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Simple Summary: Simple summary We review a set of the possible ways to constrain extended
gravity models at Galaxy clusters scales (the regime of dark energy explanations and comparison
with ΛCDM), for black hole shadows, gravitational wave astronomy, binary pulsars, the Solar system
and a Large Hadron Collider (consequences for high-energy physics at TeV scale).

Abstract: We review a set of the possible ways to constrain extended gravity models at Galaxy
clusters scales (the regime of dark energy explanations and comparison with ΛCDM), for black hole
shadows, gravitational wave astronomy, binary pulsars, the Solar system and a Large Hadron Collider
(consequences for high-energy physics at TeV scale). The key idea is that modern experimental and
observational precise data provide us with the chance to go beyond general relativity.
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1. Introduction

The theory of General Relativity (GR) is confirmed in all projects of experimental
astronomy. However, the problems of dark energy, dark matter, the evolution of the early
Universe, and the quantum theory of gravity remain open. For example, the theoretical
description of the Universe’s accelerated expansion (i.e., dark energy) is realised by adding
the cosmological constant to the GR action L as

LGRΛ =
√
−g
(

R + Λ
)
, (1)

where R is Ricci scalar and Λ is the cosmological constant. The problem is that Λ-term
is the best fit for the observational data. On the other hand, from the fundamental point
of view, it appears to be a pure fine-tuning parameter. The next step is to consider an
additional scalar field φ in the form of Brans–Dicke model

LBD =
√
−g
(

φR +
ω

φ
∂µφ∂µφ + V(φ)

)
. (2)

Such a model can reproduce the cosmological constant contribution with the help of
taking the appropriate form of V(φ). Now, one has to find the origin of the scalar field in
Equation (2). The same problem occurs with the inflation stage: accelerated expansion of
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the early Universe. Mathematically, the power law asymptote of scale factor is changed to
an exponential one. The inflation also can be modelled by the model, as in Equation (2) and
in such a case, the scalar field is called “inflaton”. As a consequence, one meets the question
on the fundamental physical origin of inflaton. Of course, the list of such phenomena is
more wide. Therefore, the extension of GR by additional physical fields or curvature terms
[1] could be the next step in finding the origin of these phenomena.

GR extending could proceed in different ways. One can add the curvature invariants
or pure degrees of scalar curvature and obtain f (R) gravity [2]. These curvature corrections
can reproduce the necessary behaviour, but once again, one meets the question of their
origin. About ten years ago, the application of Horndesky theory [3,4] (the most general
form of scalar tensor gravity with second-order field equations) became very popular.
The successful development of Horndesky theory was corrected by GW170817 event [5].
So, a Binary Neutron Star Merger was detected. In addition to gravitational wave, an
electromagnetic signal was also registered. Based on the time delay (about 2 s) between
these types of radiation arrivals, the graviton mass value was limited [6,7]. This limitation
made a cutoff of a big class of extended gravity models where graviton mass appeared to be
greater. Therefore, during the last few years, a set of beyond Horndesky models forming a
class of Degenerate Higher-Order Scalar–Tensor theories (DHOST) was developed [8]. The
ideas of f (R) gravity as more simple model [2] were also developed. The set of extended
gravity models is wider. We restrict ourselves to the discussion on scalar–tensor gravity
models, as they developed rather well, and the corresponding constraints look maximally
clear. Of course, the list of models and corresponding constraints could be continued.

Note that currently, there is no preferred extended gravity model. A lot of versions in
each class exist. A possible way to narrow down the amount of extended gravity models
is to compare these predictions with real astrophysical data [9,10]. To extract the models
that give more accurate predictions or require less fine-tuning, it is desirable to consider
the maximally wide range of energies and distances: from galaxy clusters to high-energy
physics. Therefore, we discuss a set of astrophysical tests for extended gravity models.
Note that this list is far from being complete and represents only a small set of examples
(open for extension).

We start the consideration from the scales of galaxy clusters. At these ranges, the
contribution of accelerated expansion (dark energy) becomes considerable. Earlier, it
was suggested to use the turn-around radius [11,12]. Recall that turnaround radius is a
hypothetical surface where the internal gravitational force is equated by the accelerated
expansion one. From one side, the value of the turnaround radius could be estimated using
observational data on cluster sizes. Such assumptions could be obtained from gravitational
lensing. From the other side, this value can be directly calculated from GR. As a first
approximation, spherically symmetric space–time could be taken. Extended gravity models
has different spherically symmetric metrics so one obtains the possibility of comparing the
calculated values with observational ones to find the best correspondence.

The next step is to check the predictions of extended gravity models for shadows
of black holes (BH). From one side, the Event Horizon Telescope is providing images for
M87 [13] with increasing accuracy [14]. From the other side, the shadow size, form, and
other characters depend on BH solution. As BH metrics are specific to each extended
gravity model, here is the other possibility to compare the predictions of extended gravity
models with Event Horizon Telescope observational results.

