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Abstract: The luminosity distance dL is possibly the most important distance scale in cosmology
and therefore accurate and efficient methods for its computation is paramount in modern precision
cosmology. Yet in most cosmological models the luminosity distance cannot be expressed by a simple
analytic function in terms of the redshift z and the cosmological parameters, and is instead represented
in terms of an integral. Although one can revert to numerical integration techniques utilizing
quadrature algorithms to evaluate such an integral, the high accuracy required in modern cosmology
makes this a computationally demanding process. In this paper, we use the Parker–Sochacki method
(PSM) to generate a series approximate solution for the luminosity distance in spatially flat ΛCDM
cosmology by solving a polynomial system of nonlinear differential equations. When compared with
other techniques proposed recently, which are mainly based on the Padé approximant, the expression
for the luminosity distance obtained via the PSM leads to a significant improvement in the accuracy
in the redshift range 0 ≤ z ≤ 2.5. Moreover, we show that this technique can be easily applied to
other more complicated cosmological models, and its multistage approach can be used to generate
analytic approximations that are valid on a wider redshift range.

Keywords: FLRW cosmology; luminosity distance; Parker–Sochacki method

1. Introduction

The luminosity distance in the spatially flat ΛCDM cosmology is expressed exactly
in terms of an elliptic integral. Evaluation of this integral via numerical quadratures
tend to be computationally heavy when high accuracy is required in applications that
involve ultra precise measurements of cosmological parameters such as the calculation
of H0 in view of the problem of the Hubble constant tension [1,2]. Different strategies for
obtaining analytical approximations for this integral have been proposed during the last
two decades, and these can be divided into three types. The first type involves obtaining an
algebraic fitting formula expressed in terms of elementary functions for the integral which
compares quite well with the numerical solution over a wide redshift range and for different
values of the matter density parameter Ωm. This started with the work of Ue Li Pen [3]
who obtained a formula which has a relative error of less than 0.4% for 0.2 < Ωm < 1.
A similar approach was used by Wickramasinghe and Ukwatta [4] and Liu et al. [5] who
obtained alternative fitting formulae that run faster and have smaller relative errors than
that obtained by Pen [3]. Finally, the formula obtained by Adachi Kasai [6] which is based on
the Padé approximation has even smaller relative error for the range of density parameter
0.3 ≤ Ωm ≤ 1 and redshift range 0.03 ≤ z ≤ 1000. The second strategy is to identify
exact analytic expressions for the luminosity distance which are often expressed in terms of
transcendental functions, such as elliptic integrals [5,7–9] or hypergeometric functions [10].
Being exact expressions, this approach leads to a better accuracy, but the presence of
such transcendental functions makes these more computationally demanding to evaluate.
The third strategy involves using truncated Taylor series approximations [11–13] for the
luminosity distance in a relatively small redshift range. This technique is easy to use but
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has divergence problems for higher values of z, and the fact that nowadays supernova data
goes as far as z ≈ 2.35 [14] this can pose a significant problem. Thus several recent works
suggest the use of the Padé approximant [15–17] to represent the luminosity distance, due
to its better convergence over a larger redshift range. Instead of obtaining power series or
Padé approximations to the luminosity integral directly, some authors have also considered
the associated differential equation with corresponding initial conditions and obtained
approximate analytical solutions for the luminosity distance using various methods, such
as the homotopy perturbation method (HPM) [18] and its variants [19], the variational
iteration method (VIM) [20] and the Daftardar-Jafari Method (DJM) [21]. Unlike the
fitting formulae developed earlier, which are valid over a wide redshift range, the series
approximations obtained using this strategy converge on a much limited redshift range
and the relative error for the approximated luminosity can be larger for higher values of z
meaning that one has to reach a compromise between accuracy and redshift convergence
interval, although the accuracy and convergence can be somewhat improved by using
a combination of the Padé approximant with the HPM [19]. However, these methods
have the advantage that they can be easily applied to any cosmological model, unlike the
earlier fitting formulae or exact expressions which only hold for ΛCDM cosmology. This is
particularly important when comparing different dark energy cosmological models with
observational data.

