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Abstract: An important yet perplexing result from work in the 1990s and 2000s is the near-unity
value of the ratio of fluctuations in the vacuum energy density of quantum fields to the mean in a
collection of generic spacetimes. This was carried out by way of calculating the noise kernels which
are the correlators of the stress-energy tensor of quantum fields. In this paper, we revisit this issue via
a quantum thermodynamics approach, by calculating two quintessential thermodynamic quantities:
the heat capacity and the quantum compressibility of some model geometries filled with a quantum
field at high and low temperatures. This is because heat capacity at constant volume gives a measure
of the fluctuations of the energy density to the mean. When this ratio approaches or exceeds unity, the
validity of the canonical distribution is called into question. Likewise, a system’s compressibility at
constant pressure is a criterion for the validity of grand canonical ensemble. We derive the free energy
density and, from it, obtain the expressions for these two thermodynamic quantities for thermal and
quantum fields in 2d Casimir space, 2d Einstein cylinder and 4d (S1 × S3 ) Einstein universe. To
examine the dependence on the dimensionality of space, for completeness, we have also derived
these thermodynamic quantities for the Einstein universes with even-spatial dimensions: S1 × S2 and
S1 × S4. With this array of spacetimes we can investigate the thermodynamic stability of quantum
matter fields in them and make some qualitative observations on the compatibility condition for
the co-existence between quantum fields and spacetimes, a fundamental issue in the quantum and
gravitation conundrum.
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1. Introduction

Three major elements are embedded in the theme explored in this paper: quantum
fields, spacetime, and thermodynamics. The first two describe how quantum matter is
affected by spacetime, its geometry and topology, and how it steers the dynamics of
spacetime, although the latter issue involving backreaction is not explored here. The
relation between matter and spacetime dynamics is of course underwritten by Einstein’s
general relativity theory. With quantum matter as source, one needs a theory of quantum
fields in curved spacetime [1,2], which is a test field limit of semiclassical gravity theory [3],
where the dynamics of the matter field and the spacetime are treated self-consistently.
The first and third elements refer to the thermodynamics of quantum fields, a familiar
subject, by way of thermal field theory. In this paper, we shall only consider quantum fields
under equilibrium conditions, which can exist for static spacetimes, and be treated by finite
temperature quantum field theory. Later, when we tackle cosmological issues, we shall
call upon the more challenging subject of nonequilibrium quantum field theory [4] and
nonequilibrium quantum thermodynamics [5]. The second and third elements bear on the
thermodynamics of spacetime, which is also an old topic, ranging from the thermodynamic
properties of classical matter, such as gravitating systems having negative heat capacity [6,7]
to black hole mechanics [8] and thermodynamics [9] and, when quantum physics is taken
into the consideration, the famous Bekenstein–Hawking (B-H) entropy [10] and its deep
physical meaning.1

All told, these are the issues one needs to consider behind the grander views of
spacetime thermodynamics [15], general relativity as geometro-hydrodynamics [16], and
emergent gravity [17–19], where the large scale structure and dynamics of spacetime can
be phrased in thermodynamic or hydrodynamic terms. What we want to accomplish in
this and a sequel paper [20] is more restricted in scope, aiming at firing some solid bricks
toward building this superstructure.

1.1. Energy and Pressure Densities of Quantum Fields and Fluctuations

One fundamental aspect of special interest to us is fluctuation phenomena in quantum
matter fields and how they influence the dynamics and the thermodynamics of spacetimes.
We describe their importance and plan for two ways to approach them, by calculating two
important thermodynamic quantities, the heat capacity and the vacuum compressibility
here and later, via noise kernels in quantum field theory in curved spacetime.

Importance of Quantum Field Fluctuations Phenomena

Quantum field fluctuations phenomena have both fundamental theoretical and practi-
cal application values. As examples of the fundamental theoretical issues we mention the
quantum inequalities and the quantum interest principle [21,22], the highly nonGaussian
distribution of the quantum fluctuations of the vacuum stress-energy tensor [23], the role
of fluctuations of quantum fields in the ‘condensed matter’ explanation of the smallness
of the cosmological constant today [24]. Toward the other extreme, at the Planck scale, di-
mensional reduction to effective 2D behavior [25] and the breaking up of space into a large
number of causally disconnected regions [26]. For the more tangible, laboratory-accessible
phenomena, the simplest example of a vacuum polarization effect is perhaps the Casimir
effect [27–30], e.g., an attractive force between two conducting plates, or a repulsive force
in a conducting sphere. When the plates are moved rapidly, particles are created from
the vacuum. Dynamical Casimir effect [31,32] stems from the amplification of vacuum
fluctuations by changing boundaries [33–35]. Cosmological particle creation [36,37] shares



Universe 2022, 8, 291 3 of 29

the same physics, the driving agent being the expanding universe. The theoretical basis is
quantum fields in curved spacetime [1,2]. Quantum effects in the early universe [38–52]
invoking semiclassical and stochastic gravity theories [3] are believed to have played a
decisive role in shaping our present universe.

The purpose of our present investigation is to knit a thermodynamic picture of these
quantum field fluctuation phenomena. Our plan is to take a two-pronged approach to
explore these issues, one pursued in this and a sequel paper uses thermal field theory
and quantum field theory in curved spacetimes, via free energy density and partition
functions; the other approach invokes the noise kernel in stochastic gravity [3]. The noise
kernel is the vacuum expectation value of the stress-energy bitensor [53] or the stress-
tensor two point functions (correlators). The 00 component and the ii components give,
respectively, the fluctuations in the energy and momentum density. An interesting result
from works in the 90s and 00s is the near-unity value of the ratio of fluctuations in the
vacuum energy density to the mean. This quantity ∆ has been calculated for thermal fields
in Minkowski and Casimir geometries, the Einstein universe, de Sitter and anti-deSitter
spacetimes and more [53–59]. This is a plain yet intriguing result. It may hold some deeper
meanings in how quantum fields (matter contents) co-exist with spacetime (geometry and
topology). Possible implications on the condition of our universe is a theme worth further
explorations [60].

In this paper, we wish to shed some light on this issue by way of a thermodynamic
approach, by computing two essential thermodynamic quantities, the heat capacity and
the adiabatic compressibility.

Thermodynamics of quantum fields reflecting the properties of spacetime

One commonly studied thermodynamic quantity is the heat capacity, well-known as a
measure of the magnitude of energy fluctuations. When it diverges it spells the breakdown
of canonical ensembles in thermodynamics.

In general the heat capacity is negative [6,7] for gravitating systems (see, e.g., [61]
and references therein). That is why when one applies thermodynamics in a canonical
ensemble setting one needs to add the condition that the system, e.g, a black hole, needs
to be placed in a box or in an AdS space. We need to separate two effects simultaneously
affecting the heat capacity, one due to quantum fluctuations, the other due to gravity.
To explore gravitating systems without an artificially imposed boundary we need to use
microcanonical ensembles [62] where the starting point would be the number of accessible
states to an isolated system at a certain energy.

The other thermodynamic quantity of equal importance but lesser studied in field
theory is compressibililty, isothermal at finite temperature and adiabatic compressibility
at zero temperature. As is evident from its definition, it measures how compressible the
quantum field is, which depends on the curvature and topology of the space they live in. In
fact when we refer to, say, the capacitance of a parallel plate capacitor in electrostatics, we
usually just give a formula in terms of geometric measures, such as the area of the plates
and the distance between them. It is implicit that we are talking about electric charges and
fields. It is in this sense that we refer to the capacity and compressibility of spacetimes in
terms of how a quantum field and its fluctuations behave. Since heat capacity is studied
widely we shall focus more on the latter. The term ‘quantum capacity’ in the title of this
paper refers to the heat capacity of quantum fields, including high and low temperatures;
and when we say ‘vacuum compressibility’ we refer to adiabatic compressibility which can
be defined without any notion of heat.

1.2. Physical Contexts of Quantum Capacitance and Negative Compressibility

To better appreciate the meaning and significance of these thermodynamic quantities
it is useful to see how quantum capacitance and vacuum compressibility are defined
and used in some more familiar physical systems. We give two examples here: nuclear
“liquid drop" model and 2-dim electron gas. Nuclear collective model is a good analog
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because the Hamiltonian quadrature has the same mathematical form as the metric of
the mixmaster universe [63–65], a compact anisotropic spacetime, where compressibility
has some intuitive meaning. 2-dim electron gas has similar thermodynamic behavior as
the gravitational field, in that they are both systems of long range interactions and with
negative heat capacities (see, e.g., [61] and references therein).