The same approach is applicable in order to find the constraints from gravitational
wave astronomy [15]. The LIGO collaboration continues to collect data [16] on neutron
stars and black-hole mergers [17]. From the other side, different extended gravity models
provide different descriptions for gravitational waves, so their comparison could provide
new information. Continuation of astronomical tests seems to be impossible without the
most accurate data in astronomy: pulsar timing [18], especially for PSR-1913+16 [19]. The
idea to use pulsar data for strong field tests of relativistic gravity [20] appeared to be
very fruitful. Now it can be applied for extended gravity models. The idea is the same
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as previously: to reproduce the values of post-Keplerian formalism using the specific
extended gravity model parameters, then to extract the model that better reproduces the
observational results [21].

The decreasing of the distances leads us to the Solar System ones. The parametric post-
Newtonian (PPN) formalism [22] appears to be very effective to constrain different gravity
models. In the Solar System, one has a competition between the maximal experimental
accuracy versus vanishing additions to GR coming from extended gravity, especially while
using the last data [23].

It is impossible not to mention the ideas of gravity constraining using high-energy
physics data from the Large Hadron Collider (LHC). The well-known idea to search black
holes at LHC [24] (and to discriminate some theories [25]) is not very popular now. Anyway,
LHC data help to put some limitations on gravity in a quantum regime [26].

The paper is organised as follows. Section 2 is devoted to the difference between
extended gravity predictions and general relativity ones at galaxy clusters scales (the
regime of dark energy explanations and comparison with ΛCDM); Section 3 deals with
black hole shadows; Section 4 is devoted to gravitational wave astronomy; Section 5
deals with binary pulsars; Section 6 is devoted to the Solar system; Section 7 deals with
consequences from experimental high-energy physics at TeV scale and Section 8 includes
the concluding remarks.

2. Galaxy Clusters Scales: Dark Energy Explanations

Nowadays the ΛCDM model with the action

S =
1

16π

∫
d4x
√
−g(R + Λ), (3)

where gµν is the space–time metric (with determinant g), R is the Ricci scalar, and Λ is the
cosmological constant, is the best fit for observational data, and provides a good description
of dark energy. So to suggest a good physical interpretation of cosmological constant, it
seems useful to modify GR [27]. Therefore, the models of f (R) gravity (where Λ is treated
as a manifestation of knotty space–time geometry), scalar–tensor ones (where in addition to
the previous one deals with additional fields), modern teleparallel ones (where the complex
fundamental geometry is explored) and other ideas are developing. The first step in each
GR extension leads to Brans–Dicke model

S =
1

16π

∫
d4x
√
−g
(

φR− ω

φ
gµν∇µφ∇νφ−V(φ) + Lmatter

)
, (4)

where φ is scalar field, ω is Brans–Dicke parameter, V(φ) is field potential and Lmatter is
the contribution of matter fields. The model (4) reproduces the contribution of Λ. On the
other hand the question on the origin of Λ changes to the same one on φ. That is why it is
necessary to go further, for example, to f (R) gravity [28]. In the frames of f (R) gravity, a
very interesting model was presented [29]. Being a good fit for Λ, this model is called a
Starobinsky model with a disappearing cosmological constant. Note that further on, the
continuation of this model appeared [30]. This approach allows us to provide the unified
theory both for inflation and dark energy. So the Starobinsky model with disappearing
cosmological constant is described by the following Lagrange density:

f (R) = R + λR0

[1 +
R2

R2
0

]−n

− 1

, (5)

where R0 and n are model parameters. Using the Starobinsky model with a disappearing
cosmological constant as an example, we demonstrate how to constrain the theory at
extra-galactic distances.
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At the range of galaxy clusters, the contribution of Universe-accelerated expansion is
considerable; therefore, the application of the turn-around radius [11,31] looks prospective.
Recall that the turnaround radius is a hypothetical surface where the internal gravitational
forces are equated by the accelerated expansion ones. The value of the turnaround radius is
estimated from observational data, namely cluster size estimates using gravitational lensing
(see, for example, [32–34]). On the other hand, the value of the turnaround radius can be
calculated using spherically symmetric space–time as the first approximation. Different
extended gravity models result in different versions of spherically symmetric metrics. Thus,
it is possible to compare these calculated values with observational estimations to find the
best correspondence. Note that there are a lot of activity in this field, for example, [35–44].

As an example, we show the procedure of the Starobinsky model with vanishing
cosmological model check-up[12]. As a first approximation, it is convenient to take the
metric in quasi-Schwarzschild form:

ds2 = eAdt2 − e−Adr2 − r2dΩ, (6)

where A = A(r) is metric function (for Schwarzschild case A = 1− 2M/r). It is necessary to
note that the usage of Schwarzschild metric (6) here is an approximation. Really, spherically
symmetric solutions for the extended models must have two or more metric functions
[45]. As the Schwarzschild metric could be treated as first terms of the Taylor expansion,
correspondingly r−1 the application of the Schwarzschild metric here could be treated
as the first approximation. Formally, this analysis has to be extended. We restrict this
procedure because of the observational data errors. So, the corresponding field equations
are [46]:

f ′(R)Rii − f (R)
gii
2
− (∇2

i − gii�) f ′(R) = 0. (7)

At the turnaround radius, the first derivative of gravitational potential

φ =
1
2
(g00 − 1) =

1
2
(eA − 1) (8)

must vanish:
dA
dr

= 0. (9)

Solving Equation (9) together with Equation (7) numerically, one finds the dependence
of turnaround radius versus different values of n from Equation (5). The most interesting
mass range begins from 1011MSun (Milky Way) and finishes at 1015MSun (galaxy clusters).
The results are demonstrated at Figure 1, from which one concludes that fewer values of n
provide better approximation of observational data. The same analysis could proceed for
other extended gravity models; for example, the very rough approximation for Horndesky
theory is presented in [47].



