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Abstract: The quantization of mixed (neutrino) fields in an accelerated background reveals a
non-thermal nature for Unruh radiation, which can be fitted by a Tsallis-like distribution function.
However, for relativistic flavor neutrinos, which are represented by the standard Pontecorvo states,
such a correction turns out to be negligible and thermality is restored. We show that the usage of
Pontecorvo states for the calculation of the decay rate of an accelerated proton in the laboratory and
comoving frames leads to consistent results and correctly implements the KMS thermal condition.
Thus, the employment of these states in the above framework is not at odds with the principle of
general covariance, in contrast to recent claims in the literature.

Keywords: neutrino mixing; weak interactions; Unruh effect; non-extensive Tsallis statistics;
quantum gravity

1. Introduction

In spite of many decades of enormous efforts, quantum gravity (QG) is a goal yet
to be reached. Several lines of research originating from expertise in one or another area
of theoretical physics have provided tentative solutions to this problem. Among these,
the most popular approaches are string (and the dual gauge field) theory [1–3], where
the quantum nature of gravity emerges as a manifestation of vibrational states of strings
emitting gravitons, and loop quantum gravity, which postulates that the spacetime is
fundamentally composed of finite loops nested into spin networks at approximately
the Planck scale [4]. In parallel, other models such as non-commutative geometry and
asymptotic safe gravity rely on either the introduction of non-commutative metric spaces
based on the quantum paradigm of non-commuting observables [5–8], or the concept of
asymptotic safety, whose main ingredient is a fixed point of the theory’s renormalization
group flow that rules the behavior of the gravitational coupling in the UV regime [9–13].
In the absence of a complete understanding of the early quantum universe, preliminary
aspects of QG might also be figured out by looking at the emergence of our observed
classical universe from quantum Planck domain through late-inflation decoherence [14–20]
or wave-function collapse [21,22]. On more phenomenological grounds, attempts to study
low-energy effects of QG have been carried out by suitably modifying the Heisenberg
Uncertainty Principle [23–37] and/or relativity laws [38,39] at Planck scale, or looking
for peculiar implications of QG in tabletop analogue gravity experiments [40–52] (see
Ref. [53] for a recent review on QG phenomenology). At a different conceptual level, it is
believed that unification of quantum and gravity should actually require a rethinking of
quantum gravity as a dissipative deterministic system [54], which would be in tune with
the deterministic view of quantum mechanics proposed in [55–57].

While a fully consistent theory of quantum gravity is currently lacking, a semiclassical
approach is highly successful in explaining a variety of phenomena on the border between
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general relativity and quantum theory is the quantum field theory (QFT) in curved
spacetime [58,59]. Among the most distinctive predictions obtained in this framework,
some results as the discovery of Hawking radiation for black holes [60] and the related
Unruh effect [61] for accelerated observers turn out to be solid and indeed constitute
important steps in the direction of a quantized theory of gravity. Moreover, they provide a
unique arena for the study of general features of QG [62–84] and the potential extension of
the equivalence principle [85,86] to quantum reference frames [87]. In particular, it has been
argued that the Unruh effect appears as a necessary consequence of QFT, in a similar way as
Coriolis force naturally arises in classical mechanics [88], accounting for the non-inertiality
of the reference frame.

In this respect, a “theoretical proof” for the existence of Unruh effect has been obtained
by considering particle decay in accelerated frames [89]. In particular, protons—which
are notoriously stable in the Standard Model—can decay via inverse beta decay when
sufficiently accelerated [90]. The mean proper lifetime of a uniformly accelerated proton
has been explicitly computed in [89] in both the laboratory frame, where the particle is
accelerated, and the comoving frame, where it is supposed to be at rest. By invoking the
scalar nature of the proper lifetime, it has been shown that the equality between the two
expressions is achieved (as dictated by the general covariance of QFT), provided that the
Unruh effect is taken into account [61].

In the above approach, the emitted neutrino has been treated as a massless [89] or
definite-mass particle [91]. Only recently, the analysis has been refined by including neutrino
mixing and oscillations [92–97]. Surprisingly, conflicting conclusions on the maintenance of
general covariance have been reached in this case. Indeed, in [92] it has been shown that the
proton mean lifetimes as calculated by inertial and accelerated observers would disagree when
considering neutrino mixing. In particular, this occurs if one assumes asymptotic neutrinos to be
in flavor eigenstates in the laboratory frame, while in mass eigenstates in the comoving system.
On the other hand, it has been claimed that consistency is recovered if the flavor representation is
adopted in the accelerated frame as well [92,93,95–97], the price to be paid would be the violation
of the Kubo–Martin–Schwinger (KMS) thermality condition for the accelerated vacuum [92].
The question thus arises on how to find a way out of this apparent contradiction.

