WSO maps have a very bad spatial resolution, GONG-ADAPT or HMI are probably
most suited for the study of fine wind structures. The initial distributions of plasma density
ρ, pressure p, and the velocity v are given by Parker’s solar wind flow [33]. The temperature
and number density on the solar surface are Ts = 1.3× 106 K, ρs = 1.5× 108 cm−3. To get
the face average magnetic fields, a least-squares reconstruction with the divergence free
constraints are applied to the cell average magnetic fields as done in [30]. For example, the
reconstructed polynomial at cell (i, j, k) can be written as:

Bi,j,k(r, θ, φ) = Bi,j,k + ∂rB(r− ri) + ∂θB(θ − θ j) + ∂φB(φ− φk). (11)
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This polynomial is also assumed to hold at neighboring cells (i + 1, j, k), (i− 1, j, k),
(i, j + 1, k), (i, j− 1, k), (i, j, k + 1), (i, j, k− 1). That is:

Bi+1,j,k = Bi,j,k + ∂rB(ri+1 − ri)

Bi−1,j,k = Bi,j,k + ∂rB(ri−1 − ri)

Bi,j+1,k = Bi,j,k + ∂θB(θ j+1 − θ j)

Bi,j−1,k = Bi,j,k + ∂θB(θ j−1 − θ j)

Bi,j,k+1 = Bi,j,k + ∂φB(φk+1 − φk)

Bi,j,k−1 = Bi,j,k + ∂φB(φk−1 − φk).

The six equations along with the divergence free constraints:

∇ · Bi,j,k =
∆Sr,ip,j,kBip,j,k − ∆Sr,im,j,kBim,j,k + ∆Sθ,i,jp,kBi,jp,k − ∆Sθ,i,jm,kBi,jm,k

∆Vi,j,k

+
∆Sφ,i,j,kpBi,j,kp − ∆Sφ,i,j,kpBi,j,km

∆Vi,j,k
,

(12)

are used to identify the gradient in Equation (11). To make the magnetic fields divergence
free, the iteration method is used:

1. Solving Equation (11) using the least-squares method based on the singular value
decomposition (SVD);

2. The magnetic field at face centers are set as arithmetic average of the two states at

the interface, for example, B̂ip,j,k =
(

B̂i+1,j,k + B̂i,j,k

)
× 0.5, B̂i+1,j,k and B̂i,j,k is the face

average of the reconstructed polynomial Bi+1,j,k and Bi,j,k at face (ip, j, k).

3. If the

∇ · Bi,j,k =
∆Sr,ip,j,kB̂ip,j,k − ∆Sr,im,j,kB̂im,j,k + ∆Sθ,i,jp,kB̂i,jp,k − ∆Sθ,i,jm,kB̂i,jm,k

∆Vi,j,k

+
∆Sφ,i,j,kpB̂i,j,kp − ∆Sφ,i,j,kpB̂i,j,km

∆Vi,j,k
. ≤ 10−10

,

end. Else, go to 1.

It can be found that the magnetic fields calculated from 2 is continuous in the normal
direction. Step 3 can make the magnetic fields satisfy global solenoidality initially.

In this paper, the Dirichlet boundary conditions are used at the inner boundary. That
is, all physical quantities are fixed as initial. The temperature and number density are
set as Ts = 1.3× 106 K, ρs = 1.5× 108 cm−3. The velocities are given by Parker’s solar
wind flow and the magnetic fields are given by the PFSS model. The outer boundary
at 20 Rs are imposed by linear extrapolation across the relevant boundary to the ghost
node in the computational domain. There horizontal boundary in (θ, φ) directions at the
six-component’s borders, is interpolated from the neighbor stencils with the three-order
Lagrange polynomial interpolation.

4. Numerical Results

In this section, we present the numerical results of CR 2207 for the solar coronal nu-
merical simulation. CR 2207 indicates the period from 6 August–2 September 2018 , which
is closer to minimum activity. The computation is completed on the Th-1A supercomputer
from the National Supercomputing Center in TianJin, China, in which each computing
node is configured with two Intel Xeon X5670 CPUs (2.93 GHz, six-core). Our code utilizes
96 core and takes about 50 h to achieve steady state .

Figure 2 shows the model results for number density N, radial speed vr and the
magnetic fields lines on meridional planes at φ = 180◦–0◦ and φ = 270◦–90◦ from 1–20 Rs,
where arrowheads on the black lines stand for the direction of magnetic fields. It can be seen
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from this figure that the fast solar wind flows and low density exist at the high latitudes,
where the magnetic field lines extend to interplanetary space in this region. However,
at lower latitudes around the vicinity of the equator or heliospheric current sheet (HCS)
region showed the slow solar wind and high density, and a helmet streamer stretched
by the solar wind can be observed within about five solar radii. Above the streamer, a
thin current sheet is displayed between different magnetic polarities. These are the typical
structures of solar wind in the solar minimum.