In this paper, we follow the latter strategy and apply the Parker–Sochacki method
(PSM) [22,23] to obtain an approximate solution of the ordinary differential equation satis-
fied by the luminosity distance function. PSM is an extension of the Picard iteration [24]
which is in turn an algorithm for solving linear systems of differential equations. It is a
simple yet powerful technique for computing iteratively the coefficients of the Maclaurin’s
series solution of a polynomial system derived from a nonlinear initial value problem
(IVP) or a boundary value problem (BVP). Over the last two decades, interest in PSM has
increased dramatically and it has been applied to various problems of technological and
scientific importance (see for examples Refs. [25–37]) including stiff differential equations
whose solution cannot be obtained efficiently with existing numerical solvers [38]. This
would be the first example of the application of PSM in cosmology. The main advantage
of the PSM over the other methods mentioned above, is that the radius of convergence
R of the Maclaurin’s series solution to the polynomial system can be obtained easily and
a priori in terms of the parameters in the system. This would allow the domain of the
problem to be divided into subdomains over which the PSM can be used individually to
obtain convergent solutions, such that the end result is a piecewise convergent solution.
This allows one to extend the domain of convergence of the approximate analytic solution
without compromising the accuracy of the solution. It has been shown [39] that such an
approach compares relatively well with the Runge–Kutta method of order four.

This paper is structured as follows. In the next section, we introduce the Parker–
Sochacki method. Then in Section 3 we obtain the differential equation satisfied by the
luminosity distance function in ΛCDM cosmology and generate an approximate solution
for dL(z) using the PSM. This will be followed by a comparison of this solution with the
corresponding numerical solution and with the approximate solutions obtained by using
the other methods mentioned above. The PSM is also used to obtain the luminosity distance
in a dynamical dark energy model, which is chosen to be the Chevallier, Polarski and Linder
(CPL) model [40–42] with the equation of state (EOS) function ω(z) = ω0 + ω1z/(1 + z),
where ω0 and ω1 are constants. This is followed with a discussion of the results and a
conclusion. In this paper, we will use geometrized units such that 8πG = c = 1.

2. The Parker–Sochacki Method

The Parker–Sochacki method is a modification of the conventional power series
method for solving non-linear ordinary differential equations which may include transcen-
dental functions. This involves expressing the given differential equation into a polynomial
system of differential equations (also called polynomial projection) by introducing appro-
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priate new variables to represent the non-polynomial functions in the original differential
equation. The system is then solved using a standard power series method. The concept
of polynomial projection may be better explained by referring to a simple example (taken
from Ref. [43]). So consider the following first order nonlinear IVP

y′(t) =
sin
(

y(t)e−t2
)

√
t

, y(1) = 2. (1)

This can be expressed in a polynomial system of differential equations by introducing
the variables

x1 = y, x2 = sin(ye−t2
), x3 = cos(ye−t2

), x4 = e−t2
, x5 = t, x6 = t−1/2, (2)

such that (1) is recast in the form

x′1 = x2x6,

x′2 = −2x1x3x4x5 + x2x3x4x6,

x′3 = 2x1x2x4x5 − x2
2x4x6,

x′4 = −2x4x5,

x′5 = 1,

x′6 = −1
2

x3
6, (3)

with the initial conditions x1(1) = 2, x2(1) = sin(2e−1), x3(1) = cos(2e−1), x4(1) = e−1,
x5(1) = 1, x6(1) = 1. So the solution y(t) to the given differential equation in (1) is now
embedded in the polynomial system (3). This is called a projection for the solution y(t).
Now by expressing each of the six variables xi, i = 1 · · · 6 in terms of a truncated Maclaurin
series in t and substituting in (3), one can apply the simple Picard iteration to solve the
polynomial system and so get an approximate series solution for y(t). In general, given
a nonlinear IVP of the form

y′ = f (t, y), y(t0) = y0, t0 ≤ t ≤ t f , (4)

where t0 ∈ R and y0 ∈ Rn, one can transform this to a projectively polynomial system by
the introduction of auxiliary variables as seen in the above example, to get

x′ = g(x), x(t0) = x0, t0 ≤ t ≤ t f , (5)

where x0 ∈ Rm and g : Rm → Rm. Taking t0 = 0 without loss of generality and using the
truncated Maclaurin’s expansions x(t) = ∑

p
i=0 xiti and g(x) = ∑

p
i=0 giti and substituting in

the above polynomial system, gives

xi+1 =
gi

i + 1
, (6)

where the coefficients gi are obtained by the repeated use of the simple Cauchy product.
By using (6), one can then obtain the truncated series solution

x(t) =
p

∑
i=0

xiti, (7)

of the polynomial system in (18). We now introduce a few notations. The definition of the
norm of the vector x is ||x|| = max1≤i≤m |xi|, where x ∈ Rm. If g is a vector polynomial
function and Xα = xα1