Universe 2022, 8, 283 5 of 18

Figure 1. The theoretical and observational assumptions for the dependence of the turnaround
radius value upon the mass of the galaxy cluster. The solid line corresponds to GR. Dots show these
values for Starobinsky model with n = 1 and n = 2. Triangles show the real data from [32–34].
Reprinted/adapted with permission from Ref. [12]. 2017, J. Exp. Theor. Phys.

3. Black Hole Shadows: Deviations from GR

The idea to use the images of BH shadows for testing of extended gravity theories
developed during the last 10 years [48,49]. Note that the same form of BH shadow can be
obtained in the frames of different gravity theories. Usually, GR solutions (as the simplest
ones) are taken as the first approximation. Note that there is a lot of activity in this field;
for example [50–63]. So, a non-rotating, non-charged (Schwarzschild) BH (in the Planck
system of units G = c = h̄ = 1) is described by the following metric:

ds2 = −A(r)dt2 + B(r)dr2 + r2(dθ2 + sin2 θdφ2), (10)

where

A(r) = B(r)−1 = 1−
2M

r
, (11)

M is the mass of the BH. If the electromagnetic field (or new physics contribution) is taken
into account, the Reissner–Nordstrom metric appears to be valid:

A(r) = B(r)−1 = 1−
2M

r
+

Q2

r2 , (12)

where Q is the electric or tidal charge. The rotation can be included with the help of the
Newman–Janis algorithm [64]. Applying it to (11) one results in the Kerr–Newman metric
in the form:

ds2 = −
(

1−
2m(r)r

ρ2

)
dt2 −

4m(r)ar sin2 θ

ρ2 dφdt +
ρ2

∆
dr2 + ρ2dθ2

+

(
r2 + a2 +

2m(r)a2r sin2 θ

ρ2

)
sin2 θdφ2, (13)

where

ρ2 = r2 + a2 cos2 θ,

∆(r) = r2 − 2m(r)r + a2,

m(r) = M−
Q2

2r
, (14)
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a = J/M is the BH acceleration and J is its angular momentum. If Q = 0 one obtains an
uncharged rotating BH described by the Kerr metric. For the Reissner–Nordstrom metric
(q→ Q2), the radius of BH shadow was calculated analytically [48] and is equal to

D =

√
(8q2 − 36q + 27) +

√
(8q2 − 36q + 27)2 + 64q3(1− q)
2(1− q)

. (15)

When q > 1, the object has no horizon and the minimum size of the BH shadow is
equal to 4M. From (15), one sees that for q > 9/8, a photon sphere is absent. For more
complicated theories, it is impossible to obtain the analytical solution, so the numerical
methods must be used.

For the space–time (10) in general A(r) 6= −B(r)−1. Corrections from extended
theories can be represented as additional terms of the Taylor series expansion around the
Schwarzschild metric. Therefore, to simulate the shadow, one has to study the equations of
motion of the photons around the BH. So,

u(r) =

(
dr̂
dφ

)2

=
r̂4

D2 A(r̂)B(r̂)
−

r̂2

B(r̂)
, (16)

where D = L/E is the aiming parameter of the photon beam. The edge of the shadow
corresponds to the transition of light particles to an unstable orbit. The conditions of this
transition are:

u(r) = 0,
du(r)

dr
= 0,

d2u(r)
d2r

> 0 (17)

The size of the shadow is defined by the the maximal solution of Equations (17). The
accounting of 1/r−3 correction allows to cover the wider range of shadow sizes. For example,
it becomes possible to study BH shadow with a size less than 4M [65,66]. Moreover, the
objects with a horizon but without the photon sphere become well described. This is a BH
without a shadow appearing in the models with beyond Reissner–Nordstrom metrics.

It is important to note that many theories predict the existence of BH shadows with
the same size. To determine the theory type, additional tests of the BH potential are
required. They are, for example, strong gravitational lensing of bright objects around the
BH, the last stable orbit of the accretion disk, the distribution of background intensity from
ionised plasma around the BH, etc. Earlier [65,66] we estimated an accuracy value that is
enough to constrain extended theory in a BH non-rotating case. For strong gravitational
lensing, this accuracy is about 103 times less than the angular size of the BH required.
For the background intensity, the necessary accuracy is also ≈ 103 times less than the its
maximum value.