Nuclear compressibility in quantum hadrodynamics

The compressibility of a nucleus is directly related to the surface energy—a high com-
pressibility implies a stiff surface which will have a large contribution to the total energy
of the deformed nucleus. For example, Price and Walker [66] developed a self-consistent,
relativistic theory of deformed nuclei based on quantum hadrodynamics and the finite
Hartree approximation, and have applied this theory to the calculation of deformed orbitals
in various light nuclei. They even went into details in explaining why a relativistic mean
field calculation based on quantum hadrodynamics [67] gives a larger value of compress-
ibility than non-relativistic calculations. Inasmuch as the nuclear collective model sharing
a similar mathematical structure (Hamiltonian quadratic form) as the mixmaster universe
(diagonal Bianchi type IX metric), the Hartree approximation in seeking self-consistent
solutions are similar to the structure and procedures in semiclassical gravity theory.

What does the negative compressibility of a 2-dim electron gas reveal?

For two dimensional electron systems at high magnetic fields, interaction effects
have spectacular transport consequences, e.g., the fractional quantum Hall effect. The
importance of exchange and correlation contributions to the total energy, and hence the
thermodynamics, of interacting electron systems has long been theoretically appreciated.
For example, in the low-density regime, where interactions dominate the kinetic energy, the
exchange energy alone is sufficient to produce a negative compressibility for the electron
gas – the inverse of the compressibility is given by κ−1 = N2∂µ/∂n, where µ is the chemical
potential and n is the number density. Eisenstein et al. [68] reported on a new experimental
technique whereby they can directly extract both the sign and the magnitude of κ as
a function of electron density n. Regions of negative κ are observed at both zero and
high magnetic field extreme quantum limit. Observation of these compressibility features
constitutes strong thermodynamic evidence for existence of the dilute quasiparticle gases
central to theory of the fractional quantum Hall effect. This is one of many examples of
how (macroscopic) thermodynamic quantities may reveal some important attributes of the
underlying (microscopic) constituents and their interactions.

The above cases exemplify how macroscopic quantities can be judiciously used to
reveal the workings of the microscopic constituents, a better understanding of which can
serve as an inspiration for the hydrodynamic and thermodynamics approaches to probing
the microscopic structures of spacetime.

1.3. Methods, Findings and Organization

Zeta function method is used in our calculations of the thermodynamic quantities
for a thermal Bose gas (finite temperature quantum scalar field). The main targets are
CV , CP related to the energy density fluctuations at constant volume and pressure, and
the isothermal κT and adiabatic compressibility κS related to the momentum density
fluctuations at finite and zero temperatures. For completeness we also provide the energy
density, entropy and the expansion coefficients α. Thermal fields (with periodic imaginary
time) in the following static background spacetimes are considered: (a) 2d Casimir geometry
and 2d Einstein Cylinder (periodic in one spatial dimension); (b) 4d Einstein Universe
S1 × S3 , (c) Einstein universes with even-spatial dimensions S1 × S2 and S1 × S4.

The results for the thermodynamic quantities at low and high temperatures are pre-
sented in two tables in the last section. Please refer there for detailed explanations. In
Section 2, we derive the thermodynamic quantities in 2d (1-d space) thermal Casimir and
2d Einstein cylinder. In Section 3, in 4d (3-sphere space) Einstein universe, and in Section 4,
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in 3d (2-sphere) and 5d (4-sphere) Einstein universes. In Section 5, we conclude with a sum-
mary and some discussions. In this paper, we focus more on the technical aspects, aiming
to get a complete tally of these thermodynamic quantities. We shall continue to explore
their physical significance to better understand how the thermodynamics of quantum fields
is governed by the underlying spacetime structure and what we can say about the nature
of gravity from the thermodynamics of quantum fields.

2. 2d: Thermal Casimir and Einstein Cylinder

To illustrate the points we would like to make, on the capacities and the compressibili-
ties of quantum fields in spaces with various topologies, we start with the simple case of an
Einstein cylinder at finite temperature [69,70]. The topology is basically S1 × S1. (The first
entry denotes time, the second entry denotes spatial dimensions. Since we shall be working
with thermal field in the imaginary time formulation, the first entry will always generically
be S1. Only in certain specified limit will R1 appear.) The length of the Euclidean time
circle is characterized by β = 1/T where T is the temperature. The spatial part is in a
Casimir setting where the circle is characterized by the length L. In the low temperature
limit, L/β→ 0, one has the R1 × S1 topology with the leading contribution coming from
the Casimir effect. On the other hand, in the high temperature limit, β/L→ 0, one has the
thermal field in two spacetime with the topology S1 × R1.

We shall consider a thermal minimally coupled massless scalar field in the Einstein
cylinder with periodic boundary condition. To derive the Helmholtz free energy we start
with the partition function, with the notation of Phillips and Hu [53],

Z = eW (1)

where using the proper-time zeta function method,

W = −1
2

Tr ln
(

H
µ

)
= lim

s→0

1
2

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts−1 Tr(e−tH)

]
= lim

s→0

1
2

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts−1 ∑

n
e−tλn

]
(2)

with the operator

H = −� = − ∂2

∂τ2 −
∂2

∂x2 (3)

where τ is the Euclidean time, the eigenvalues

λn0,n = k2
0 + k2 ; k0 =

2πn0

β
; k =

2πn
L

(4)

and the eigenfunctions

φn0,n(x) =

(
1√

β
eik0τ

)(
1√
L

eikx
)

. (5)

With the partition function Z, we proceed to calculate the free energy F.

Z = e−βF ⇒ F = −W
β

=

(
− 1

2β

)
lim
s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts−1 ∑

n0,n
e−tk2

0 e−tk2

]
(6)
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To proceed we consider the low and the high temperature expansions of this free
energy. Then we can discuss the properties of various thermodynamic quantities, notably
the capacities and the compressibilities that can be derived from F.

2.1. Low Temperature Expansion: Approaching R1 × S1

To develop the low temperature expansion, we first rewrite the free energy F using
the Poisson summation formula (see, for example, [71]) on the sum over n0.

∞

∑
n0=−∞

e−t(2πn0/β)2
=

β

2
√

πt

∞

∑
n0=−∞

e−n2
0β2/4t, (7)

With this replacement, the free energy can then be expressed as

F =

(
− 1

4
√

π

)
lim
s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts− 3

2 ∑
n0,n

e−n2
0β2/4t e−t( 2πn

L )
2
]

(8)

To start with, we look at the n0 = n = 0 term. This term is formally divergent so we
regularize it by adding in a mass m.

F|n0=n=0 = − 1
4
√

π
lim

m→0,s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts− 3

2 e−tm2
]

= − 1
4
√

π
lim
m→0

(
−2
√

π m
)

= 0. (9)

We shall therefore neglect this term in the following.
For the n0 6= 0 and n = 0 term, we have the finite temperature zero mode contribution

to the free energy.

F|n0 6=0,n=0 =

(
− 1

2
√

π

)
lim
s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts− 3

2

∞

∑
n0=1

e−n2
0β2/4t

]

= − 1
2
√

π
lim
s→0

d
ds

[
µs

Γ(s)
21−2s

(
β2
)− 1

2+s
Γ(

1
2
− s)ζ(1− 2s)

]
=

1
2β

ln(µβ2), (10)

which is proportional to lnβ/β. Whether this term should be included in evaluating the
free energy has been a controversial issue [72–74]. In [72], it was argued that it should
be excluded. The main reason is that the entropy derived from this term would go like
lnβ which will blow up in the zero temperature limit, being at variance with the third
law of thermodynamics. On the contrary, the inclusion of the zero mode was advocated
in [73], particularly to preserve the inversion relation between free energies at low and high
temperatures [75]. In a more mundane argument, the inclusion of zero mode is necessary
for the mode function to form a complete set, which in turns enforces causality. When the
zero mode is missing, it has been shown that the lightcone structure emerges in massless
relativistic field theory can be violated [70,76]. Here, we shall include this term for complete-
ness and from past experiences. The zero mode in the spectrum of an invariant operator
governs the infrared behavior of quantum fields in curved spacetimes (see, e.g., [77,78]).
The infrared behavior of massless minimally-coupled interacting quantum field in de Sitter
universe is an important problem in cosmology (see, e.g., [79] for a review where earlier
references can be found). In our subsequent discussions we shall explore its consequences
by investigating the properties of the corresponding thermodynamic quantities derived
from it. One further remark is that this zero mode contribution existent in all compact
spaces we have considered is independent of the details of the spatial geometry. Therefore,
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as we shall see in the following, this term will contribute to the free energy in the low
temperature expansion for all spatial configurations with a zero mode in the eigenspectrum.
However, in contrast to the interacting quantum field case mentioned above, for free fields
considered here, there is no zero mode contribution in the zero temperature free energy
expression.

