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Abstract: A brane-world metric with an external magnetic field is a modified theory of gravity. It is
suitable for the description of compact sources on the brane such as stars and black holes. We design a
class of explicit symplectic integrators for this spacetime and use one of the integrators to investigate
how variations of the parameters affect the motion of test particles. When the magnetic field does not
vanish, the integrability of the system is destroyed. Thus, the onset of chaos can be allowed under
some circumstances. Chaos easily occurs when the electromagnetic parameter becomes large enough.
Dark matter acts as a gravitational force, so that chaotic motion can become more obvious as dark
matter increases. The gravity of the black hole is weakened with an increasing positive cosmological
parameter; therefore, the extent of chaos can be also strengthened. The proposed symplectic integrator
is applied to a ray-tracing method and the study of such chaotic dynamics will be a possible reference
for future studies of brane-world black hole shadows with chaotic patterns of self-similar fractal
structures based on the Event Horizon Telescope data for M87* and Sagittarius A*.
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1. Introduction

Black holes are solutions of Einstein’s general relativistic field equations. The asymmet-
ric bright emission ring and linear-polarimetric EHT images [1,2] of the supermassive black
hole(M87) and the gravitational wave from a binary black hole merger (GW150914) [3]
confirmed the prediction of Einstein’s theory of general relativity about the existence of
black holes.

Although the standard theory of relativity has attained much success, it does not fully
satisfy observational needs. Some non-general relativistic black holes are considered to test
general relativity and to account for related observational results. That is to say that alterna-
tive theories of gravity are necessarily used. Besides brane-world spacetimes [4–6], many
other alternative theories of gravity with extra fields have been researched in the literature.
Some examples are scalar-tensor theories including the Brans–Dicke theories [7–10] and
general scalar-tensor theories [11–16], Einstein–æther theory [17], Bimetric theories [18–20],
tensor–vector–scalar theories [21–24], scalar–tensor–vector theories [25,26], and Einstein–
Cartan–Sciama–Kibble theories [27,28]. There are models of higher derivative and non-local
theories of gravity, such as f(R) theories [29–33], f(G) theories [34–36], Hořava-Lifschitz
gravity [37–39], as well as Galileons [40,41]. The other forms of modified theories of gravity
with higher dimensions include Kaluza–Klein theories [42–44], the Brane cosmology or
higher co-dimension brane-worlds [45–48] and Einstein–Gauss–Bonnet gravity [49]. In fact,
not all solutions in modified theories of gravity must necessarily satisfy the Einstein field
equations. However, the γ metric (or Zipoy–Voorhees metric) [50,51], which describes a
static and axially symmetric field departure from the Schwarzschild spacetime with a real
positive deformation parameter γ( 6= 1), is an exact solution of Einstein’s equations in a
vacuum. The Kerr metric also remains a solution of certain f(R) theory [52].
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In general relativity, the geodesics of curved spacetimes, such as Schwarzschild [53],
Reissner–Nordström [54,55], and Kerr [56] black hole, are highly nonlinear. However, they
are integrable because enough conserved quantities of motion are present. When these
black holes suffer from some perturbations, such as external magnetic field [57–60] and the
discs or rings around black holes [61,62], the spacetimes may be non-integrable. In this case,
chaos may occur. In fact, the high nonlinearity of general relativity provides a rich source
for the study of chaotic dynamics. In addition, the theory of chaotic dynamics may be useful
in explaining some astrophysical mechanisms. For example, Stuchlík and Kološ employed
the theory of chaotic scattering to explore charged particle ejection [63]. They found that
an energy interchange between one energy mode along the magnetic field lines direction
and another energy mode at the perpendicular direction arises due to the chaotic charged
particle dynamics in the combined gravitational and magnetic fields. In this manner,
sufficient energy is given to ultra-relativistic motions of the charged particle along the
magnetic field lines. Chaos may have some astronomical observational effects. For instance,
the authors of [64,65] pointed out that the lensing of light around rotating boson stars and
Kerr black holes with scalar hair has chaotic patterns, and the black hole shadows exhibit
self-similar fractal structures. Because of the importance of the chaotic dynamics, there have
been a number of papers [66–69] on the chaotic behavior in relativistic astrophysics. Chaos
is also considered in modified theories of gravity. The Ernst–Schwarzschild spacetime is
non-integrable and can be chaotic in the case without the inclusion of external magnetic
fields [70,71]. The γ metric is not integrable either [72]. Chaos can exist in the deformed
Schwarzschild spacetimes with external magnetic fields [73,74].