One of the ways to include rotation is to apply the Newman–Janis algorithm [67]. The
usage of m(r) term allows us to incorporate various models. Generically, for the corrections
established as Taylor series, the procedure is as follows:

m(r) = M−
q
2r
−

C3

2r2 − ...−
Cn

2rn−1 − .... (18)

Therefore, the coordinates of the shadow edge [α, β] on the image plane are:

α =
ξ−

sin θi
,

β = ±

√√√√η− + (a− ξ−)2 −
(

a sin θi −
ξ−

sin θi

)2

,

(19)
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where θi is the angle of inclination of the BH rotation axis,

ξ− =
4r2

0ξA − (r2
0 + a2)ξB

aξC
,

η− =
r3

0[ηAa2 − r0η2
B]

a2η2
C

, (20)

ξA = M−
q

2r0
−

C3

2r2
0
− . . .−

Cn

2rn−1
0

− . . . ,

ξB = r0 + M +
C3

2r2
0
+ . . . +

(n− 2)Cn

2rn−1
0

+ . . . ,

ξC = r0 −M−
C3

2r2
0
− . . .−

(n− 2)Cn

2rn−1
0

− . . . ,

ηA = 4M−
4q
r0
−

6C3

r2
0
− . . .−

2nCn

rn−1
0

− . . . ,

ηB = r0 − 3M +
2q
r0

+
5C3

2r2
0
+ . . .

+
(n + 2)Cn

2rn−1
0

+ . . . ,

ηC = r0 −M−
C3

2r2
0
− . . .−

(n− 2)Cn

2rn−1
0

− . . . ,

For the corrections in the form of Taylor expansion, the accuracy was estimated earlier [68]
where the shapes of BH shadows with the same size have been compared. The deviation of
the shape from the Kerr BH one reaches 2% of the shadow size (Figure 2) for the expansions
up to r−3, strong rotation with a = 0.9 and for q and C3 comparable with M (for example,
q = 0.17, C3 = −0.5). To constrain rapidly rotating BH, the accuracy an order of magnitude
better is required. This is about one hundred times louder than the size of the shadow.

Figure 2. Black holes with the spin equal to a = 0.9 and the following parameters: dashed line
corresponds to q = 0.17, C3 = −0.5; solid one corresponds to q = 0, C3 = 0. The rotation axis
is directed along the β one; the inclination angle is equal to θi = −π/2. Reprinted/adapted with
permission from Ref. [68]. Copyright year: 2020, copyright owner’s name: J. Exp. Theor. Phys.



Universe 2022, 8, 283 8 of 18

As a result: in order to test gravity theories, one needs the resolution to be hundreds
of times better than was reached in[13]. The current radio telescopes are already used in
one big web. So, the next step to improve the resolution is to use space telescopes.

4. Gravitational Wave Astronomy: Deviations from GR

One of the most well-known results in experimental astronomy is the registration
of gravitational waves [69]. From a mathematical point of view, the gravitational wave
is a solution of GR and the existing experimental results completely correspond to it.
The LIGO collaboration continues to collect data [16] on neutron stars and black holes
mergers [17]. The most interesting event for our aims was GW170817 [70], when two
neutron stars merged not far from us. Thanks to this, the direction to the source was
discovered, so the corresponding electromagnetic signal was also registered [71]. The
time delay between gravitational and electromagnetic signals was equal to 1.6 s. Such a
time-delay value puts a strong limitation on graviton mass [6]. Therefore, it makes a great
cutoff for the models of massive gravity. Based on these data, graviton mass appears to
be less than 10−22 eV. Hence, the difference between the speeds of light and gravitational
wave could not be more than 1 + 10−16. Such a restriction excludes a big set of models
with massive graviton (and, therefore, models where it could appear). After GW170817,
such models as quartic/quintic galileons, models Fab Four (for additional clarifications
see [72]), some Degenerated Higher-Order Scalar Tensor (DHOST) models with A1 6= 0,
and many others appeared to be excluded [6,7]. Horndesky models (as general version
of scalar–tensor gravity with second order field equations [3,4]), which for a long time
were the top candidate for dark energy and dark matter explanations after GW170817, are
restricted as G4,X = 0, G5 = const [6]. Therefore, to follow the GW170817 limit, a new
set of models beyond Horndesky was developed. There are such theories as derivative
conformal models, models with disformal tuning, and DHOST models with with A1 = 0,
and so on [6,7]. Of course, simpler theories such as Brans–Dicke and f (R) models remain
in use. Finally, each viable gravitational model must pass the gravitational wave astronomy
tests (including LIGO-VIRGO last runs).

Note that the subject of how gravitational wave astronomy could constrain extended
gravity models is much wider. We restrict our consideration with the GW170817 test, as
it seems to be the most intriguing. One can extend the discussion, for example, by the
notes on the forms of gravitational wave solutions in different models and the number of
polarisation modes.

5. Binary Pulsars: Deviations from GR

Any discussion on astronomical tests would be incomplete without mentioning the
most accurate astrophysical data set: pulsar timing [18]. The most accurate data are
provided by PSR-1913+16 [19]. The key idea remains the same: to reproduce all post-
Keplerian parameters using the specific extended gravity model. Then one has to find the
model which covers the observational results better[21]. Note that in binary pulsars, one
deals with a gravitational field much stronger than the one in the Solar system. It lies closer
to the one discussed in the previous section. Thanks to the stability of the pulse signal, one
can extract the orbital motion dynamics and gravitational waves emission contributions.
There is a lot of activity in this field; for example [6,9,73,74].

