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Abstract: In this work, we generalise the procedure of the non-abelian T-duality based on a B-shift and
a sequence of formal abelian T-dualities in non-isometric directions to 11-dimensional backgrounds.
This consists of a C-shift followed by either a formal (abelian) U-duality transformation or taking
an IIB section. By construction, this is a solution generating transformation. We investigate the
restrictions and applicability of the procedure and find that it can provide supergravity solutions
for the SL(5) exceptional Drinfeld algebra only when the isometry algebra of the sigma-model target
space decomposes into a direct sum. This is consistent with examples known in the literature.
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1. Introduction

String theory is known to respect a rich set of various symmetries, of special inter-
est among which are those that transform target space–time keeping the same physics.
The most well-known example of such duality symmetries is the perturbative T-duality
symmetry of Type II string theory, which acts along toroidal directions of the target space
according to the so-called Buscher rules [1,2]. The procedure for recovering background
fields’ transformations from the string partition function is well known. One starts with
the string partition function defined by the action S0[θ] symmetric under global θ → θ + α
with θ corresponding to a circular direction. The symmetry is then gauged by introducing
a 1-form field dθ → Dθ = dθ + A and the corresponding Lagrange term θ̃F with F = dA
to keep the 1-form pure gauge. The resulting partition function defined by the action
S1[θ, A, θ̃] can then be reduced to the initial one, integrating out θ̃, which sets A = dα.
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Alternatively, integrating out the 1-form field A, one obtains the standard string action
S2[θ̃], however defined on a different background related to the initial one by Buscher
rules. The scalar field θ(σ, τ) gets replaced by the field θ̃(σ, τ) representing dual string
coordinates corresponding to winding modes [3,4]. Transformation of the dilaton ensures
that the measure in the partition function is invariant at one loop. One can be more general
and consider backgrounds of the form M×Td in which case the T-duality group will be
O(d, d;Z). World-volume scalar fields that do not transform under the duality are referred
to as spectator fields.

A natural question is whether one may consider backgrounds with isometries repre-
sented by more complicated groups than the abelian U(1)d, say a sphere or a non-abelian
group manifold. The answer is positive, and the corresponding dualisation procedure was
considered in [5]. Essentially, the non-abelian T-duality (NATD) of the string partition
function goes along the same lines as the abelian one. The difference comes from the more
involved definition of the field strength F = dA + [A, A], which is now an element of the
corresponding non-abelian algebra, and hence, the Lagrange term reads Tr[θ̃F]. Hence,
one dualises the whole set of group coordinates, basically replacing left-invariant 1-forms
σa with dual forms dθ̃a. The original procedure for NS-NS fields was complemented by
transformation rules for R-R fields in [6,7]. An explicit canonical formulation of non-abelian
T-duality for the principal sigma-model was provided in [8]. In the work [7], the proce-
dure was extended to coset space geometries G/H based on fixing the gauge degrees of
freedom corresponding to the action of the subgroup H. One should be careful here with
global issues of non-abelian T-dual backgrounds related to determining the range of dual
coordinates. Recall that the case of the abelian T-duality topology of the vector potential
A requires the dual coordinate to be periodic, and hence, the U(1) isometry is preserved.
Similarly here, one looks at 2-cycles and topological properties of the field B such that its
integral properly rescaled takes values in the interval [0, 1]. The procedure for determining
the ranges was suggested in [9] based on earlier works [10–12].

In contrast to abelian T-duality, its non-abelian generalisation does not preserve isome-
tries of the original background (in the usual sense) and, hence, has much in common with
deformations of supergravity backgrounds. In particular, NATD techniques have been
widely used to generate new supergravity backgrounds interesting from the point of view
of holography, and in [13], some explicit examples of such relations were provided. This
breaking of the initial background isometries by a non-abelian T-duality transformation is
in severe contrast with the mechanics of the standard abelian T-duality transformations,
where the preservation of isometries allows performing T-duality twice, making it an
involutive symmetry. For a way out of this problem and to define an inverse for an NATD
transformation, one looks at the Noether currents of the two-dimensional string sigma-
model and their Bianchi identities. Starting with the sigma-model on a background with
isometry algebra defined by structure constants fab

c, one is able to construct conserved
Noether currents Ja that satisfy

dJa = 0. (1)

Non-abelian T-dualising along the isometry directions, one ends up with the sigma-
model on a background with no initial isometries, which however still allows defining
Noether currents J̃a that are not conserved and satisfy [14]

dJ̃a = fbc
a J̃b ∧ J̃c. (2)

In principle, one is able to start even with backgrounds with no isometry in the
standard sense with Noether currents that satisfy

dJa = f̃a
bc Jb ∧ Jc. (3)

For the duality between the backgrounds to work, the algebras g and g̃ defined by
the structure constants fab

c and f̃a
bc must form the so-called Drinfeld double D. This is a

2d-dimensional Lie algebra spanned by generators {Ta, T̃a}with an O(d, d) invariant metric
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η defined such that the only non-vanishing component is η(Ta, T̃b) = δa
b. Generators {Ta}

define the isotropic subalgebra g, while its complement g̃ is spanned by {T̃a}. In addition,
one has the co-algebra structure. In principle, such a choice of generators for a given
Drinfeld double Lie algebra D might not be unique, and hence, it is convenient to think
of it in terms of Manin triples (D, g, g̃). Such algebraic construction allows reversing the
NATD transformation applying a Poisson–Lie T-duality (PLTD) transformation, which
basically means solving consistency constraints for the Drinfeld double and constructing
a background that realises the chosen geometric subalgebra g. More details on relations
between Poisson–Lie and non-abelian dualities can be found in the original works [15,16]
and in the review papers [17–19]. For developments from the generalised geometry point
of view, one may refer to [20–23]. Explicit examples of backgrounds resulting from PLTD
and/or NATD can be found in [7,24–28]. The representation of Yang–Baxter bi-vector
deformations as a B-shift followed by an NATD transformation was considered in [29].

