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Abstract: We discuss phenomenological aspects of modified supergravity (MSG) in gravitational
wave (GW) physics. MSG naturally provides double inflation and primordial black holes (PBHs) as
cold dark matter. Intriguingly, MSG predicts a large amplification of the scalar and tensor perturbation
power spectrum, generating a secondary GW stochastic background which can be tested in space-
based interferometers.
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1. Introduction

The phenomenology of modified supergravity (MSG) is one of the next frontiers as
researchers move toward a quantum gravity bottom-up approach. After the discovery of
gravitational waves [1,2], a natural arena for MSG tests is multi-messenger physics. Super-
gravity is a key element for superstring theory, which in turn predicts higher derivative α′

or (D-brane or worldsheet) instantonic curvature corrections. Thus, MSG can be considered
as an effective (super)field theory in the low energy limit of superstring theory, eventually
waiting for a better understanding of M-theory in all of its whole complexity. On the other
hand, an explanation of cold dark matter (CDM) remains elusive to us. One of the most
attractive ideas is that CDM is composed by primordial black holes (PBHs) (see e.g., [3–5]). As
it is known, no astrophysical mechanisms can explain such a copious amount of black holes
(BHs) as CDM. That is why if CDM was composed of BHs, then they would be produced by
a new physics mechanism beyond the standard model (SM) in the early universe [3–5].

In the cosmological perturbation theory, the scalar and tensor perturbations evolve
independently at the linear order but are dynamically coupled at the second and higher
orders [6]. The scalar mode related to the primordial density perturbations can excite the
tensor mode, inducing secondary GWs when they are either localized at scales much smaller
than the Hubble horizon, during inflation, or if they reenter the horizon during the post-
inflationary, radiation-dominated, and matter-dominated epochs. This phenomenon can
generate a relic GW stochastic background. As is well known, LSS and CMB observations
constrain the primordial fluctuations to be distributed to an approximately Gaussian
distribution at scales larger than 1 mpc; the power spectrum is nearly scale-invariant with
an amplitude which is too small for current detection. On the other hand, the constraints
are less stringent for scales much below the mpc, and a large enhancement of scalar and
tensor perturbations can be possible [7]. Several possible mechanisms for an amplification
of primordial density perturbations and induced GWs at small scale were proposed in the
literature, including double-inflation [8,9] with PBH formation.

When we consider early universe origins for PBHs, one possibility is that it is related
to inflation dynamics. In some cases, inflation(s) can trigger the formation of critical matter
overdensities and thus it can catalyze the formation of PBHs. Typically, PBHs do not
have astrophysical dimension and mass; moreover they may be copiously produced and
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constitute the whole CDM. Surprisingly, MSG can provide an assist to the PBH scenario.
First, MSG naturally relates Starobinsky’s scalaron with other scalar field partners which
can participate in the inflation dynamics. In other words, MSG establishes a natural (su-
per)symmetric principle for multi-inflation. In the simplest MSG cases, a double-inflation
scenario can be envisaged. It is well known that double-inflation can efficiently provide a
PBH CDM genesis. However, most of scenarios proposed in the literature are benchmark
models self-engineered in order to achieve the “right” PBH amount. On the other hand,
MSG naturally realizes a double inflation scenario for an efficient generation of PBHs [8,9].
(Local) supersymmetry also dictates the structure of the two scalars’ interactions which are
compatible with PBH CDM from inflation in a large parametric space. Another possibility
is that CDM is partially composed by PBHs and gravitinos produced during inflation, as
discussed in [10–13].

Now we are ready to come to the interesting aspect of it: testability. Indeed, the power
spectrum of scalar perturbations produced by double-inflation in turn originated by MSG
not only generates PBH CDM but it also sources a GW stochastic background detectable
within LISA (and similar design concepts) sensitivity (estimated) curve(s).

Thus, in our model, supersymmetry can be spontaneously broken at much higher energy
than the TeV-scale. In this sense, SUSY can be interpreted as a symmetry principle for inflation
and dark matter rather than related to the Higgs hierarchy problem or grand unification
theories (GUTs). In such a case, SUSY may be searched in the sky from GWs rather than in
colliders. MSG is also a natural candidate for generating PBHs and GWs from sound speed
resonances [14–18]. Indeed, a sound speed oscillation around unity during inflation may
occur in certain parametric regions around turning points in multi-inflaton trajectories.