1 xα2
2 · · · x

αm
m , then the components of g are given by

gi(x1, · · · , xm) = ∑
|α|≤k

aα,iXα, (8)
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where |α| = α1 + · · ·+ αm, and k = deg(gi) is the degree of gi. We also define

Σgi = ∑
|α|≤k
|aα,i|, (9)

and Σg = max(Σg1, · · · , Σgm), deg(g) = max(deg(g1), · · · , deg(gm)). Then the conver-
gence for the above series solution in (7) obtained by the PSM is given by the following
Taylor approximation theorem [44].

Theorem 1. If x satisfies (5), k = deg(g) ≥ 2, α = max(1, ||x0||), M = (k− 1)Σgαk−1, t0 = 0,
and |t| < 1/M then

||x(t)−
p

∑
i=0

xiti|| ≤ α|Mt|p+1

1− |Mt| . (10)

In most cases the radius of convergence |t| < 1/M of the series solution as stated
in the above theorem is less than the interval of integration t0 ≤ t ≤ t f . Therefore as
proposed in [44] one can apply the PSM on smaller subintervals such that the convergence
of the solution is preserved on each subinterval. In other words, the interval t0 ≤ t ≤ t f
is divided into subintervals by introducing the nodes ti = t0 + ih where h = 1/M and
i = 0, 1, · · · , N =

t f−t0
h , such that the union of the non-overlapping sub intervals [tk−1, tk]

gives ∪[tk−1, tk] = [t0, t f ]. Then, when applying the PSM on each subinterval the value of
the function at the end-point of a given subinterval becomes the initial condition for the
next subinterval. Combining the solutions obtained by the PSM for each subinterval yields
a highly accurate piecewise smooth solution for the entire integration domain t0 ≤ t ≤ t f .
Moreover, by increasing the order of the approximation p in (7) one can also increase
the accuracy of the approximation in each subinterval. This multistage approach for the
implementation of the PSM has been used to obtain accurate series approximations of
various non-linear and stiff ordinary differential equations (see for example Ref. [38]).

In the next section, we obtain the non-linear differential equation satisfied by the
luminosity function and solve this for two different cosmological models by using the PSM
via the multistage approach as described above.

3. Differential Equation for the Luminosity Distance in a Flat Universe

According to recent observations our universe is spatially flat [45,46] and is homoge-
neous and isotropic on the large scale, such that it can be described by the FLRW metric

ds2 = −dt2 + a(t)2
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (11)

where a(t) is the scale factor. One of the most fundamental distance scales in cosmology
is the luminosity distance which is defined by dL =

√
L/(4πF), where L is the absolute

luminosity of the source and F is the associated flux measured by the observer. In a spatially
flat universe this is given by [47]

dL =
c(1 + z)

H0

∫ z

0

dz′√
W(z′)

, (12)

where W(z) = (H(z)/H0)
2 depends on the Hubble parameter H(z) as a function of the

redshift z and H0 is the current value of the Hubble constant such that W(0) = 1. Even in
the simple case of the ΛCDM universe the above integral cannot be integrated explicitly
and normally one has to revert to numerical integration or use any of the approximations
mentioned in the Introduction. Introducing the function

u(z) =
H0dL

c(1 + z)
, (13)
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the above integral can be written as

u(z) =
∫ z

0

dz′√
W(z′)

. (14)

The function u(z) then satisfies the non-linear differential equation

u′′(z) +
1
2

W ′(z)(u′(z))3 = 0; u(0) = 0, u′(0) = 1, (15)

where ′ denotes differentiation with respect to z. In the next section, we obtain analytic
approximations to this differential equation by using the multistage PSM described in
the previous section for two cosmological models, namely the ΛCDM and the Chevallier–
Polarski–Linder (CPL) models.