To some extent, the above constructions generalise to M-theory in the sense of mem-
brane dynamics and 11-dimensional supergravity. The notion of the Drinfeld double
(Manin triple) were generalised to the so-called exceptional Drinfeld algebra (EDA) in the
series of works [30,31]. The complement g̃ of the isometry algebra g inside an exceptional
Drinfeld algebra is defined via tri-algebra structure constants f̃a

bcd. From the membrane
point of view, non-abelian U-duality was addressed in [32], where in particular, an analogue
of Bianchi identities for currents of the two-dimensional sigma-model were derived and
implemented in the SL(5) exceptional field theory (ExFT). The current algebra of [32] is
consistent with the 3-algebra structure of [30,31]. Finally, certain explicit results for non-
abelian U-dualised backgrounds and their relation to non-abelian T-duality were presented
recently in [33].

As we discuss below, the procedure of non-abelian U-duality (and more generally,
Nambu–Lie U-duality) based on the algebraic approach of [30,31] includes the pretty
non-trivial step of searching for a possible alternative realisation of a given exceptional
Drinfeld algebra. Technically, one has to find such an Ed(d) element whose action on
generators of a given EDA gives also an EDA. In this work, based on the results of [29] on
non-abelian T-duality, we (i) suggest to include outer automorphisms of Ed(d) in the set of
allowed transformations and (ii) show that this always gives a solution to 11-dimensional
supergravity equations. Hence, this is a slight generalisation of the prescription of [30,31]
and its translation to the language of field theory. The suggested procedure provides
transformation rules of non-abelian U-duality that are guaranteed to always give a solution
of 11-dimensional supergravity equations by construction. Explicit examples of non-abelian
U-duals based on the suggested procedure were provided in [34].

The text is structured as follows. In Section 2, we review the NATD procedure as an
O(d, d) rotation for group manifolds. As an explicit example, the Bianchi II space–time with
vanishing dilaton is considered. In Section 3, we generalise the approach to non-abelian
U-duality transformations of 11-dimensional backgrounds. In Section 4, we analyse the
suggested procedure for ExFT’s based on U-duality groups SL(5) and SO(5,5) and derive
conditions upon which a solution of 11-dimensional supergravity can be generated.

2. Non-Abelian T-Duality
2.1. Sigma-Model Perspective

Non-abelian T-duality transformations generalise standard T-duality Buscher rules
and can be written in a very similar form [29]. The case of our interest here is represented by
backgrounds of the form M× G where G is a group manifold; however, the sigma-model
procedure can be generalised to coset spaces. To set up the notations, we briefly discuss the
procedure of [29] here. One starts with a two-dimensional sigma-model action of the form

S = T
∫

Σ

(1
2

Eα̂ ∧ ∗Eβ̂ηα̂β̂ + B
)

, (4)
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where the vielbein 1-form Eα̂ is defined as usual as

Eα̂ = (g−1dg)aEa
α̂ + dxµEµ

α̂, g ∈ G,

g−1dg = σm
adymTa.

(5)

Here and in what follows, small Greek indices µ, ν label external directions, which
are not extended/doubled, small Latin indices a, b, · · · = 1, . . . , dim G from the beginning
of the alphabet label generators of Lie algebra g of the group manifold G, and small Latin
indices from the middle of the alphabet m, n, · · · = 1, . . . , dim G label coordinates ym on the
group manifold. Functions σm

a represent components of left-invariant 1-forms on the group
manifold, and Ta form a basis of the corresponding Lie algebra g. Isometry transformations
act on the group manifold from the left as

g→ ug, u ∈ G. (6)

Unpacking these notations, one may write for the first term in the sigma-model action

Eα̂ ∧ ∗Eβ̂ηα̂β̂ = (g−1dg)a ∧ ∗(g−1dg)bGab

+ 2(g−1dg)a ∧ ∗dxµGaµ + dxµdxνGµν,
(7)

where one defines metric components:

Gµν = Eµ
α̂Eν

β̂ηα̂β̂,

Gmn = σm
aσn

b Gab = σm
aσn

bEa
α̂Eb

β̂ηα̂β̂,

Gmµ = σm
a Gaµ = σm

aEa
α̂Eµ

β̂ηα̂β̂.

(8)

The 2-form Kalb–Ramond field B is defined as usual as a pullback of the corresponding
target space–time 2-form field:

B = (g−1dg)a ∧ (g−1dg)bBab

+ 2(g−1dg)a ∧ dxµBaµ + dxµ ∧ dxνBµν.
(9)

The fields Gab, Bab are usually referred to as the undressed fields since these are free of
dependence on group coordinates ym, which has all been left in the 1-forms σa.

The procedure of the NATD of the sigma-model action then proceeds with replacing
(g−1dg)a → Aa and adding a Lagrange multiplier ỹaFa. Performing integration over ỹa,
one recovers the initial action, while integrating over Aa, one turns to the dual action,
which now has no dependence on ym since the 1-forms σa are no longer present. Instead, a
dependence on ỹa enters the dual background originating from

Fa = 2dAa − fbc
a Ab ∧ Ac, (10)

where fab
c encode the structure constants of g.