Our paper is organized as follows. In Section 2 we will review the main feature of MSG
model; in Section 3, we discuss PBH production; in Section 4 GW phenomenology related
to PBH production is shown; in Section 5 we show sound speed resonance phenomena; in
Section 6 our conclusions and remakrs.

2. Model

Let us consider a MSG model in superfield formalism as follows:

L =
∫

d2Θ 2E
[
− 1

8
(D̄2 − 8R)N (R, R̄) +F (R)

]
+ h.c. (1)

where N (R.R̄) and F (R) are arbitrary functions and R is the chiral scalar curvature
superfield; E is the chiral density superfield, Dα, D̄α̇ are the superspace covariant derivative
with D2 ≡ DαDα & D̄2 ≡ D̄α̇D̄α̇, Θ are the superspace coordinates. We formulate MSG by
using standard supergravity formalism in curved superspace (see [19]).

A reasonable power series ansatz is the following:

N =
12
M2 |R|

2 − 72
M4 ζ|R|4 − 768

M6 γ|R|6 , (2)

F = −3R+
3
√

6
M

δR2 , (3)

where M is related to the scalaron mass, ζ, γ, δ are free parameters. Einstein’s supergravity
is obtained in the limit of N → 0, F → −3R, i.e., for ζ, γ, δ→ 0 the simplest extension of
R + R2 gravity is re-obtained.

The relevant bosonic sector in the Einstein frame [8,9] reads as

e−1L =
1
2

R− 1
2
(∂ϕ)2 − 3M2

2
Be−

√
2/3ϕ(∂σ)2 − 1

4B
(
1− Ae−

√
2/3ϕ

)2 − e−2
√

2/3ϕU (4)

where A ≡ A(σ), B ≡ B(σ), U ≡ U(σ) are given by

A(σ) = 1− δσ +
1
6

σ2 − 11
24

ζσ4 − 29
54

γσ6 (5)
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B(σ) =
1
3

M−2(1− ζσ2 − γσ4) , (6)

U(σ) =
1
2

M2σ2(1 +
1
2

δσ− 1
6

σ2 +
3
8

ζσ4 +
25
54

γσ6) . (7)

Here, e ≡ det(ea
m) (the scalar vielbien) is the first component of E in supersymmetric Θ-

expansion, R is the Ricci scalar contained inR superfield, ϕ is the Starobinsky scalar field
and σ is a new scalar field contained in bothR and E . In principle extra supersymmetric
partners bm, a are contained in the superfields and propagating d.o.f in the theory; for
simplicity we considered them as frozen around inflation dynamics.

The relevant field equations in FLRW are

0 = ϕ̈ + 3H ϕ̇ +
1√
6
(1− ζσ2 − γσ4)e−

√
2
3 σ̇2 + ∂ϕV , (8)

0 = σ̈ + 3Hσ̇− ζσ + 2γσ3

1− ζσ2 − γσ4 σ̇2 −
√

2
3

ϕ̇σ̇ +
e
√

2
3 ϕ

1− ζσ2 − γσ4 ∂σV (9)

0 =
1
2

ϕ̇2 +
1
2
(1− ζσ2 − γσ4)e−

√
2
3 ϕ

σ̇2 + Ḣ (10)

0 = V − 3H2 − Ḣ , (11)

V =
1

4B

(
1− Ae−

√
2
3 ϕ
)2

+ e−2
√

2
3 ϕU(σ) , (12)

where H is the Hubble rate.
Such a system of two scalar fields not linearly coupled include the Starobinsky scalaron

and it can lead to a double inflation dynamics.

3. Primordial Black Holes

In this section, we discuss the production of PBHs in modified supergravity, PBHs can
be copiously produced in a large region of parametric space of Equation (1). To fix the ideas,
let us distinguish the case of sharp and smooth peaks in the power spectrum; for example
δ ' 0.6 and δ ' 0.1, respectively (where δ is the parameter introduced in Equation (3)).

Interestingly, we find that PBHs can account for the total amount of CDM as ftot ' 1
in a parametric domain 1/3 ≤ δ ≤ 2/3. PBH mass can be estimated as in [20]:

MPBH '
M2

Pl
H(t∗)

exp
[
2(Nend − N∗) +

∫ texit

t∗
ε(t)H(t)dt

]
, (13)

where MPBH is the PBH mass, H(t) is the Hubble rate at cosmological time t, Nend, N∗ are
the e-fold numbers at the end of double inflation and at t∗ respectively, t∗ is the time when
the first slow-roll ends, texit is the time when the CMB pivot scale k exits the horizon. The
PBH mass depends on the slow-roll parameter ε ≡ −Ḣ/H2. Therefore it is also related to
inflationary parameters ns(ε), r(ε) which have to be compatible, at least at 3σ, with Planck
data ns = 0.9649± 0.0042 (1σ C.L.) and r < 0.064 (2σ C.L.) [21].