4. Luminosity Distance in Cosmology
4.1. ΛCDM Cosmological Model

For the ΛCDM model the function W(z) in the non-linear differential Equation (15) is
given in terms of the cosmological parameter Ωm by

W(z) = Ωm(1 + z)3 + (1−Ωm). (16)

By introducing the additional auxiliary variables

V(z) = u′(z), S(z) = W ′(z) = 3Ωm(1 + z)2, Q(z) = (1 + z), (17)

the differential equation in (15) can be incorporated in the following polynomial system
which will be solved using the PSM as explained earlier

u′ = V

V′ = −1
2

SV3

S′ = 6ΩmQ

Q′ = 1, (18)

where u(0) = 0, V(0) = 1, S(0) = 3Ωm, Q(0) = 1. Note that the required function u(z)
which is related to the luminosity distance function dL(z) by (13) is contained in the above
polynomial system. Using the series expansions for the auxiliary variables

u(z) =
p

∑
i=0

uizi, V(z) =
p

∑
i=0

Vizi, S(z) =
p

∑
i=0

Sizi, Q(z) =
p

∑
i=0

Qizi, (19)

and substituting in the above polynomial system, leads to the following recursive relations
for the coefficients

ui+1 =
Vi

i + 1

Vi+1 = − 1
2(i + 1)

i

∑
j=0

Si−j

j

∑
p=0

(
p

∑
k=0

VkVp−k

)
Vj−p

Si+1 = 6Ωm
Qi

i + 1

Qi =

{
0 : i > 1
1 : i = 1

. (20)

According to Theorem 1 the interval of convergence for the above series solution to
the polynomial system (18) is given by |z| < 1/M where M = (k − 1)Σgαk−1. In our
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case k = 4, Σg = 6Ωm, and α = 3Ωm such that M = 6(3Ωm)4. So for example taking
Ωm = 0.28 we get 1/M = 0.33 and so we choose a slightly tighter bound |z| < 0.25 to
make sure that the series approximations converge on this interval. Then computing the
coefficients by using the above recursive relations gives a series approximation valid on
the interval [0, 0.25]. As described further in the Appendix A, this process can be carried
on until the full redshift range is covered, yielding the piecewise convergent approximate
solution shown in Table 1. For computational simplicity we have chosen to limit ourselves
to third-order approximations and limit the full redshift range to 0 ≤ z ≤ 2.5. The order of
the approximation and the redshift range can be increased as required. Figure 1a shows
the luminosity distance function H0dL(z)/c = (1 + z)u(z) for the ΛCDM model obtained
via the multistage PSM in the red-shift range 0 ≤ z ≤ 2.5, for Ωm = 0.28. The piecewise
convergent luminosity distance has an excellent agreement with the solution obtained via
numerical integration of the integral in (12).

Table 1. Piecewise convergent approximate solution for u(z) with Ωm = 0.28.

z u(z)
0 ≤ z ≤ 0.25 z− 0.21z2 − 0.0518z3

0.25 ≤ z ≤ 0.50 0.2361 + 0.8885(z− 0.25)− 0.2301(z− 0.25)2 − 0.0035(z− 0.25)3

0.50 ≤ z ≤ 0.75 0.4438 + 0.7753(z− 0.5)− 0.2202(z− 0.5)2 + 0.0272(z− 0.5)3

...
...

2.25 ≤ z ≤ 2.5 1.3133 + 0.3112(z− 2.25)− 0.0245(z− 2.25)2 − 0.0336(z− 2.25)3

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

5

z

(H
0
/c
)d
L
(z
)

(a)

0.0 0.5 1.0 1.5 2.0 2.5

0.00

0.02

0.04

0.06

0.08

z

Δ
E
%

(b)

Figure 1. (a) The luminosity distance function (H0/c)dL(z) (solid curve) vs. the redshift z for the
ΛCDM model with Ωm = 0.28. The corresponding numerical solution obtained by integrating (12) is
also shown as plotted points for discrete values of z. (b) The absolute relative percentage error of the
luminosity distance ∆E vs. the redshift z.

To determine the accuracy of the approximate luminosity distance we define the
absolute relative percentage error by

∆E =

∣∣∣∣∣d
approx
L − dnum

L
dnum

L

∣∣∣∣∣× 100%, (21)

where dapprox
L is the luminosity distance values calculated by the PSM and dnum

L are the
values obtained via numerical integration of the integral in (12). This is shown in Figure 1b.