To approach this problem, it should be noted that the study of flavor mixing in the
context of QFT has shown that a consistent definition of states with definite flavor is
associated with a redefinition of the vacuum state, which does not coincide with the one
for the free fields with definite masses [98]. Indeed, a Bogoliubov transformation is hidden
in the rotation for the neutrino fields, and this is at the origin of the unitary inequivalence
of mass and flavor vacua. Recently, such formalism has been extended to the case of
Rindler (i.e., uniformly accelerated) metric. Particularly, it has been proven that for a
Rindler observer, the Unruh condensate for mixed (neutrino) fields exhibits deviations
from thermality due to the interplay between the Bogoliubov transformation contained in
field mixing and the one arising from the Rindler spacetime structure [99].

The non-thermal character of Unruh radiation for mixed neutrinos has been later
identified [100,101] as the one associated with a generalized thermostatistics arising from
nonextensive Tsallis entropy [102]. In this respect, a thermal field theory based on Tsallis
distribution has been investigated in [103], obtaining a generalized KMS thermal state
condition [103,104]. Consequently, the concerns raised in Ref. [92] about the use of flavor
neutrino states for the calculation of the proton decay rate in the comoving frame are
actually not fully justified. However, when the usual relativistic approximation is adopted
for neutrinos, the exact flavor states reduce to the well-known Pontecorvo states: in
this approximation, the thermal character of the Unruh radiation for mixed neutrinos
is restored. Here, we show by explicit calculations that general covariance is guaranteed
when Pontecorvo states are considered as being representative of neutrinos both in the
decay products of the proton (in the laboratory frame) and in the Unruh radiation (in the
comoving frame).
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The work is organized as follows. In Section 2, we review some aspects of the
quantization for mixed (Dirac) fields both in Minkowski and in Rindler frames and
the non-thermal nature of the associated Unruh radiation. In Section 3, we show the
equivalence of the proton decay rates calculated in both frames, by means of flavor states.
Conclusions and outlook are finally summarized in Section 4. Throughout the whole
manuscript, we use natural units h̄ = c = kB = 1.

2. Nonextensive Tsallis Statistics in Unruh Effect for Mixed Neutrino Fields

The field theoretical analysis of flavor mixing [98] has revealed the shortcomings of the
original Pontecorvo treatment [105]. Particularly, it has highlighted the unitary inequivalence
between the Fock space for fields with definite flavors and that for fields with definite
masses. Mathematically speaking, this feature emerges from the action of a Bogoliubov
transformation inherent to the superposition of fields with different masses. One of the
most striking consequences of this transformation is the non-trivial nature acquired by the
vacuum for flavor fields, which turns out to be a condensate of massive particle-antiparticle
pairs [98].

To better explore the main features of QFT mixing, let us rewrite Pontecorvo transformations
for mixed fields in terms of the algebraic generator Gθ(t) as in [98],

Ψνα(t, x) = G−1
θ (t)Ψνi (t, x) Gθ(t) , (α, i) = {(e, 1), (µ, 2)} , (1)

where Ψνα and Ψνi denote the fields with definite flavors and masses, respectively. (For
simplicity, we consider a minimalistic model with only two flavors labeled by α = e, µ.
The extension to three generations does not affect the overall validity of our considerations).
The generator Gθ(t) is given by

Gθ(t) = exp
{

θ
∫

d3x
[
Ψ†

1(t, x)Ψ2(t, x)−Ψ†
2(t, x)Ψ1(t, x)

]}
. (2)

Using the standard free-field expansion for (Dirac) fields Ψνi , insertion of Equation (2)
into (1) yields