Such general relative systems are higher nonlinear and usually non-integrable. It
is difficult or impossible to write analytical solutions for them. Therefore, numerical
integration methods are necessary to study the dynamics of these systems. Runge–Kutta
methods are often used. However, the family of Runge–Kutta methods are not suitable for a
long-time evolution because various errors quickly accumulate with time. Using Lagrange
multipliers, Nacozy [75] added a stabilizing terms to the numerical solutions and made the
integral more accurate than the uncorrected solutions. According to this basic idea, several
authors extended the application of manifold correction methods. The scaling method
of Fukushima [76] and the velocity scaling method of Ma et al. [77] exactly conserved
energy. Manifold correction methods in references [78,79] are efficient for compensating the
defect of Runge–Kutta methods. By taking the slowly varying individual Kepler integrals
as integral invariant relations, Deng et al. [80] applied the Kepler analytical solver of the
two-body problem to N-body simulations and achieved the best performance. However,
such correction schemes do not guarantee the preservation of structural properties.

There are a class of energy-preserving methods that can exactly preserve the energies
via a suitable discretization-averaging of the Hamiltonian gradient [81]. Several energy-
conserving integrators are designed for conservative Hamiltonian systems of black holes
and spinning compact binaries [82–84]. The energy-preserving methods are implicitly
non-symplectic.

For a long-term integration, symplectic methods are prior to other non-symplectic al-
gorithms. Symplectic methods share the conservation properties, which include structures,
integrals, symmetries, phase space volumes, etc. When a Hamiltonian system is separated
into two integrable parts with analytical solutions as explicit functions of time, explicit
symplectic schemes [85] can be established. The most popular symplectic integrators are
the second-order algorithms of Wisdom–Holman [86] and the fourth-order algorithms of
Forest–Ruth [87]. In terms of the general second-order leapfrog methods, higher order
symmetric integrators can be easily obtained according to the construction method of
Yoshida [88]. Symplectic schemes conserve energy by making energy errors bounded and
oscillating with evolution time. Unfortunately, not all Hamiltonian systems have such
two explicitly integrable splitting forms. In this case, implicit symplectic methods [89,90]
or implicit and explicit mixed symplectic methods [91–93] are available. Such implicit
integrators need more computational cost than same-order standard explicit methods.
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In the extended phase space method of Pihajoki [94], a new Hamiltonian consisting
of two similar sub-Hamiltonians is provided to an inseparable Hamiltonian system. The
two sub-Hamiltonians are both equal to the original Hamiltonian. The only difference is
the combination of old variables intersecting with the new ones. Thus, the Hamiltonian
systems with N-dimensional variables are doubled to 2N-dimension in its phase-space. Ex-
plicit symplectic methods can be taken because there is no canonical relationship between
the old coordinates and the new momenta. Moreover, the coordinates or momenta in the
extended phase space are projected back to the original space so as to keep the mixing
maps of feedback between the two sub-Hamiltonian. Many references [71,95–97] show that
extended phase space methods are well suited for various inseparable Hamiltonian prob-
lems. Luo [98] proved that midpoint permutations can maintain good long-term stability
in energy errors. In general, mixing or projecting maps destroy symplectic properties; thus,
the extended phase space algorithms are so-called as symplectic-like methods.

Recently, a class of explicit symplectic integrators was designed for black-hole space-
times in general relativity [57,58,67–69,74,99]. By dividing the Hamiltonians or time-
transformed Hamiltonian corresponding to the spacetimes into multiple parts, the authors
used the analytical solutions of the splitting parts to compose a set of explicit symplectic
integrators. Numerical tests indicate that these algorithms have high accuracy and Hamilto-
nian errors can be stabilized efficiently. However, the method for splitting the Hamiltonians
is not universal [100]. It must rely on the terms composing of the Hamiltonians. There are
various choices for specific problems. For example, the Hamiltonian of Schwarzschild black
hole is separated into four integrable parts with explicit analytical solutions [67]. Similarly,
the method is also available to five parts for Reissner–Nordström black hole [68], and six
parts for Reissner–Nordström–(anti)-de Sitter black holes [69]. However, the above spitting
method is not suitable for the Kerr speacetime. With the aid of the time transformation
method introduced by Mikkola [101], Wu et al. [99] provided Kerr spacetime with a kind of
time-transformed Hamiltonian with the desired splitting and successfully obtained explicit
symplectic integrators. Such explicit symplectic integrators, with adaptive time steps, can
achieve good long-term performances in the conservation of Hamiltonian quantities. This
time-transform method is also suitable for the magnetized or deformed black holes [58,74].