4.2. CPL Cosmological Model

For the CPL model [40–42] the function W(z) in (15) is given by

W(z) = Ωm(1 + z)3 + (1−Ωm)(1 + z)3(1+ω0+ω1)e−3ω1
z

1+z , (22)
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which now contains the additional parameters ω0 and ω1. The case ω0 = −1, ω1 = 0
corresponds to the ΛCDM. Introducing the auxiliary variables

V(z) = u′(z); S(z) = W ′(z); P(z) = e−3ω1z/(1+z); R(z) = (1 + z)(3ω0+3ω1);

Q(z) = (1 + z); Z(z) = 1/Q(z), (23)

the differential equation in (15) can be projected into the polynomial system

u′ = V(z)

V′ = −1
2

S(z)V3(z)

S′ = 6ΩmQ(z) + 3(1 + ω0 + ω1)(2 + 3ω0 + 3ω1)(1−Ωm)P(z)Q(z)R(z)

−6ω1(2 + 3ω0 + 3ω1)(1−Ωm)PR + 9ω2
1(1−Ωm)P(z)R(z)Z(z)

P′ = −3ω1P(z)Z(z)2

R′ = 3(ω0 + ω1)R(z)Z(z)

Z′ = −Z2(z)

Q′ = 1, (24)

with the initial conditions u(0) = 0, V(0) = 1, S(0) = 3(1 + ω0(1− Ωm)), P(0) = 1,
R(0) = 1, Z(0) = 1, Q(0) = 1. Using the series expansions

u(z) =
p

∑
i=0

uizi, V(z) =
p

∑
i=0

Vizi, S(z) =
p

∑
i=0

Sizi, P(z) =
p

∑
i=0

Pizi, R(z) =
p

∑
i=0

Rizi,

Q(z) =
p

∑
i=0

Qizi, Z(z) =
p

∑
i=0

Zizi. (25)

and substituting in the above polynomial system, gives the following recursive relations
for the coefficients

ui+1 =
Vi

i + 1

Vi+1 = − 1
2(i + 1)

i

∑
j=0

Si−j

j

∑
p=0

(
p

∑
k=0

VkVp−k

)
Vj−p

Si+1 =
1

i + 1

6ΩmQi + 3(1 + ω0 + ω1)(2 + 3ω0 + 3ω1)(1−Ωm)
i

∑
j=0

(
j

∑
k=0

PkQj−k

)
Ri−j

−6ω1(2 + 3ω0 + 3ω1)(1−Ωm)
i

∑
j=0

PjRi−j + 9ω2
1(1−Ωm)

i

∑
j=0

(
j

∑
k=0

PkRj−k

)
Zi−j


Pi+1 = − 3ω1

i + 1

i

∑
j=0

(
j

∑
k=0

ZkZj−k

)
Pi−j

Ri+1 =
3(ω0 + ω1)

i + 1

i

∑
j=0

RjZi−j

Zi+1 = − 1
i + 1

i

∑
j=0

ZjZi−j

Qi =

{
0 : i > 1
1 : i = 1

. (26)

Again by Theorem 1 the interval of convergence is given by |z| < 1/M where
M = (k− 1)Σgαk−1. We use the values of the parameters for the CPL model obtained
in Ref. [48], namely Ωm = 0.311, ω0 = −0.937, and ω1 = 0.064. Then k = 4, Σg = 2.619,
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α = 1.06322 such that 1/M = 0.106. Hence we start by computing the coefficients of the
series approximations by using the above recursive relations in the subinterval [0, 0.1] and
again we consider third order approximations. These are shown in the Appendix A. As in
the case of the ΛCDM, the process can be continued to cover the required redshift range,
thereby yielding the piecewise convergent approximation shown in Table 2. Figure 2a
below shows the luminosity distance function for the CPL cosmological model obtained
via the multistage PSM in the red-shift range 0 ≤ z ≤ 1.2, for Ωm = 0.311, ω0 = −0.937,
and ω1 = 0.064. Again, as in the previous case the obtained piecewise convergent lu-
minosity distance has an excellent agreement with the solution obtained via numerical
integration of the integral in (12). This is evidenced by the very small relative percentage
error obtained from (21) as shown in Figure 2b.