For n0 = 0 and n 6= 0,

F|n0=0,n 6=0 =

(
− 1

2
√

π

)
lim
s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts− 3

2

∞

∑
n=1

e−t( 2πn
L )

2
]

= − π

6L
(11)

As n0 = 0, we have the zero temperature limit here. The result actually corresponds
to the quantum Casimir effect [27–30] due to the spatial circle. This is consistent with the
usual derivation of the Casimir energy. With periodic boundary condition, the allowed
frequencies are just ωn = 2πn/L. The vacuum energy is thus

E =
∞

∑
n=−∞

1
2

ωn =

(
2π

L

)
ζ(−1) = − π

6L
(12)

which is the same as what we had above.
For n0 6= 0, n 6= 0, we have

F|n0 6=0,n 6=0 =

(
− 1√

π

)
lim
s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts− 3

2

∞

∑
n0,n=1

e−n2
0β2/4t e−t( 2πn

L )
2
]

=
∞

∑
n0,n=1

(
− 2

n0β

)
e−2πn0nβ/L

= − 2
β

e−2πβ/L + · · · , (13)

where the ellipsis represents terms which are also exponentially small and non-analytic
like e−2πβ/L.

Hence, combining expressions in Equations (9) to (13), the free energy in the low
temperature expansion is given by

F = − π

6L
+

1
2β

ln(µβ2) + · · · . (14)

Indeed, when β → ∞ or T → 0, we are left with the first term which is just the
Casimir energy.

With the free energy we are able to derive various thermodynamic quantities includ-
ing the heat capacities and the compressibilities [80] in the low temperature limit. First,
the entropy

S = 1− 1
2

ln(µβ2) + · · · . (15)

Other than the exponentially small terms, the contribution to the entropy comes solely
from the zero mode since the first term corresponding to the Casimir effect in the free
energy in Equation (14) is independent of temperature. As we have mentioned above,
the lnβ term diverges as the temperature T → 0, apparently violating the third law of
thermodynamics in the traditional settings, under the assumptions of large spatial volume
and high temperatures. This is an important issue which deserves closer examinations,
especially in the context of quantum thermodynamics in spacetimes with curvature or
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nontrivial topology. We shall therefore leave this term as it is and try to explore more its
consequences on the other thermodynamic quantities.

With the entropy S, we have the internal energy

E = F + TS = − π

6L
+

1
β
+ · · · , (16)

which is independent of the scale µ. The dominant term of the internal energy comes from
the Casimir effect as given by Equation (12). The subdominant term, which is linear in T, is
the zero mode contribution. The corresponding energy density would then be

ρ =
E
L
= − π

6L2 +
1

βL
+ · · · . (17)

From the free energy, pressure P is just

P = −
(

∂F
∂L

)
T
= − π

6L2 + · · · . (18)

We thus have negative pressure coming from the Casimir effect. The magnitude
increases as the size L gets smaller. Negative pressure would shrink the spatial circle and
this shrinking force would get larger as the size of circle gets smaller. This process is very
similar to that of a gravitational collapse. In fact, we shall see in the subsequent discussions,
the Casimir effects of spatial spheres with different dimensions would all induce negative
pressure and same kind of collpases should therefore occur.

From the entropy, we obtain the heat capacity at constant volume which is given by
the second temperature derivative of the Helmholtz free energy:

CV = −β

(
∂S
∂β

)
L
= 1 + · · · (19)

Hence, other than exponentially small terms, CV is basically a constant.
Furthermore, the second derivative of the free energy with respect to volume L is

related to the isothermal compressibility κT ,

κT = − 1
L

(
∂L
∂P

)
= −3L2

π
+ · · · . (20)

κT is negative due to the negative pressure of the Casimir effect. This means that when
pressure is increased, or the magnitude of the pressure is decreased, the volume L will
increase. This is in contrast to the case of a normal gas where the volume would decrease
when the pressure is increased with positive compressibility.

There is another second derivative of the free energy

∂2F
∂T∂L

= − ∂S
∂L

= − ∂P
∂T

(21)

according to the Maxwell relations. This second derivative is related to the thermal expan-
sion coefficient defined by

α =
1
L

(
∂L
∂T

)
P

. (22)
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By the cyclic relation (
∂L
∂T

)
P

= −
(

∂L
∂P

)
T

(
∂P
∂T

)
L

= LκT

(
∂P
∂T

)
L

(23)

Hence, the thermal expansion coefficient can be expressed as

α = κT

(
∂P
∂T

)
L
. (24)

In our present consideration, with the pressure P in Equation (18) having a leading
term independent of temperature, we have(

∂P
∂T

)
L
= −β2

(
∂P
∂β

)
L
∼ e−2πβ/L + · · · (25)

which is exponentially small. Thus, with the isothermal compressibility in Equation (20),

α ∼ e−2πβ/L + · · · (26)

and it is also exponentially suppressed.
Using the thermodynamic quantities we have obtained, we can also derive the heat

capacity at constant pressure CP. By applying the cyclic and the Maxwell relations, the
following relation can be established [81].

CP = CV + β3LκT

(
∂P
∂β

)2
= 1 + · · · . (27)

Since ∂P/∂β is exponentially small, we can see that CP ∼ CV up to order e−2πβ/L.
Finally one can also obtain the adiabatic compressibility

κS = − 1
L

(
∂L
∂P

)
S

(28)

Again using the Maxwell and the cyclic relations, we have the identity [81]

κS
κT

=
CV
CP
⇒ κS =

(
CV
CP

)
κT . (29)

As we have seen that CP ∼ CV up to order e−2πβ/L. Therefore, we also have κS ∼ κT
other than exponentially small terms.

κS = − 1
L

(
∂L
∂P

)
= −3L2

π
+ · · · . (30)

Note that for a closed system, the thermodynamic processes would be adiabatic. Here,
κS being negative would induce the kind of collapses we mentioned above for a closed
spatial geometry. In the subsequent sections, we shall see that this is true for the cases of
different spatial geometries in the low temperature expansion.

With the considerations above, it is also possible to establish the fluctuations of various
thermodynamic quantities. Consider a small part of an equilibrium system. Assume that
the small part is still large enough for the thermodynamic limit to hold. According to the
fluctuation theory of Landau and Lifshitz [81,82], one can then derive the fluctuations of
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the various thermodynamic quantities in this small part. Using the temperature T and the
volume L as independent variables, we have the mean square fluctuation of the temperature

〈(∆T)2〉 = T2

CV
=

1
β2CV

, (31)

while the fluctuation of the volume

〈(∆L)2〉 = LT|κT | =
L|κT |

β
. (32)

As the fluctuation should be a positive quantity and in our case κT is actually negative,
we therefore define the fluctuation to be related to the absolute value of κT instead.

Then the fluctuation of the internal energy is given by

〈(∆E)2〉 =
CV

β2 +
L|κT |

β

[
−β

∂P
∂β
− P

]2

=
π

12βL
+

1
β2 + · · · (33)

which is proportional to T. Note that as CV is a constant and ∂P/∂β are exponentially small,
the leading contribution comes from L|κT |P2/β.

Again according to the Landau–Lifshitz fluctuation theory, the fluctuation of the
pressure is given by

〈(∆P)2〉 =
1

βL|κS|
=

π

3βL3 + · · · (34)

which is also proportional to T.
Moreover, the correlated fluctuation is then

〈(∆E)(∆P)〉 = P
β
= − π

6βL2 + · · · (35)

We can see that the leading behaviors of these fluctuations are all proportional to T.
In other words, as T → 0, all the fluctuations will vanish. It is therefore apparent that the
fluctuations derived above are all of thermal nature. No quantum fluctuations are included
in this theory of fluctuations.