This procedure can be summarised nicely by presenting a generalisation of Buscher
rules, explicitly providing dual background fields. For that, one defines a matrix:

Nab = Gab − Bab + ỹc fab
c, (11)

along with its inverse NacNcb = δa
b. The transformation rules are then written as follows:
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G′µν = Gµν − (G− B)a(µNab(G + B)ν)b

G′µa =
1
2
(G− B)µbNba − 1

2
Nab(G− B)bµ

G′ab = N(ab)

B′µν = Bµν + (G− B)a[µNab(G + B)ν]b

B′µa = −
1
2
(G− B)µbNba − 1

2
Nab(G− B)bµ

B′ab = −N[ab]

(12)

These were shown in [22] to be upliftable to the double field theory (DFT) formalism
where the transformation of the fields becomes an O(d, d) matrix with d = dim G, as
expected. Crucial here is that the 1-forms σa are replaced by dual 1-forms dỹa, constructed
of dual coordinates. For abelian T-duality, one would have dya → dỹa, which translates to
the standard prescription ya → ỹa.

2.2. Double Field Theory Perspective

The non-abelian T-duality transformation of a 10-dimensional (group manifold) back-
ground as described above is known to be equivalent to a sequence of a B-shift and T-duality
transformations, equivalently O(d, d) reflections [35]. The procedure can be generalised
to coset spaces as well, where one chooses d Killing vectors in a d-dimensional space and
takes basically the same steps. Crucial is that the symmetry group acts without isotropy. In
the present text, we focus on the case of group manifolds to illustrate the procedure and to
make further analysis of its restrictions simpler. Given the results of [35], generalisation to
coset spaces must be straightforward.

In this section, we take the perspective of double field theory, which provides a
convenient framework for dealing with dual coordinate dependence [36–39]. Double field
theory is a field theory of the metric Gmn, the 2-form Bmn, and the dilaton φ combined
into irreducible representations of the global T-duality group O(d, d). Fields are allowed
to depend on a doubled set of coordinates XM = (xm, x̃m) with M = 1, . . . , 2d labelling
the vector representation of O(d, d). On such a doubled space (space–time, if d = 10), one
defines transformations of a generalised vector field VM using the so-called generalised
Lie derivative:

δΛVM = LΛVM = ΛN∂NVM − (∂NΛM − ∂MΛN)VN , (13)

where the indices are raised and lowered by the invariant metric ηMN of O(d, d) taken to be

ηMN =

[
0 1
1 0

]
. (14)

The first term in (13) is the standard shift term, and the second is a local O(d, d) rotation
of the generalised vector. Such defined generalised Lie derivatives form a closed algebra
under the standard commutator:

[δΛ1 , δΛ2 ]V
M = δ[Λ1,Λ2]

VM,

[Λ1, Λ2] =
1
2
LΛ1 Λ2 −

1
2
LΛ2 Λ1

(15)

only if the so-called section condition is satisfied. This condition is a special constraint on
functions defined on such a doubled space and is usually schematically stated as

ηMN∂M • ∂N• = 0, (16)
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where the bullets stand for any fields and their combinations. This isotropic condition
simply states that all fields are allowed to depend on (the same) set of d coordinates out of
(xm, x̃m). The degrees of freedom of supergravity are packed into the so-called generalised
metricHMN and the invariant dilaton d defined as follows

HMN =

[
Gmn − BmkBk

n Bm
n

Bn
m Gmn

]
, d = φ− 1

4
log G, (17)

where G = det Gmn. The dynamics of these fields is encoded in the action:

S =
∫

dxdx̃e−2d
(

1
8
HMN∂MHKL∂NHKL −

1
2
HKL∂LHMN∂NHKM−

−2∂Md∂NHMN + 4HMN∂Md∂Nd
)

.
(18)

Since the integral of such constrained fields over the doubled space is not defined
in the strict mathematical sense, the above must be understood as a condensed form of
writing the corresponding field equations.

The section condition restricts fields of the theory to depend at most on half of the full
2d-dimensional set of coordinates; however, it does not tell on which. This is additional
information that has to be put in by hand, and different choices are related by O(d, d) reflec-
tions. The standard choice is to make fields depend purely on the geometric coordinates
xm, which makes the DFT action simply the standard supergravity action. Alternatively,
one may solve the condition such that the fields depend, say, on nine coordinates x0, . . . , x8

and on the dual coordinate x̃9. Say, for NS 5-branes, this allows localising KK5-monopole
and more exotic branes [40,41]. A very particular example of such backgrounds is when
all fields depend on x0, . . . , x8 and the dilaton additionally linearly depends on x̃9. Since,
the dilaton enters DFT equations only via its derivatives, the dependence on the dual
coordinate manifests itself only through a slight modification of the supergravity equations.
The resulting theory is usually referred to as generalised supergravity [42–44].

Given all that, the main feature of DFT relevant to the present discussion is that
it allows more general backgrounds than that of the ordinary supergravity, i.e., those
that depend on dual coordinates and respect the section constraint. Of course, these are
related by a formal (abelian) T-duality transformation along non-isometric directions to
normal supergravity backgrounds, as the localised KK5 is a formal T-dual of the NS5-brane
(without smearing). This allows easily checking that the B-shift + T-dualities procedure
always gives a solution of supergravity backgrounds and can be easily generalised to
exceptional field theories.