PBH mass M̃PBH(k), production rate β f (k) and density contrast coarse-grained σ2(k)
spectra can be estimated as in [22,23],

M̃PBH ' 1020
(7× 1012

k Mpc

)2
g, β f (k) '

σ(k)√
2πδc

e−δ2
c /2σ2k , (14)

σ2(k) =
16
81

∫ dq
q

( q
k

)4
e−q2/k2

Pζ(q) , (15)

while the PBH/CDM ratio is
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f (k) ≡ ΩPBH(k)
ΩDM

'
1.2× 1024β f (k)√

M̃PBH(k)g−1
. (16)

In Table 1 we summarize results. For δ = 0.09, 0.61, we can consider ∆N2 ≤ 19, 20
respectively, where ∆N2 is the second inflation slow-roll e-fold difference number. We obtain
an almost monochromatic PBH mass distribution with MPBH ∼ 1020, 1018 g respectively.
Moreover, the primordial scalar power spectra as well as the abundance of the PBHs of
three representative I, II and III cases parameterized by Table 2 are shown in Figures 1 and 2,
respectively. Such a result is compatible with all multi-messenger constraints.

Table 1. PBH masses in cases of δ = 0.09 and δ = 0.61. We compare the PBH mass in grams MPBH

with e-fold number ∆N2 of the second inflation stage, the scalar tilt parameter ns and the maximal
scalar to tensor ratio rmax predicted in our model at the CMB scale.

δ = 0.09 δ = 0.61

∆N2 10 17 20 23 10 17 20 23

MPBH(g) 109 1015 1018 1020 109 1015 1018 1020

ns 0.9566 0.9486 0.9443 0.9390 0.9581 0.9504 0.9461 0.9409

rmax 0.005 0.007 0.008 0.010 0.004 0.006 0.007 0.008

Table 2. A table of model parameters with three interesting cases for PBH CDM is shown; γ, δ are the
MSG lagrangian parameters, ∆N2 the e-fold number of second stage of inflation, ns, r the scalar tilt
parameter and the scalar to tensor ratio respectively, δc the critical density.

γ δ ∆N2 δc ns r

Case I 1.5 0 20 0.4 0.942 0.009

Case II 0 0.09 19 0.47 0.946 0.008

Case III 0 0.61 20 0.4 0.946 0.007

10-13 10-8 0.001 100.000 107
10-11

10-9

10-7

10-5

0.001

0.100

k/k*

P
ζ 1 2 5

10-8

10-5

0.01

Case I

Case II

Case III

SSR

Figure 1. The power spectra of scalar perturbations of three representative cases for PBH CDM.
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10-16 10-12 10-8 10-4 1
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0.001

0.010
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f P
B
H

Evaporations

Lensing

GW

Figure 2. The respective PBH density fractions to three power perturbation spectra in Figure 1. A
comparison with experimental constraints is displayed.

4. Energy Density of Induced Gravitational Waves

The generation of a high peak power spectrum of scalar perturbations not only cat-
alyzes the formation of PBHs but it also sources GW stochastic background appearing as a
relic signal around mHZ frequencies today. The GW density in present universe is given
by [24]

ΩGW(k)
Ωr

=
cg

72

∫ 1/
√

3

−1/
√

3
dd
∫ ∞

1/
√

3
ds
[ (s2 − 1

3 )(d
2 − 1

3 )

s2 + d2

]2
Pζ(kx)Pζ(ky)(I2

c + I2
s ) , (17)

where in SM the constant cg ' 0.4 and cg ' 0.3 in minimal supersymmetric standard model
(MSSM). The present radiation density h2Ωr ' 2.47× 10−5 from CMB data and h is the
reduced Hubble parameter.

