
����������
�������

Citation: Odintsov, S.D.; Paul, T.

Bounce Universe with Finite-Time

Singularity. Universe 2022, 8, 292.

https://doi.org/10.3390/

universe8050292

Academic Editors: Luca Buoninfante

and Gaetano Lambiase

Received: 4 April 2022

Accepted: 18 May 2022

Published: 23 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Bounce Universe with Finite-Time Singularity

Sergei D. Odintsov 1,2 and Tanmoy Paul 3,*

1 ICREA, Passeig Luis Companys, 23, 08010 Barcelona, Spain; odintsov@ieec.uab.es
2 Institute of Space Sciences (ICE, CSIC), C. Can Magrans s/n, 08193 Barcelona, Spain
3 Department of Physics, Chandernagore College, Hooghly 712136, India
* Correspondence: pul.tnmy9@gmail.com

Abstract: This work explains how the presence of a Type-IV singularity (a mild singularity) can
influence the dynamics of a bouncing universe. In particular, we examine the bounce cosmology
that appears with a Type-IV singularity in the context of a ghost-free Gauss–Bonnet theory of gravity.
Depending on the time of occurrence of the Type-IV singularity, three different cases may arise—
when the singularity occurs before the bounce, after the bounce, or at the instant of the bounce.
However, in all of these cases, we find that in the case when the singularity “globally” affects the
spacetime, the scalar power spectrum becomes red-tilted, and the tensor-to-scalar ratio is too large
to be consistent with the observational data. Based on these findings, we investigate a different
bouncing scenario which also appears with a Type-IV singularity, and wherein the singularity affects
the spacetime “locally” around the time when it occurs. As a result, and unlike the previous scenario,
the perturbation modes in the second bouncing scenario are likely to be generated far away from the
bounce in the deep contracting phase. This finally results in the simultaneous compatibility of the
observable quantities with the Planck data and ensures the viability of the bounce model where the
Type-IV singularity has local effects on the spacetime around the time of the singularity.

Keywords: bounce; finite time singularity; cosmological perturbation

1. Introduction

At present, we are living in a cosmological era where, on the one hand, we have several
cosmological data that include the scalar spectral index, the tensor-to-scalar ratio describing
the early stage of the universe, as well as the late-time equation of state parameter, the
Om(z) parameter, in regard to the dark energy era of the universe. However, on the other
hand, modern cosmology is still riddled with questions on whether the universe started its
expansion from a Big Bang singularity or from a non-singular bouncing scenario. Inflation
is one of the cosmological scenarios that successfully describes the early stage of the
universe; in particular, it solves the horizon and flatness problems, and most importantly, it
predicts an almost scale-invariant curvature perturbation power spectrum that is rather
consistent with the recent Planck data [1–5]. However, extrapolating backwards in time, the
inflationary scenario implies an initial singularity of the universe known as the Big Bang
singularity, where, due to geodesic incompleteness, the spacetime curvature diverges at
the point of singularity. Bouncing cosmology is one of the alternatives of inflation that can
generate a scale-invariant curvature power spectrum. In addition, the bounce scenario leads
to a singular-free evolution of the universe [6–43]. In the present work, we are interested in
bounce cosmology that appears with certain features, which we will explain.

Among the various bounce models proposed so far, the matter bounce scenario (MBS)
has gained a lot of popularity due to the fact that it produces a scale invariant primordial
power spectrum and also leads to a matter-dominated universe at the late expanding
phase [11,18,20,44–46]. However, the MBS is plagued by some problems such as: (1) the
tensor-to-scalar ratio in the MBS generally becomes too large to be consistent with the
observational data [47]; (2) the evolution of the universe during the contracting stage
becomes unstable due to the growth of anisotropies, which leads to the BKL instability
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in the MBS [48]; (3) the scale factor describing the MBS clearly depicts the universe un-
dergoing a late-time deceleration phase, which is not consistent with the dark energy
observation [49–51]. Here, it is worth mentioning that such problems can be well-resolved
by suitable modifications to the matter bounce scenario, and the success of the bounce
cosmology becomes quite illuminating. In particular, the authors of [52,53] proposed an
extended bounce scenario in the Lagrange multiplier F(R) theory or in the ghost-free Gauss–
Bonnet theory, where the first problem is resolved; however, the second and third problems
persist. The article in [21,54] proposed an ekpyrotic bounce scenario which is free from the
BKL instability and predicts an almost scale-invariant curvature power spectrum, but the
models are unable to explain the dark energy issue. Recently, a smooth unified scenario
from an ekpyrotic bounce to the dark energy era has been proposed in [55], which stands
to be a viable bounce in respect to the Planck data and concomitantly resolves the BKL
instability.

In addition to the Big Bang or the initial singularity, there are other types of finite-time
singularities in cosmology, which were classified and studied for the first time in [56]. The
most severe is the Big Rip or the Type-I singularity. However, there are three more of
such finite-time singularities—the Type-II, Type-III, and Type-IV singularities. For studies
on these types of singularities, see [57–70]. In the case of the Type-I, Type-II, or Type-III
singularities, the effective energy density and/or the effective pressure of the universe
diverge at the point of singularity. However, on the contrary, in the Type-IV singularity, the
effective energy density and the effective pressure of the universe remain finite when the
singularity occurs. Thus, the Type-IV singularity is the mildest one among the finite-time
singularities. In particular, unlike the Big Rip singularity, geodesic incompleteness does
not appear in the Type-IV singularity. As a result, the universe can smoothly pass through
a Type-IV singularity (if any), and moreover, the Type-IV does not lead to catastrophic
events at observable quantities.Therefore, it is possible that the universe faced a Type-IV
singularity during its evolution in the past, through which it smoothly passed without any
geodesic incompleteness. However, the presence of a Type-IV singularity may have had
a significant influence on the evolution of the universe as well as on the generation era
of the primordial perturbation modes, as the singularity could globally affect the Hubble
parameter. Therefore, in the realm of bouncing cosmology, the important question that
immediately arises is the following:

• What are the possible effects of a Type-IV singularity on an otherwise non-singular
bounce scenario? Is there any way to obtain a viable bounce scenario even in the
presence of a Type-IV singularity?

We will address these questions in the present work. For the gravity theory, we will
consider the well-formulated f (R,G) theory, which turns out to be ghost-free with the
presence of the Lagrange multiplier in the gravitational action, as developed in [71] (R is
the Ricci scalar, and G is the Gauss–Bonnet term). The cosmology of the f (R,G) gravity
from various perspectives has been discussed in [72–80]. The GB coupling function in the
present context will be considered in such a way that it will satisfy a constraint equation
such as ḧ = ḣH (where h(t) is the GB coupling function, and H(t) is the Hubble parameter
of the universe). Owing to such conditions on h(t), the speed of the gravitational wave
approaches unity, and the model becomes compatible with the event GW170817. In such a
scenario, our main aim will be to examine how the presence of a Type-IV singularity (a mild
singularity) can influence the dynamics of a bouncing universe. At this point, we would
like to mention that some of our authors have studied bounce cosmology with a Type-IV
singularity in the context of F(R) gravity in [64], particularly the authors of [64] showed that
the presence of a Type-IV singularity destroys the viability of a bounce scenario with respect
to the Planck data. However, in the present work, we will consider a ghost-free Gauss–
Bonnet theory of gravity, and more importantly, we will address how a bounce scenario
that appears with a Type-IV singularity can be made viable with the recent observational
data. These make the present work essentially different from [64]. We will consider two
different bouncing scenarios in the current work: (1) In the first scenario, the Type-IV
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singularity “globally” affects the spacetime (where the term “global” means that although
the Type-IV singularity occurs at a finite time t = ts, it can have an effect even on the
asymptotic evolution of the Hubble parameter in the distant past as well as in the distant
future). (2) In the second scenario, the Type-IV singularity affects the spacetime “locally”, at
around the time when it occurs. These two scenarios are qualitatively different, particularly
in the former scenario where the Type-IV singularity globally affects the spacetime, the
comoving Hubble radius asymptotically goes to zero on both sides of the bounce, and
thus the perturbation modes generate near the bounce; in the second bounce scenario,
where the Type-IV singularity locally affects the spacetime, the comoving Hubble radius
asymptotically diverges to infinity in the distant past, and consequently, the primordial
perturbation modes generated far away from the bounce in the deep contracting phase.
We will perform the scalar and tensor perturbations for these two scenarios, which are
quite different when compared to one another. The possible implications will be discussed
accordingly.

This paper is organized as follows: in Section 2, we briefly discuss the ghost-free
f (R,G) gravity compatible with GW170817. Then, in Sections 3 and 4, we will describe
two different bounce scenarios, as mentioned above. Consequently, we will examine the
possible effects of the Type-IV singularity on the bouncing dynamics. The paper ends with
some conclusions in Section 5. We would like to clarify the notations and conventions
that we will adopt in the subsequent sections. We will work with natural units, and the
metric signature will be mostly positive, i.e., (−,+,+,+). A suffix “b” with a particular
quantity will refer to the quantity at the instant of bounce, and t = ts will denote the time
when the Type-IV singularity occurs. An over prime with some arguments will indicate
the derivative with respect to the argument; otherwise, an over prime will represent d

dη .
Moreover, an over dot will denote the derivative with respect to the cosmic time.