One starts by noticing that, to generalise the NATD transformation rules written in
the form (12) to 11d backgrounds, it is convenient to rewrite these in terms of an O(d, d)
rotation of a DFT background. Following [35], the algorithm is as follows:

• Undress the background fields;
• Perform a B-shift Bab → Bab + ỹc fab

c, with ỹa understood as the coordinates dual to
1-forms σa = σm

adym;
• Perform formal abelian T-dualities along all directions of the group manifold to turn

ỹa into geometric coordinates.

Schematically, the procedure is depicted in Figure 1.
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BG10 B̃G10 BG′10

B-shift T1, T2, . . .

NATD

IIA IIA IIB

Figure 1. Relationship between backgrounds upon non-abelian T-duality. Ti denotes the usual
T-duality along the i’th direction.

For further reference and to set up the notations, let us consider the procedure in more
detail. The first step splits the coordinate dependence to external coordinates xµ and group
manifold coordinates ym hidden in 1-forms σm

a:

Gmn(x, y) = σm
a(y)σn

b(y)Gab(x),

Bmn(x, y) = σm
a(y)σn

b(y)Bab(x).
(19)

Turning to undressed fields, which do not depend on the coordinates ym, one ensures
that the B-shift respects the section constraint. To perform further abelian T-duality transfor-
mation, one has to consider a doubled set of 1-forms (σa, dỹa), instead of coordinates. The
transformation of generalized metricHAB constructed from the undressed fields (Gab, Bab)
can be conveniently read off the so-called DFT pseudo-interval. Let us first illustrate this in
a more standard case.

Start with the following formal expression:

ds2 = HMNdXMdXN

= Hmndymdyn + 2Hm
ndymdỹn +Hmndỹmdỹn,

(20)

that is neither invariant under generalised coordinate transformations, nor represents any
distance measurement. Rather, it serves as a convenient form of encoding the roles of the
components of the generalised metric, distinguishing the metric and the B-field. Here and
in what follows, capital Latin indices M, N, . . . label the directions of the extended space
and in case of DFT, run 1, . . . , 2dim G. Assuming that ym and ỹm are the geometric and dual
coordinates, respectively, one thus fixesHmn = gmn. To perform a T-duality transformation,
one keeps the pseudo-interval the same, switching instead the roles of the coordinates. Say
y1 now becomes a dual, while ỹ1 becomes geometric, meaning that ỹ1 is the coordinate
used to measure the distance in the ordinary space. This implies that H11 = g̃11 is now
a component of the transformed metric (not the inverse). This procedure was employed
to generate exotic brane solutions and to unify them into a single DFT/ExFT solution in
[40,41,45,46].

For the case in question, it is natural to write the pseudo-interval in terms of the
undressed fields as

ds2 = HMNdXMdXN

= Habσaσb + 2Ha
bσadỹb +Habdỹadỹb,

(21)

where the dependence on ym was recollected into the 1-forms σa = σa
mdxm. For now, the

dual coordinates are still represented by exact forms dỹa.
Let us show that the procedure described above is guaranteed to end up with a solution

of supergravity equations if started with a solution. Indeed, let us start for simplicity with
a background that depends purely on group manifold coordinates, i.e., Gab = const, Bab =
const. Hence, one may encode the invariant 1-forms in a generalised vielbein EM

A and the
constant metric and B-field in the constant «flat» generalised metricHAB:

HMN = EM
AEN

BHAB, HAB =

[
Gab − BaeBe

b Ba
d

Bb
c Gcd

]
, (22)
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where Gab is simply the inverse of Gab. Since the whole background is defined by structure
constants fab

c, it is convenient to work in the so-called generalised flux formulation of
DFT [47]. For that, one defines generalised flux components FAB

C simply as

[EA, EB]
M = FAB

CEC
M, (23)

where EA
M is the inverse generalised vielbein and the bracket is defined with respect

to the generalized Lie derivative. Explicitly, one has FABC = 3E[A
MEB

N∂MEC]N . For a
background given by a group manifold, one finds the only non-vanishing component
Fab

c = fab
c. As expected, this is proportional to the structure constants of the algebra of

the 1-forms σa. Given that the initial background is a solution to supergravity equations,
such generalised flux and the undressed «flat» generalised metric HAB are supposed to
satisfy the equations of DFT in the flux formulation [47].

For the NATD procedure, one starts with the undressed fields packed into the “flat”
generalised metricHAB and first preforms a B-shift, that can be encoded as

H′AB = OA
C(ỹ)OB

D(ỹ)HCD, OA
B =

[
δa

b 0
ỹe fab

e δc
d

]
. (24)

Note that, since the dual coordinates carry the same indices a, b as those labelling Lie
algebra generators, the generalised metricH′AB can be understood as the full generalised
metric in curved indices. As we show below, one can think ofH′AB as such a generalised
metric that linearly depends on dual coordinates and gives precisely the same generalised
fluxes as the initial one. In this context, NATD is a transformation between two generalised
metrics corresponding to the same generalised flux components.

Now, the crucial observation here is thatH′AB by construction generates precisely the
same generalised flux FAB

C as the initial background. This implies thatH′AB is a solution
to the equations of double field theory. The last step is to turn dual coordinates ỹa into
geometric coordinates by formal abelian T-dualities along all direction. This makesH′AB
a supergravity background, which has no dependence on dual coordinates and solves
standard supergravity equations. It is worth mentioning, however, that after T-dualities,
generalised flux components change, and one finds non-vanishing Fc

ab components, since
T-duality along each direction replaces a ↔ a [48]. The advantage of this language is that it
can be directly generalised to an 11-dimensional background using the exceptional field
theory construction.