Following [20,75,76], we start from the famous timing formula:

tB − t0 = D−1
[

T + ∆R(T, ω̇, Ṗb, δr, δθ) + ∆E(T, γ) + ∆S(T, r, s) + ∆A(T, A, B)
]

, (21)

where tB is the time of arrival of an impulse at the barycenter of the solar system, t0 is
the observable time of impulse arrival, D is the Doppler factor, T is the time of impulse
emission, and (∆R, ∆E, ∆S, and ∆A) are the propagation delays due to “Roemer”, “Einstein”,
“Shapiro” (see, in addition, [77]) and “aberattion” effects, respectively. These delays depend
upon the parametrised Keplerian and post-Keplerian (PPK) parameters (ω, Pb, δr, δθ , γ,



Universe 2022, 8, 283 9 of 18

r, s, A, B) are periastron longitude, pulsar orbital period and its first derivative, two
parameters of orbit deformation, Einstein delay, two parameters of Shapiro delay, two
aberration parameters. The strategy of these values calculation is presented in lots of papers
following the original Damour and Taylor ones. It is important to emphasise that these PPK
parameters are calculated using metric decomposition and power series. Hence, the result
for each model is unique. The ideas to constrain extended gravity models were developed
[78], and it was shown that GR ideally passes through the (Ṗb − ω̇− γ) test if the existence
of gravitational waves is taken into account.

Let us concentrate on ṖB version. In [21] its form was calculated for the general version
of scalar–tensor gravity, i.e., the Horndesky model. So, the ˙Pth

b / ˙PGR
B relation where ˙Pth

b is

the first derivative of the orbital period for the theory under consideration and ˙PGR
B is the

same value for GR can be established as:

Ṗth
b

ṖGR
b

=
G

2
3
12

G
5
3 G4(0,0)

{
1 +

5G4(1,0)cϕ

48

(
Pbc3

2πmG12

) 2
3

×
[

A2
d +

2µ

c2 Ad Ād

(
4π2

P2
b mG12

) 1
3
](

1−
m2

ϕc2P2
b

4π2

) 3
2

+
G4(1,0)cϕ

3
A2

q

(
1−

m2
ϕc2P2

b

16π2

) 5
2

−
G4(1,0)cϕ

96
Ad Ao

(
1−

m2
ϕc2P2

b

4π2

) 5
2
}

, (22)

where ṖGR
b is:

ṖGR
b = −192πµ

5c5m

(
2πGm

Pb

) 5
3

, (23)

G(i, j) are part of the Horndesky model [3,4] and Pb is the standard expression for the
orbital period. Based on Equation (22) and using the real data from PSRJ1738 + 0333,
one can calculate constraints on different extended gravity models. So, the key formula
allowing to calculate the limitations on the considered model is∣∣∣∣ Ṗth

b

ṖGR
b
−

Ṗobs
b

ṖGR
b

∣∣∣∣ ≤ 2σ, (24)

where σ is the observational uncertainty and Ṗobs
b /ṖGR

b is the observational quantity at 95%
confidence level.

The first example is massive scalar–tensor gravity. Substituting its specific values and
PSR J1738+0333 data to Equation (24), one obtains that

∣∣∣∣ G
2
3
12

G
5
3 G4(0,0)

[
1 +

5cϕ

12

(
Pbc3

2πmG12

) 2
3
(

1−
m2

ϕc2P2
b

4π2

) 3
2

×
(G2

4(0,0)(sNS − sWD)
2

G4(1,0)φ
2
0

)]
− 0.93

∣∣∣∣ ≤ 0.26. (25)

Here, sNS is the sensitivity of a neutron star and sWD is the sensitivity of a white dwarf.
So, one obtains the upper boundary for the scalar field mass mϕ:

mϕ < 7× 10−15(cm−1). (26)

The second example is hybrid metric-Palatini f(R) gravity. This model is developed as
a mixture of metric and Palatini formalisms. The aim is to use the approach that provides
the best theoretical description in the considered range. For example, the hybrid f(R)-
gravity describes the accelerated Universe expansion without introducing of new degrees
of freedom. Using the set of transfer parameters [21] one obtains that

0.67 ≤
1

(1 + φ0)
5
3

(
1−

5φ0

18
(1− 3× 1027m2

ϕ)

)
≤ 1, (27)
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where the dependence of the scalar field mass upon scalar field background value for PSR
J1738+0333 can be taken from [21]. So, the combined restrictions from γPPN and system
PSR J1738+0333 are:

φ0 ≤ 0.00004, mϕ ≤ 1.4× 10−14(cm−1). (28)

The consideration could be extended [79] to constrain other theories.

6. Solar System: Newtonian Limit and Deviations from it

The Solar System contains a set of small parameters. They are, for example, Newtonian
potential, matter velocity relative to the mass centre, etc. So, these values could be used as
expansion parameters to consider the Taylor expansion of the metric. The standardised
expansion represent PPN with the coefficients measured experimentally. We shall not
discuss PPN formalism in detail, as there are a lot of beautiful reviews (see, for example,
Ref. [80]) and textbooks ([22]). Here, we show the usage of PPN to constrain the hybrid
metric-Palatini gravity.