2. Brief Review of Ghost-Free f (R,G) Gravity Compatible with the GW170817 Event

In this section, we shall recall the essential features of the ghost-free f (R,G) gravity
theory developed in [71]. We consider f (R,G) = R

2κ2 + f (G), which, owing to the presence
of f (G), contains ghosts with respect to perturbations of the spacetime metric. However,
the ghost modes may be eliminated by introducing a Lagrange multiplier λ in the standard
f (G) gravity action [71], which leads to a ghost-free action, as follows:

S =
∫

d4x
√
−g
(

1
2κ2 R + λ

(
1
2

∂µχ∂µχ +
µ4

2

)
− 1

2
∂µχ∂µχ− h(χ)G −V(χ) + Lmatter

)
, (1)

where µ is a constant with mass dimension [+1]. By varying the action with respect to the
Lagrange multiplier λ, one obtains the following constraint equation:

0 =
1
2

∂µχ∂µχ +
µ4

2
. (2)

The kinetic term of χ seems to be a constant, and thus it can be absorbed in the scalar
potential as:

Ṽ(χ) ≡ 1
2

∂µχ∂µχ + V(χ) = −µ4

2
+ V(χ) , (3)

and as a result, the action of Equation (1) can be equivalently expressed as follows:

S =
∫

d4x
√
−g
(

1
2κ2 R + λ

(
1
2

∂µχ∂µχ +
µ4

2

)
− h(χ)G − Ṽ(χ) + Lmatter

)
. (4)

The equations of motion for χ and gµν from the action in (4) take the following forms:
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0 =− 1√−g
∂µ

(
λgµν

√
−g∂νχ

)
− h′(χ)G − Ṽ′(χ) , (5)

0 =
1

2κ2

(
−Rµν +

1
2

gµνR
)
+

1
2

Tmatter µν −
1
2

λ∂µχ∂νχ− 1
2

gµνṼ(χ)− D τη
µν ∇τ∇ηh(χ) , (6)

where D τη
µν is given by the following:

D τη
µν =

(
δ τ

µ δ
η

ν + δ τ
ν δ

η
µ − 2gµνgτη

)
R +

(
− 4gρτδ

η
µ δ σ

ν − 4gρτδ
η

ν δ σ
µ + 4gµνgρτ gσν

)
Rρσ

+ 4Rµνgτη − 2Rρµσν

(
gρτ gσν + gρη gστ

)
while having gµνD τη

µν = 4
[
− 1

2 gτη R + Rτη

]
in mind. The trace of Equation (6) (i.e.,

multiplied with gµν) becomes the following equation:

0 =
R

2κ2 +
1
2

Tmatter +
µ4

2
λ− 2Ṽ(χ) + 4

(
−Rτη +

1
2

gτη R
)
∇τ∇ηh(χ) , (7)

and solving Equation (7) with respect to λ yields the equation below:

λ = − 2
µ4

(
R

2κ2 +
1
2

Tmatter − 2Ṽ(χ) + 4
(
−Rτη +

1
2

gτη R
)
∇τ∇ηh(χ)

)
. (8)

The spatially flat Friedmann–Robertson–Walker (FRW) metric ansatz will fulfill our
purpose in the present context, and hence we consider the line element as follows:

ds2 = −dt2 + a(t)2 ∑
i=1,2,3

(
dxi
)2

. (9)

Assuming that the functions λ and χ are homogeneous in cosmic time, and also that
Tmatter µν = 0, then Equation (2) immediately leads to the following simple solution:

χ = µ2(t− tb) , (10)

where tb is a constant and will be identified with the cosmic instance of bounce. Conse-
quently, the (t, t) and (i, j) components of Equation (6) result to the following equations:

0 =− 3H2

2κ2 −
µ4λ

2
+

1
2

Ṽ
(

µ2t
)
+ 12µ2H3h′

(
µ2t
)

, (11)

0 =
1

2κ2

(
2Ḣ + 3H2

)
− 1

2
Ṽ
(

µ2t
)
− 4µ4H2h′′

(
µ2t
)
− 8µ2

(
Ḣ + H2

)
Hh′

(
µ2t
)

, (12)

and furthermore, from Equation (5), we obtain the following:

0 = µ2λ̇ + 3µ2Hλ− 24H2
(

Ḣ + H2
)

h′
(

µ2t
)
− Ṽ′

(
µ2t
)

. (13)

It may be worth mentioning that the three equations above are not independent; in
fact, by combining Equations (13) and (14), one can obtain Equation (12). It is evident that
Equation (11) is an algebraic equation with respect to λ, and that in solving this equation,
we obtain the following:

λ = − 3H2

µ4κ2 +
1

µ4 Ṽ
(

µ2t
)
+

24
µ2 H3h′

(
µ2t
)

. (14)
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Similarly, the scalar potential Ṽ
(
µ2t
)

can be obtained by solving Equation (12) and is
given by:

Ṽ
(

µ2t
)
=

1
κ2

(
2Ḣ + 3H2

)
− 8µ4H2h′′

(
µ2t
)
− 16µ2

(
Ḣ + H2

)
Hh′

(
µ2t
)

. (15)

Recall that χ = µ2t, and thus Ṽ(χ) is equal to the following:

Ṽ(χ) =

[
1
κ2

(
2Ḣ + 3H2

)
− 8µ4H2h′′

(
µ2t
)
− 16µ2

(
Ḣ + H2

)
Hh′

(
µ2t
)]

t−tb=
χ

µ2

. (16)

The functional form of the Lagrange multiplier from Equation (14) becomes:

λ =
2Ḣ

µ4κ2 − 8H2h′′
(

µ2t
)
− 8

µ2

(
2Ḣ − H2

)
Hh′

(
µ2t
)

. (17)

Therefore, a form of the Hubble parameter and the Gauss–Bonnet coupling function
in turn fix the scalar potential and the Lagrange multiplier. We will consider the Hubble
parameter in such a way that it leads to a bounce scenario with a Type-IV singularity. The
resulting theory with the Lagrangian (4) is a form of the scalar Einstein–Gauss–Bonnet
gravity combined with a Lagrange multiplier, through which it is well-known that the
speed of the gravitational waves can be expressed as follows [81–85]:

c2
T = 1 +

16
(
ḧ− ḣH

)
1
κ2 + 16ḣH

(18)

with H = ȧ
a being the Hubble parameter. Clearly, the c2

T is different from unity, and
the deviation of the c2

T from unity is controlled by the Gauss–Bonnet coupling function.
However, in regard to the GW170817 event (which validates the fact that the gravitational
waves have the same propagation speed as the electromagnetic waves, which is unity in
natural units), we consider the Gauss–Bonnet coupling function in the present context in
such a way that it results in c2

T = 1. For this purpose, we need to consider the coupling
function in the following fashion [86]:

ḧ = ḣH. (19)

Therefore, in order to be compatible with GW170817, we will consider such Gauss–
Bonnet coupling functions which satisfy Equation (19). At this stage, it is worth mentioning
that the constraint above on h(χ) indeed fits the original equations of motion. This is clear
from the fact that there are two independent equations, namely the (t, t) component of the
gravitational equation and the equation for χ; however, there are two unknown functions
(λ(t), V(χ)) to yet to be determined. Finally, owing to the condition of Equation (19), the
scalar potential and the Lagrange multiplier can be simplified from Equations (16) and (17),
respectively, and are given by the following:

Ṽ(χ) =
(

2Ḣ + 3H2
)( 1

κ2 − 8ḣH
)

, (20)

λ(t) =
2Ḣ
µ4

(
1
κ2 + 8ḣH

)
. (21)

Thus, as a whole, Equations (19)–(21) are the main equations which, with a suitable
form of H(t), lead to the corresponding forms of h(χ), V(χ), and λ(t).

3. Realization of a Bounce with a Type-IV Singularity

As mentioned in the introductory section, we are interested in examining the possible
effects of a mild singularity, particularly those of a Type-IV singularity, in a bounce scenario.
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Therefore, in this paper, we intend to realize a bounce scenario in presence of a Type-IV
singularity, and depending on the time of the singularity, three different cases may arise:
(1) when the singularity occurs before the bounce happens, (2) when the singularity occurs
after the bounce, and (3) the case where the Type-IV singularity occurs at the instant of the
bounce. The scale factor we consider is given by the following equation:

a(t) = a1(t)× a2(t) =

(
1 + a0

(
t
t0

)2
)n

× exp

[
f0

(α + 1)

(
t− ts

t0

)α+1
]

. (22)

The scale factor is taken as a product of two factors—a1(t) and a2(t)—where a2(t)
ensures the occurrence of a finite-time singularity. a(t) = a1(t) is sufficient for leading
to a non-singular bouncing universe, where the bounce occurs at t = 0. However, for
a(t) = a1(t), the bounce scenario becomes free from any finite-time singularity. Thus, due
to our particular interest in the present context, i.e., to examine the possible effects of a
finite-time singularity in an otherwise non-singular bouncing dynamics, we consider the
scale factor as presented in Equation (22), where a1(t) is multiplied by a2(t). The presence
of a2(t) results in a finite-time singularity at t = ts in the bouncing dynamics, which we
will discuss after Equation (24). We will show that the presence of a2(t) does not harm
the bouncing character of the universe; however, it slightly shifts the bouncing time from
t = 0 to a negative or a positive time, depending on whether ts < 0 or ts > 0, respectively.
Moreover, the scale factor of Equation (22) leads to an asymmetric bounce scenario (as
a(t) 6= a(−t)). The parameter α present in a2(t) is considered to have the form similar to
α = 2p+1

2q+1 (with p and q being positive integers), so that the term (t− ts)α+1 acquires positive
values during the entire cosmic range (we take the root: (−1)α = −1, so that the scale
factor and the corresponding Hubble parameter are real-valued functions). Otherwise, for
α = 2p

2q+1 , the term (t− ts)α+1 becomes negative during t < ts, and consequently, a(t)→ 0
in the distant past, which is not healthy for a non-singular cosmological evolution of the
universe. Thus, we take α = 2p+1

2q+1 in the subsequent calculation. This is also important for
obtaining a bounce in the present context, as we will demonstrate below with Equation (27).

Equation (22) immediately leads to the Hubble parameter and its first derivative (with
respect to the cosmic time) as:

H(t) =
1
t0

[
2a0n(t/t0)

(1 + a0(t/t0)2)
+ f0

(
t− ts

t0

)α]
, (23)

and

dH
dt

=
1
t2
0

[
2a0n

(
1− a0(t/t0)

2)
(1 + a0(t/t0)2)

2 + α f0

(
t− ts

t0

)α−1
]

, (24)

respectively. The above expression of H(t) refers to different types of finite-time singularity
depending on the values of α. In particular:

• For α < −1, a Type-I singularity appears at t = ts, i.e., the scale factor, the Hubble
parameter, and the derivative(s) of the Hubble parameter simultaneously diverge at
t = ts. The divergence of the Hubble parameter and its first derivative indicates the
divergence of the effective energy density and the effective pressure, respectively.

• For −1 < α < 0, a Type-III singularity occurs at t = ts, i.e., the scale factor tends to a
finite value, while the Hubble parameter and its derivative(s) diverge at t = ts.

• For 0 < α < 1, a Type-II singularity appears at t = ts. In this case, the scale factor and
H(t) tend to a finite value, while Ḣ(t) (and also the higher derivatives) diverges at
t = ts.

• For α > 1 and a non-integer, a Type-IV singularity appears at t = ts, in which case
the scale factors H(t) and Ḣ(t) tend to a finite value t = ts. However, the higher
derivatives of the Hubble parameter diverge at the singularity point. Clearly, in the
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case of the Type-IV singularity, the effective energy density and the effective pressure
are finite at the time of the singularity.