It is important to mention the subtlety here related to the nature of the indices of the
generalised metricHAB. Initially, these are in some sense doubled algebraic indices of the
left-invariant 1-forms σa, while coordinates on the initial group manifold ym are labelled by
“curved” indices m, n, . . . . Looking at (21), one may say that formal 1-forms dỹa are dual to
the geometric 1-forms σa. It is not completely clear what is the strict mathematical meaning
of a 1-form on the doubled space.

Before turning to an illustrative example, one observes that the last step where all
directions of the group manifold get T-dualised is crucial for ending up with a supergravity
solution. It is clear that one is always able to perform the necessary set of T-dualities to
turn all ỹa into geometric coordinates. The picture however gets more complicated in the
case of non-abelian U-dualities, and such a set may not exist. We discuss this important
point in more detail in Section 4.

2.3. Bianchi II Example

As an explicit illustration of the above procedure, consider the standard example
of Bianchi II cosmological space–time embedded into 10 dimensions. The metric can be
chosen to be

ds2 = ds2
6 − a1

2a2
2a3

2(dx0)2

+ a1
2(σ1)2 + a2

2(σ2)2 + a3
2(σ3)2,

(25)
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where the 1-forms σa and the functions aa read

σ1 = dy1 − y3dy2, a1
2 =

p1

cosh(p2x0)

σ2 = dy2, a2
2 = cosh(p1x0)ep2x0

,

σ3 = dy3, a3
2 = cosh(p1x0)ep3x0

,

(26)

and the constants are constrained by p2 p3 = p2
1. Such a defined metric solves supergravity

equations when pa = 1, which we assume from now on. Otherwise, one has to include
non-trivial dilaton. Note that the 1-forms only depend on the coordinates y1, y2, y3 on the
group manifold generated by the Heisenberg–Weyl algebra:

dσa = fbc
aσb ∧ σc, f23

1 = 1. (27)

The undressed metric is then

||gab|| = diag
[
−a1

2a2
2a3

2, a1
2, a2

2, a3
2, 1, . . . , 1

]
. (28)

Since the time direction x0 is not dualised and the metric does not have mixed g0a
components, it is enough to focus only on the block 1, 2, 3 and consider O(3, 3) double field
theory. The corresponding generalised metric is simply given by

HAB =

[
gab − Baege f B f b Ba

d

Bb
c gcd

]
, (29)

where capital Latin indices from the beginning of the alphabet A, B, . . . represent doubled
indices of undressed fields. The B-shift is performed by the matrix:

OA
B =

[
δa

b 0
∆Bcb δd

c

]
(30)

with ∆Bab = ỹc fab
c, whose only non-vanishing components are

∆B23 = ỹ1. (31)

Next, one is supposed to perform abelian T-dualities along all directions ỹa. T-dualising
along all three directions renders all ya non-geometric, as well as the corresponding forms,
and one reproduces the well-known result for the dual background [25]:

ds′2 = ds2
6 − a1

2a2
2a3

3(dx0)2,

+
1

a1
2 (dỹ1)

2 +
a3

2

∆2 (dỹ2)
2 +

a2
2

∆2 (dỹ3)
2

B′ =− ỹ1

∆2 dỹ2 ∧ dỹ3,

∆2 = a2
2a3

2 + ỹ2
1.

(32)

The dilaton is recovered from the invariant dilaton:

e−2φ√g = e−2d = e−2φ′
√

g′, (33)

where g = det ||gab|| is determinant of the undressed metric. Note that ỹa are now proper
physical coordinates as these measure distances in the usual space–time. Indeed, before
dualisation, the metric depends on ỹa, while space–time shifts are dya, which follows
from the pseudo-intervalHABdXAdXB. The dualisation is then understood as turning the
coordinates ỹa into those, measuring distances in the physical space–time. The dependence
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of fields on ỹa evidently does not change, only the meaning of the coordinate and the
corresponding decomposition of the pseudo-interval. This understanding of dualities was
suggested in [40,46] and further developed for non-geometric branes in [41,49,50].

2.4. Partial NATD

The example considered in the previous section suggests that in certain cases, one does
not need to perform T-dualities along all directions in order to end up with a solution of
supergravity equations. Indeed, consider a group generated by TI = (Tα, Ta) with structure
constants f I J

K such that f I J
α = 0. In this case, the DFT solution constructed by the B-shift

as described above will not depend on ỹα. Hence, only dualisation along Ta is required to
turn ỹa into geometric coordinates. Starting with the Bianchi II cosmological solution and
performing only T-duality along ỹ1, one ends up with the following background:

ds2 = ds6
2 − a1

2a2
2a3

2(dx0)2

+ a1
−2(dỹ1)

2 + a2
2(dy2)2 + a3

2(dy3)2,

B = ỹ1dy2 ∧ dy3,

e−2φ = a1
2,

(34)

which satisfies the standard supergravity equations.
Let us look at how the Manin triple decomposition of the underlying Drinfeld algebra

changes under the above transformation. We start with

[T2, T3] = T1, [T2, T̃1] = −T̃3,

[T3, T̃1] = T̃2.
(35)

Denoting g = Span(T1, T2, T3) and g̃ = Span(T̃1, T̃2, T̃3) subalgebras spanned by the
untilded and tilded generators, commutation relations can be written as

[g, g] ⊂ g, [g, g̃] ⊂ g⊕ g̃, [g̃, g̃] ⊂ g̃. (36)

The non-abelian T-duality transformation associated with the C-matrix that changes
T1 ↔ T̃1 corresponds to making a different choice of the subset of generators (g′, g̃′):
g′ = Span(T̃1, T2, T3), g̃′ = Span(T1, T̃2, T̃3). In this case, we have

[g′, g′] ⊂ g̃′, [g′, g̃′] = 0, [g̃′, g̃′] = 0, (37)

which implies that g′ is not a geometric subalgebra and further (formal abelian) T-dualities
are needed. Hence, although the operation generates solutions to supergravity equations,
it is not described by the symmetries of a Drinfeld double. Indeed, in principle, one does
not expect that any symmetry of string vacua must correspond to equivalence relations
between Manin triples.