On the other hand, only some stable circular orbits and some physical properties in
the brane-world black hole spacetime were studied by the author of [6]. No one has studied
how the positive cosmological and dark matter parameter affect the chaotic dynamics of
charged particles although the chaotic motions have been well known already in many
simpler situations. The study of such chaotic dynamics will be a possible reference for
future studies of the brane-world black hole shadows with chaotic patterns of self-similar
fractal structures based on the Event Horizon Telescope data for M87* and Sagittarius A*.
Because of these points, we focus on the impacts of the positive cosmological and dark
matter parameter on the chaotic dynamics of charged particles. This is another main aim
of this paper. In summary, our main aims are to apply the proposed explicit symplectic
integrators to study the dynamics of charged particles moving around the black hole with
an external magnetic field. In particular, the effect of positive cosmological constant and
dark matter parameter on the chaotic behavior is investigated.

The rest of this paper is organized as follows. In Section 2, we briefly introduce
the brane-world black hole immersed in an axially external magnetic field. To explore
the dynamics of charged particles, new explicit symplectic integrators are constructed.
The numerical evaluation of the proposed integrators are presented in Section 3. Then, a
fourth-order explicit symplectic integrator is applied to investigate the dynamics of charged
particles. How chaotic motions depend on electromagnetic, cosmological, and dark matter
parameters are discussed. Finally, the main results are concluded in Section 4.
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2. Construction of Explicit Sympletic Intergrators in a Magnetized
Brane-World Spacetime

Brane-world spacetimes [4–6] are a class of modified theories of gravity. In these brane-
world models, gravitons can propagate through a bulk where ordinary matters (including
human beings ourselves) are localized. One of the brane-world spacetimes [102,103] is not
an asymptotically flat metric, which uses a confining potential rather than a delta-function
in the energy-momentum tensor. The action of such a confining potential causes particles
on a higher-dimensional model to be trapped on a four-dimensional hypersurface. In this
brane theory, the covariant Einstein equations are based on the bulk equations projected
onto the brane. There are two differences between the field equations on the brane and
the Einstein equations in the standard model. One difference relates to high energies in
the form of a new source term in the effective Einstein equation with the brane energy-
momentum quadratic tensor. The other difference is the bulk having a non-vanishing
Weyl-curvature projection onto the brane. Because of these points, the brane-world metric
is suitable for studying solutions of compact sources on the brane such as stars and black
holes. In particular, it is useful to account for the accelerated expansion of the universe and
galaxy rotation curves.

2.1. Magnetized Brane-World Spacetime

In spherical-like coordinates, x = xµ corresponds to a four-dimensional coordinate
vector (x0, x1, x2, x3) = (t, r, θ, φ). A brane-world black hole [102] can be written as follows:

ds2 = gµνdxµdxν

= −g(r)dt2 + g(r)−1dr2 + r2(dθ2 + sin2 θdφ2), (1)

where the coefficient function is written as follows.

g(r) = 1− 2M
r
− α2r2 − 2αβr− β2. (2)

Here, M is the mass of the black hole, and α and β are the cosmological and dark matter pa-
rameters. If the two parameters vanishes, line element (1) corresponds to the Schwarzschild
metric, which has a horizon of r = 2M. The cosmological constant α responds to a weak-
field gravity of galaxies, galaxy groups, and clusters. The alteration of the horizon with
parameter α was discussed in [102]. In fact, without a large distance, the value of α is too
small to affect the spacetime geometry [69]. The dark matter and dark energy may act as
weak gravitational fields such as galaxies and galaxy groups or clusters [104,105]. With the
aid of the luminosity function, Zwicky [106] predicted that more than half of all matter in
the visible universe have been overlooked. The authors of [107] discussed the variation
of the dark mass fraction in spiral galaxies. The authors of [108,109] determined the mass
distribution in the galaxy by analyzing rotation curves and considered an amount of dark
matter. Although there is no direct evidence of the presence of dark matter, theoretical
analysis shows that the dark matter parameter may affect the motion of test particles [110].
Brane-world spacetime belongs to a modified theory of gravity. Of course, many other
modified theories of gravity can be also be found in the literature [111–116].