The hybrid metric-Palatini f(R)-gravity is a part of f(R)-theories [2,81]. Indeed, there
are two ways to obtain field equations: the metric one and the Palatini one. In the metric
approach, the metric gµν is treated as the unique dynamical variable. The Palatini method
supposes the Riemann curvature tensor is independent of the metric and dependent only
upon connection. So, variations with respect to the metric and the connection become
independent. Both gravity models, i.e., metric one and Palatini ones, cause problems.
The metric f(R)-gravity in the general case does not pass the standard Solar System tests
[82–84]. Palatini f(R) models contain microscopic matter instabilities [85,86]. In order
to cancel these pathologies in both metric and Palatini formulations, the hybrid metric-
Palatini f(R)-gravity was developed [87,88]. This model combines the GR Lagrangian and
the f(<)-term constructed by the Palatini formalism. Therefore, all results obtained in
the frames of GR are covered by the R part and f (<) part is responsible for unexplained
gravitational phenomena.

Further, the hybrid f(R)-gravity can be established as a scalar–tensor theory [87,88]. If
the appearing scalar field is light enough, it could modify the cosmological and galactic
dynamics to cover unexplained phenomena, leaving the Solar System unaffected. So, it
appears to be possible to provide a test of the hybrid f(R)-theory in the weak-field limit
using the modified PPN formalism.

We start from the action [23,87,88]

S =
c4

2k2

∫
d4x
√
−g[R + f (<)] + Sm, (29)

where c is the speed of light, k2 = 8πG, R and < = gµν<µν are the metric and Palatini
curvatures, respectively, g is the metric determinant, and Sm is the matter action. The
Palatini curvature < is considered depending upon gµν and the independent connection
Γ̂α

µν:
< = gµν<µν = gµν

(
Γ̂α

µν,α − Γ̂α
µα,ν + Γ̂α

αλΓ̂λ
µν − Γ̂α

µλΓ̂λ
αν

)
. (30)

The discussed model allows the scalar–tensor representation in the Jordan frame in
the form

S =
c4

2k2

∫
d4x
√
−g
[
(1 + φ)R +

3
2φ

∂µφ∂µφ−V(φ)

]
+ Sm, (31)

where φ is a scalar field and V(φ) is its potential. The following field equations are:
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(1 + φ)Rµν =
k2

c4

(
Tµν −

1
2

gµνT
)
+

1
2

gµν

[
V(φ) +∇α∇αφ

]
+∇µ∇νφ− 3

2φ
∂µφ∂νφ, (32)

∇µ∇µφ− 1
2φ

∂µφ∂µφ−
φ[2V(φ)− (1 + φ)Vφ]

3
= − k2

3c4 φT. (33)

Here, it is necessary to note that the scalar field is dynamical in the hybrid f(R)-gravity.
So, there are no microscopic instabilities associated with in pure Palatini models.

We start by expanding of the scalar φ and the tensor gµν fields as

φ = φ0 + ϕ, gµν = ηµν + hµν, (34)

where φ0 is the field asymptotic value, ηµν is the Minkowski space–time, and hµν and ϕ
are the small perturbations of tensor and scalar fields, respectively. In general, φ0 depends
upon time. This dependence can be neglected if one deals with a short period associated
with the observational time in comparison with the cosmological time-scale. So, we treat
φ0 as a constant.

The PPN operates with the following orders of metric and field [22]:

h00 ∼ O(2) + O(4),

h0j ∼ O(3),

hij ∼ O(2)

ϕ ∼ O(2) + O(4).

Further, the Taylor expansion for the scalar potential V(φ) around the background
value φ0 has the form:

V(φ) = V0 + V′ϕ +
V′′ϕ2

2!
+

V′′′ϕ3

3!
. (35)

The stress–energy tensor for point-mass gravitational systems is defined as

Tµν =
c√−g ∑

a
ma

uµuν

u0 δ3(~r−~ra), (36)

where ma is the mass of the a-th particle,~ra is its radius vector, uµ = dxµ
a /dτa is its four

velocity, dτ =
√
−ds2/c, ds2 = gµνdxµdxν is an interval, uµuµ = −c2, and δ3(~r−~ra(t)) is

the 3D Dirac delta function. In the PPN approximation, these components (36) and the
trace T have the following form:

T00 = c2 ∑
a

maδ3(~r− ~ra)

[
1− 3

2
h00 +

1
2

v2
a

c2 −
1
2

h
]

, (37)

T0i = −c ∑
a

mavi
aδ3(~r− ~ra), (38)

Tij = ∑
a

mavi
avj

aδ3(~r− ~ra), (39)

T = −c2 ∑
a

maδ3(~r− ~ra)

[
1− 1

2
h00 −

1
2

v2
a

c2 −
1
2

h
]

, (40)

where va is the velocity of the a-th particle. At the next step, one uses the Nutku gauge
conditions [89]:

hα
β,α −

1
2

δα
βhµ

µ,α =
ϕ,β

1 + φ0
. (41)
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After solving the correspondent field equations [23] and assuming that the main
contribution comes from the Sun, (here we restrict ourselves to the second-order expressions
because of their length) one obtains the solution for h(2)00 :

h(2)00 =
k2

4π(1 + φ0)c2
M
r

(
1− φ0

3
exp[−mϕr]