Ψνα(t, x) = ∑
r=1,2

∫
d3k N

[
ar

k,να
(θ, t) ur

k,νi
(t)eik·x + br†

k,να
(θ, t) vr

k,νi
(t)e−ik·x

]
, (3)

where the (time-dependent) annihilators in the flavor basis read

ar
k,να

(θ, t) = G−1
θ (t)ar

k,νi
Gθ(t), (να, νi) = {(e, 1), (µ, 2)}, (4)

and similarly for br
k,νi

(θ, t). For instance, we explicitly obtain for ar
k,νe

(θ, t) [98]

ar
k,νe

= cos θ ar
k,ν1

+ sin θ ∑
s=1,2

[
(ur†

k,ν1
(t), us

k,ν2
(t)) as

k,ν2
+ (ur†

k,ν1
(t), vs

−k,ν2
(t)) bs†

−k,ν2

]
, (5)

and similarly for br
k,νe

. This equation shows that flavor and mass ladder operators are
connected to each other by the combination of the standard Pontecorvo rotation (encoded
by the cos θ- and sin θ-factors) and a Bogoliubov transformation arising from the products
of (anti-)neutrino Dirac spinors with different masses (the terms in the square brackets).

The above formalism holds in Minkowski spacetime. In [99], it has been extended to
Rindler metric, which is the background pertaining to a uniformly accelerated observer. It is
well-known that the field quantization within this framework is accompanied by a Bogoliubov
transformation between the Fock spaces for Minkowski (inertial) and Rindler (accelerated)
observers, even for the simplest case of a free (i.e., unmixed) field. This transformation is indeed
at the root of the Unruh effect as derived in its original formulation [61]. It is then natural to
expect that the study of field mixing in Rindler spacetime can somehow involve an interplay of
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the two Bogoliubov transformations at stake. This has been formalized in [106], showing that
the single Bogoliubov transformation responsible for the Unruh effect for non-interacting fields

ri,κ =
ci,κ e

π ω
2 + d†

i,κ e−
π ω

2√
2 cosh(πω)

, (6)

must be generalized to the doubled-Bogoliubov transformation structure. (We are assuming
the acceleration to be along the z-axis.)

ri,κ,να
(θ, t) =

1√
2 cosh(πω)

∑
r=1,2

∫
dkz

{
e

π ω
2 Fi,r,νi (kz, ω)

×
{

cos θ ar
k,1 + sin θ ∑

s=1,2

[
(ur†

k,1(t), us
k,2(t)) as

k,2 + (ur†
k,1(t), vs

−k,2(t)) bs†
−k,2

]}
(7)

+ e−
π ω

2 Gi,r,νi (kz, ω)

×
{

cos θ br †
k,1 + sin θ ∑

s=1,2

[
(vs†

k,2(t), vr
k,1(t))

∗ bs†
k,2 + (us†

−k,2(t), vr
k,1(t))

∗ as
−k,2

]}}
,

when including flavor mixing as well. Here, we have denoted by ci,κ (d†
i,κ) suitable integral

combinations of Minkowski annihilation (creation) operators through the convolution
functions Fi,r,νi (kz, ω) and Gi,r,νi (kz, ω). These functions are explicitly given in [100].

In turn, the generalized transformation (7) spoils the thermal nature of Unruh vacuum
distribution

M〈0|r†
i,κri,κ′ |0〉M =

1
eβU aω + 1

δ3(κ − κ′) , βU = 1/TU = 2π/a , (8)

generated by Equation (6), giving rise to the modified spectrum

M〈0|r†
i,κ,e(θ) ri,κ,e(θ)|0〉M '

1
e2πω + 1

+
|∆m2| sin2 θ Re{H(µk,i)}

µ2
k,i

e−πω

cosh(πω)
, (9)

where µk,i =
√

m2
i + k2

x + k2
y is the reduced Minkowski frequency and |0〉M the (Minkowski)

vacuum state for definite mass fields. TU is the well-known Unruh temperature, with a
being the proper acceleration of Rindler observer. The functionH(µk,i) is defined in [100].
Notice that the above result has been derived in the realistic approximation of small
mass-difference between neutrinos. It is straightforward to see that in the absence of
mixing (i.e., for θ and/or |∆m| going to zero), the correction over the thermal profile
vanishes, consistently with the recovery of the traditional Unruh radiation in this limit. The
same behavior occurs in the ultrarelativistic approximation ∆m/µk → 0, where the effects
of the mixing Bogoliubov transformation in (7) become trivial and the quantum mechanical
(Pontecorvo) formalism is restored [98]. This shows that deviations from thermality are
actually peculiar to the QFT treatment of mixing.