More generally, consider a Drinfeld double generated by TI = (Ta, Tα) defined by

[TI , TJ ] = f I J
aTa, [TI , T̃a] = − f IK

aT̃K,

[T̃ I , T̃ J ] = 0.
(38)

Since the dual structure constants f̃ I
JK = 0, the transformation TI ↔ T̃ I corresponds

to NATD, and the group generated by TI is an isometry of the corresponding sigma-model.
Following the above logic, let us now instead T-dualise only Ta ↔ T̃a. This produces the
following algebra:
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[T′a, T′b] = 0, [T′b, T̃′a] = fac
bT′c + faα

bT̃α,

[Tα, T′a] = − fαb
aT′b − fαβ

aT̃β, [Tα, T̃′a] = − faα
bT̃′b

[Tα, Tβ] = fαβ
aT̃′a, [T′a, T̃α] = 0,

[T̃′a, T̃′b] = fab
cT̃′c,

[T̃α, T̃β] = 0,

(39)

which is again not of the Drinfeld double type. Hence, one concludes that although
partial non-abelian T-duality produces valid supergravity solutions, the corresponding
transformation of isometry generators is not a symmetry of a Drinfeld double.

Notice that, since for the abelian case, commutation relations are trivial,

[g, g] = 0, [g, g̃] = 0, [g̃, g̃] = 0, (40)

one is free to choose any subset of generators (given the projection constraint is satisfied) as
the geometric subalgebra and no issues with partial dualisation appear. It is useful to look
here at the Maurer–Cartan equations

dσa = f I J
aσI ∧ σJ = fbc

aσb ∧ σc + 2 fbα
aσb ∧ σα + fαβ

aσα ∧ σβ,

dσα = 0.
(41)

As before, this means that dual coordinates ỹα do not enter the B-shift and, hence, no
(formal abelian) T-duality in this direction is needed to arrive at a solution. Looking at the
Killing vector algebra:

[kI , k J ] = f I J
KkK, (42)

one notices that a = {ka} is a subalgebra of isometries. However, since the forms σa do not
trivially disentangle from the rest σα, the NATD procedure cannot be applied. Moreover,
since in general, the set of MC forms as defined above does not correspond to that of a
coset space, the corresponding NATD procedure as described in [7] also does not apply.

Interestingly, partial non-abelian T-duality is a symmetry of the two-dimensional
sigma-model. Indeed, consider as before a two-dimensional sigma-model on a manifold of
the form M×G where G is a group manifold corresponding to an algebra g with generators
TI = (Ta, Tα). Suppose further that f I J

α = 0, which implies that the Maurer–Cartan forms
σα = dyα. Following the standard procedure, we replace the rest of the forms σa → Aa and
add Lagrange terms ỹaFa:

S =
∫

Σ2

dxµ(Gµν ∗+Bµν) ∧ dxν + 2dyα(Gαµ + Bαν) ∧ dxµ + dyα(Gαβ ∗+Bαβ)

+ 2Aa(Gaµ ∗+Baµ) ∧ dxµ + 2Aa(Gaα ∗+Baα) ∧ dyα

+ Aa(Gab ∗+Bab) ∧ Ab + ỹaFa,

(43)

where
Fa = dAa + fbc

a Ab ∧ Ac + 2 fαb
a Aα ∧ dyb + fαβ

adyα ∧ dyβ. (44)

Integrating out the Lagrange multiplier ỹa, one obtains the equation of motion Fa = 0,
which implies Aa = σa. Alternatively, one may integrate out the fields Aa, for which it is
convenient to combine xm = (xµ, yα) and to rewrite the action as follows:

S =
∫

Σ2

dxm(Gmn ∗+B̂mn) ∧ dxn + 2Aa(Gam ∗+B̂am) ∧ dxm

+ Aa(Gab ∗+Bab) ∧ Ab + ỹa(dAa + fbc
a Ab ∧ Ac),

(45)
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where we define

B̂µν = Bµν, B̂αµ = Bαµ, B̂αβ = Bαβ + ỹa fαβ
a,

B̂aµ = Baµ, B̂aα = Baα + faα
bỹb

(46)

Solving equations for Aa, e.g., as in [29], and substituting back into the action, one
obtains an equivalent sigma-model on a different background:

G′mn = Gmn − (G− B̂)a(mNab(G + B̂)n)b

G′ma =
1
2
(G− B̂)mbNba − 1

2
Nab(G− B̂)bm

G′ab = N(ab)

B′mn = B̂mn + (G− B̂)a[mNab(G + B̂)n]b

B′ma = −
1
2
(G− B̂)mbNba − 1

2
Nab(G− B̂)bm

B′ab = −N[ab]

(47)

with Nab = Gab − Bab + ỹc fab
c. These are simply Buscher rules for T-dualities along

ỹa. The dilaton is then transformed such that the combination d = φ − 1
4 log det G

remains invariant.
Hence, one concludes that for the particular case f I J

α = 0, i.e., when σα = dyα, to
obtain an equivalent σ-model, it is enough to T-dualise only the remaining directions ỹa.
This is completely natural from the point of view of DFT as the background depends on
ỹa and does not depend on ỹα. However, although such duality generates solutions to
equations of the standard supergravity, the transformation of the corresponding Manin
triple does not give a Manin triple. Hence, the transformation is not a symmetry of the
Drinfeld double, and “partial” T-duality, although generating proper backgrounds, does
not make as much sense as the usual (N)ATD, which is based on the symmetries of the
underlying Drinfeld algebra. The same observation can be made for NAUD, on which we
comment later.