Therefore, among these finite-time singularities, the Type-IV singularity is the mildest
singularity, and in the present context, we want to investigate the possible effects of such a
mild singularity on an otherwise non-singular bounce cosmology. For this purpose, we take
α > 1. Here, it is worth mentioning that the parameter α satisfies the following conditions—
(a) α should be greater than unity in order to have a Type-IV singularity at a finite time,
(b) α should be of a form similar to α = 2p+1

2q+1 , where p and q are positive integers, and (c) we
consider the real root of (−1)α (note that (−1)α has two complex branches and one real
negative), in particular, (−1)α = −1. The last two conditions ensure the requirement that
both the scale factor and the Hubble parameter (see Equations (22) and (23)) are real-valued
functions during the entire cosmic range in the present context. In particular, owing to such
form of α, the term (t− ts)α+1 present in the scale factor becomes a real-positive during
t > ts and is a real-negative during t < ts. Therefore, complex values for the scale factor are
avoided with the aforementioned choice of α. In this regard, we would like to mention that
a similar kind of scale factor has been considered in the earlier literature (see [55,64,65]).

We would now like to mention that the cosmological evolution predicted from the
scale factor of Equation (22) can indeed be realized in the present context of the Gauss–
Bonnet (GB) theory of gravity with suitable forms of the scalar field potential and the
GB coupling function. By integrating both sides of Equation (19), we get the following
equation:

ḣ = h0a(t) , (25)

where h0 is a constant having a mass dimension = [−1]. By using the above expression
of ḣ, we evaluate the scalar field potential ((Ṽ)(χ)) from Equation (20) and the Lagrange
multiplier (λ(t)) from Equation (21):

Ṽ(χ) =
(

2Ḣ + 3H2
)( 1

κ2 − 8h0a(t)H(t)
)∣∣∣∣

t−tb=χ/µ2
,

λ(t) =
2Ḣ
µ4

(
1
κ2 + 8h0a(t)H(t)

)
, (26)

where a(t), H(t), and Ḣ(t) are given above in Equations (22)–(24), respectively. Since we
are dealing with α > 1 in order to have a Type-IV singularity at a finite time, the Hubble
parameter and its first derivative are regular even at the time of singularity, which in turn
ensures the regular behavior of both the scalar field potential and the Lagrange multiplier
during the entire cosmic evolution of the universe. It may be noted that both the scalar
field potential and the Lagrange multiplier contain Ḣ, and thus their derivatives diverge at
the Type-IV singularity at t = ts.

In a bouncing universe, the universe initially contracts where the Hubble parameter is
negative, and after it bounces off, the universe enters an expanding phase when the Hubble
parameter becomes positive. Therefore, at the bouncing point, the Hubble parameter
satisfies the following conditions: H = 0 and Ḣ > 0, respectively. Next, we will examine
whether the scale factor of Equation (22) leads to a bouncing universe, and for this purpose,
we separately consider ts < 0, ts > 0, and ts = 0.

1. For ts < 0: Here, we take ts = −|ts|. Therefore, in the cosmic regime −∞ < t < −|ts|,
both terms of H(t) in Equation (23) are negative. Thus, there is no possibility to have
H(t) = 0 (or equivalently, a bounce) in this regime. However, during −|ts| < t < 0,
the first term of H(t) is negative, while the second term containing f0 becomes positive.
Thus, there is a possibility for H(t) = 0 during −|ts| < t < 0, which may lead to a
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bouncing universe. In particular, during the negative cosmic time, i.e., for−∞ < t < 0,
the Hubble parameter from Equation (23) can be written as follows:

H(t) =
1
t0

[
− 2a0n(|t|/t0)

(1 + a0(|t|/t0)2)
+ f0

(
−|t|+ |ts|

t0

)α]
= −H1(t) + H2(t) (say) , (27)

where H1(t) and H2(t) are the first and the second terms, respectively, sitting on the
right-hand side of the expression above. The evolutions of H1(t) and H2(t) and their
comparisons are shown in the following Table 1.

Table 1. Comparison of the evolutions of H1(t) and H2(t) at t ≤ 0.

Evolution o f H1(t) Evolution o f H2(t)

H1(t) = 0 at t→ −∞ H2(t) diverges to −∞ at t→ −∞

H1(t) has a maximum within −∞ < t < 0 H2(t) is an increasing function during −∞ < t < 0

H1(t) = 0 at t = 0 H2(t) = 0 at t = −|ts| and H2(t) = f0|ts|α at t = 0

Therefore, H1(t) starts from zero in the distant past, and having a maximum within
−∞ < t < 0, it again reaches zero at t = 0. On the other hand, H2(t) seems to be
an increasing function during −∞ < t < 0, in particular, H2(t)→ −∞ in the distant
past, and experiences a zero crossing at t = −|ts|. These clearly argue that there exists
a time (say, tb) within −|ts| < t < 0 when H(tb) = 0, i.e., from Equation (27):

2a0n(|tb|/t0)

(1 + a0(|tb|/t0)2)
= f0

(
−|tb|+ |ts|

t0

)α

. (28)

Thus, as a whole:

• H1(t) > H2(t), or equivalently H(t) < 0, at t < tb;
• H1(t) = H2(t), or equivalently H(t) = 0, at t = tb;
• H1(t) < H2(t), or equivalently H(t) > 0, at t > tb.

This implies that t = tb (= −|tb|) is the bouncing time that can be determined from
Equation (28). A closed solution of tb may not be possible, however, we numerically
obtain the solution for tb from Equation (28) for a suitable set of parameter values.
In particular, for f0 = 1, n = 0.3, a0 = 4, α = 5

3 , t0 = 1 By, and ts = −1 By (where
’By’ stands for Billion years), we obtain tb = −0.31 By. In general, Equation (28)
clearly indicates that for ts < 0, the Type-IV singularity occurs before the instant of
the bounce, i.e., ts < tb or |ts| > |tb|.

2. For ts > 0: Performing the same procedure we followed in the previous case, we
argue that for ts > 0, the scale factor of Equation (22) leads to a bouncing universe,
and that the bounce happens within 0 < t < ts. If the instant of bounce is denoted by
tb, then from Equation (23), we obtain the following equation:

2a0n(tb/t0)

(1 + a0(tb/t0)2)
= f0

(
ts − tb

t0

)α

. (29)

Once again, one may numerically solve tb from the above algebraic equation with
a suitable set of parameter values. In particular, for f0 = 1, n = 0.3, a0 = 4, α = 5

3 ,
t0 = 1 By, and ts = 1 By, the bounce time is at tb = 0.31 By. From Equation (29), it is
clear that for ts > 0, the Type-IV singularity occurs after the bounce, i.e., ts > tb.

3. For ts = 0: The expression of H(t) in Equation (23) reveals that for ts = 0, the universe
experiences a bounce at t = 0. Thus, the condition ts = 0 leads to the fact that the
Type-IV singularity occurs at the instant of the bounce.
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Therefore, for all the three cases, the scale factor we considered in Equation (22) leads
to a bouncing universe along with a Type-IV singularity for α > 1. It is worth mentioning
that the presence of the Type-IV singularity affects the time of the bounce. In particular,
(1) if the singularity occurs at ts < 0, then the bounce happens at some negative instant
of time, and moreover, it suggests that the singularity occurs before the bounce happens.
(2) The case of ts > 0 leads to the bounce occurring at some positive time, a nd consequently,
the singularity takes place after the bounce. Finally, (3) for ts = 0, the bounce and the
Type-IV singularity appear at the same instant of time t = 0.

The comoving Hubble radius is defined by rh = 1/|aH|, which, by definition, diverges
at the bounce. By using Equations (22) and (23), we give the plots for rh vs. t for the above
three cases (see Figures 1 and 2).
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Figure 1. rh(t) vs. t. The left and right plots correspond to ts = −1 By and ts = 1 By, respectively. t0

is taken as 1 By in order to use the unit of Billion year (By) for all the time coordinates. Therefore, in
the left plot, ts < tb = −0.31 By, and in the right plot, ts > tb = 0.31 By. Here, we take n = 0.3, a0 = 4,
α = 5/3, and f0 = 1. It can be seen that the observable quantities, in the case when the Type-IV
singularity globally affects the spacetime, are not compatible with the Planck data. Hence, in order to
present the plots, we consider a set of values for the parameters by keeping the following points in
mind: (a) the value of α should satisfy the form of α =

2p+1
2q+1 , as we mentioned after Equation (22),

and (b) the parameter n should be less than 1
2 , so that the comoving Hubble radius predicted by

a1(t) diverges to infinity in the distant past and realizes the effects of the Type-IV singularity on the
bouncing dynamics. Thus, for example, we consider n = 0.3, a0 = 4, α = 5/3, and f0 = 1—which,
in fact, leads to the viability of the bounce model when the Type-IV singularity locally affects the
spacetime (see Section 4).

The left plot of Figure 1 corresponds to the case ts < 0, which clearly depicts that
rh diverges or equivalently, that the bounce happens at a t < 0. Moreover, the Type-IV
singularity is found to occur before the bounce (see the discussion in the caption of the
figure). The other plots of rh(t) are also in accordance with the arguments mentioned
above. One important point to consider is that irrespective of whether ts < 0 or ts > 0
or ts = 0, the comoving Hubble radius asymptotically goes to zero on both sides of the
bounce. Currently, rh in the distant past or in the distant future comes in the following
form:

lim
t→±∞

rh =

∣∣∣∣ 1
|t|2n+α

exp
[
− f0

α + 1
|t|α+1

]∣∣∣∣ , (30)

which is independent of ts and clearly demonstrates that rh asymptotically vanishes at
t→ ±∞. Moreover, this argument holds for any value of the parameter n. In a bouncing
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universe, the primordial perturbation modes generate either near the bounce or long before
the bounce, depending on the asymptotic evolution of the comoving Hubble radius. In
the present context, we find that rh → 0 at t→ −∞, which suggests that the perturbation
modes generate near the bounce when all the modes lie within the sub-Hubble regime.
Here, it may be mentioned that for f0 = 0 (i.e., in absence of the Type-IV singularity), the
scale factor is described by a(t) =

(
1 + a0t2)n, and consequently, rh asymptotically diverges

to infinity (for n < 1
2 ). Therefore, it turns out that for f0 = 0, the primordial perturbation

modes generate far away from the bounce in the deep contracting phase, unlike the case
where f0 6= 0. In fact, for f0 6= 0, the presence of the Type-IV singularity globally affects the
evolution of the Hubble parameter (compared to the case where the singularity is absent),
which in turn leads to the comoving Hubble radius tending to zero at t→ ±∞ and makes
the generation era of the perturbation modes occur near the bounce.

-3 -2 -1 0 1 2 3

0.0
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1.0

1.5
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t

1
/|
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H
|

Figure 2. rh(t) vs. t for ts = 0. The parameter values are considered to be the same as those in the
earlier figure. In this case, ts = tb.