)
+

V0

1 + φ0

r2

6
, (42)

where M is the Solar mass. Here, V0/(φ0 + 1) represents the Λ term negligible in Solar
System scales. In the same way,

h(2)ij =
δijk2

4π(1 + φ0)c2
M
r

(
1 +

φ0

3
exp[−mϕr]

)
− δij

V0

1 + φ0

r2

6
. (43)

After comparing the result expressions with the general point-mass form introduced
by K. Nordtvedt, the expression for effective PPN parameter γeff can be expressed as

γeff =
1 + φ0 exp[−mϕr]/3
1− φ0 exp[−mϕr]/3

. (44)

Taking the Equation (44) in a case of a light scalar field mϕr � 1 and using the
experimental values of PPN parameters one constrains φ0 as

− 8× 10−5 < φ0 < 7× 10−5 (45)

from the γexp at the 2σ confidence level.

7. Large Hadron Collider: Constraints at TeV Scale

The last possibility to constrain extended gravity models that we discuss is the usage
of high-energy physics data. Following [26], we intend to demonstrate how one could
constrain an extended gravity model at the quantum gravity regime using LHC data.

We currently have no experimental data on matter properties at Planckian scale. From
the theoretical considerations, it seems that the combination of Quantum Mechanics and
GR may lead to a more complicated structure of space—time at short distances, so a new
fundamental value as minimal length appears. Following the logic of Quantum Mechanic
with uncertainty relation, one concludes that it is impossible to measure distances with a
precision better than the Planck length lP =

√
h̄G/c3 where h̄ is the Planck constant, G is the

gravitational constant and c is the speed of light in a vacuum. Using the LHC data, it appears
possible to show that the scale of non-locality could actually be much larger than lP.

Earlier, it was shown that GR coupled to a quantum field theory causes non-local
effects in scalar field theories [90]. Here, we explore such a model with matter, including
spinor and vector fields. Firstly, it is necessary to calculate a complete set of non-local
effective operators at order NG2, where N = Ns + 3N f + 12NV , Ns, N f , and NV denote
the number of scalar, spinor, and vector fields, respectively. Afterwards, one could obtain
the possibility of constraining the scale of space–time non-locality with the help of recent
data from the LHC. So, following [26], we start from perturbative linearised GR coupled
to matter fields. Note that perturbative unitarity can be broken below the reduced Planck
mass, but it can be recovered by the accurate resummation of a series of graviton vacuum
polarisation diagrams in the large N limit. The key feature of this large N resummation is
the following: if one could keep NG small, therefore, the obtained graviton propagator (µ
is the renormalisation scale)

iDαβ,µν(q2) =
i
(

LαµLβν + LανLβµ − LαβLµν
)

2q2
(

1− NGq2

120π log
(
− q2

µ2

)) , (46)
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includes some of the non-perturbative effects of quantum gravity. There are additional
poles beyond the usual one at q2 = 0. These complex poles are a sign of strong interactions
and the mass and width of these objects can be calculated. These poles being complex could
have an incorrect sign between mass and width. Therefore, this pole could be associated
with a particle propagating backwards in time, leading to violation of causality. With the
help of the in–in formalism [91,92] the causality restores. As a consequence, non-local
effects at the scale (120π/GN)1/2 arise, and so the scale of non-locality grows. It becomes
larger than lP if there are many fields in the matter sector (N is large).

Earlier [90], it was demonstrated that the resummation of a graviton propagator in
Equation (46) leads to non-local effects in scalar field theories at the range of (120π/GN)1/2.
Such consideration should be extended to spinor and vector fields. Considering a model
with an arbitrary number of scalar, spinor, and vector fields one has to calculate their
two-by-two scattering gravitational amplitudes, taking into account the dressed graviton
propagator (46). Next, the leading order (G2N) term should be extracted to present the
results in terms of effective operators.

The stress–energy tensors for the different field species with spins 0, 1/2, and 1 are
taken in the form [26]

Tµν
scalar = ∂µφ ∂νφ− ηµνLscalar , (47)

Tµν
fermion =

i
4

ψ̄γµ∇νψ +
i
4

ψ̄γν∇µψ−
i
4
∇µψ̄γνψ−

i
4
∇νψ̄γµψ− ηµνLfermion , (48)

Tµν
vector = −FµσFν

σ + m2 Aµ Aν − ηµνLvector , (49)

where the free field matter Lagrangians are:

Lscalar =
1
2
(∂φ)2 −

1
2

m2φ2 , (50)

Lfermion =
i
2

ψ̄γσ∇σψ−
i
2
∇σψ̄γσψ−mψ̄ψ , (51)

Lvector = −
1
4

F2 +
1
2

m2 A2 . (52)

The non-local operators at order NG2 with scalar field look like (because of their
length we present only one operator in each group, the other ones have the same structure,
the complete set can be taken from [26]):

Oscalar,1 =
NG2

30π
∂µφ∂νφln

(
�

µ2

)
∂µφ′∂νφ′,

. . .