Now, in [100,101] it has been argued that the non-thermal distribution (9) can still
be mapped into a thermal-like profile, provided that one assumes Tsallis statistics for
the particle-antiparticle pairs in the vacuum condensate [102]. Tsallis thermostatistics
is a non-extensive generalization of Boltzmann–Gibbs theory, based on the following
non-additive definition of entropy

Sq =
1−∑W

i=1 pq
i

q− 1
=

W

∑
i=1

pi logq
1
pi

, q ∈ R+ , (10)
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where

logq z ≡ z1−q − 1
1− q

, (log1 z = log z) . (11)

Departure from extensivity is quantified by the entropic parameter q. Clearly,
Boltzmann-Gibbs entropy is a special case of Sq for q→ 1.

Tsallis entropy (10) has provided encouraging results in the description of many
complex (strongly correlated) systems [107–112]. In the case of QFT flavor mixing, its usage
is justified by the non-trivial entangled structure exhibited by the quantum vacuum for
mixed fields [113,114], which is a (time-dependent) SU(2) coherent state.

Core thermodynamic relations in Tsallis statistics are significantly affected and the
basic tools of Tsallis-based thermodynamics are modified accordingly [115]. For instance,
in [116] it has been shown that the entropy (10) leads to the following generalized
Fermi-Dirac distribution

Nq(ω) =
1

[1 + (q− 1)βω]1/(q−1) + 1
, (12)

which is obtained by maximizing Tsallis entropy under the constraints of keeping the
average internal energy and number of particles constant. Since deviations from extensivity
are in general expected to be relatively small, for practical purposes it is convenient to
expand Nq(ω) for q� 1. To the leading order, we obtain

Nq(ω) ' 1
eβω + 1

+
1
8
(βω)2 sech2

(
βω

2

)
(q− 1) . (13)

Following [100], we now speculate on the possibility that mixing corrections to the
Unruh condensate (9) can be framed in Tsallis picture. By demanding consistency between
Equations (9) and (13), we can fix the value of q that validates this scenario, obtaining

q ' 1 +
Fθ(∆m2, µk,i)

Ω2 , (14)

where

Fθ(∆m2, µk,i) =
|∆m2| Re{H(µk,i)}

π2µ2
k,i

sin2 θ . (15)

It is worth noting that, since Re{H(µ~k,1)} > 0 [100], we have q > 1, which is indicative
of the sub-additivity of Tsallis entropy [102]. In contrast, one has q < 1 [101] for boson
mixing. A possible explanation for this behavior has been provided in [100] in compliance
with the Pauli exclusion principle. Furthermore, we have found a running (i.e., energy
dependent) expression for q. Although not contemplated in the original formalism by
Tsallis, this is expected for field theoretical systems, as discussed in [117].

Therefore, the above framework shows that non-thermal properties of Unruh effect
for mixed fields can effectively be described in terms of a Tsallis-induced deviation from
extensivity, the q-exponent satisfying the condition (14). Clearly, the dependence of q from
the mixing parameters sin θ and ∆m is such that q→ 1 for θ, ∆m→ 0, consistently with the
vanishing of mixing in both cases. The same happens in the Pontecorvo ultrarelativistic
limit, since Re{H(µ~k,1)} keeps finite values for large momenta [100]. This is in line with
expectations, since the entangled structure of flavor vacuum which motivates the usage
of Tsallis statistics is a richness of the QFT mixing only [98,114], while it is missing in the
quantum mechanical formalism.

3. Unruh Effect in Accelerated Proton Decay

In what follows we review the general formalism for the evaluation of the proton
proper lifetime. We sketch the main steps of calculations in both the laboratory and
comoving frames. For a complete treatment, see [93,95,96].
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3.1. Laboratory Frame

In the laboratory frame the uniformly accelerated proton decays according to the
weak process p → n + e+ + νe, where p, n denote the proton and neutron, while e+, νe
the positron and (electron) neutrino, respectively. Following [89], we consider p and n as
unexcited and excited states of a single quantum system, the nucleon, whose spacetime
trajectory is assumed to be well-defined.