Figure 2. The model results for the magnetic field lines, radial speed vr (km/s), and number density
N(log10/cm3) on the meridional plane of φ = 180◦–0◦ (top) and φ = 270◦–90◦ (bottom) from 1 to
20 Rs.

Figure 3 shows the coronal observations and simulated results on the meridional
planes at φ = 180◦–0◦ and φ = 270◦–90◦. The first row displays the coronal pB images
synthesized by the simulated results of the MHD model from 2.0 Rs to 6 Rs. The second
row shows the coronal pB images observed on August 14 (left) and August 5 (right) from
the LASCO-C2 instrument on board the SOHO spacecraft. From this figure, we find that
the positions of the bright structures are roughly matched in the observed and synthesized
images. We infer that the bright structures are formed by streamers compared with the
magnetic topologies in Figure 2.

Figure 4 presents the radial speed vr and Alfvénic surface (white line ) on the meridional
plane of φ = 180◦–0◦ and φ = 270◦–90◦ from 1–20 Rs. Following [30], the Alfvénic surface
is defined as MA =

v
√

µρ
B = 1. Since the solar wind is not spherical and smaller velocities

exist at lower latitudes, the Alfvénic surface is wispy. In the inner corona below the Alfvénic
surface, the magnetic stress dominates the interaction. The coronal magnetic field is largely
dipole-like around the minimum phase of solar activity. The gradient of radial field strength
in latitude, with stronger field at higher magnetic latitude, bends stream lines from the
radial direction toward the magnetic equator. However, in the corona beyond the Alfvénic
surface, it is the inertia of radially accelerated plasma flow that dominates the magnetic
field-plasma interaction. The lowest Alfvénic surface occurs in the equator and the highest
Alfvénic surface occurs in the pole [30,34,35]. Based on the radial evolution of the direction
of coronal magnetic field, ref. [35] showed that the coronal helmet streamer belts observed
at several heights by SOHO/LASCO, together with the source surface field of the horizontal
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current-current sheet-source surface model, can be used to find the heliocentric distance of
the lowest and highest Alfvénic critical point. The highest Alfvénic critical point around
the solar minimum is located between 10 and 14 solar radii. Similar to that in [30,35], the
Alfvénic surface ranges from about 5 to 11 solar radii during this Carrington rotation.

Figure 3. Coronal polarized brightness images from 2.0 Rs to 6 Rs, and observed by LASCO C2/SOHO
(bottom). The (left,right) panels of the top row are the views projected on the meridional planes with
φ = 180◦–0◦ and φ = 270◦–90◦, respectively. The (bottom) panels are the observations made on 14
August and 5 August 2018.

Figure 4. The model results for radial speed vr (km/s) and Alfvénic surface (white line) on the
meridional plane of φ = 180◦–0◦ (left) and φ = 270◦–90◦ (right) from 1–20 Rs.

To quantitatively see the divergence of magnetic fields, two types of divergence error

are defined: Error1(B) =

∣∣∣∫Ωk
∇·BdV

∣∣∣
Ωk

, Error2(B) =

∣∣∣∫Ωk
∇·BdV

∣∣∣·|R|∣∣∣∫Ωk
BdV

∣∣∣ [28], where

R2 = 3/
(

1
(∆r)2 +

1
(r∆θ)2 +

1
(r sin θ∆φ)2

)
is the characteristic size of the cell. Additionally, the

L1 normalization for divergence of magnetic fields Norm(B) = ∇·B
‖∇·B‖ is defined, with ‖ ‖

as the L1 norm. Figure 5 shows the initial profile of divergence on the meridional plane
of φ = 180◦–0◦. We can see that the divergence is about 10−10∼10−12, and the magnetic
fields is divergence free under machine error. Since the CT method can maintain the initial
divergence error unchanged in computation, the divergence error keep almost the same
t = 20 h as initially, which can be seen from Figure 6.
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Figure 5. The initial profile of Error1(B) (left) and Error2(B) (right) on the meridional plane of
φ = 180◦–0◦ from 1 to 20 Rs.

4E­11

3E­11

2E­11

1E­11

5E­12

Error2(B)

Figure 6. The profile of Error1(B) (left) and Error2(B) (right) on the meridional plane of φ = 180◦–0◦

from 1 to 20 Rs at t = 20 h.

Figure 7 shows the L1 normalization for divergence of magnetic fields on the merid-
ional plane of φ = 180◦–0◦ from 1 to 20 Rs at t = 20 h. The volume averaged divergence
is about 10−10. The total number of cells in the computational domain is 106, thus the L1
norm of the divergence ‖∇ · B‖ is about 10−5. The normalization ∇·B

‖∇·B‖ is about 10−5.