The geodesic motion of a test particle is described by a Lagrangian:

L =
1
2

(
ds
dτ

)2
=

1
2

gµν ẋµ ẋν

=
1
2

[
−g(r)ṫ2 + g(r)−1ṙ2 + r2(θ̇2 + sin2 θφ̇2)

]
, (3)

where ẋ denotes the derivative of variable x with respect to proper time τ. Geometric units
are provided for the constant of gravity G and the speed of light c; that is, c = G = 1.
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Taking x→ xM and τ → τM, we have a dimensionless Lagrangian. For a time-like particle,
the four-velocity vectors satisfies the following.

gµν ẋµ ẋν = −1. (4)

Therefore, the Lagrangian always has the following constraint: L = −1/2. By defining the
following covariant generalized momentum:

Pµ = ∂L/∂ẋµ = gµν ẋν, (5)

we obtain the corresponding Hamiltonian.

H = Pµ ẋµ −L =
1
2

gµνPµPν

=
1
2

[
−g(r)ṫ2 + g(r)−1ṙ2 + r2(θ̇2 + sin2 θφ̇2)

]
. (6)

Clearly, the Hamiltonian equals the Lagrangian.
Suppose the black hole is immersed in an external uniform magnetic field given by a

four-vector potential that has only one nonzero covariant component:

Aφ =
B
2

gφφ =
B
2

r2 sin2 θ, (7)

where B is the constant strength of the uniform magnetic field. The magnetic field is too
weak to change the metric of the spacetime, but it can considerably affect the motion of
charged particles. Deng [6] showed that there are two horizons in the brane-world and
discussed effective potential and periodic orbits. If a test particle with a charge q moves
around this magnetized black hole, it has momentum pµ = Pµ + qAµ. The Hamiltonian for
the charged particle motion is determined by the following.

H =
1
2

gµν(pµ − qAµ)(pν − qAν). (8)

This Hamiltonian does not explicitly contain the coordinates t and φ; therefore, the axially
symmetric system has two conserved quantities of energy E and angular momentum L are
defined as follows.

pt = Pt + qAt = Pt = −g(r)ṫ = −E,

pφ = Pφ + qAφ = r2 sin2 θφ̇ +
qB
2

r2 sin2 θ = L. (9)

In terms of the two constants, the Hamiltonian can be simplified as follows.

H =
1
2

[
− E2

g(r)
+ g(r)p2

r +
1
r2 p2

θ +
(L− 1

2 qBr2 sin2 θ)2

r2 sin2 θ

]

=
1
2

[
−E2

1− 2
r − (αr + β)2

+

(
1− 2

r
− (αr + β)2

)
p2

r +
p2

θ

r2 +
(L− 1

2 qBr2 sin2 θ)2

r2 sin2 θ

]
. (10)

Due to the four-velocity or rest mass condition, the Hamiltonian also remains as follows.

H = −1
2

. (11)

2.2. Construction of Explicit Sympletic Intergrators

To investigate the dynamics of such a higher nonlinear system, we are required to
employ good numerical integration methods. Symplectic integrators have good physical
and geometric properties in the conservation of Hamiltonian flows and Hamiltonians and,
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therefore, are particularly suitable for the long-term evolution of Hamiltonian systems.
The explicit symplectic methods have an advantage over the implicit one in terms of
computational efficiency. Although the explicit symplectic methods in general relativity
were recently designed by several authors [57,58,67–69,74,99,100], splitting Hamiltonians
depends on different problems.

Following the previous works of Wang et al. [67–69], we can easily split the Hamilto-
nian (10) into five integrable parts:

H = H1 + H2 + H3 + H4 + H5, (12)

where all sub-Hamiltonians are written as follows.