2.2. High Temperature Expansion: Approaching S1 × R1

For the high temperature expansion, we take β/L� 1. Actually, we can also view this
as a large L expansion or the infinite space limit. In this case, we implement the Poisson
summation formula on the spatial sum over n,

∞

∑
n=−∞

e−t(2πn/L)2
=

L
2
√

πt

∞

∑
n=−∞

e−n2L2/4t (36)

Then the free energy becomes

F =

(
− L

4
√

πβ

)
lim
s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts− 3

2 ∑
n0,n

e−t
(

2πn0
β

)2

e−n2L2/4t

]
. (37)
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Again the n0 = 0, n = 0 term will be neglected as in the low temperature case. For
n0 6= 0, n = 0, we have

F|n0 6=0,n=0 =

(
− L

2
√

πβ

)
lim
s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts− 3

2

∞

∑
n0=1

e−t
(

2πn0
β

)2
]

= − πL
6β2 (38)

which represents the flat space limit L → ∞. Note that after implementing the Poisson
summation formula in Equation (36), the n = 0 term here does not correspond to the zero
mode we discussed in the previous subsection.

For n0 = 0, n 6= 0,

F|n0=0,n 6=0 =

(
− L

2
√

πβ

)
lim
s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts− 3

2

∞

∑
n=1

e−n2L2/4t

]

=
1

2β
ln
(

µL2
)

. (39)

Finally, for n0 6= 0, n 6= 0,

F|n0 6=0,n 6=0 =

(
− L√

πβ

)
lim
s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts− 3

2

∞

∑
n0,n=1

e−t
(

2πn0
β

)2

e−n2L2/4t

]

=
∞

∑
n0,n=1

(
− 2

nβ

)
e−2πn0nL/β

= − 2
β

e−2πL/β + · · · (40)

which consist of exponentially small terms. Hence, for high temperature, the free energy

F = − πL
6β2 +

1
2β

ln
(

µL2
)
· · · (41)

with the ellipsis indicating terms which are exponentially small like e−2πL/β. The leading
term corresponds to the flat space L→ ∞ finite temperature result.

It is interesting to note that from this free energy at high temperature in Equation (41),
if we exchange β↔ L,

βF|high → −
πβ

6L
+

1
2

ln(µβ2) + · · · = βF|low, (42)

including the exponentially small terms, where F|low is the free energy at low temperature
in Equation (14). β↔ L means β/L↔ L/β, that is, the free energy in this case possesses an
inversion symmetry between the low and the high temperatures. This symmetry is related
to the Cardy formula [75] and the contribution of the zero mode is crucial for this relation
to hold.

As in the low temperature expansion, various thermodynamic quantities follow from
the free energy in Equation (41). The entropy

S =
πL
3β
− 1

2
ln
(

µL2
)
+ · · · (43)

which is proportional to T in the leading term.
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The internal energy

E =
πL
6β2 + · · · (44)

which is independent of the scale µ. Note that the leading term gives the flat space energy
density

ρ|L→∞ =

(
E
L

)
L→∞

=
π

6β2 . (45)

The pressure

P =
π

6β2 −
1

βL
+ · · · (46)

Here the pressure is positive. As L→ ∞, P = ρ as it should be for an one-dimensional
massless relativistic ideal gas.

It is interesting to note that in the low temperature limit, the dominant contribution
to P is the Casimir pressure which is negative. Here in the high temperature limit, the
pressure is positive instead. Therefore, there must be a temperature at which the pressure
vanishes. Whether the resulting configuration is stable or not depends on the sign of the
compressibility. This is what we shall further explore in the following consideration.

The heat capacity at constant volume

CV =
πL
3β

+ · · · , (47)

is proportional to T in the leading behavior.
The isothermal compressibility

κT = −βL + · · · , (48)

where the ellipsis again represents exponentially small terms. Here, although the pressure is
positive, the isothermal compressibility is negative. That is, at constant temperature, when
the volume L is decreased, the pressure also decreases. Remember κT is related to ∂P/∂L.
Since the first term in Equation (46) for P is independent of L, the leading contribution of
κT comes from the second term. Hence, we have the peculiar situation in which the sign
of P, that is, whether the pressure is positive or negative, is determined by the first term
in the high temperature expansion, while the sign of the isothermal compressibility κT
is determined by the second term. Therefore, κT could be positive or negative no matter
what the sign of P is. This is different from what we encounter in the low temperature
expansion where P is always negative due to the Casimir effect and the corresponding κT
is also negative from this negative pressure.

With the isothermal compressibility κT , we can derive the thermal expansion coefficient

α = −πL
3

+ β + · · · , (49)

which is also negative as κT . This has the peculiar behavior that, at constant pressure, the
volume L will decrease with increase in temperature.

Using the relation in Equation (27), we obtain the heat capacity at constant pressure

CP = −π2L2

9β2 +
πL
β
− 1 + · · · , (50)

which is negative even though CV is positive.
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Finally, from the identity in Equation (29), we have the adiabatic compressibility

κS =
3β2

π

[
1 +

9β

πL
+

72β2

π2L2 + O(
β3

L3 )

]
, (51)

which is positive in contrast to a negative κT . If we view the quantum field in the spatial
circle as a closed system, then its evolution satisfies the adiabatic condition. A positive κS
means that when the volume decreases, the pressure will increase in this adiabatic situation.
Therefore, a stable state may be reached inspite of a negative κT .

Furthermore, we can also consider the fluctuations of various thermodynamic quanti-
ties. First, the fluctuation of the internal energy

〈(∆E)2〉 =
π2L2

36β4 +
πL
3β3 + · · · , (52)

which is proportional to the T4. Next, the pressure fluctuation is given by

〈(∆P)2〉 = π

3β3L
− 3

β2L2 +
3

πβL3 + · · · (53)

which is proportional to T3. Furthermore,

〈(∆E)(∆P)〉 = π

6β3 −
1

β2L
+ · · · (54)

which is again proportional to T3. As in the high temperature limit, E ∼ L/β2 and
P ∼ 1/β2, we have the ratios 〈(∆E)2〉/E2 of the order of 1, and both 〈(∆P)2〉/P2 and
〈(∆E)(∆P)〉/EP proportional to β/L.

3. 4d: Einstein Universe S1 × S3

For thermal fields in the Einstein universe, the topology of spacetime is S1 × S3. The
metric can be written as

ds2 = dτ2 + a2dΩ̄2
3 (55)

where Ω̄3 is the solid angle of a three sphere, and a is the “radius” characterizing the size
of the sphere. The operator H in Equation (2) is now given by

H = − ∂2

∂τ2 −
1
a2 �̄, (56)

where �̄ is the Laplacian on S3. The eigenvalue of �̄ on S3 is [83]

λ̄n = −n(n + 2), (57)

with degeneracy

D̄n = (n + 1)2. (58)

Hence, the eigenvalue of H is

λ = k2
0 +

(
1
a2

)
n(n + 2). (59)
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The corresponding eigenfunctions are

φn0,n(x) =

(
1√

β
eik0τ

)(
1√
a3

Y3(Ω)

)
, (60)

where Y3(Ω) is the hyperspherical harmonics on S3 [84]. Using the eigenvalues, one can
establish the free energy, similar to Equation (6), for the Einstein universe as

F = − 1
2β

lim
s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts−1

∞

∑
n0=−∞

e−t
(

2πn0
β

)2

∞

∑
n=0

(n + 1)2 e−
(

t
a2

)
n(n+2)

]
(61)

As in the analysis for the Einstein cylinder case in the last section, we shall consider
the low and the high temperature expansions separately [85–87].