3.1. Cosmological Perturbation

Since the perturbation modes generate and cross the horizon near the bounce, we are
interested in examining the evolution of scalar and tensor perturbations near the bouncing
phase. For this purpose, the useful quantities are the scale factor and the Hubble parameter
near t = tb (recall that tb is the time of the bounce), and they are given by the following:

a(t) = ab

[
1 + Ḣb

(t− tb)
2

2

]
,

H(t) = Ḣb(t− tb) , (31)

where we use the Taylor series expansion around t = tb. Hence, by using Equations (22)
and (23), we get:

ab =

(
1 + a0

(
tb
t0

)2
)n

× exp

[
f0

(α + 1)

(
tb − ts

t0

)α+1
]

,

Ḣb =
1
t2
0


2a0n

[
1− a0(tb/t0)

2
]

[
1 + a0(tb/t0)

2
]2 + α f0

(
tb − ts

t0

)α−1

 . (32)
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The Gauss–Bonnet coupling function in the present context obeys ḧ = ḣH from the
requirement of compatibility with the GW170817 event. By integrating ḧ = ḣH with respect
to the cosmic time, one gets the following equation:

ḣ =
1
κ

a(t) =
ab
κ

[
1 + Ḣb

(t− tb)
2

2

]
, (33)

where the integration constant is taken as 1/κ from the dimensional analysis. The above
forms of a(t) and H(t) along with the solution of χ(t) = µ2(t− tb) lead to the scalar field
potential and the Lagrange multiplier from Equation (21), which are expressed as:

Ṽ(χ) =
2
κ2 Ḣb −

16ab(Ḣb)
2

κ

(
χ

µ2

)
+

3(Ḣb)
2

κ2

(
χ

µ2

)2
− 32ab(Ḣb)

3

κ

(
χ

µ2

)3
− 12ab(Ḣb)

4

κ

(
χ

µ2

)5
, (34)

µ4λ(t) =
2
κ2 Ḣb +

16ab(Ḣb)
2

κ
(t− tb) +

8ab(Ḣb)
3

κ
(t− tb)

3 , (35)

respectively. In the context of the Gauss–Bonnet theory of gravity, we may introduce an
effective potential for the scalar field as follows:

Veff(χ) = Ṽ(χ) + 24h(χ)
[

H4 + H2Ḣ
]

which, due to Equation (31) along with χ(t) = µ2(t− tb), can be expressed around t = tb as:

Veff(χ) = Ṽ(χ) + 24h(χ)

[
Ḣ4

b

(
χ

µ2

)4
+ Ḣ3

b

(
χ

µ2

)2
]

. (36)

We will use the above expressions to examine the evolution of scalar and tensor
perturbations, and consequently in the determination of various observable quantities such
as the scalar spectral index and the tensor-to-scalar ratio.

3.1.1. Scalar Perturbation

The scalar perturbation over the FRW metric in the longitudinal gauge is as follows:

ds2 = a2(η)

[(
1 + 2Ψ

)
dη2 −

(
1− 2Ψ

)
δijdxidxj

]
(37)

where Ψ(η,~x) is the scalar perturbation variable, and η is the conformal time coordinate.
Here, it is worth noting that the background evolution has no anisotropic stress, so we
work with one scalar perturbation variable, namely Ψ(η,~x).

The scalar field is perturbed as follows:

χ(η,~x) = χ0(η) + δχ(η,~x) (38)

where χ0 is the background evolution of the scalar field, and given by χ0(t) = µ2(t− tb) in
terms of cosmic time, with tb being the instant of bounce. The scalar perturbation equations
up to the leading order in the longitudinal gauge are given by [87]:

∇2Ψ− 3HΨ′ − 3HΨ =
κ2

2
a2δT0

0(
Ψ′ +HΨ

)
,i =

κ2

2
a2δT0

i (39)[
Ψ′′ + 3HΨ′ +

(
2H′ +H2)Ψ]δi

j = −κ2

2
a2δTi

j
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whereH = a′
a is the Hubble parameter in the η coordinate, and δTµν denotes the variation

of the energy–momentum tensor due to the perturbation of the spacetime metric and the
scalar field mentioned above. The variation of the matter energy–momentum tensor in the
present context comes with the following expressions:

δT0
0 =

1
a2

[
λ(t)χ′0δχ′ + a2V′eff(χ0)δχ

]
δT0

i =
1
a2 ∂i

[
λ(t)χ′0δχ

]
(40)

δTi
j = − 1

a2 δi
j

[
λ(Φ0)χ

′
0δχ′ − a2V′eff(χ0)δχ

]
,

where we use Equation (38), and Veff is obtained earlier in Equation (36). Plugging back the
above expressions of δTµν into Equation (40) yields the following set of equations:

∇2Ψ− 3HΨ′ − 3H2Ψ =
κ2

2

[
λ(Φ0)χ

′
0δχ′ + a2V′eff(χ0)δχ

]
Ψ′ +HΨ =

κ2

2
λ(t)χ′0δχ (41)

Ψ′′ + 3HΨ′ +
(
2H′ +H2)Ψ =

κ2

2

[
λ(Φ0)χ

′
0δχ′ − a2V′eff(χ0)δχ

]
The second equality of Equation (42) helps to extract δχ in terms of Ψ and Ψ′, which when
used with the other two equalities, one gets the following equation for Ψ(η,~x):

Ψ′′ −∇2Ψ + 6HΨ′ +
(
2H′ + 4H2)Ψ = −2a2V′eff(χ0)

(
Ψ′ +HΨ

λ(t)χ′0

)
(42)

Clearly, Ψ depends on the background evolution through H and χ0, which were
determined in the previous section in terms of the cosmic time (t). Therefore, it will be
more useful if we transform the above equation into cosmic time, for which we need the
following relations:

Ψ′ = aΨ̇ and Ψ′′ = a2Ψ̈ + a2HΨ̇ .

Accordingly, Equation (42) is given by:

Ψ̈− 1
a2∇

2Ψ +

[
7H +

2V′eff(χ0)

µ2λ

]
Ψ̇ +

[
2Ḣ + 6H2 + 2H

(
2V′eff(χ0)

µ2λ

)]
Ψ = 0 (43)

where H = ȧ
a is the Hubble parameter in cosmic time. Here, we may argue how the

dynamics of the scalar perturbation depends on various terms present in Equation (43);
in particular, the second term leads to an oscillation character of Ψ(t,~x), the third term
produces a friction-like force, and the fourth term acts similarly to a restoring force. As we
mentioned earlier, owing to the presence of the Type-IV singularity, the comoving Hubble
radius asymptotically goes to zero on both sides of the bounce. Thus, the perturbation
modes generate and cross the horizon near the bounce when all the modes lie within the
Hubble radius. Therefore, we intend to solve Equation (43) near the bounce, and we use
the near-bounce expressions of H(t) and Veff(χ0) from Equations (31) and (36), respectively.
Consequently, we get the following equation:

V′eff(χ0)

µ2λ
= −8κabḢb +

{
3Ḣb +

(
8κabḢb

)2
}
(t− tb) (44)
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where we retain up to the leading order in t− tb. With the above expression, Equation (43)
can be written as follows:

Ψ̈−∇2Ψ + [−2p + q(t− tb)]Ψ̇ +
[
2Ḣb − 2pḢb(t− tb)

]
Ψ(~x, t) = 0 , (45)

where p and q are given by:

p = 8κabḢb and q = 2p2 + 13Ḣb (46)

respectively. The Fourier transformation of Equation (45) is as follows:

Ψ̈k + [−2p + q(t− tb)]Ψ̇k +
[(

k2 + 2Ḣb

)
− 2pḢb(t− tb)

]
Ψk = 0 , (47)

where Ψk(t) is the Fourier transformed variable of Ψ(t,~x). Equation (47) has the following
solution for Ψk(t):

Ψk(t) = C(k) exp
[

2p
(

1− Ḣb
q

)
(t− tb)

]
× Hs

[√
2
(

p
q3/2

)(
2Ḣb − q

)
+

√
q
2
(t− tb)

]
, (48)

where Hs[x] is the Hermite polynomial with the order s. The order of the Hermite polyno-
mial in the above expression is given by the following equation.

s = −1 +
k2 + 2Ḣb

q
+

4p2Ḣb
(

Ḣb − q
)

q3 . (49)

Moreover, C(k) is the integration constant which can be determined from the Bunch–
Davies condition given by limη→ηb vk(η) =

1√
2k

e−ikη , where vk(η) is the canonical scalar
Mukhanov–Sasaki variable. The Bunch–Davies condition is well-justified by the fact
that the perturbation modes near the bounce lie within the Hubble radius. The Bunch–
Davies vacuum condition on the Mukhanov–Sasaki variable can be transformed into the
corresponding condition on Ψk(t) through the following relation [87]:

lim
t→tb

Ψk(t) =
κ2

2k2 lim
t→tb

[√
λ(t) χ̇0

]
v′k(η) =

iκ2

2
√

2k3/2

(
µ2
√

λ(tb)

)
. (50)

where we use χ̇ = µ2. Due to λ(tb) = 2Ḣb/(µ4κ2) from Equation (35), the above equation
can be equivalently written as follows:

lim
t→tb

Ψk(t) =
iκ
√

Ḣb

2k3/2 . (51)

Consequently, the integration constant C(k) gets the following form:

C(k) =
iκ
√

Ḣb

2k3/2

{
1

Hs

[√
2
(

p
q3/2

)(
2Ḣb − q

)]} .