H1 =
1
2

[
− E2

1− 2
r − (αr + β)2

+
(L− 1

2 qBr2 sin2 θ)2

r2 sin2 θ

]
, (13)

H2 =
1
2

p2
r , (14)

H3 = −1
r

p2
r , (15)

H4 = −1
2
(αr + β)2 p2

r , (16)

H5 =
1

2r2 p2
θ . (17)

Hereafter, we take b = qB as an electromagnetic parameter. For sub-Hamiltonian H1,
its canonical equations are ṙ = θ̇ = 0 and the following.

ṗr =
dpr

dτ
= −∂H1

∂r
= <(r, θ),

ṗθ =
dpθ

dτ
= −∂H1

∂θ
= Θ(r, θ). (18)

It is clear that r = r0 and θ = θ0 when proper time proceeds from τ0 to τ1 = τ0 + h,
where h is a time step. Operator ehH1 for the Equation (18) corresponds to explicit solutions:

ehH1 : pr = pr0 + h<(r0, θ0),

pθ = pθ0 + hΘ(r0, θ0), (19)

where r0, θ0, pr0, and pθ0 are the values of phase-space variables at initial time τ0, and r, θ,
pr, and pθ are those at time τ1. The canonical equations of sub-Hamiltonians H2, H3, H4,
and H5 have the following analytical solutions.

ehH2 : r = r0 + hpr0, (20)

ehH3 : r = [(r2
0 − 3hpr0)

2/r0]
1/3,

pr = pr0(1− 3hpr0/r2
0)

1/3, (21)

ehH4 : r = [(αr0 + β)e−hα(αr0+β)pr0 − β]/α,

pr = pr0ehα(αr0+β)pr0 , (22)

ehH5 : θ = θ0 + hpθ0/r2
0,

pr = pr0 + hp2
r0/r3

0. (23)

Obviously, all the analytical solutions of the sub-Hamiltonians are explicit functions of
proper time. Therefore, a second order symplectic integrator can be constructed as follows.

S2(h) = e
h
2 H5 e

h
2 H4 e

h
2 H3 e

h
2 H2 ◦ ehH1 ◦ e

h
2 H2 e

h
2 H3 e

h
2 H4 e

h
2 H5 . (24)
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According to the idea of Yoshida [88], a (2n + 2)th order integrator can be directly
constructed with the combination of a symmetric integrator order 2n:

S2n+2(h) = S2n(z1h) ◦ S2n(z0h) ◦ S2n(z1h), (25)

where z0 = − 21/(2n+1)

2−21/2(2n+1) and z1 = 1
2−21/(2n+1) . Using three second order symplectic integra-

tors, we can easily obtain a fourth-order symplectic integrator S4.

3. Numerical Simulations

Considering the importance of symplectic integrators, we have proposed the fourth-
order explicit symplectic integrator for simulating the motion of charged particles in a
magnetized brane-world spacetime. The construction of such an integrator is based on
a Hamiltonian for the spacetime separated into five parts, for which its solutions can
be expressed as explicit functions of proper time. In this section, we mainly check the
numerical performance of the explicit symplectic integrator and consider the application of
this integrator to the study of orbital dynamics.

3.1. Performance Evaluation of the Explicit Sympletic Intergrators

Given parameters α = 10−12, β = 0, and b = 0, the problem corresponds to a
Schwarzschild black hole with a cosmic background. Considering the accelerated expansion
of the universe [117–119], we set the cosmological parameter as a positive constant. The
energy and angular momentum are E = 0.9900, L = 4.6, and the proper time step is
h = 1. Initial conditions are θ = π/2, pr = 0, r = 10, and the starting value of pθ(> 0)
is determined by Equations (10) and (11). As shown by the second-order method S2 in
Figure 1a, the loop colored red in the Poincaré section at plane θ = π/2 and pθ > 0
indicates a regular quasi-periodic orbit. Similarly, other orbits with initial separations
r = 15, 30, 40, 50, 65 are also regular. These results are consistent with the integrability of
the Hamiltonian system without external magnetic field. This integrability is because the
system has four conserved quantities including the particle energy, angular momentum,
rest mass, and azimuthal motion [99,120]. Three Hamiltonian errors of the second-order
algorithms are significantly different, as shown in Figure 1b. For explicit symplectic method
S2, it has good stability and can remain bounded in an order of 10−7. The extended phase-
space method EE2 [67] has a secular drift in Hamiltonian errors. The Hamiltonian errors
of explicit and implicit mixed symplectic method EI2 [67] are an order of magnitude
larger than S2 and EE2, as listed in Table 1. This is due to a poor iteration precision.
Computational costs are listed in Table 2, where the CPU time of method EI2 costs nearly
at a double than that for method S2. Figure 1c describes that the Hamiltonian errors of the
conventional fourth-order Runge–Kutta method RK4 reach an order of 10−7 and increase
linearly with time. Unlike method RK4 and the fourth-order explicit and implicit mixed
symplectic method EI4, the fourth-order extended phase space and explicit symplectic-like
method EE4 [67] and the new fourth-order explicit symplectic method S4 are accurate to
an order of 10−10. Distinct from the second-order algorithms, EE4, EI4, and S4 exhibit
excellent stability in the errors, as shown in Figure 1d. However, the Hamiltonian errors of
EI4 are still several orders of magnitude larger than those of EE4 and S4.