3. Non-Abelian U-Duality in SL(5) ExFT

Let us now try to generalise the above algorithm of NATD to the case of exceptional
field theory. As the very first example, one may take the SL(5) exceptional field theory,
that is a 7 + 10-dimensional field theory, whose local coordinate transformations include U-
dualities of D = 7 maximal supergravity [51,52] (for a review on exceptional field theories,
see [53–55]). Space–time is split into 7 external directions labelled by coordinates xµ,
4 internal coordinates ym, and 6 dual coordinates ỹmn = −ỹnm corresponding to winding
modes of the M2-brane. The latter form the 10-dimensional extended space parametrised
by XMN = −XNM, on which the generalised Lie derivative is defined. Capital Latin indices
label the irrep 5 of SL(5). The closure of the algebra of generalised Lie derivatives imposes
the section condition on all fields and their combinations, which schematically can be
written as

εMNKLP∂MN • ∂KL• = 0. (48)

The field content of the theory can be written in irreps of the duality group SL(5)
as follows:

gµν, Aµ
[MN], m(MN), BµνM, (49)

where the generalised metric mMN parametrises the coset space SL(5)/SO(5). Explicit
parametrisation in terms of supergravity fields depends on the choice of the frame, which
is dictated by the choice of the solution to the section constraint. In addition to the straight-
forward minimal choice ∂MN = 0 giving D = 7 ungauged maximal supergravity, one finds
two distinct maximal solutions of the section constraint. These correspond to breaking of the
set XMN labelling the 10 of SL(5) with respect to subgroups GL(4) and GL(3)× SL(2). The
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former turns SL(5) ExFT into 11d supergravity, while the latter gives Type IIB supergravity
in the S-duality covariant formulation.

For the purpose of this paper, we are interested in relations between fields in 11D and
IIB frames recovered from explicit parametrisations of the generalised metric mMN and the
relation of the external metric gµν to the 7× 7 block of the full 11/10-dimensional metric.
One starts with the 11-dimensional metric written in the 7 + 4-split:

ds2
11 = ĝµνdxµdxν + ĥmndymdyn

= ĝµνdxµdxν + ĥabσaσb.
(50)

Then, one has for the ExFT fields gµν and mAB [56,57]:

gµν = ĥ
1
5 ĝµν,

mAB = ĥ
1
10

[
ĥ−

1
2 ĥab Va

Vb ĥ
1
2 (1 + V2)

]
,

(51)

where ĥ = det ||ĥab|| and the vector Va encodes internal components of the 3-form field
Va = ĥ−

1
2 εabcdCbcd. Note that det mAB = 1 and is parametrised by undressed fields.

To recover fields of Type IIB supergravity one switches to the parametrisation corre-
sponding to the GL(3) × SL(2) solution of the section constraint, keeping the ExFT fields
the same. For that, one has

gµν = e−
4
5 d g̃µν,

mAB = e−
2
5 d

[
h̃

1
2 h̃ab + e−2dMijVi

aVj
b Vi

a

Vj
b e2dMij

]
,

e−2d = e−2φ h̃
1
2 .

(52)

Here, d is the invariant dilaton of double field theory, h̃ab is the 3-dimensional block of
the full 10-dimensional metric, and the matrixMij encodes the degrees of freedom of the
axion–dilaton:

||Mij|| =
[

1 C0
C0 e−2φ + C2

0

]
. (53)

The pair of vectors Vi
a encodes the internal parts of the NS-NS Kalb–Ramond 2-form

Bab and R-R field Cab as

Vi
a = h̃−1/2εabc

[
Cbc
Bbc

]
, (54)

where εabc is the Levi-Civita symbol ε123 = 1. It is important to notice that the parametri-
sation used here differs from that of [33] as we are working in the string frame. The
parametrisation in the Einstein frame of [33] provides the formulation of IIB supergravity
explicitly covariant under the SL(2) duality symmetry, which is reflected in the fact that all
dependence on the dilaton is hidden inside the SL(2)/SO(2) matrix and the metric is inert
under the S-duality. In contrast, the parametrisation given above provides fields T-dual
to the IIA fields, which can be obtained from the standard 11D parametrisation. For the
purposes of this paper, the latter is more convenient.

Now, following the analogy between DFT and ExFT extended spaces, were propose
the following non-abelian U-duality scheme for 11D backgrounds:

1. Undress the metric and the C-field gmn = σm
aσn

bgab, Cmnk = σm
aσn

bσk
cCabc, and

compose generalised metricHAB from the undressed fields.
2. Construct a background with a C-field defined by Cabc + ∆Cabc with the shift given

by ∆Cabc = −3ỹd[a fbc]
d, where ỹab are the would-be dual coordinates. The metric is

then simply the flat metric gab.
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3. Perform a U-duality transformation that turns ỹab into geometric coordinates and σa

into dual 1-forms. Equivalently, embed gl(4) in a different way.