Accordingly, the solution of the scalar perturbation from Equation (48) results in the
following equation:

Ψk(t) =
iκ
√

Ḣb

2k3/2 exp
[

2p
(

1− Ḣb
q

)
(t− tb)

]
Hs

[√
2
(

p
q3/2

)(
2Ḣb − q

)
+
√

q
2 (t− tb)

]
Hs

[√
2
(

p
q3/2

)(
2Ḣb − q

)]
 (52)
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with p and q being shown in Equation (46). Consequently, the scalar power spectrum for
the k-th mode is determined as follows:

PΨ(k, t) =
k3

2π2

∣∣∣∣Ψk(t)
∣∣∣∣2

=
κ2Ḣb

8π2 exp
[

4p
(

1− Ḣb
q

)
(t− tb)

]∣∣∣∣∣∣∣∣
Hs

[√
2
(

p
q3/2

)(
2Ḣb − q

)
+
√

q
2 (t− tb)

]
Hs

[√
2
(

p
q3/2

)(
2Ḣb − q

)]
∣∣∣∣∣∣∣∣
2

. (53)

We are interested in determining the observable quantities such as the scalar spectral
index (ns) and the tensor-to-scalar ratio (r), and we will examine the possible effects of
the Type-IV singularity on such observable indices. The horizon-crossing condition for
the k-th mode is k = |aH|, where k ∼ 0.05Mpc−1, i.e., we intend to calculate ns and r over
the large-scale modes. The occurrence of the Type-IV singularity in the present context
leads to the large-scale modes crossing the horizon near the bounce, and thus, by using the
near-bounce expression of H(t) (see Equation (31)), the horizon-crossing condition can be
written as follows:

th − tb =

(
k

abḢb

)
, (54)

where th symbolizes the horizon-crossing instant of the k-th mode. Therefore, the scalar
power spectrum at the horizon crossing is given by:

PΨ(k, th) =
k3

2π2

∣∣∣∣Ψk(t)
∣∣∣∣2

=
κ2Ḣb

8π2 exp
[

4p
(

1− Ḣb
q

)(
k

abḢb

)]∣∣∣∣∣∣∣∣
Hs

[√
2
(

p
q3/2

)(
2Ḣb − q

)
+
√

q
2

(
k

ab Ḣb

)]
Hs

[√
2
(

p
q3/2

)(
2Ḣb − q

)]
∣∣∣∣∣∣∣∣
2

. (55)

which clearly depends on k through the term containing k/(abḢb) as well as through the
factor s (the order of the Hermite polynomial, see Equation (49)). In particular, the spectral
tilt of the scalar power spectrum is defined by the following equation:

ns = 1 +
∂ ln [PΨ(k, th)]

∂ ln k
. (56)

However, before estimating the ns, let us perform the tensor perturbation that is useful
for the observable quantity, namely the tensor-to-scalar ratio.

3.1.2. Tensor Perturbation

The tensor perturbation variable satisfies the following equation:

1
a(t)z2

T(t)
d
dt

[
a(t)z2

T(t)ḣij

]
− 1

a2 ∂l∂
lhij = 0 (57)

where hij(t,~x) is the tensor perturbation variable, and z2
T , in the context of the Lagrange

multiplier in the Gauss–Bonnet gravity, is given by [81–83]:

z2
T =

a2

2κ2

[
1− 16κ2ḣH

]
. (58)
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Using Equations (31) and (33), we determine z2
T as follows:

a(t)z2
T(t) =

a3
b

2κ2

[
1− 16κabḢb(t− tb) +

1
2

Ḣb(t− tb)
2
]

. (59)

The Fourier-transformed tensor perturbation variable is defined as hij(t,~x) =
∫

d~k ∑γ ε
(γ)
ij

h(γ)(~k, t)ei~k.~x, where γ =′ +′ and γ =′ ×′ represent two polarization modes. Therefore, the
above form of z2

T along with Equation (57) leads to the tensor-perturbed equation in terms
of the Fourier-transformed variable, expressed as follows:

ḧk − 2p[1 + 2p(t− tb)]ḣk + k2hk = 0 , (60)

where we retain the terms up to the leading order in O(t− tb) and recall that p = 8κabḢb
(see Equation (46)). Here, it is worth noting that both tensor polarizations (× and + modes)
in the present context obey the same differential Equation (60), due to which we do not
put any polarization index in the tensor perturbation variable. However, we will multiply
the final expression of the tensor power spectrum by a factor of “2” due to their equal
contribution to the spectrum. Solving Equation (60), we then get the following equation:

hk(t) = D(k)× Hω

[
1√
2
+
√

2p(t− tb)

]
, (61)

where ω is the order of the Hermite polynomial and is given by:

ω =
k2(

16κabḢb
)2 . (62)

Moreover, the integration constant D(k) can be determined from the Bunch–Davies
vacuum state near the bounce when the relevant perturbation modes lie within the sub-Hubble
regime. In particular, the Bunch–Davies vacuum state is defined by limt→tb

[
zT(t)hk(t)

]
=

1√
2k

. Due to zT(tb) = ab/(
√

2κ) from Equation (59), the Bunch–Davies condition results in
the following equation:

D(k) =
κ

ab
√

k

 1

Hω

[
1/
√

2
]
 . (63)

Accordingly, the final solution of hk(t) is as follows:

hk(t) =
κ

ab
√

k
×

Hω

[
1√
2
+
√

2p(t− tb)
]

Hω

[
1/
√

2
]

 . (64)

Consequently, the tensor power spectrum for the k-th mode is given by:

Ph(k, t) =
k3

2π2 ∑
γ

∣∣∣∣h(γ)k (t)
∣∣∣∣2

=
k2

π2

(
κ

ab

)2
∣∣∣∣∣∣

Hω

[
1√
2
+
√

2p(t− tb)
]

Hω

[
1/
√

2
]

∣∣∣∣∣∣
2

. (65)
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Here, we consider the contribution from both polarization modes of the tensor pertur-
bation. Using Equation (54), the tensor power spectrum at the horizon crossing comes in
the following form:

Ph(k, th) =
k2

π2

(
κ

ab

)2
∣∣∣∣∣∣

Hω

[
1√
2
+
√

2p
(

k
ab Ḣb

)]
Hω

[
1/
√

2
]

∣∣∣∣∣∣
2

. (66)

Therefore, the tensor power spectrum is not scale invariant due to the term containing
k/(abḢb) as well as due to ω (the order of the Hermite polynomial, see Equation (62)).

We now calculate the scalar spectral tilt and the tensor-to-scalar ratio; the scalar tilt is
defined in Equation (56), while the tensor-to-scalar ratio is given by the following equation:

r =
Ph
PΨ

∣∣∣∣
h

, (67)

where the suffix “h” denotes the horizon-crossing instant. Clearly, the ns and r depend on
the parameter ts, i.e., the instant when the Type-IV singularity occurs. As we mentioned
earlier, depending on whether ts < 0 or ts > 0 or ts = 0, the Type-IV singularity appears
before the bounce or after the bounce or at the bounce, respectively. Therefore, in the
following, we will estimate ns and r separately for these three cases.

• For ts < 0: In this case, we consider ts
t0
= −1 (for other positive values of ts, the main

arguments will not change). The theoretical predictions for ns and r, with respect to
the parameter n, are given in Table 2, which clearly demonstrates that the scalar power
spectrum is highly red-tilted, and the tensor-to-scalar ratio gets a large value in respect
to the Planck results.

Table 2. Values of ns and r with the parameter n for ts < 0.

n Scalar Tilt (ns) Tensor-to-Scalar Ratio (r)

0.25 0.27 13

0.30 0.23 9

0.40 0.22 5

0.50 0.245 3

• For ts > 0: Here, the Type-IV singularity occurs after the bounce happens, and we
safely consider ts

t0
= 1. As a result, the ns and r are predicted, and they are shown in

Table 3.

Table 3. Values of ns and r with the parameter n for ts > 0.

n Scalar Tilt (ns) Tensor-to-Scalar Ratio (r)

0.25 0.27 13

0.30 0.23 9

0.40 0.22 5

0.50 0.24 3

• For ts = 0: Here, the theoretical estimations for ns and r (with respect to n) are shown
in Table 4.
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Table 4. Values of ns and r with the parameter n for ts = 0.

n Scalar Tilt (ns) Tensor-to-Scalar Ratio (r)

0.25 0.19 19

0.30 0.15 15

0.40 0.13 10

0.50 0.135 7

Therefore, in all three cases, the scalar power spectrum is found to be highly red-tilted.
Moreover, the model predicts a large value for the tensor-to-scalar ratio that lies outside of
the Planck data, which indicates that the model is not viable with the observational data.
However, as we observe in [53], the f (R,G) bounce without any finite-time singularity,
where the scalar factor is described by a(t) =

(
1 + a0(t/t0)

2)n, indeed leads to the simul-
taneous compatibility of ns and r with the Planck data. Therefore, we may argue that the
occurrence of the Type-IV singularity considerably affects the bouncing dynamics in the
present context, which in turn results in the non-viability of the model. At present, the
appearance of the Type-IV singularity “globally” affects the dynamics of the universe as
compared to the case when the singularity is absent. The term “global” means that although
the singularity occurs at a finite time t = ts, it controls the asymptotic evolution of the
comoving Hubble radius; in particular, the comoving Hubble radius asymptotically goes to
zero due to the presence of the singularity. Consequently, the perturbation modes generate
near the bounce, unlike the scenario when the singularity is absent and the perturbation
modes generate long before the bounce in the deep contracting phase. Such a generation
era for the perturbation modes near the bounce is the main reason why the scalar power
spectrum gets red-tilted and the tensor-to-scalar ratio has a large value in the present
bounce scenario.

Thus, as a whole, the following arguments can be made for the bounce that appears
with a Type-IV singularity: (1) If the singularity appears at t = ts, then depending on
whether ts < 0 or ts > 0 or ts = 0, the singularity appears before the bounce or after
the bounce or at the instant of the bounce, respectively. (2) In all these three cases, the
scalar power spectrum becomes red-tilted, and the tensor-to-scalar ratio is too large to be
consistent with the Planck data. As we have just mentioned, such inconsistency of the
observable quantities is due to the occurrence of the Type-IV singularity, particularly due
to the “global” effects of the singularity on the evolution of the universe.

4. Realization of a Bounce with a Type-IV Singularity that Locally Affects
the Spacetime

In the previous section, we demonstrated that in the case when the Type-IV singularity
“globally” affects the spacetime, the perturbation modes are generated near the bounce.
As a result, the observable quantities do not lie within the Planck constraints. Based on
these findings, it becomes important to examine a bouncing scenario where the Type-IV
singularity “locally” affects the universe’s evolution at around the time when it occurs.
This is the subject of the present section. To induce the local effects of the singularity, we
introduce a regulating Gaussian factor within the expression of a2(t) in Equation (22). Such
regulating factor actually controls when the singularity becomes effective. In particular, the
scale factor we consider is given by:

a(t) = a1(t)× a2(t) =

(
1 + a0

(
t
t0

)2
)n

× exp

[
f0

(α + 1)

(
t− ts

t0

)α+1
e−(t−ts)2/t2

0

]
, (68)

where e−(t−ts)2
acts as the regulating factor, which peaks at around t = ts, i.e., at the time

when the singularity occurs. The above expression is similar to the previous form of the
scale factor (see Equation (22)), except the presence of the regulating factor. Once again, the
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scale factor is written as a product of a1(t) and a2(t), where a1(t) triggers a bounce scenario
and a2(t) ensures the occurrence of a finite-time singularity at t = ts. Despite the presence
of a2(t), the whole scale factor, i.e., a(t), predicts a bouncing universe near t = 0. Therefore,
the presence of a2(t) results in a finite-time singularity without jeopardizing the bouncing
behavior of the universe. Moreover, the term e−(t−ts)2

sitting in the expression of a2(t)
clearly indicates that a2(t) becomes effective only at around t = ts; otherwise, a2(t) ≈ 1
away from t = ts, and the universe’s evolution is controlled entirely by a1(t). As a result,
we may argue that the finite-time singularity locally affects the spacetime at around the
time when it occurs. This emphasizes the importance of the regulating factor in producing
a local effect for the finite-time singularity on the bouncing dynamics, which in turn reflects
the significance of the scale factor considered in Equation (68) for our present interest. This
will be cleared further by the expression of the Hubble parameter defined by H = ȧ/a.
Equation (68) immediately leads to the Hubble parameter as:

H(t) =
1
t0

[
2a0n(t/t0)

(1 + a0(t/t0)2)
+ f0

(
t− ts

t0

)α

e−(t−ts)2/t2
0

{
1− 2

(α + 1)

(
t− ts

t0

)2
}]

. (69)

The above expression of H(t) refers to a Type-IV singularity for α > 1. The appearance
of e−(t−ts)2

in the expression of Equation (69) clearly indicates that the second term in
H(t), which is actually responsible for the singularity, affects the evolution of the Hubble
parameter only at around t = ts, i.e., the Type-IV singularity locally affects the spacetime at
around the time when it occurs. Therefore, the Hubble parameter of Equation (69) predicts a
bounce at t ≈ 0. Moreover, depending on whether ts < 0 or ts > 0, the Type-IV singularity
occurs before the bounce or after the bounce, respectively. Using Equation (69), we provide
the plot for H(t) vs. t in Figure 3, where the left and right plots correspond to ts < 0 and
ts > 0, respectively.
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Figure 3. H(t) vs. t from Equation (69). Here, we take n = 0.3, a0 = 4, α = 5/3, and f0 = 1. The left
and right plots correspond to ts = −1 By and ts = 1 By, respectively. Moreover, t0 is taken to be 1 By
to make all the time coordinates in the unit of Billion year (By). Such values for the parameters lead
to the consistency of the observable quantities with the Planck data, in the case when the Type-IV
singularity locally affects the spacetime (see Figure 4).

Figure 3 demonstrates the following points about the Hubble parameter: (1) H(t)
becomes zero and a increasing function with the cosmic time at t = 0, which indicates
a bounce of the universe at t = 0. (2) H(t) is not symmetric with respect to the bounce
point; this is due to the occurrence of the Type-IV singularity in the present cosmological
scenario. In fact, the term containing f0 in the expression of H(t), which is responsible for
the singularity, yields the asymmetric nature of the Hubble parameter. (3) The symmetric
nature of H(t) seems to deviate only around t = ts. This, however, is expected because, as
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we mentioned earlier, the singularity affects the Hubble parameter locally at around t = ts.
From Equation (68), the factor a2(t) ≈ 1 away from t = ts, and the universe’s evolution is
controlled by the symmetric scale factor a1(t).

The comoving Hubble radius is defined by rh = 1/|aH|, where a(t) and H(t) are
shown above. Therefore, in the distant past, the comoving Hubble radius turns out to be:

lim
t→−∞

rh ∼
∣∣∣t1−2n

∣∣∣ .

Depending on whether n < 1/2 or n > 1/2, the asymptotic nature of rh becomes
different, which in turn reveals the generation era of primordial perturbation modes. In
particular, for n < 1/2, the comoving Hubble radius in the present context diverges to
infinity in the distant past, and as a consequence, the primordial perturbation modes are
generated far away from the bounce in the deep contracting phase. This ensures the Bunch–
Davies vacuum state of the perturbation at t→ −∞, and as a result, the horizon problem is
resolved. However, for n > 1/2, the comoving Hubble radius asymptotically goes to zero
on both sides of the bounce, and hence the perturbation modes generate near the bounce
when the Hubble radius is infinite in size, enough to contain all the modes within it. In
such a case, the perturbation modes in the distant past lie outside of the Hubble radius,
and thus the horizon problem persists for n > 1/2. Based on the above arguments, we will
consider n < 1/2 so that the perturbation modes are within the sub-Hubble regime in the
distant past and the horizon problem can be resolved.

4.1. Cosmological Perturbation and Phenomenology of the Bounce

As mentioned in the previous section, we take n < 1/2, which leads to the generation
era of the perturbation modes long before the bounce in the sub-Hubble regime. Therefore,
the useful quantities are the background scale factor, the Hubble parameter as well as its
derivative (with respect to the cosmic time), and the Ricci scalar, during the contracting era.
They are given by the following:

a(t) = an
0

(
t
t0

)2n
exp

[
f0

(α + 1)
tα+1e−t2/t2

0

]
, H(t) =

2n
t

[
1− f0(t/t0)

α+3e−t2/t2
0

n(α + 1)

]
,

Ḣ(t) = −2n
t2

[
1− 2 f0(t/t0)

α+5e−t2/t2
0

n(α + 1)

]
, R(t) =

12n(1− 4n)
t2 , (70)

Using the expression of R = R(t), we can write the scale factor as well as the Hubble
parameter and its derivative in terms of the Ricci scalar as follows:

a(R) =
an

0(
R̃/R0

)n

1 +
f0 exp

(
−R0/R̃

)
(α + 1)

(
R̃/R0

) α
2 +

1
2

 , H(R) = −2nR̃1/2

1−
f0 exp

(
−R0/R̃

)
n(α + 1)

(
R̃/R0

) α
2 +

3
2

 ,

Ḣ(R) = −2nR̃

1−
2 f0 exp

(
−R0/R̃

)
n(α + 1)

(
R̃/R0

) α
2 +

5
2

 , ḣ(R) =
h0(2n + 1)

R̃n

1 +
f0 exp

(
−R0/R̃

)
(α + 1)

(
R̃/R0

) α
2 +

1
2

 , (71)

where in the last equality, we write ḣ = ḣ(R) from Equation (19), and h0 is a constant that
has a mass dimension of [1+2n]. Moreover, R0 = 1

t2
0

and R̃(t) = R(t)
12n(1−4n) in the above

expressions. Using H(R) and ḣ(R) from Equation (71), we determine the functions Qi in
the context of the ghost-free Gauss–Bonnet theory of gravity [81–83] as:



Universe 2022, 8, 292 20 of 31

Qa =− 8ḣH2 = −32h0n2(1 + 2n)R̃1−n

1−
2 f0 exp

(
−R0/R̃

)
n(α + 1)

(
R̃/R0

) α
2 +

3
2

 ,

Qb =− 16ḣH = 32h0n(1 + 2n)R̃
1
2−n

1−
f0 exp

(
−R0/R̃

)
n(α + 1)

(
R̃/R0

) α
2 +

3
2

 ,

Qc =Qd = 0 ,

Qe =− 32ḣḢ = 64h0n(1 + 2n)R̃1−n

1−
2 f0 exp

(
−R0/R̃

)
n(α + 1)

(
R̃/R0

) α
2 +

5
2

 ,

Q f =16
[
ḧ− ḣH

]
= 0 , (72)

respectively, and we will use these expressions frequently in the perturbation calculations.
Recall that h0 has a mass dimension of [1 + 2n], and thus from dimensional analysis, we
can consider the following:

κ2h0 = (t0)
1−2n =

(
1

R0

) 1
2−n

, (73)

where R0 is a positive constant. The parameters h0 and t0 are considered to be related
by the equation above, and R0 can be regarded as being the replacement of both of them.
Consequently, Equation (21) along with Equation (71) immediately lead to the Lagrange
multiplier function:

µ4λ = −4nR̃
κ2

1− 16n(1 + 2n)

(
R̃(t)
R0

) 1
2−n

1−
f0 exp

(
−R0/R̃

)
n(α + 1)

(
R̃/R0

) α
2 +

3
2


 . (74)

We will use the these expressions in addressing the evolution of scalar and tensor
perturbations in the following two subsections.

4.1.1. Scalar Perturbation

As the perturbation modes generate in the distant past, it will be useful to work in
the comoving gauge, in which case the second order of perturbed action for the curvature
perturbation (symbolized by Ψ(t,~x)) is given by [81–83]:

δSψ =
∫

dtd3~xa(t)z(t)2
[

Ψ̇2 − c2
s

a2 (∂iΨ)2
]

. (75)

Here, in the context of the Lagrange multiplier f (R,G) gravity, z(t) and c2
s have the

following forms [81]:

z(t) =
a(t)

H + Qa
2F+Qb

√
−µ4λ +

3Q2
a + QaQe

2F + Qb
(76)

and

c2
s = 1 +

QaQe/(2F + Qb)

−µ4λ + 3 Q2
a

2F+Qb

, (77)
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respectively, with the function Qi being defined earlier and F = 1
2κ2 . From Equation (75), it

is clear that the kinetic term of the curvature perturbation comes with a positive sign under
the condition z2(t) > 0. Later, we will show that this condition, i.e., z2(t) > 0, indeed holds
in the present context, which in turn ensures the stability of the curvature perturbation. By
using Equations (71) and (72), we determine the various terms present in the expression of
z(t) as follows:

a(t)

H + Qa
2F+Qb

= −
an

0√
R̃

(
R0

R̃

)n

2n

1 + 16n(1 + 2n)

(
R̃
R0

) 1
2−n

1−
2 f0 exp

(
−R0/R̃

)
n(α + 1)

(
R̃/R0

) α
2 +

3
2

+O
(

R̃
R0

)1−2n



−1

and

− µ4λ +
3Q2

a
2F + Qb

+
QaQe

2F + Qb

=
4nR̃
κ2

1− 16n(1 + 2n)

(
R̃
R0

) 1
2−n

1−
f0 exp

(
−R0/R̃

)
n(α + 1)

(
R̃/R0

) α
2 +

3
2

+O
(

R̃
R0

)1−2n
 ,

respectively. Consequently, the form of z(t) from Equation (76) becomes:

z(t) = −
an

0

κ
(

R̃/R0

)n

√
P(R)

Q(R)
(78)

where P(R) and Q(R) have the following forms:

P(R) = 4n

1− 16n(1 + 2n)

(
R̃
R0

) 1
2−n

1−
f0 exp

(
−R0/R̃

)
n(α + 1)

(
R̃/R0

) α
2 +

3
2

+O
(

R̃
R0

)1−2n
 , (79)

and

Q(R) = 2n

1 + 16n(1 + 2n)

(
R̃
R0

) 1
2−n

1−
2 f0 exp

(
−R0/R̃

)
n(α + 1)

(
R̃/R0

) α
2 +

3
2

+O
(

R̃
R0

)1−2n
 , (80)

respectively. Note the dependence of z(t) on the parameter f0, which actually arises due to
the occurrence of the Type-IV singularity during the universe’s evolution. Our intention is
to examine how the observable quantities (such as the scalar spectral index and the tensor-
to-scalar ratio) depend on f0 when the Type-IV singularity affects the spacetime locally
at around t = ts. As demonstrated earlier, the perturbation modes are generated during
the late contracting phase, when the Ricci scalar satisfies the condition such as R̃

R0
� 1 as

R̃ → 0 at t → −∞ (the numerical estimation of R̃/R0 is given after Equation (91)). As a
consequence, Equation (78) leads to z2(t) > 0, which makes the curvature perturbation
stable.