3.1. Low Temperature Expansion

In the low temperature expansion, it is appropriate to first rewrite the sum over n0
using the Poisson summation formula as in Equation (7). The free energy is therefore
expressed as

F = − 1
4
√

π
lim
s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts− 3

2

∞

∑
n0=−∞

e−n2
0β2/4t

∞

∑
n=0

(n + 1)2 e−
(

t
a2

)
n(n+2)

]
. (62)

To start with, we look at the n0 = n = 0 term. This term is exactly the same as in
Equation (9) which is regularized to zero. We shall therefore neglect it in the following. For
n0 = 0 and n 6= 0 in Equation (62), we evaluate the t-integral to give

F|n0=0,n 6=0

= lim
s→0

d
ds

(− 1
4
√

π

)(
µsΓ(s− 1

2 )

Γ(s)

)
∞

∑
n=1

(n + 1)2
(

a2

n(n + 2)

)s− 1
2

 (63)

Here we concentrate on the sum

∞

∑
n=1

(n + 1)2
(

1
n(n + 2)

)s− 1
2
=

∞

∑
n=0

(n + 2)2
(

1
(n + 3)(n + 1)

)s− 1
2

(64)

Using the Plana summation formula

∞

∑
n=0

f (n) =
∫ ∞

0
dx f (x) +

1
2

f (0) + i
∫ ∞

0
dy
(

f (iy)− f (−iy)
e2πy − 1

)
, (65)

it is possible to evalute this sum as an analytic function of s [88,89].

∞

∑
n=1

(n + 1)2
(

1
n(n + 2)

)s− 1
2
=

(
− 1

16

)
1
s
− 0.411461 + · · · (66)

With these considerations, we have the n0 = 0 part of the free energy,

F|n0=0 = −0.224909
a

− 1
32a

ln
(

µa2
)

(67)
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which represents the contribution from the Casimir effect. This result is exactly the same as
the effective potential obtained in [88]. The dependence on µ in the free energy occurs in
all Einstein universes with spatial odd spheres. The corresponding zeta function at s = 0 is
nonzero and hence contributes to a lnµ term.

For n0 6= 0 and n = 0, we evaluate the t-integral to give

F|n0 6=0,n=0 =

(
− 1

2
√

π

)
lim
s→0

d
ds

[(
µs

22s−1Γ(s)

)
Γ(

1
2
− s)ζ(1− 2s)

]
=

1
2β

ln(µβ2). (68)

This is the contribution from the zero mode as we have discussed in the last section.
This same expression will be present in the low temperature expansions of the free energy
in all the cases we consider in this paper.

For n0 6= 0 and n 6= 0, we again evaluate the t-integral first to obtain

F|n0 6=0,n 6=0 =
∞

∑
n0,n=1

(
− (n + 1)2

n0β

)
e
√

n(n+2) n0β/a

= − 4
β

e−
√

3β/a + · · · (69)

The n0 6= 0 and n 6= 0 contribution to the free energy in the low energy expansion is
exponentially small, and combining the various parts we have

F = −0.224909
a

− 1
32a

ln(µa2) +
1

2β
ln(µβ2) + · · · (70)

where the ellipsis represents exponentially small terms.
With the above Helmholtz free energy in the low temperature expansion, we derive

the various thermodynamic quantities. For the entropy

S = 1− 1
2

ln(µβ2) + · · · (71)

which is the entropy of the zero mode with the same expression as in Equation (15).
For the internal energy

E = −0.224909
a

− 1
32a

ln(µa2) +
1
β
+ · · · , (72)

and the energy density, with the volume of the three sphere V = 4π2a3,

ρ =
E
V

= −0.00570
a4 − 1

128π2a4 ln(µa2) +
1

4π2a3β
+ · · · . (73)

The leading behavior in the low temperature expansion comes from the first two terms.
They constitute the Casimir contribution which is µ dependent. Moreover, the pressure

P = −0.00274258
a4 − 1

192π2a4 ln(µa2) + · · · (74)

which is negative due to the Casimir terms and is also dependent on µ.
From the entropy S, we derive the heat capacity at constant volume

CV = 1 + · · · (75)
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which is basically a constant with the temperature terms exponentially suppressed. From
the pressure P, we obtain the isothermal compressibility

κT = −a4
[

0.00330496 +
1

144π2 ln(µa2)

]−1
+ · · · (76)

which is negative and dependent on µ. Again, the temperature-dependent terms are expo-
nentially suppressed. Since the temperature-dependent terms in P are exponentially small,
the thermal expansion coefficient α which depends on ∂P/∂T is therefore exponentially
small too. For the same reason, the heat capacity at constant pressure CP ∼ CV up to
exponentially small terms. The same applies to the two compressibilities κS ∼ κT .

With CV and κT , we can derive the fluctuation of the internal energy

〈(∆E)2〉 = 2π2

βa

[
(0.00274258 + 0.000527714 ln(µa2))2

0.00330496 + 0.000703619 ln(µa2)

]
+

1
β2 + · · · (77)

which is proportional T. Note that since κT is negative and the fluctuation should be a
positive quantity, we have taken the absolute value of κT in the formula for 〈(∆E)2〉. The
fluctuation of P is related to the adiabatic compressibility κS. Again we take its absolute
value in the formula.

〈(∆P)2〉 = 1
βa7

[
0.000167431 + 0.0000356458 ln(µa2)

]
+ · · · (78)

which is also proportional to T and dependent on the renormalization scale. Moreover, the
correlation between the fluctuations of E and P,

〈(∆E)(∆P)〉 = − 1
βa4

[
0.00274258 + 0.000527714 ln(µa2)

]
+ · · · (79)

It is interesting to see that here all the thermodynamic quantities and their fluctuations
depend on the renormalization scale µ. This dependence indicates that the thermody-
namics of a quantum field in the Einstein universe involves divergent quantities and a
renormalization procedure is needed to define the various physically measureable quan-
tities. As we shall see in the following section, this is not the case with even spatial S2

and S4 dimensional spheres. Actually, the dependence on µ comes from the fact that we
have an odd-dimensional sphere (S3) here. We would expect the same kind of dependence
to occur for all odd spheres or (when adding in the time dimension) even-dimensional
spacetimes [90].

3.2. High Temperature Expansion

In this subsection, we concentrate on the high temperature expansion for the Einstein
universe with β/a� 1. In this case, we consider the Helmholtz free energy in Equation (61).
Here, we would neglect the n0 = n = 0 term. This term is independent of the temperature T
as well as the size a of the spatial three sphere. Although it is formally divergent, it should be
subtracted in the renormalization procedure.

For the n0 = 0, n 6= 0 contribution to the free energy,

Fn0=0,n 6=0 = − 1
2β

lim
s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts−1

∞

∑
n=1

(n + 1)2 e−
(

t
a2

)
n(n+2)

]

= − 1
2β

lim
s→0

d
ds

{
(µa2)s

∞

∑
n=1

(n + 1)2[n(n + 2)]−s

}
. (80)
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We apply the Plana summation formula, as in Equation (65), to the sum

∞

∑
n=1

(n + 1)2[n(n + 2)]−s =
∞

∑
n=0

(n + 2)2[(n + 1)(n + 3)]−s

= −1− 1.20563 s + · · · (81)

This shows that the sum as an analytic function of s is well behaved near s = 0. The
n0 = 0, n 6= 0 contribution to the free energy can therefore be written as

Fn0=0,n 6=0 =
0.60282

β
+

1
2β

ln(µa2). (82)

Next, we consider the n0 6= 0 part of the free energy

F|n0 6=0 = − 1
β

lim
s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts−1

∞

∑
n0=1

e−t
(

2πn0
β

)2

∞

∑
n=0

(n + 1)2 e−
(

t
a2

)
n(n+2)

]
(83)

We concentrate on the sum over n. In the high temperature limit, we are interested
in the asymptotic behavior of this sum [91] when a is large or as a power series in t/a. To
develop such a series, we again use the Plana summation formula in Equation (65).

∞

∑
n=0

(n + 1)2 e−
(

t
a2

)
n(n+2)

=

(
a√
t

)3
[√

π

4
+

√
π

4

(
t
a

)
+

√
π

8

(
t
a

)2
+ · · ·

]
. (84)

With this asymptotic expansion, one can evaluate Equation (83) as a power series in
β/a.