In Equation (17), we have defined two integration variables as functions of s, d;

x, y =

√
3

2
(s± d) (18)

and Ic, Is have the following integral forms:

Ic = −8
∫ ∞

0
dη sin η{[T(xη + xηT′(xη)][T(yη + xηT′(yη)]T(xη)T(yη)} , (19)

Is = 8
∫ ∞

0
dη cos η{[T(xη + xηT′(xη)][T(yη + xηT′(yη)]T(xη)T(yη)} , (20)

where

T(kη) =
9

(kη)2

[√3
kη

sin
( kη√

3

)
− cos

( kη√
3

)]
, (21)

and η is the conformal time.
From analytic integration one obtains

Ic = −36π
(s2 + d2 − 2)2

(s2 − d2)3 θ(s− 1) , (22)
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Is = −36
s2 + d2 − 2
(s2 − d2)2

[ s2 + d2 − 2
s2 − d2 log

∣∣∣d2 − 1
s2 − 1

∣∣∣+ 2
]

. (23)

Thus, from these formulas we can compute the GW spectrum induced by scalar per-
turbations. Theoretical results are compared with sensitivity curves of future experiments
and the situation is summarized in Figure 3. It is clear that the GW signal is detectable from
LISA, TianQin, TAIJI and DECIGO.

10-4 0.001 0.010 0.100 1 10 100
10-15

10-12

10-9

10-6

f[Hz]

Ω
G
W
h
02

LISA

TianQin

TaiJi DECIGO

Figure 3. A comparison between stochastic GW density spectrum induced in our supergravity models
and expected sensitivity curves of space-based experiments.

5. Sound Speed Resonance (SSR)

The two-field inflation model in the MSG provides a natural realization for relevant
fields with varying sound speed. The nontrivial sound speed of the inflaton or curvaton in
single/multiple field inflation paradigms are widely explored in the literature [14–17]. In
particular, in [15] the authors assumed an oscillatory modification to the sound speed

c2
s = 1− 2ξ(1− cos(2k∗τ)) (24)

where cs is the sound speed, ξ, k∗ are characteristic constants, and τ is the cosmological
conformal time. From a phenomenological point of view, it can be demonstrated that the
primordial power spectrum can be dramatically amplified in a narrow band characterized
by k∗ due to the parametric resonance effect (see the black line in Figure 1). Consequently,
the narrow peak of the density spectrum enhances the abundances of the PBH formation as
well as the induced GWs in a different manner compared to the broad spectra in Cases I, II,
and III (see Figures 2 and 3).

On the other hand, the inflaton oscillates at the turning point of the trajectory in the
two-field target space, which is usually accompanied with the oscillation of its sound
speed [16,17]. Therefore, the MSG framework provides a theoretical origin of the sound
speed resonance mechanism, leading to the significant enhancement of power spectrum of
the curvature perturbations as well as the induced GWs. Moreover, it is worth mentioning
that the amplification of the primordial power spectrum caused by a sudden turn of the
inflaton trajectory was observed in [14].

6. Conclusions and Remarks

In this paper, we discussed the MSG phenomenology from GWs and PBH genesis. We
consider MSG embedding Starobinsky’s R2-gravity in superfield formalism. In Einstein’s
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frame, MSG effectively reduces to EH action with two scalar partners non-linearly coupled
participating to (double) inflation dynamics. The structure of the interactions among the
two scalars is rigidly dictated by (local) supersymmetry. We showed that MSG elegantly
predicts PBH genesis as an explanation of CDM. Such a model can be tested from GWs
with LISA, DECIGO, BBO, TianQin, and TAIJI projects. We also put forward the idea of
sound speed resonances during inflation from MSG, which we think it deserves for future
deeper investigations as an alternative mechanisms for PBH genesis. (See also Ref. [25] for
several updates on LISA cosmology working group).

To summarize, MSG appears to be an attractive unified theory for inflation and CDM.
On the other hand, it is natural to extend Starobinsky’s supergravity toward a more general
supergravity version of f (R)-theory. In this sense, also late universe acceleration from
(dynamic) dark energy would be included in a unified scheme for the dark side [26].

Considering GW and multi-messenger physics, we are also tempted to suggest the
existence of MSG star solution beyond general relativity, a supergravastar. In [27], in
collaboration with S. Ketov, one of us showed that MSG in general also deforms energy
conditions. Thus, it is natural to consider modifications of the equation of state for neutron
stars; as well exotic compact objects (ECOs) [28–30] or dynamic horizon solutions [31,32] are
not precluded possibilities. These are particular exciting in multi-messenger era searching
for deviations from GR predictions in black holes or neutron star mergings. Recently, other
results in modified gravity and GWs also encourage us to explore the multi-messenger
phenomenology of their supergravity extensions [33–35].

To conclude, MSG phenomenology appears to be a vibrant new research direction at
the dawn of the multi-messenger era. Tests of supergravity in cosmology is fundamental
for our understanding of quantum gravity which in turn continues to remain elusive to us.
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