It will be more useful if we transform the time coordinate to the conformal time defined
by η =

∫ dt
a(t) . Due to Equation (68), the scale factor in the distant past behaves similarly to

a(t) ∼ t2n, and hence the corresponding conformal time is expressed as follows:

η(t) =
[

1
an

0 (1− 2n)

]
t1−2n . (81)
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Recall that n < 1
2 in order to resolve the horizon issue, due to which η(t) appears to

be a monotonic increasing function of the cosmic time. With Equation (81), we obtain the
Ricci scalar in terms of η as:

R̃(η) =
1[

an
0 (1− 2n)

]2/(1−2n)
× 1

η2/(1−2n)
∝

1
η2/(1−2n)

. (82)

Using the expression of R(η) above in Equation (78), we can obtain z(η) as follows:

z(η) ∝

(√
P(η)

Q(η)

)
η2n/(1−2n) , (83)

with P(η) = P(R(η)) and Q(η) = Q(R(η)). Consequently, we determine the factor 1
z

d2z
dη2

(which is essential for solving the scalar Mukhanov–Sasaki equation):

1
z

d2z
dη2 =

ξ(ξ − 1)
η2

1 + 24
(

1− 4n2
)( R̃

R0

) 1
2−n

1−
10 f0 exp

(
−R0/R̃

)
3n(α + 1)(1− 2n)(1− 4n)

(
R̃/R0

) α
2 +

7
2

+O
(

R̃
R0

)1−2n

 (84)

where ξ = 2n
(1−2n) , and we use dR̃

dη = −2
(1−2n)

R̃
η . Furthermore, with the aforementioned

expressions of Qi (see Equation (72)), the speed of the scalar perturbation from Equation (77)
turns out to be the following:

c2
s = 1 +O

(
R̃
R0

)1−2n

. (85)

At this stage, we now introduce the scalar Mukhanov–Sasaki (MS) equation for the
variable v(η,~x) = z(η)Ψ(η,~x) (also known as the MS variable):

d2vk(η)

dη2 +

(
c2

s k2 − 1
z

d2z
dη2

)
vk(η) = 0 , (86)

where vk(η) is the Fourier mode for v(η,~x). Clearly, the evolution of vk(η) depends on
the background evolution through the factors z′′/z and c2

s (the over prime denotes the
derivative with respect to η). Due to the condition R̃

R0
� 1 (as depicted after Equation (80)),

z′′/z and c2
s can be expressed as:

1
z

d2z
dη2 =

ξ(ξ − 1)
η2

1 + 24
(

1− 4n2
)( R̃

R0

) 1
2−n

1−
10 f0 exp

(
−R0/R̃

)
3n(α + 1)(1− 2n)(1− 4n)

(
R̃/R0

) α
2 +

7
2


 ,

c2
s = 1 , (87)

respectively, where we retain the terms up to the order
(

R̃/R0

) 1
2−n

. Furthermore, R̃
R0
� 1

along with n < 1/2 (in order to generate the perturbation modes long before the bounce

and consequently, to resolve the horizon issue) clearly depict that the term
(

R̃/R0

) 1
2−n

within the parenthesis can be safely considered as small during the contracting era. As a
result, z′′/z becomes proportional to 1/η2, i.e., 1

z
d2z
dη2 = σ/η2, with:
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σ = ξ(ξ − 1)

1 + 24
(

1− 4n2
)( R̃

R0

) 1
2−n

1−
10 f0 exp

(
−R0/R̃

)
3n(α + 1)(1− 2n)(1− 4n)

(
R̃/R0

) α
2 +

7
2


 , (88)

which is approximately a constant during the era when the perturbation modes generate
deep inside the Hubble radius. Accordingly, along with c2

s = 1, we solve vk(η) from
Equation (86), and it is given by the following equation:

v(k, η) =

√
π|η|
2

[
c1(k)H(1)

ν (k|η|) + c2(k)H(2)
ν (k|η|)

]
, (89)

with ν =
√

σ + 1
4 , and moreover, H(1)

ν (k|η|) and H(2)
ν (k|η|) are the Hermite functions

(having an order of ν) of the first and the second kind, respectively. Here, c1, c2 are
integration constants which can be determined from the initial condition of the MS variable.
The Bunch–Davies vacuum state is considered to be the initial state for vk(η), in particular,
limk|η|�1 v(k, η) = 1√

2k
e−ikη . The Bunch–Davies initial condition is ensured by the fact that

the perturbation modes generate in the deep sub-Hubble regime (when all the perturbation
modes lie within the Hubble radius). The Bunch–Davies condition immediately leads to
c1 = 0 and c2 = 1, respectively. Consequently, the scalar power spectrum for the k-th mode
is as follows:

PΨ(k, η) =
k3

2π2

∣∣∣∣v(k, η)

z(η)

∣∣∣∣2 =
k3

2π2

∣∣∣∣∣
√

π|η|
2z(η)

H(2)
ν (k|η|)

∣∣∣∣∣
2

, (90)

where in the second equality, we use the solution of v(k, η). The k-th mode satisfies the
relation k = |aH| at the instant of horizon crossing, which, by using Equation (71), is
obtained as follows:

k =
1
|ηh|

(
2n

1− 2n

)
⇒ k|ηh| =

2n
1− 2n

, (91)

where the suffix “h” represents the horizon-crossing instant. Equation (91) estimates the
horizon-crossing time for large-scale modes, particularly for k = 0.95 Mpc−1 (around which
we will determine the observable quantities), as ηh ≈ −13 By. This is, however, expected
because the large-scale modes re-enter the horizon at around the present epoch, when the
age of the universe is nearly ≈ 13.5 By. Since the universe is almost symmetrical with
respect to the bounce point (except at around t = ts, when the Type-IV singularity occurs),
one can already guess that the large-scale modes cross the horizon during the contracting
phase, nearly at ηh ≈ −13 By, which is also reflected by Equation (91). Consequently, we
estimate the Ricci scalar at the horizon crossing of the large-scale modes; in particular, we
get R̃

R0
∼ 10−6 (where we consider n = 0.3, R0 = 1By−2, and a0 ∼ O(1). We will show

that such considerations of n, R0, and a0 are indeed consistent with the viability of the
observable quantities in respect to the Planck data). This justifies the condition R̃

R0
� 1,

which we considered earlier in the expression of z(t).
Equation (91) depicts the sub-Hubble and super-Hubble regime of the k-th mode as:

k|η| > 2n
1− 2n

: sub Hubble regime ,

k|η| < 2n
1− 2n

: super Hubble regime . (92)
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As a result, the scalar power spectrum (from Equation (90)) in the super-Hubble
regime can be expressed as follows:

PΨ(k, η) =

[(
1

2π

)
1

z|η|
Γ(ν)

Γ(3/2)

]2( k|η|
2

)3−2ν

, (93)

with recall that ν =
√

σ + 1
4 . By using Equation (93), we can determine the spectral tilt

of the primordial curvature perturbations (symbolized by ns). Clearly, ν depends on f0,
and thus the occurrence of the Type-IV singularity affects the scalar power spectrum as
well as the corresponding spectral tilt. However, before proceeding to calculate ns, we
will determine the tensor power spectrum, which is necessary for the prediction of the
tensor-to-scalar ratio.

4.1.2. Tensor Perturbation

The tensor perturbation over the FRW metric is expressed as follows:

ds2 = −dt2 + a(t)2(δij + hij
)
dxidxj , (94)

where hij(t,~x) is the tensor perturbation variable, and the corresponding tensor perturbed
action (up to the quadratic order) is given by [81–85]:

δSh =
∫

dtd3~xa(t)zT(t)2
[

ḣij ḣij − 1
a2

(
∂khij

)2
]

. (95)

In the Lagrange multiplier Gauss–Bonnet gravity theory, the function zT is [81]:

zT(t) = a

√
F +

1
2

Qb , (96)

where F = 1
2κ2 , and Qb is given in Equation (72). Equation (95) indicates that the speed of

the tensor perturbation (or equivalently, the gravitational waves) is equal to unity—this
is due to the fact that the Gauss–Bonnet coupling in the present context satisfies ḧ = ḣH,
which in turn makes c2

T = 1. Consequently, the model becomes compatible with the
GW170817 event. The scale factor from Equation (71) immediately leads to the following
expression of zT :

zT =
an

0√
2κR̃n

1 + 16n(1 + 2n)

(
R̃
R0

) 1
2−n

1−
f0 exp

(
−R0/R̃

)
n(α + 1)

(
R̃/R0

) α
2 +

3
2


 , (97)

Therefore, z2
T is positive, which results in the stability of the tensor perturbation. By

using Equation (82), i.e., R̃(η) ∝ η−2/(1−2n), we determine zT in terms of the conformal
time as:

zT(η) ∝ S(R(η))η2n/(1−2n) , (98)

where S(R(η)) is given by the following equation:

S(R(η)) = 1 + 16n(1 + 2n)

(
R̃
R0

) 1
2−n

1−
f0 exp

(
−R0/R̃

)
n(α + 1)

(
R̃/R0

) α
2 +

3
2

 . (99)

Accordingly, we calculate z′′T/zT :
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1
zT

d2zT

dη2 =
ξ(ξ − 1)

η2

1− 16(1− 4n2)

(
R̃
R0

) 1
2−n

1−
2 f0 exp

(
−R0/R̃

)
n(α + 1)(1− 2n)(1− 4n)

(
R̃/R0

) α
2 +

7
2


 , (100)

where we recall that ξ = 2n
1−2n , and we use dR̃

dη = −2
(1−2n)

R̃
η in order to arrive at the above

expression. The above expression will be useful for solving the tensor Mukhanov–Sasaki
equation. Due to the condition R̃

R0
� 1 (as demonstrated earlier) along with n < 1/2, the

term containing
(

R̃
R0

) 1
2−n

can be safely regarded as small during the contracting phase. As

a result, z′′T/zT becomes proportional to 1/η2, i.e., 1
zT

d2zT
dη2 = σT/η2, with:

σT = ξ(ξ − 1)

1− 16(1− 4n2)

(
R̃
R0

) 1
2−n

1−
2 f0 exp

(
−R0/R̃

)
n(α + 1)(1− 2n)(1− 4n)

(
R̃/R0

) α
2 +

7
2


 . (101)