F|n0 6=0 = −π4a3

45β4 −
π2a
12β2 −

1
32a

[
2γ + ln

(
µβ2

16π2

)]
+ · · · (85)

where γ is the Euler constant.
With Equations (82) and (85), the free energy in the high temperature expansion is

then given by

F = −π4a3

45β4 −
π2a
12β2 +

0.60282
β

+
1

2β
ln(µa2)− 1

32a

[
2γ + ln

(
µβ2

16π2

)]
+ · · · (86)

From this free energy, we again derive the various thermodynamic quantities.
For the entropy,

S =
4π4a3

45β3 +
π2a
6β
− 1

2
ln(µa2)− 0.60282− β

16a
+ · · · (87)

which is proportional to T3 in the leading behavior. Note that it is dependent on the
renormalization scale µ but only in the subleading term. For the internal energy,

E =
π4a3

15β4 +
π2a
12β2 −

1
32a

[
2 + 2γ + ln

(
µβ2

16π2

)]
+ · · · . (88)
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With the volume of the three sphere as V = 2π2a3, the first term of the internal energy
E is π2V/30β4 which is again the Stefan’s law in flat spatial three dimensions. Indeed, in
the infinite space limit, a→ ∞, the energy density

ρ|a→∞ =
E|a→∞

V
=

π2

30β4 . (89)

As for the pressure,

P =
π2

90β4 +
1

72β2a2 −
1

6π2βa3 −
1

192π2a4

[
2γ + ln

(
µβ2

16π2

)]
+ · · · . (90)

The first term gives the pressure in the infinite space limit,

P|a→∞ =
π2

90β4 =
ρ|a→∞

3
(91)

which is the equation of state for a massless relativistic ideal gas in flat three spatial
dimensions.

For the heat capacity at constant volume

CV =
4π4a3

15β3 +
π2a
6β

+
β

16a
+ · · · (92)

which is proportional to T3 in the leading term and is independent of µ. Furthermore, the
isothermal compressibility κT is

κT = 108β2a2 +

(
1944
π2

)
β3a +

81β4

π2

[
432
π2 + 2γ + ln

(
µβ2

16π2

)]
+ · · · . (93)

From the isothermal compressibility, one can obtain the thermal expansion coefficient
α, the heat capacity at constant pressure CP, and the adiabatic compressibility κS. They are,
respectively,

α =
24π2a2

5β
+

432 a
5

+
18β

5

[
5
6
+

432
π2 + 2γ + ln

(
µβ2

16π2

)]
+ · · · . (94)

CP =
32π6a5

75β5 +
192π4a4

25β4 +
8π4a3

25β3

[
5
2
+

432
π2 + 2γ + ln

(
µβ2

16π2

)]
+ · · · . (95)

κS =
135β4

2π2 −
675β6

8π4a2 +
10125β7

8π6a3 + · · · . (96)

The relationship between the heat capacities is CP = CV + β3VκT(∂P/∂β)2. In the
present high temperature expansion, the second term which is of the order of (a/β)5

dominates over the first term which is only of the order (a/β)3. Hence, we have CP � CV .
For the same reason, since κS = (CV/CP)κT , we have κT � κS.

Next, we give the fluctuations for various thermodynamic quantities in the high
temperature expansion. For the internal energy fluctuation,

〈(∆E)2〉

=
6π6a5

25β7 +
108π4a4

25β6 +
9π4

50β5

[
70
27

+
432
π2 + 2γ + ln

(
µβ2

16π2

)]
+ · · · . (97)

For the pressure fluctuation,

〈(∆P)2〉 = 1
135β5a3 +

1
108π2β3a5 −

5
36π4β2a6 + · · · . (98)
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Lastly, the correlated fluctuation of E and P is

〈(∆E)(∆P)〉 = π2

90β5 +
1

72β3a2 −
1

6π2β2a3 + · · · . (99)

We see that in this high temperature expansion, 〈(∆E)2〉 is proportional to T7, while
both 〈(∆P)2〉 and 〈(∆E)(∆P)〉 are proportional to T5.

4. Even Spatial Dimensions: S1 × S2 and S1 × S4

In the last section we have considered the Einstein universe with a spatial three sphere.
The consideration there can be extended to Einstein universes with the general topology of
S1 × Sd−1 with a spatial (d− 1)-sphere. The metric is given by

ds2 = dτ2 + a2dΩ̄2
d−1 (100)

where Ω̄d−1 is the solid angle of the (d− 1)-sphere. Here the eigenvalue of the Laplacian �̄
on Sd−1 is given by [83]

λ̄n = −n(n + d− 2), (101)

and the degeneracy is

D̄n =
(2n + d− 2)(n + d− 3)!

n!(d− 2)!
(102)

Using λ̄n and D̄n, one can write the Helmholtz free energy in this generalized Einstein
universe as

F = − 1
2β

lim
s→0

d
ds

[
µs

Γ(s)

∫ ∞

0
dt ts−1

∞

∑
n0=−∞

e−t
(

2πn0
β

)2 ∞

∑
n=0

D̄ne−
(

t
a2

)
λ̄n
]

. (103)

With analyses similar to those in the last section, one can derive the corresponding free
energy F in both the low temperature and the high temperature expansions for any value of
the dimension d. Then, one can derive the various thermodynamic quantities from the free
energy. In the following subsections, we shall work out the d = 3 and d = 5 cases explicitly.
Together with the case d = 4 in the last section, we can have a better understanding in how
the various thermodynamic quantities depend on the spacetime dimension [86,90].

4.1. Low Temperature Expansion

In the low temperature expansion with a/β � 1, we first rewrite the sum over n0
in Equation (103) using the Poisson summation formula, as in Equation (62) for the 4d
Einstein universe case. Then, following similar considerations there, we obtain the free
energies for the d = 3 and d = 5 Einstein universe cases.

F|d=3 = −0.132548
a

+
1

2β
ln(µβ2) + · · · ,

F|d=5 = −0.215872
a

+
1

2β
ln(µβ2) + · · · , (104)

where the ellipsis represents terms which are exponentially small. Comparing with the free
energy of d = 4 Einstein universe in Equation (70), we see that in the free energies above,
the term ln(µa2)/a is missing. This can be traced back to the sum in Equation (66), where
the sum, as an analytic function of s, has a pole at s = 0. This is characteristic for this kind
of sums on unit odd dimensional spheres. On the other hand, for even spheres like S2 and
S4, the corresponding sums would be power series in s without pole singularities at s = 0.
For this reason, the free energies above for the d = 3 and d = 5 Einstein universes do not
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contain terms like ln(µa2)/a. Subsequently, as we shall see below, the compressibilities κT
and κS, and the thermal expansion coefficient α, together with the various fluctuations, will
not depend on the renormalization scale µ.

Using these free energies, we derive the entropies

S|d=3 = 1− 1
2

ln(µβ2) + · · · ,

S|d=5 = 1− 1
2

ln(µβ2) + · · · . (105)

Both have a dependence on the renormalization scale µ. From the entropies, we have
the heat capacities at constant volume,

CV |d=3 = 1 + · · · ,

CV |d=5 = 1 + · · · . (106)

which are constant except for exponentially small terms. The corresponding quantities of
the Einstein universe in the last section have the same form as the ones above. Therefore, we
would expect that this is true for all the Einstein universes with general (d− 1) dimensional
spatial spheres.

The internal energies

E|d=3 = −0.132548
a

+
1
β
+ · · · ,

E|d=5 = −0.215872
a

+
1
β
+ · · · , (107)

and the corresponding energy densities

ρ|d=3 = −0.0105478
a3 +

1
4πβa2 + · · · , (108)

ρ|d=5 = −0.00820215
a5 +

3
8π2βa5 + · · · . (109)

The first term in both expressions represents the Casimir energy. Other than the
exponentially small terms, there is also one term proportional to T. We expect Einstein
universes with odd spacetimes dimensions to have the same behaviors for E and ρ as above.
Moreover, for Einstein universes with even spacetime dimensions, there should be an extra
term proportional to ln(µa2)/a as shown in Equations (72) and (73) in the last section.

For the pressures in these cases,

P|d=3 = −0.00527392
a3 + · · · ,

P|d=5 = −0.00205054
a5 + · · · . (110)

The Casimir pressures in both cases are negative. This is true for all the cases we
have considered in the previous sections in the low temperature expansion. From the
expressions for the pressures, one can derive the isothermal compressibilities

κT |d=3 = −126.408 a3 + · · · ,

κT |d=5 = −390.141 a5 + · · · . (111)

Both isothermal compressibilities are negative due to the negative pressure. This is also
true for all the isothermal compressibilities in all the cases we have considered. However,
unlike κT in the 4d Einstein universe but similar to the Einstein cylinder case, the isothermal
compressibilities here are not dependent on µ. Since the pressures P are dominated by the
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Casimir effect which is independent of temperature, the thermal expansion coefficients are
exponentially small in these case. Furthermore, for the same reason, we have CP ∼ CV and
κS ∼ κT up to exponentially small terms.