Table 1. Computational accuracy of different algorithms. Largest absolute values of Hamiltonian
errors correspond to time step h. Orbit 1 is integrated until proper time τ = 108.

Method EI2 EE2 S2 RK4 EI4 EE4 S4

h = 1 1.8×
10−5

1.2×
10−6 5× 10−7 6× 10−7 6× 10−5 7× 10−10 3× 10−10

h = 0.1 7× 10−6 1.5×
10−9 5× 10−10 6× 10−12 2× 10−6 1× 10−13 8× 10−13
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Table 2. Same as Table 1. Computational cost, i.e., CPU times (seconds), for algorithms.

Method EI2 EE2 S2 RK4 EI4 EE4 S4

h = 1 64.98 17.28 25.56 20.06 362.16 49.92 75.20
h = 0.1 317.56 155.53 276.98 208.11 853.83 503.08 763.02
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( )
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 EE4
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Figure 1. Numerical test performance. (a) Poincaré sections on the plane θ = π/2. The parameters
are E = 0.9900, L = 4.6, α = 10−12, β = 0, b = 0. Initial conditions of orbit 1 colored red are
r = 10, pr = 0, θ = π/2, and pθ is determined by Equations (11) and (12). The other orbits are
r = 15, 30, 40, 50 and r = 65. (b–d) Hamiltonian errors ∆H = H − (−1/2) of orbit 1 for different
algorithms. The proper time step is h = 1.

Clearly, the symplectic integrators have good physical and geometric properties in
the conservation of Hamiltonian flows and Hamiltonians and, therefore, are particularly
suitable for the long-term evolution of Hamiltonian systems. The explicit symplectic
methods have an advantage over the implicit one in terms of computational efficiency.

We employed an explicit symplect algorithm S4 with time step h = 1 for later calculations.

3.2. Dependence of the Orbital Dynamics on the Parameters

Since numerical experiments show that Hamiltonian errors remain bounded for long-
term integrations of orbits by the proposed symplectic integrator. The fourth-order explicit
symplectic algorithm with an appropriate step size is applied to explore the dynamics
of charged particles. In what follows, the dependence of the chaotic behavior on the
electromagnetic parameter, cosmological constant, and dark matter parameter is surveyed.

3.2.1. Orbital Dynamics Influenced by the Electromagnetic Parameter

The parameters are the same as those in Figure 1, with the exception that the elec-
tromagnetic parameter increases slightly. When b = 0.0015, the orbits corresponding to
initial separations r = 10, 15, 30, 40, 50 and r = 65 in Figure 2a are regular KAM loops.
These smooth curves in the Poincaré section indicates that the motions of the orbits are
quasi-periodic. If the electromagnetic parameter becomes a little large, then b = 0.0020.
As shown in panel (b), there are two KAM loops with an initial orbit condition r = 30, 50



Universe 2022, 8, 369 9 of 16

(colored blue and olive) replaced by several separate islands. There are many random
discrete points (colored cyan) in the phase diagram when the orbit takes an initial value of
r = 65. This indicates that the regularity of the orbit is broken. That is to say that the motion
of the test particle becomes weakly chaotic. With a further increase in the electromagnetic
parameter, e.g., b = 0.0024, many orbits (r = 30, 50, 65 ) turn out to be chaotic in panel (c). In
fact, the extent of chaos is also strengthened. Given electromagnetic parameter b = 0.0025,
the chaotic motions of test particles are filled in a large region, as shown in panel (d).