8E­05

6E­05

4E­05

2E­05

0

­2E­05

­4E­05

­6E­05

­8E­05

Norm(B)

Figure 7. The L1 normalization for divergence of magnetic fields on the meridional plane of
φ = 180◦–0◦ from 1 to 20 Rs at t = 20 h.

Figure 8 shows the evolution of the average divergence errors as a function of time.

The average relative divergence errors are defined as Error1(B)ave = ∑M
k=1

∣∣∣∫Ωk
∇·BdV

∣∣∣
Ωk

/M,

Error2(B)ave = ∑M
k=1

∣∣∣∫Ωk
∇·BdV

∣∣∣·|R|∣∣∣∫Ωk
BdV

∣∣∣ /M, where M is the total number of cells in the compu-

tational domain. We can see that Error1(B)ave and Error2(B)ave are about 10−11 and 10−12,
respectively. These divergence errors stay the same after 10 h and no obvious large error
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appears after a long run time. Thus, the magnetic field can be stated as divergence free
during calculation.

Figure 8. The temporal evolution of the log10Error1(B)ave and log10Error2(B)ave in the calculation.

Figure 9 presents the variation of number density N and radial speed vr from 1 Rs
to 20 Rs at different latitudes, where θ = 2◦ corresponds to the open field region while
θ = 90◦ corresponds to the HCS region. As usual, the fast solar wind exists in the open
field region, whereas the slow solar wind exists in the HCS region, and the variation of
number density is opposite to that of the speed.
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Figure 9. The number density N(log10 /cm3) distribution (left) and radial speed vr (km/s) profiles
(right) along heliocentric distance with different latitudes θ = 2◦ and θ = 90◦.

Figure 10 displays the number density, radial speed and temperature maps for the
MHD steady-state solution at 2.5 Rs and 20 Rs. The left column denotes number density
N with unit 106 cm−3, 104 cm−3 from top to bottom, the middle column denotes radial
speed vr with unit km/s, the last column denotes temperature T with unit 105 K. Obviously,
the number density decreases with radial distance while radial speed increases. The HCS
region has high density, low speed and low temperature, whereas the inverse condition is
seen at the polar or the open field region.



Universe 2022, 8, 371 15 of 17

Figure 10. The modeled results at 2.5 Rs (top row) and 20 Rs (bottom row). The left column denotes
number density N with unit 106 cm−3, 104 cm−3 from top to bottom, the middle column denotes
radial speed vr with unit km/s, the last column denotes temperature T with unit 105 K.

To further validate the simulated results, we map the in situ measurements at 1 au
during CR 2207 at the OMNI website back to 20 Rs by using a ballistic approximation [29].
Figure 11 shows the temporal profile of radial speed vr from the mapped observations
(solid line) and the MHD model (dashed line). Although a deviation is exist at the first
high-speed stream obtained by the MHD model, the simulated results roughly catch the
second and third high-speed streams at about φ = 200◦ and 300◦.

Heliolongitude (deg)
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200
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400
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700

800

OMNI
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Figure 11. Temporal profiles of radial speed vr with unit km/s from the mapped observations (solid
line) and the MHD model (dashed line).

5. Conclusions and Discussions

In this paper, a three-order, divergence-free finite volume scheme is introduced to
simulate the steady state solar wind ambient. The CT method is used to maintain the
divergence-free condition of the magnetic field. A least-squares reconstruction of the mag-
netic field with the divergence free constraints is used to make the magnetic fields global
solenoidality initially. To achieve high order accuracy in space, a three order polynomial
combined with the hierarchical non-oscillatory reconstruction in each cell is obtained. The
three order Runge–Kutta scheme is used for time discretization. Additionally, the com-
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posite mesh with six-component grids proposed by [27,28,31] is used for parallelization in
(θ, φ) directions to reduce the computational cost.

The numerical results for Carrington rotation 2207 show its ability to produce stable
reliable results for structured solar wind. For example, the slow speed solar wind exists
near the slightly tilted helioshperic current sheet (HCS) plane and the fast speed solar
wind exists near the poles. The magnetic field’s divergence error is around 10−12, which is
around the machine round off error. All of these give us strong confidence in the current
MHD code.

In the future, the propagation of coronal mass ejection in the solar-terrestrial space will
be considered. To reach this goal it is first necessary to reconstruct the ambient background
condition of solar wind, because these conditions will determine the evolution of coronal
mass ejection. The domain will be extended to the Earth, and the propagation of the CME
from Sun to Earth will be studied. To study the CME, as in the previous paper [30], a very
simple spherical plasmoid model will be superposed on the background solar wind. The
arrival time of the CME and Bz component, as well as the reconnection between CME and
solar wind background will be investigated. Particularly, the resistive MHD will be used to
study the reconnection between CME and solar wind; it is known that the electric resistivity
term in the MHD is a second derivative term and its discretization will reduce the accuracy
of the scheme, thus a high order is necessary. We believe that this new scheme can recover
the reconnection process more accurately in the next work.
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