The non-local operators with spinor fields are

Ofermion,1 =
NG2

60π

(
i
2

ψ̄γµ∇νψ−
i
2
∇µψ̄γνψ

)(
δα

µδ
β
ν + δ

β
µδα

ν

)
ln

(
�

µ2

)(
i
2

ψ̄′γα∇βψ′ −
i
2
∇αψ̄′γβψ′

)
,

. . .

The non-local operators involving vector fields only are:

Ovector,1 =
NG2

30π

(
FµσFνσ −m2 Aµ Aν

)
ln

(
�

µ2

)(
F′µρF′νρ −m′2 A′µ A′ν

)
,

. . .
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The non-local operators involving amplitudes with scalar and vector fields only are
given by

Oscalar-vector,1 = −
NG2

30π
∂µφ∂νφln

(
�

µ2

)(
FµσFνσ −m2

A Aµ Aν
)

,

. . .

The non-local operators involving amplitudes with scalar and spinor fields only are:

Oscalar-fermion,1 =
NG2

30π
∂µφ∂νφln

(
�

µ2

)(
i
2

ψ̄γµ∇νψ−
i
2
∇µψ̄γνψ

)
,

. . .

The non-local operators involving amplitudes with spinor and vector fields only are:

Ovector-fermion,1 = −
NG2

30π

(
i
2

ψ̄γµ∇νψ−
i
2
∇µψ̄γνψ

)
ln

(
�

µ2

)(
FµσF σ

ν −m2
A Aµ Aσ

)
,

. . .

The given effective operators contain a non-local part in the form of ln(�/µ2) term in
the matter sector. Its extension corresponds to the minimal length that can be tested. So, the
space–time is smeared on distances shorter than M? = MP

√
120π/N, which corresponds

to the energy of the complex pole. Therefore, there is no correct definition of the space–time
on distances smaller than 1/M?. Note that the non-local effects in the four–fermion
interactions can be constrained using LHC data. The ATLAS collaboration looked for
four–fermion contact interactions at

√
s = 8 TeV and obtained lower limits on the scale on

the lepton–lepton–quark–quark contact interaction Λ between 15.4 TeV and 26.3 TeV [93].
The conservative approach suggests identifying the scale generated with the derivatives in
the four–fermion operators with the centre of mass energy of the proton–proton collision.
Therefore, the conservative bound could be taken as N < 5 × 1061 on the number of
light fields in a hidden sector. As a result, the scale M? (a character value of space–time
non-locality) appears to be larger than 3× 10−11 GeV.

8. Conclusions

We briefly review the set of possibilities to constrain extended gravity models at
different space–time and energy scales. The key idea is to apply modern astrophysical
and high-energy physics, data starting from big scales, and to go down along the scale,
paying attention to common features of all mentioned items. It is important to note that we
briefly discuss a set in a unified way; to help one to carefully study each item, references to
corresponding reviews are provided.

The first possibility occurs at the scales of galaxy clusters where the contribution of
accelerated expansion (dark energy) becomes considerable. We focused on the turn-around
radius usage. Extended gravity models have different spherically symmetric metrics, so
one obtains the possibility of comparing the calculated values with observational ones to
find the best correspondence. We showed that for the Starobinsky model with the vanishing
cosmological constant, lower values of parameter n provide better approximation for the
observational data. For the Horndesky model, the upper limit on the effective cosmological
constant value is Λe f f < 1.6 · 10−48 m−2 [47].

The next possibility to check the predictions of extended gravity models comes from
shadows of black holes (BH). As we show, in order to test gravity theories, one needs to
increase the resolution two orders of magnitude greater than was reached in [13].

The next possibility comes from gravitational wave astronomy. We mentioned that
Horndesky models after GW170817 were restricted as G4,X = 0, G5 = const so beyond
Horndesky models began actively developing. Note that such theories as derivative
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conformal models, models with disformal tuning and DHOST models with with A1 = 0
remain valid.

The next possibility is given by the most accurate data in astronomy: pulsar timing,
especially for PSR-1913+16. For massive scalar–tensor gravity, one obtains the upper
boundary for the scalar field mass: mϕ < 7× 10−15 (cm−1). For hybrid metric-Palatini f(R)
gravity this looks as φ0 ≤ 0.00004, mϕ ≤ 1.4× 10−14 (cm−1).

The next possibility appears at the Solar System scales. For hybrid metric-Palatini
f(R) gravity in a case of a light scalar field mϕr � 1 and using the experimental values of
PPN parameters, one constrains φ0 as −8× 10−5 < φ0 < 7× 10−5 from the γexp at the 2σ
confidence level.

The last possibility that we mention here is the idea of gravity constraining using
high-energy physics data from a Large Hadron Collider (LHC). Here, it is interesting to use
ATLAS data for four–fermion contact interactions at

√
s = 8 TeV and obtain lower limits

on the scale on the lepton–lepton–quark–quark contact interaction Λ between 15.4 TeV and
26.3 TeV. Therefore, the scale M? (a character value of space–time non-locality) appears to
be larger than 3× 10−11 GeV.

Of course, this list is far from being complete and only a few examples were demon-
strated. As the accurateness of experiments and observations continues to grow, new
possibilities could arise in the near future.
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