In effect, the tensor Mukhanov–Sasaki (MS) equation becomes:

d2vT(k, η)

dη2 +

(
k2 − σT

η2

)
vT(k, η) = 0 , (102)

where vT(k, η) is the Fourier-transformed quantity of the tensor MS variable, which is
defined by (vT)ij = zThij. Considering the Bunch–Davies initial condition for vT(k, η), i.e.,

limk|η|�1 vT(k, η) = 1√
2k

e−ikη , we solve Equation (102) as,

vT(k, η) =

√
π|η|
2

H(2)
θ (k|η|) (103)

where θ =
√

σT + 1
4 , and H(2)

θ (k|η|) represents the Hermite function of the second kind
and having order of θ. Consequently, the tensor power spectrum for the k-th mode in the
superhorizon scale (when the relevant modes are outside of the Hubble radius and satisfy
k|η| � 1 from Equation (92)) comes with the following expression:

PT(k, τ) = 2
[

1
2π

1
zT |η|

Γ(θ)
Γ(3/2)

]2( k|η|
2

)3−2θ

, (104)

where we consider the contributions from both polarization modes.
Having set the stage, we now calculate the observable quantities such as the scalar

spectral index (ns) and the tensor-to-scalar ratio (r), respectively. They are defined by the
following equation:

ns = 1 +
∂ lnPΨ

∂ ln k

∣∣∣∣
h

, r = PT/PΨ , (105)

where the suffix “h” represents the horizon-crossing instant of the large-scale modes
(∼ 0.05 Mpc−1), around which we will estimate the observable indices. According to
the recent Planck data, ns and r are constrained by [47]:

ns = 0.9649± 0.0042 and r < 0.064 , (106)
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respectively. Due to Equations (93) and (104), we determine the final forms of ns and r in
the present context as follows:

ns = 4−
√

1 + 4σh , r = 2
[

z(ηh)

zT(ηh)

Γ(θ)
Γ(ν)

]2

(k|ηh|)2(ν−θ) , (107)

where all the quantities are evaluated at the horizon crossing of large-scale modes, in
particular:

ν =

√
σh +

1
4

; σh = ξ(ξ − 1)

1 + 24
(

1− 4n2
)( R̃h

R0

) 1
2−n
1−

10 f0 exp
(
−R0/R̃h

)
3n(α + 1)(1− 2n)(1− 4n)

(
R̃h/R0

) α
2 +

7
2


 ,

θ =

√
σT,h +

1
4

; σT,h = ξ(ξ − 1)

1− 16(1− 4n2)

(
R̃h
R0

) 1
2−n
1−

2 f0 exp
(
−R0/R̃h

)
n(α + 1)(1− 2n)(1− 4n)

(
R̃h/R0

) α
2 +

7
2


 ,

z(ηh) =−
1√
n

(
an

0

κR̃n
h

)1− 24n(1 + 2n)

(
R̃h
R0

) 1
2−n
1−

5 f0 exp
(
−R0/R̃h

)
3n(α + 1)

(
R̃h/R0

) α
2 +

3
2


 ,

zT(ηh) =
1√
2

(
an

0

κR̃n
h

)1 + 16n(1 + 2n)

(
R̃h
R0

) 1
2−n
1−

f0 exp
(
−R0/R̃h

)
n(α + 1)

(
R̃h/R0

) α
2 +

3
2


 . (108)

Here, we would like to mention that the dependence of ns and r on the parameter f0
actually decodes the possible effects of the Type-IV singularity on the observable quantities.
Clearly, the above expressions contain R̃h, which is the Ricci scalar at the horizon crossing
of the large-scale modes. Hence, from Equation (82), one may write the following equation:

R̃h =

[
1

an
0 (1− 2n)|ηh|

]2/(1−2n)
, (109)

where ηh is shown in Equation (91), in particular,

|ηh| =
(

2n
1− 2n

)
1
k
≈
(

2n
1− 2n

)
× 13 By . (110)

Here, we use k = 0.05 Mpc−1, which crosses the horizon during the contracting phase,
nearly around ≈ −13 By. Plugging back the above expression of |ηh| into Equation (109),
we get R̃h in terms of n and a0:

R̃h =

[
1

26nan
0

]2/(1−2n)
By−2 . (111)

Thus, as a whole, the theoretical expressions of ns and r depend on the parameters n,
a0, and f0. We would like to mention that the scalar tilt as well as the tensor-to-scalar ratio
do not depend on the parameter ts (the time when the Type-IV singularity occurs). This,
however, is expected because the singularity locally affects the spacetime at around the
finite time t = ts, and the perturbation modes are generated in the deep contracting phase
where the singularity provides almost no effects on the universe’s evolution. This is unlike
the previous scenario where the Type-IV singularity globally affects the spacetime, and as a
result, the observable quantities are found to depend on ts (see the discussion after Table 4).

It turns out that the theoretical predictions of the scalar spectral index and the tensor-
to-scalar ratio in the present case simultaneously become compatible with the Planck 2018
data for a small range of the parameters, given by: f0 = 1, a0 = 4 and n = [0.3062, 0.3065].
Therefore, the viable range of n seems to be less than that of the matter bounce scenario,
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where n = 1/3; this result is in agreement with [53]. The parametric plot ns vs. r is depicted
in Figure 4.

0.960 0.962 0.964 0.966 0.968 0.970

0.01177

0.01178

0.01179

0.01180

0.01181

0.01182

ns

r

Figure 4. Parametric plot of ns (along the x-axis) vs. r (along the y-axis) with respect to n. Here,
f0 = 1, a0 = 4, and n = (0.3062, 0.3065).

Therefore, in the context of the ghost-free Gauss–Bonnet theory of gravity, the bouncing
scenario in presence of a Type-IV singularity—where the Type-IV singularity locally affects
the spacetime at around the time when the singularity occurs—proves to be viable in
respect to the Planck observations.

5. Conclusions

We examined how the presence of a Type-IV singularity can influence the dynamics
of a bouncing universe; that is, we worked with bounce cosmology that appears with a
Type-IV singularity at a finite time. In the case of a Type-IV singularity, the scale factor,
the Hubble parameter, and its first derivative are finite; however, the higher derivatives
of the Hubble parameter diverge at the time of the singularity. Therefore, the Type-IV
singularity is not a crushing type, unlike the initial or the Big Rip singularity, and the
universe can smoothly pass through a Type-IV singularity. However, the presence of such
a Type-IV singularity can severely influences the dynamics of the universe, as we found
here for an otherwise non-singular bounce scenario. The theory of gravity considered
was the well-known ghost-free Gauss–Bonnet (GB) gravity, where the ghost-free nature is
ensured by the presence of a Lagrange multiplier in the gravitational action, as developed
in [71]. Moreover, we chose a class of Gauss–Bonnet coupling function (h(t)) that satisfies
a constraint equation such as ḧ = ḣH (where H is the Hubble parameter of the universe),
which in turn leads to the speed of the gravitational wave as unity. Consequently, the model
became compatible with the event GW170817. By using the reconstruction technique, we
obtained the explicit form of the scalar field potential as well as the GB coupling function,
which trigger a bouncing scenario with a Type-IV singularity at a finite time t = ts.

We found three different cases depending on whether ts < 0 or ts > 0 or ts = 0: (1) For
ts < 0, the bounce seems to happen at some negative time (tb < 0, where the suffix stands
for bounce), and the singularity occurs before the bounce. (2) For ts > 0, the bounce shows
at a positive time (tb > 0); moreover, the singularity occurs after the bounce. (3) Finally,
for ts = 0, the bounce and the Type-IV singularity occur at the same instant of time, i.e.,
tb = ts = 0. This was the first indication that the Type-IV singularity indeed affects the
dynamics of the bouncing scenario. Consequently, we analyzed the evolutions of the scalar
and tensor perturbations in this context, and determined various observable quantities such
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as the scalar spectral index (ns) and the tensor-to-scalar ratio (r)—both of which were found
to depend on ts. Therefore, the perturbation power spectra become different depending
on the cases, whether ts < 0 or ts > 0 or ts = 0. However, in all of these cases, the scalar
power spectrum proves to be highly red-tilted, and the tensor-to-scalar ratio becomes too
large to be consistent with the Planck data. Through a rigorous analysis of the scalar and
the tensor perturbation, we were able to show that it is difficult to obtain a matching ns
and r up to the observed CMB spectra, in the case when the Type-IV singularity globally
affects the spacetime. Such inconsistency of the observable quantities arises due to the
appearance of the Type-IV singularity, which “globally” affects the evolution of the Hubble
parameter compared to the bouncing scenario where such a Type-IV singularity is absent.
By the term “global”, we mean that although the singularity occurs at a finite time t = ts, it
significantly affects the asymptotic evolution of the universe in the distant past as well as
in the distant future. In particular, the presence of the Type-IV singularity results in the
comoving Hubble radius going to zero asymptotically on both sides of the bounce. As a
result, the perturbation modes generate near the bounce when all the relevant modes lie
within the sub-Hubble regime. This is the reason why the scalar power spectrum shows
a red-tilted behavior, and the tensor-to-scalar ratio becomes too large in respect to the
observational constraints.

Based on the findings above, we investigated a different bouncing scenario, which
appears with a Type-IV singularity. However, the Type-IV singularity “locally” affects
the spacetime at around the time when the singularity occurs. As a result, and unlike the
previous scenario, the comoving Hubble radius in this bounce scenario diverges to infinity
in the distant past. Thus, the primordial perturbation modes generate far away from the
bounce in the deep contracting phase. We also calculated the scalar spectral index and the
tensor-to-scalar in this context, which are found to be simultaneously compatible with the
recent Planck data for the suitable regime of parameter values. This ensures the viability
of the bounce model where the Type-IV singularity shows local effects on the spacetime
at around the time of the singularity. It is important to mention here that the scalar tilt as
well as the tensor-to-scalar ratio were found to be independent of the parameter ts. This,
however, is expected because the singularity affects the spacetime locally at around the
time t = ts, and the perturbation modes generate in the deep contracting phase where the
singularity provides almost no effects on the universe’s evolution.

Thus, as a whole, this work clearly reveals that the presence of a Type-IV singularity
has significant effects on an otherwise non-singular bounce scenario. We have shown
that a bounce model that appears with a Type-IV singularity is viable if the singularity
“locally” affects the spacetime at around the time when it occurs; otherwise, the observable
quantities are found to be problematic (with respect to the Planck constraints) when the
Type-IV singularity “globally” affects the spacetime. Therefore, in the realm of bouncing
cosmology, if the universe had faced a Type-IV singularity during its evolution in the past,
then the singularity should have “locally” affected the spacetime.
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