10 20 30 40 50 60 70 80 90

-0.2

-0.1

0.0

0.1

0.2 (a)b=0.0015

p r

r 10 20 30 40 50 60 70 80 90

-0.2

-0.1

0.0

0.1

0.2 (b)b=0.0020

p r

r

10 20 30 40 50 60 70 80 90

-0.2

-0.1

0.0

0.1

0.2 (c)b=0.0024

p r

r 0 10 20 30 40 50 60 70 80 90

-0.2

-0.1

0.0

0.1

0.2 (d)b=0.0025
p r

r
Figure 2. Dependence of the orbital dynamics on electromagnetic parameter b. Poincaré sections
with the same parameters E = 0.9900, L = 4.6, α = 10−12, β = 0, and different positive values of
electromagnetic parameter b are given. The orbits are same as in Figure 1.

From the above discussion, we can see that chaos should become strong as mag-
netic field parameter b increases. The result fits well with that in the previous refer-
ences [59–61,67–71,75,76]. These facts show that the external electromagnetic forces lead to
an absence of the fourth constant (i.e., the azimuthal motion), and they are an important
source for inducing chaos. However, not all external electromagnetic fields must admit the
onset of chaotic motion. Recently, the authors of [121] proved the integrability of charged
particles by moving around the Kerr–Newman black hole surrounded by cloud strings,
quintessence, and an electromagnetic field. If the cosmological constant Λ included in
the model is nonvanishing, then the fourth constant is absent and chaos may occur. It is
different from brane-world spacetime.

3.2.2. Orbital Dynamics Influenced by the Cosmological Parameter

The cosmological and dark matter but the magnetic field parameter can decide
whether the system is chaotic. It is still meaningful to study how the cosmological con-
stant or the dark matter parameter exerts an influence on chaos. Now, we fix param-
eters E = 0.9900, L = 3.7, β = 0, and b = 0.0012. The initial separations of orbits
are r = 10, 15, 50, 60, 65 and r = 80. For the case of α = 3× 10−6, three chaotic orbits
(r = 10, 60, 65, colored red, magenta, and olive, respectively) exist in Figure 3a. Panels (b),
(c), and (d) correspond to parameters α = 4× 10−6, 5× 10−6, and 7× 10−6, respectively.
The diagrams in panels (b)–(d) are similar to those in Figure 3a. In fact, the extent of chaos
is gradually intensified as the cosmological parameter increases. For example, projective
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dots (r = 10, colored red) in the Poincaré section tend to become more and more discrete.
This indicates the chaotic motion of the system, which becomes more dramatic. Obviously,
an increase in the positive cosmological constant can strengthen the degree of chaos from
the global phase-space structure.
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Figure 3. Dependence of the orbital dynamics on the cosmological parameter α. Poincaré sections
with the same parameters E = 0.9900, L = 3.7, b = 0.0012, β = 0, and different values of cosmological
parameter α are given. The orbits are r = 10, 15, 50, 60, 65, 80.

3.2.3. Orbital Dynamics Influenced by the Dark Matter Parameter

Finally, let us focus on what orbital dynamics will occur if dark matter parameter β
increases. The fixed parameters are E = 0.9900, L = 4.1, α = 10−7, and b = 0.0012. Here the
orbits have initial values r = 10, 15, 50, 55, 65 and r = 80. Figure 4a–f describe how chaotic
motion evolves when the dark matter parameter gradually increases from β = 1× 10−2 to
8× 10−2. Despite the fact that the orbital motions of r = 10 (colored red) return to the order
starting after chaotic processes, the chaotic properties can be enhanced from the global
phase space structure with an increasing dark matter parameter.

3.3. Explanation to the Influences of the Parameters on Chaotic Behavior

As is demonstrated above, the extent of chaos can be strengthened with a increase
in the electromagnetic parameter, the positive cosmological constant or the dark matter
parameter. The effects of the parameters on the chaotic dynamics can be explained as
follows. We expand term ()−1 in Equation (13) and rewrite it as follows.