Table 2. Piecewise convergent approximate solution for u(z) with Ωm = 0.311, ω0 = −0.937,
and ω1 = 0.064.

z u(z)

0 ≤ z ≤ 0.1 z− 0.2658z2 − 0.0164z3

0.1 ≤ z ≤ 0.2 0.0973 + 0.9466(z− 0.1)− 0.2673(z− 0.1)2 + 0.0055(z− 0.1)3

0.2 ≤ z ≤ 0.3 0.1893 + 0.8935(z− 0.2)− 0.2631(z− 0.2)2 + 0.0222(z− 0.2)3

...
...

1.1 ≤ z ≤ 1.2 0.8088 + 0.5194(z− 1.1)− 0.1481(z− 1.1)2 + 0.0390(z− 1.1)3

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.5

1.0

1.5

2.0

z

(H
0
/c
)d
L
(z
)

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.000

0.001

0.002

0.003

0.004

0.005

0.006

z

Δ
E
%

(b)

Figure 2. (a) The luminosity distance function (H0/c)dL(z) (solid curve) vs. the redshift z for the
CPL model with Ωm = 0.311, ω0 = −0.937, and ω1 = 0.064. The corresponding numerical solution
obtained by integrating (12) is also shown as plotted points for discrete values of z. (b) The absolute
relative percentage error of the luminosity distance ∆E vs. the redshift z for the same redshift range.

5. Discussion and Conclusions

In this paper, we have used the Parker–Sochacki method to obtain an analytical
approximation of the luminosity distance for the ΛCDM and CPL cosmological models.
This is done by solving the nonlinear differential equation satisfied by the luminosity
distance function by first projecting it into a polynomial system and then implementing the
PSM in a multistage fashion for the redshift subintervals so that the result is a piecewise
convergent luminosity distance function on the entire required redshift range, which has
an excellent agreement with the numerical solutions. The overall accuracy is controlled
by the length of these subintervals and the order of the approximation used which can
be increased for a better overall accuracy. As mentioned in the Introduction, there are
other methods proposed in the literature for obtaining analytical approximations of the
luminosity function by solving the differential Equation (15). For example, Shchigolev
applied the variational iteration method (VIM) [18], the homotopy perturbation method
(HPM) [20] and the Daftardar–Jafari method (DFM) [21] to obtain analytical approximations
for dL(z) for the ΛCDM model. These methods yield fairly accurate approximations for
low red-shifts z < 1, but the accuracy is nowhere near that obtained by using the PSM
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as can be seen by comparing Figure 1 in Ref. Shchigolev [18,20,21] with Figure 1 in this
paper. The relative percentage errors of the luminosity distance approximations for the
PSM are still significantly less than those obtained by applying a variant of the HPM,
called the HPM–Padé technique which was proposed recently by Yu et al. [19] as an
improvement to the approximations generated by the HPM in [20]. In fact, for the ΛCDM
model with the same value of the cosmological parameter Ωm = 0.28 and the same redshift
range 0 ≤ z ≤ 2.5, the HPM–Padé yields a maximum relative percentage error ∆E∼4%
for the best approximation over this redshift range. In our case ∆E < 0.1%, and this is
comparable or even better than some of the earlier fitting formulae (such as those developed
by Pen [3], Wickramasinghe and Ukwatta [4], Liu et al. [5] and Baes et al. [10]). More
importantly, unlike previous approximations obtained via the VIM, HPM, DFM, and HPM–
Padé, the relative percentage error ∆E in the approximated luminosity distance does not
increase with redshift. The multi-stage approach in the implementation of the PSM makes
it possible to apply it for even higher redshift ranges without compromising accuracy.

One can argue that unlike the various analytic approximations obtained by solving
(15), the direct fitting formulae mentioned above are much easier to apply and have
a shorter computation time, and they are valid over a very wide range of redshift. This
is undoubtedly correct. However, a major drawback of these simple formulae is that
they were specifically developed for the ΛCDM model and cannot be used for other
cosmological models. On the other hand, as shown in this paper and in previous articles,
analytic approximations for the luminosity distance obtained by solving the differential
Equation (15) can be easily applied to various cosmological models; even more complex
models than the CPL model analyzed here. This is particularly important in modern
cosmology when testing and investigating new dark energy models in alternative theories
of gravity. The need for an efficient and precise calculation of the luminosity distance
in this case is paramount to uncover any subtle differences with the standard ΛCDM
cosmology [49].