Finally, we layout the expressions for the various fluctuations. For the internal energy,

〈(∆E)2〉|d=3 = 0.0441827
(

1
βa

)
+

1
β2 + · · · ,

〈(∆E)2〉|d=5 = 0.0431744
(

1
βa

)
+

1
β2 + · · · . (112)

For the pressure,

〈(∆P)2〉|d=3 = 0.000629528
(

1
βa5

)
+ · · · ,

〈(∆P)2〉|d=5 = 0.0000973889
(

1
βa9

)
+ · · · , (113)

The fluctuations are proportional to T. This is true for all the cases we have considered.
In addition, the correlated fluctuations of E and P,

〈(∆E)(∆P)〉|d=3 = −0.00527392
(

1
βa3

)
+ · · · ,

〈(∆E)(∆P)〉|d=5 = −0.00205054
(

1
βa5

)
+ · · · , (114)

which are also proportional to T.
Since the energies and the pressures in the low temperature limit are all dominated

by the Casimir effect, their leading behaviors are independent of T. Therefore, the ratios
〈(∆E)2〉/E2, 〈(∆P)2〉/P2, and 〈(∆E)(∆P)〉/EP go like a/β or aT in the low temperature
limit. Fluctuations of all Einstein universes in the low temperature expansion have similar
behavior, except that for even spacetimes the fluctuations will have dependences on the
renormalization scale µ, while here for odd spacetimes they will not.

4.2. High Temperature Expansion

In this subsection we develop the high temperature expansion with β/a� 1. For the
Helmholtz free energies in Equation (103), we again use the same procedure as in the 4d
Einstein universe case in Section 3 to obtain

F|d=3 = −2ζ(3)a2

β3 +

(
1
β

)[
0.580842 +

1
3

ln(µa2) +
1
6

ln(µβ2)

]
− β

360a2 −
β3

113400a4 + · · · ,

F|d=5 = −2ζ(5)a4

β5 − 2ζ(3)a2

3β3

+

(
1
β

)[
0.276064 + 0.338889 ln(µa2) +

29
180

ln(µβ2)

]
− 37β

4536a2 + · · · . (115)

The corresponding entropies are
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S|d=3 =
6ζ(3)a2

β2 −
[

0.247509 +
1
3

ln(µa2) +
1
6

ln(µβ2)

]
− β2

360a2 −
β4

37800a4 + · · · ,

S|d=5 =
10ζ(5)a4

β4 +
2ζ(3)a2

β2

+

[
0.0461582− 0.338889 ln(µa2)− 29

180
ln(µβ2)

]
− 37β2

4536a2 + · · · . (116)

The internal energies are

E|d=3 =
4ζ(3)a2

β3 +
0.333333

β
− β

180a2 −
β3

28350a4 + · · · ,

E|d=5 =
8ζ(5)a4

β5 +
4ζ(3)a2

3β3 +
0.322222

β
− 37β

2268a2 + · · · . (117)

The first terms again give the flat space limit of the internal energy. Hence, as a→ ∞,
we have the energy density

ρ|d=3,a→∞ =
E|d=3,a→∞

4πa2 =
ζ(3)
πβ3 ,

ρ|d=5,a→∞ =
E|d=5,a→∞( 8

3 π2a4
) =

3ζ(5)
π2β5 . (118)

For the pressures

P|d=3 =
ζ(3)
2πβ3 −

1
12πβa2 −

β

1440πa4 −
β3

226800πa6 + · · · ,

P|d=5 =
3ζ(5)
4π2β5 +

ζ(3)
8π2β3a2 −

0.00643812
βa4 − 37β

24192π2a6 + · · · . (119)

The first terms give the flat space limit. As a→ ∞, we see that P will be proportional
to the energy density ρ in Equation (118).

P|d=3,a→∞ =
ζ(3)
2πβ3 =

1
2

ρ|d=3,a→∞,

P|d=5,a→∞ =
3ζ(5)
4π2β5 =

1
4

ρ|d=5,a→∞. (120)

This is consistent with the equation of state of a massless relativistic ideal gas, P = ρ/n,
in a n-dimensional flat space. From the entropies above, we can also work out the heat
capacities at constant volume.

CV |d=3 =
12ζ(3)a2

β2 +
1
3
+

β2

180a2 +
β4

9450a4 + · · · ,

CV |d=5 =
40ζ(5)a4

β4 +
4ζ(3)a2

β2 +
29
90

+
37β2

2268a2 + · · · . (121)
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From the pressures, we can derive the isothermal compressibilities,

κT |d=3 = −12πβa2 +
πβ3

5
− πβ5

700a2 + · · · ,

κT |d=5 =
16π2β3a2

ζ(3)
+ 111.109β5 +

97.9843β7

a2 + · · · . (122)

This result is a little bit surprising as we see that κT |d=3 is negative in the high tem-
perature limit, while the isothermal compressibilities for d = 4 and 5 are both positive in
the same limit. We have discussed this point briefly in the last section on the isothermal
compressiblity of the d = 4 Einstein universe in the high temperature expansion. Here,
if we look at the expressions for the pressure P above in Equation (119), we see that the
leading terms of P are independent of a. Since κT is proportional to the inverse of ∂P/∂a,
the sign of κT would depend on the sign of the second terms in Equation (119). Interestingly,
for d = 3, the second term of P is negative, while for d = 5, this term is positive. In fact,
although we have not detailed here, one can show that this term is negative only for d = 3,
and it is positive for all other dimensions d ≥ 4. Hence, we have the peculiar result that κT
is negative only for the d = 3 Einstein universe, and positive for all other Einstein universes.

Since the thermal expansion coefficient α is proportional to κT , we have a negative α
for d = 3 and positive α for dimensions d ≥ 4. Indeed, we have

α|d=3 = −18ζ(3)a2

β
+ 1.36062β− 0.0275758β3

a2 + · · · ,

α|d=5 =
60ζ(5)a2

ζ(3)β
+ 49.7752β +

42.8332β3

a2 + · · · . (123)

This is also true for the heat capacities at constant pressure,

CP|d=3 = −108ζ(3)2a4

β4 +
31.4503a2

β2 − 0.379195 + · · · ,

CP|d=5 =
600ζ(5)2a6

ζ(3)β6 +
619.826a4

β4 +
500.021a2

β2 + · · · . (124)

Note that the relationship between CP and CV is CP = CV + β2VκT(∂P/∂β)2. Here, in
the high temperature expansion, the second term, which is proportional to κ, dominates
over the first one. Hence, the sign of CP is determined by κT , and we have CP negative for
d = 3 and positive for all other dimensions d ≥ 4.

It is interesting to see that, for the adiabatic compressibilities,

κS|d=3 =
4πβ3

3ζ(3)
+

0.724734β5

a2 +
0.138007β7

a4 + · · · ,

κS|d=5 =
16π2β5

15ζ(5)
− 1.96158β7

a2 +
1.45329β9

a4 + · · · . (125)

they are both positive. This is due to the relation κS = (CV/CP)κT . For d = 3, both CP and
κT are negative but the ratio is positive. Therefore, κS is positive in both cases.

Lastly, we also list the fluctuations for E and P for completeness. For the energy
fluctuations,

〈(∆E)2〉|d=3 =
69.3572a4

β6 +
13.2687a2

β4 +
0.501864

β2 + · · · ,

〈(∆E)2〉|d=5 =
343.481a6

β8 +
398.348a4

β6 +
320.334a2

β4 + · · · . (126)
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For the pressure fluctuations,

〈(∆P)2〉|d=3 =
0.0228363

β4a2 − 0.00474943
β2a4 +

0.0000833667
a6 + · · · ,

〈(∆P)2〉|d=5 =
0.00374241

β6a4 +
0.000723064

β4a6 − 0.000396002
β2a8 + · · · . (127)

For the correlated fluctuations of E and P,

〈(∆E)(∆P)〉|d=3 =
0.191313

β4 − 0.0265258
β2a2 − 0.000221049

a4 + · · · ,

〈(∆E)(∆P)〉|d=5 =
0.0787971

β6 +
0.0152242

β4a2 − 0.00643812
β2a4 + · · · . (128)

From these results and also the ones in the last section for the d = 4 Einstein universe,
we have in the high temperature expansion, 〈(∆E)2〉 proportional to Td+3, and both 〈(∆P)2〉
and 〈(∆E)(∆P)〉 proportional to Td+1. We also have the rations 〈(∆E)2〉/E2 proportional
to (β/a)d−3, and both 〈(∆P)2〉/P2 and 〈(∆E)(∆P)〉/EP proportional to (β/a)d−1.