H1 = −1
2
[(1 + β2 + 8αβ)E2 + bL] +

1
8

br2 sin2 θ − 1
2

α2E2r2

−α(2α + β)E2r− E2

r
− 2β2E2

r
+

L2

2r2 sin2 θ
+ .... (26)

If α = 0, β = 0, and b = 0, the fifth term of Equation (26) corresponds to a gravitational
field. The test particles that suffered only involved gravity in Schwarzschild spacetime,
which is oriented towards the black hole in Figure 5a. The cosmological parameter in the
third term of Equation (26) has a gravitational repulsive force from the galaxies and galaxy
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groups or clusters, which can directly act on the particles. It weakens the gravitational force
effect from the center object, as shown in Figure 5b. The positive dark matter parameter
in the sixth term of Equation (26) also yields a gravitational force. It enhances the gravity
of the black hole, as shown in Figure 5c. Compared with the forces from the cosmological
parameter, the gravitational attraction of the central object has overwhelming dominance.
For this case, without external magnetic fields, the motions of test particles are always
regular even if the cosmological and dark matter parameters are involved. Unlike the
cosmological and dark matter parameters in the metric, the electromagnetic parameter
in the second term of Equation (26) corresponds to an external force. The Lorentz force
acting on a charged particle is attractive towards the black hole when b > 0, as shown in
Figure 5d. Chaos may only occur when the gravitational field from the black hole and the
magnetic field are approximately balanced. Namely, the Lorentz force can induce chaos in
some cases when it is strong enough.
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Figure 4. Dependence of the orbital dynamics on the dark matter parameter β. Poincaré sections
with the same parameters E = 0.9900, L = 4.1, b = 0.0012, α = 10−7, and different values of dark
matter parameter β are given. The corresponding orbits are r = 10, 15, 50, 55, 65, 80.
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(a) α=0, β=0, b=0

F
g

(b) α>0, β=0, b=0

F
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F
g

(c) α>0, β>0, b=0

F
α

F
g

F
β 

(d) α>0, β>0, b>0

magnetic field

F
α

F
g

F
β 

F
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Figure 5. Representation of the force responding to the parameters. Case (a) refers to a test particle
moving around Schwarzschild black hole, and the particle only suffers gravity Fg from the central
object. Case (b) refers to the Schwarzschild black hole with a cosmological background, and repulsive
force Fα is the resultant action from the gravity of galaxies and galaxy groups or clusters. Case (c)
considers the appearance of dark matter, and force Fβ is an effect of the gravitational force of dark
matter. Case (d) describes the spacetime immersed in an axially magnetic field, and Lorentz force Fb
acts on charged particle additionally.

As a result, the magnetic field determines whether the motion of particles is chaotic,
and the extent of chaos may become strong when the electromagnetic parameter increases.
The presence of cosmological constant weakens the gravity of the black hole; equivalently,
the electromagnetic force increases. That is why the extent of chaos is strengthened when
the cosmological constant increases.

4. Summary

In this work, we set up a fourth-order explicit symplectic integrator for the dynamics of
charged particles around the magnetized brane-world black hole. The construction of such
an integrator requires the Hamiltonian corresponding to this spacetime to be separated into
five parts with analytical solutions, and this can be expressed as explicit functions of proper
time. Numerical tests show that the proposed algorithm performs good performance for
long-term integrations of orbits.

Then, the new fourth-order explicit symplectic integrator is employed to study the
effect of the different parameters contributing to chaos. Electromagnetic parameter corre-
sponds to the Lorentz force acting on the charged particles. It can destroy the integrability
of the Hamiltonian system without an electromagnetic force and admits the onset of chaos.
Dark matter acts as a gravitational force, which agrees with the electromagnetic parameter,
and chaotic motion can become more obvious when dark matter increases. The gravity of
the black hole is weakened with an increasing positive cosmological parameter; therefore,
the extent of chaos can be also strengthened.

In future work, we shall focus on how the positive cosmological and dark matter
parameter affect brane-world black hole shadows. They will be estimated based on the
Event Horizon Telescope data for M87* and Sagittarius A*. We shall establish a ray-tracing
code using the proposed symplectic integrator. The ray-tracing code and the study of
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such chaotic dynamics will be used to explore the effects of chaos on brane-world black
hole shadows.
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