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Approximate Solutions

In this appendix, we obtain the series approximations to the polynomial system of
equations for the ΛCDM and CPL cosmological models given by (18) and (24) respectively,
by dividing the entire redshift range into subintervals as described in Section 4. The series
expansions for the variable u(z) (which is directly related to the luminosity via (13)) in
these subintervals gives the piecewise convergent approximation shown in Tables 1 and 2.

Appendix A.1. ΛCDM Cosmological Model

From the recursive relations (20) for the first subinterval z ∈ [0, 0.25], it follows that

u(1)(z) = z− 0.21z2 − 0.0518z3

V(1)(z) = 1− 0.42z− 0.1554z2 + 0.2040z3

S(1)(z) = 0.84(1 + z)2

Q(1)(z) = 1 + z, (A1)

where the superscript (1) in the above expressions indicates that these series approximations
are valid on the first subinterval. The PSM algorithm is applied in a multistage approach as
explained in Section 2. Therefore on the second subinterval [0.25, 0.50] the PSM algorithm
is applied again by solving the same polynomial system in (18), but now with the initial
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conditions u(2)(0) = u(1)(0.25), V(2)(0) = V(1)(0.25), S(2)(0) = S(1)(0.25) and Q(2)(0) =
Q(1)(0.25). This yields:

u(2)(z) = 0.2361 + 0.8885(z− 0.25)− 0.2301(z− 0.25)2 − 0.0035(z− 0.25)3

V(2)(z) = 0.8885− 0.4603(z− 0.25)− 0.0106(z− 0.25)2 + 0.1653(z− 0.25)3

S(2)(z) = 1.3125 + 2.1(z− 0.25) + 0.84(z− 0.25)2

Q(2)(z) = 1 + z. (A2)

This process is repeated until the required full redshift range [0, 2.5] is covered. Listing
the obtained u(i)(z) as shown in Table 1 gives a piecewise convergent approximation for
the luminosity distance function dL(z) valid on this redshift range.

Appendix A.2. CPL Cosmological Model

On the first subinterval z ∈ [0, 0.1], the recursive relations in (26) give

u(1)(z) = z− 0.2658z2 − 0.0164z3

V(1)(z) = 1− 0.5316z− 0.0493z2 + 0.2454z3

S(1)(z) = 1.0632 + 1.8927z + 0.8016z2 + 0.2330z3

P(1)(z) = 1− 0.192z + 0.2104z2 − 0.2300z3

R(1)(z) = 1− 2.619z + 4.7391z2 − 7.2966z3

Z(1)(z) = 1− z + z2 − z3

Q(1)(z) = 1 + z. (A3)

As was done in the previous case the PSM is applied in a multistage approach, and so
for the next subinterval [0.1, 0.2], the polynomial system in (24) is solved with the initial
conditions u(2)(0) = u(1)(0.1), V(2)(0) = V(1)(0.1), S(2)(0) = S(1)(0.1), P(2)(0) = P(1)(0.1),
R(2)(0) = R(1)(0.1), Z(2)(0) = Z(1)(0.1) and Q(2)(0) = Q(1)(0.1). This gives

u(2)(z) = 0.0973 + 0.9466(z− 0.1)− 0.2673(z− 0.1)2 + 0.0055(z− 0.1)3

V(2)(z) = 0.9466− 0.5347(z− 0.1) + 0.0164(z− 0.1)2 + 0.1924(z− 0.1)3

S(2)(z) = 1.2607 + 2.0588(z− 0.1) + 0.8550(z− 0.1)2 + 0.1328(z− 0.1)3

P(2)(z) = 0.9827− 0.1559(z− 0.1) + 0.1540(z− 0.1)2 − 0.1520(z− 0.1)3

R(2)(z) = 0.7782− 1.8526(z− 0.1) + 3.0473(z− 0.1)2 − 4.2648(z− 0.1)3

Z(2)(z) = 0.909− 0.8263(z− 0.1) + 0.7511(z− 0.1)2 − 0.6827(z− 0.1)3

Q(2)(z) = 1 + z. (A4)

The process is repeated until required redshift range is covered. Then the functions
u(i)(z) represent the piecewise convergent approximation for the luminosity distance
function dL(z) as shown in Table 2.
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