5. Conclusions and Discussions

In this paper, towards the loftier goal of exploring the relationship between quantum
fields, spacetimes and thermodynamics, we take on a more manageable task, of finding
a thermodynamic description of the fluctuations of the stress energy of quantum fields
in several generic static spacetimes. We have derived expressions for the heat capacity at
constant volume and pressure, as well as the isothermal and adiabatic compressibility of
a thermal scalar quantum field in a 2d (1 time and 1 space) Casimir space, a 2d Einstein
cylinder, and 3d, 4d, 5d (spatial S2, S3, S4) Einstein universes. We now analyze these results
considering these factors: comparison between cases with positive and negative heat
capacity and compressibility, effects of curvature, topology and dimensionality. Our next
paper [20] will deal with the same issues in dynamical spacetimes relevant to cosmology.
No longer is the imaginary-time finite temperature field theory applicable in these cases.
Concepts such as squeezing and techniques in nonequilibrium quantum field theories are
required for their treatment. We also need to find a good definition of compressibility for
noncompact spacetimes such as in the flat and open universes.

Our results are summarized in Tables 1 and 2. In Table 1, the leading behaviors of
various thermodynamic quantities of a minimally coupled massless scalar field in the low
temperature expansion are tabulated. We can see that the energy density ρ, the pressure P,
the compressibilities κT and κS are all negative. This is because the leading behaviors are
mostly dominated by the Casimir effect. We therefore have the universal feature that the
compressibilities in the low temperature limit, in the Einstein cylinder and all the Einstein
universes studied here, are negative. In fact, the magnitude of the negative pressure is
inversely proportional to the size of the spatial geometry, meaning that it would compress
the spatial geometry, and while the circle or the sphere gets smaller, the shrinking pressure
would get larger. The process is similar to an accelerated gravitational collapse. This is
actually the mechanism behind the so-called spontaneous compacification of the extra
dimensions in the Kaluza–Klein scenario [92,93].
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Table 1. Low temperature leading behaviors of various thermodynamic quantities.

d = 2 3 4 5

ρ −π/6L −0.0105478/a3 Equation (73) −0.00820215/a5

S 1− 1
2 ln(µβ2) 1− 1

2 ln(µβ2) 1− 1
2 ln(µβ2) 1− 1

2 ln(µβ2)
CV 1 1 1 1
CP 1 1 1 1
P −π/6L2 −0.0053/a3 Equation (74) −0.0021/a5

κT −3L2/π −126a3 Equation (76) −390a5

κS −3L2/π −126a3 Equation (76) −390a5

α ∼ e−2πβ/L ∼ e−
√

2β/a ∼ e−
√

3β/a ∼ e−2β/a

Since the Casimir effect is solely controlled by the spatial geometries, the leading
behavior of the free energy is independent of temperature T or β. The temperature-
dependent terms are subdominate. They are related to the entropy S and the heat capacities
CV and CP as derivatives of the free energy with respect to the temperature. In all cases in
the low temperature expansion, the subleading contribution to the free energy comes from
the zero mode with FZM = 1

2β ln(µβ2). From this we obtain the leading behaviors of S, CV ,
and CP as follows:

SZM = 1− 1
2

ln(µβ2) + · · ·

(CV)ZM = 1 + · · · ; (CP)ZM = 1 + · · · (129)

As we have mentioned before, SZM apparently violates the third law of thermody-
namics. If the zero mode is ignored in the calculation of the free energy, the temperature-
dependent part of the free energy would come from exponentially small terms. Then, S,
CV , and CP would all be exponentially small.

Another interesting feature in Table 1 is that for the d = 4 Einstein universe, the various
thermodynamic quantities, except α, are explicitly dependent on the renormalization scale
µ. In fact, as we have discussed earlier, this feature is also true for all Einstein universes
with odd dimensional spatial spheres. This can be traced back to the sum like Equation (66),

f (s) =
∞

∑
n=1

D̄n

(
1

λ̄n

)s− 1
2
, (130)

where λ̄n and D̄n are, respectively, the eigenvalue and the degeneracy of the Laplacian
on a sphere. For odd spheres, as in Equation (66), the function f (s) has a pole singularity
at s = 0, and this induces the renormalization scale dependence of the thermodynamic
quantities. For even spheres, the function f (s) is analytic at s = 0 without the pole term,
and hence there is no µ dependence for the thermodynamic quantities [89,90].

Table 2. High temperature leading behaviors of various thermodynamic quantities.

d = 2 3 4 5

ρ π/6β2 ζ(3)/πβ3 π2/30β4 3ζ(5)/π2β5

S πL/3β 6ζ(3)a2/β2 4π4a3/45β3 10ζ(5)a4/β4

CV πL/3β 12ζ(3)a2/β2 4π4a3/15β3 40ζ(5)a4/β4

CP −π2L2/9β2 −108(ζ(3))2a4/β3 32π6a5/75β5 600(ζ(5))2a6/ζ(3)β5

P π/6β2 ζ(3)/2πβ3 π2/90β4 3ζ(5)/4π2β5

κT −βL −12πβa2 108β2a2 16π2β3a2/ζ(3)
κS 3β2/π 4πβ3/3ζ(3) 135β4/2π2 16π2β5/15ζ(5)
α −πL/3 −18ζ(3)a2/β 24π2a2/5β 60ζ(5)a2/ζ(3)β
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In Table 2, the leading behaviors of the thermodynamic quantities in the high tempera-
ture expansion are tabulated. One can see that the leading behaviors coincide with those of
a massless relativistic ideal thermal gas in d-dimensional flat spacetimes, with the equation
of state P = ρ/(d− 1). More specifically, the leading behaviors of P and ρ are both of the
order of Td, independent of the size of the spatial sphere.

For d = 2 and 3, we have the peculiar results that κT , CP, and α are negative although
the pressure P itself is positive. This is related to the subleading terms of P as shown in
Equations (46) and (119). We can see that the leading terms are positive but the subleading
terms are negative. Therefore, with κT being related to the inverse of ∂P/∂a, it is also
negative. Due to this negative sign of κT , the thermal expansion coefficient α and the heat
capacity at constant pressure CP would both be negative. Note that since κS = (CV/CP)κT
and the signs of κT and CP cancel to give a positive adiabatic compressibility κS. On the
other hand, for d ≥ 4, the subleading term of P, as exemplified in Equation(90) for d = 4
and Equation (119) for d = 5, is again positive so we have all the thermodynamic quantities
positive for all dimensions d ≥ 4. One may wonder if this peculiar behavior of a thermal
quantum field in d = 2 Einstein cylinder and d = 3 Einstein universe would be related to
the peculiarity of gravity in 1 + 1 and 2 + 1 spacetime dimensions [94,95].

In our next paper [20] we shall consider dynamical quantum fields and use the
nonequilibrium free energy density discovered in [5] to explore the quantum capacity
and vacuum compressibility of the Universe.
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Note
1 Relevant to the underlying theme of our inquiry is how geometry and topology play a role in determining the thermodynamic

properties of spacetimes, and to what extent we can derive these properties from the thermodynamic properties of quantum
fields. A beautiful example of the former approach is Wald’s proof of the Bekenstein-Hawking (B-H) entropy as the Noether
charge of diffeomorphism symmetry [11]. An example of the latter approach (taken by many particle/field theorists) is Frolov
and Fursaev’s [12] derivation of the B-H entropy the spacetime by working with the thermal field outside of the black hole
horizon. Here, we are not saying anything, or implying to say that our work can reveal anything, about the microscopic structrues
of spacetime. That belongs to the realm of quantum gravity in its multifarious forms, formulations, approaches and emphasis.
To name just two familiar historical proposals. In string theory Strominger and Vafa [13] proposed the B-H entropy can be
derived by counting the degeneracy of BPS solition bound states. In loop quantum gravity, Ashtekar et al. [14] showed that the
constant of proportionality in the B-H entropy formula is determined by the Immirzi parameter, which fixes the spectrum of the
area operator.
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