The interaction ruling the proton decay can be described by the semiclassical Fermi
coupling Ĵµ

` Ĵ(cl)
h,µ , where Ĵ(cl)

h,µ = q̂(τ)uµδ(x)δ(y)δ(u− a−1) is the classical hadronic current,

while Ĵλ
` = ∑α=e,µ

(
Ψ̂να γλΨ̂α + Ψ̂αγλΨ̂να

)
the quantum lepton current. Here, τ = v/a is

the nucleon proper time (v denotes the Rindler time coordinate), a is the proper acceleration
and u = a−1 = const. the spatial Rindler coordinate that defines the nucleon worldline.
The four-velocity is given by uµ = (a, 0, 0, 0) and uµ = (

√
a2t2 + 1, 0, 0, at) in Rindler and

Minkowski coordinates, respectively, where t = u sinh v and z = u cosh v. The monopole
q̂(τ) takes the form q̂(τ) ≡ eiĤτ q̂0 e−iĤτ , where Ĥ is the nucleon Hamiltonian of eigenvalues
Ĥ|p〉 = mp|p〉, Ĥ|n〉 = mn|n〉, mp(n) being the proton (neutron) mass. The operator q̂0 spits
out the Fermi constant via the matrix element GF ≡ 〈p| q̂0|n〉 [58]. Concerning the lepton
current, we have used the standard notation Ψ̂α, Ψ̂να for the α-charged lepton and neutrino
fields. More details on their explicit expansions are given in [93,95,96].

In the above setting, the Fermi action for the proton decay reads

ŜI ≡ ∑
α=e,µ

∫
d4x
√
−g Ĵ(cl)

h,λ

(
Ψ̂να γλΨ̂α + Ψ̂αγλΨ̂να

)
. (16)

To account for neutrinos being in superposition of mass states, we use the Pontecorvo
transformation [105] (

|νe〉
|νµ〉

)
=

(
Ue1 Ue2
Uµ1 Uµ2

)(|ν1〉
|ν2〉

)
, (17)

and similarly for related fields. Here Ue1 = Uµ2 = cosθ and Ue2 = −Uµ1 = sinθ, θ being
the mixing angle.

At tree level, the transition amplitude in the laboratory frame is given by [93,95,96]

A(lab) ≡ 〈n| ⊗ 〈e+, νe|ŜI |0〉 ⊗ |p〉 (18)

=
GF

24π3

[
cos2 θ Iσνσe(ων1 , ωe) + sin2 θ Iσνσe(ων2 , ωe)

]
,

where we have used the flavor representation for asymptotic neutrino states, consistently
with the discussion at the beginning of this Section. The functions Iσνσe(ωνi , ωe), i = 1, 2,
are given by Dirac products of positron and neutrino wave-functions, integrated over the
proper time τ. They are explicitly exhibited in [93]. Here ωe(νe) is the usual Minkowski
frequency for the positron and neutrino modes.

In turn, the proper decay rate (i.e., the inverse of the mean proper lifetime) is Γ(lab) ≡
P (lab)/T, where d6P (lab)/d3kν d3ke ≡ ∑σe ,σν

∣∣∣A(lab)
∣∣∣2 is the differential transition probability,

while T ≡
∫ +∞
−∞ dτ denotes the total nucleon proper time. By direct calculations, it can be

proved that
Γ(lab) = cos4 θ Γ1 + sin4 θ Γ2 + cos2 θ sin2 θ Γ12 . (19)

Again, the reader can refer to [93] for the explicit form of Γi, i = 1, 2, and Γ12.
Some comments are in order here: first, we notice that, while the diagonal terms Γi,

i = 1, 2, correspond to the decay rates for the process with an outgoing neutrino of definite
mass mi [89], the presence of Γ12 is peculiar to the flavor-basis description, as it arises from
the interference (i.e., coherent superposition) between different mass states. Furthermore,
we have not considered neutrino oscillations in the above treatment. This, however, does
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not affect the overall validity of our results. A comprehensive study including oscillations
is given in [95,96].

3.2. Comoving Frame

Let us now describe the process from the point of view of an observer comoving
with the proton. In this case, the particle “at rest” would be unable to decay, unless some
providential mechanism comes into play. In [90], this mechanism is identified with the
Unruh effect. Specifically, the proton is supposed to experience a thermal bath of electrons
and antineutrinos in the inertial vacuum, giving rise to the following processes at tree level:

a) p+ + e− → n + νe , b) p+ + νe → n + e+ , c) p+ + e− + νe → n . (20)

Here, there is the subtle point of the proton-decay analysis. Following the recipe of [92],
we initially assume that the proton interacts with neutrinos in Rindler states [118,119],
which display an effective thermal weight and are mass eigenstates. Then, for each channel
in Equation (20) the decay amplitude is evaluated by implementing the Rindler–Fulling
quantization for fermion fields [89]. After some algebra, we obtain for the first process

A(com)
a,i ≡ 〈n| ⊗ 〈νi|ŜI |e−〉 ⊗ |p〉 (21)

=
GF

(2π)2 Uei J
(i)

σνσe(ων, ωe) , i = 1, 2 ,

where J (i)
σνσe(ων, ωe) is given by a product of Dirac spinors in Rindler metric [93] and we

have used Pontecorvo transformation at level of neutrino field only. Similar expression can
be derived for the other two decay channels.

Since the three processes (20) are mutually exclusive, the total proper decay rate is
equal to the incoherent sum of the three decay rates taken separately. A somewhat laborious
calculation yields

Γ(com)
m = cos2 θ Γ̃1 + sin2 θ Γ̃2 , (22)

where we have additionally summed over neutrino mass eigenstates, as indicated in [92]
(the subscript m on the l.h.s. is a reminder for mass representation). The functions Γ̃i,
i = 1, 2, are given in [93], where it is shown that Γ̃i = Γi.

By comparison with Equation (19), it follows that Γ(lab) 6= Γ(com)
m . Thus, the usage

of neutrino mass representation in the comoving frame spoils the general covariance of
QFT. In [92], this is motivated by the requirement of maintaining the KMS thermality
for the Unruh effect, which is posed at the foundations of the whole analysis. However,
as explicitly shown in Equation (9), the non–thermal contribution induced by neutrino
mixing is only due to the QFT corrections, which are negligible for relativistic neutrinos.
Thus, if one adopts (as we do here) the Pontecorvo flavor states, no violation of KMS
condition is to be expected.

Based on the above considerations, we can then repeat the computation of A(com)
a by

considering flavor (Pontecorvo) states for asymptotic neutrinos. Following the same steps
as above, we are led to [93]

A(com)
a,e ≡ 〈n| ⊗ 〈νe|ŜI |e−〉 ⊗ |p〉 (23)

=
GF

(2π)2

[
cos2 θ J (1)

σνσe(ων, ωe) + sin2 θ J (2)
σνσe(ων, ωe)

]
.

Combined with the corresponding expressions for the processes (b) and (c), this gives
for the total proper decay rate

Γ(com)
f = cos4 θ Γ̃1 + sin4 θ Γ̃2 + cos2 θ sin2 θ Γ̃12 , (24)
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(the index f now stands for flavor representation). Again, the use of flavor states leads to
the appearance of the extra interference term Γ̃12. In [93] this has been calculated explicitly,
showing that Γ̃12 = Γ12, at least to the leading order in the approximation of small-mass
difference between mixed neutrinos. Therefore, the flavor-based picture allows us to restore
the expected equality Γ(lab) = Γ(com), consistently with the general covariance of the theory.

4. Discussion and Conclusions

We have discussed the issue of thermality of the Unruh radiation for mixed neutrino
fields. By reviewing recent results, we have shown that corrections to the Fermi–Dirac
distribution arise due to the non-trivial nature of the flavor vacuum for neutrinos. Such
corrections can be cast, for sufficiently small mixing angles and/or small mass differences,
in the form of a Tsallis distribution, corresponding to a non–extensive thermostatistics.
However, these corrections disappear for relativistic neutrinos, which are well described
by the usual Pontecorvo flavor states.

Thus, the concerns expressed in Ref. [92] that the non-implementability of KMS
condition for flavor neutrinos in the Unruh radiation would lead to a difference in the
accelerated proton decay rates (laboratory and comoving), do not apply and general
covariance is safe. This is true at least for Pontecorvo flavor neutrino states, on which the
discussion of Refs. [93,95,96] is based and which we have reviewed here.

Of course, it remains to be checked the consistency of the calculations in the two reference
frames when one would use the exact flavor neutrino states [120], which are of course mandatory
in the non–relativistic regime. We expect that in such a case, the calculation in the proton’s
comoving frame would require the use of Tsallis distribution functions as statistical weights for
the flavor neutrinos absorbed/emitted by the proton from the Unruh thermal vacuum.

Finally, we would like to comment on the approach of Ref. [94], where the massive
neutrino states have been used in the above calculations for both frames. In Ref. [96], we
have extended the treatment to include three flavor mixing and CP violation, and general
covariance has been checked to be valid also in this case if flavor neutrino states are used.
On the other hand, the decay rate calculated by means of massive neutrino states does
not exhibit any dependence of the (physical) CP phase and this casts some doubts on
this approach.
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