Step 3 above needs further clarification. Notice first that the background constructed
at Step 2 is such that it solves the equations of ExFT whenever the initial background is
a supergravity solution. The reason is simply that these two backgrounds have identical
generalised fluxes. Due to the explicit dependence on dual coordinates in the C-field,
the constructed background cannot solve the equations of supergravity and has to be
U-dualised into a proper supergravity background at Step 3. Note that, in the case of
the degenerate Cartan–Killing form, less coordinates appear in the C-shift. For example,
for fab

c = 0, the background does not depend on dual coordinates at all, and formally,
no dualisation is needed. Indeed, this is simply a flat background with constant C-field
(gab, Cabc), which apparently satisfies the equations. The initial background would then
be a flat torus. The important observation here, to be elaborated on below, is that such
a dualisation of all coordinates is not always possible. For example, for the SL(5) case,
which we consider in more detail below, one is not able to U-dualise four non-geometric
coordinates into four geometric coordinates by an external automorphism. However, this
is possible for a subset of three, requiring the remaining direction to be a separate U(1)
isometry. In this case, the procedure simply reproduces non-abelian T-duality and relates
the IIA and IIB backgrounds.

As in the case of partial NATD discussed in Section 2.4, structure constants fab
c may

be such that, upon the shift, the C-field depends on less than four dual coordinates, while
the background does not have a separate U(1) direction. In this case, U-dualisation of less
than four coordinates is needed to end up with a solution to equations of the standard
11-dimensional supergravity. However, for the same reason, this will not be a symmetry
of EDA, since the multiplication g ◦ g will have generators from the dual g̃ on the RHS.
Although these are interesting to discuss as symmetries of the corresponding sigma-model,
we will not consider such partial NAUD’s in what follows.

As in the case of NATD transformations represented as a B-shift plus T-dualities, the
above procedure guarantees always giving a solution to the equations of 11D supergravity,
however with an additional restriction to unimodular groups, i.e., fab

b = 0. The origin of
the latter condition will become clear momentarily. This procedure is in the same relation
to Nambu–Lie U-duality described in [30,58] as NATD is to Poisson–Lie T-duality. More
concretely, for a Poisson–Lie T-duality transformation, one starts with a given realisation of
a Drinfeld doubleD and searches for such an O(d, d) matrix CA

B that transforms generators
TA of D into a new set T′A also defining a Drinfeld double. For the particular choice of
CA

B corresponding to the B-shift+T-dualities’ transformation of the initial background, the
procedure is commonly referred to as non-abelian T-duality, as it is performed over a group
manifold background. Similarly, Nambu–Lie U-duality is concerned with searches of such
CA

B ∈ Ed(d) preserving the structure of exceptional Drinfeld algebra. As noted in [33,58],
this step is very complicated. Instead, the procedure suggested above provides explicit field
transformation rules, similar to Buscher rules. Explicit examples of non-abelian U-dual
backgrounds based on this procedure are provided in the separate work [34].

The proof that one always ends up with a solution is a straightforward repetition
of that for double field theory. Starting with a solution to 11D equations, one undresses
all fields and composes a “flat” generalised metric mAB of exceptional field theory. The
corresponding generalised vielbein EM

A contains only components of the left-invariant
1-forms σm

a, and hence, the only non-vanishing generalised flux components are those,
proportional to the structure constants fab

c. Using the usual expressions for fluxes of the
SL(5) ExFT as in [59,60], one finds for the components of 10, 15, and 40:

Sa5 = 2 fba
b, θa5 =

1
2

fba
b, T̃ab5

c = − fab
c − 2

3
δ[a

c fb]d
d. (55)
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As before, C-shift turning mAB to m′AB can be understood as a generalised vielbein
with the following generalised fluxes:

S′a5 = 4 fba
b, θ′a5 = − fba

b, T̃′ab5
c = − fab

c − 2
3

δ[a
c fb]d

d. (56)

Hence, by construction, generalised fluxes of such a constructed background with a flat
metric and the C-field linearly depending on dual coordinates yab are the same as that of the
initial background, given fab

b = 0. Up to this condition, in terms of generalised fluxes and
the undressed generalised metric mAB, nothing has been changed, and the background m′AB
solves the equations of ExFT. Arguments for the case, where undressed fields depend on
external coordinates mAB = mAB(x), go along the same lines, with however more involved
equations in the flux formulation of ExFT. Finally, U-dualising all winding coordinates
entering the linear dependence, one ends up with a solution of 11D equations. This step
appears to be the most tricky.

Although here, we restrict ourselves to the case of SL(5) ExFT for simplicity, the first
two steps of the procedure have a straightforward generalisation to a higher U-duality
group simply by including more winding coordinates. In contrast, the last step appears to
be much more restricted for the SL(5) theory than for theories with more winding directions.
As we show below, at least for group manifolds, full dualisation of all four coordinates is
possible only when at least one of the coordinates is an abelian isometry. We conclude that
the described procedure for the SL(5) ExFT is always an uplift of an NATD transformation.
Similar observations based on the construction of exceptional Drinfeld algebras for the
SL(5) theory were made in [33]. Schematically, this is illustrated in Figure 2.

BG11 B̃G11

BG10 B̃G10 BG′10

C-shift

B-shift T0, T1, T2

IIA IIA

IIB section

11D:

10D:

Figure 2. Relationship between backgrounds with spectator fields upon the non-abelian U-duality
procedure. Here, taking an IIB section represents an uplift of three T-dualities with further reduction
to 10 dimensions. In this case, the bottom line represents the usual non-abelian T-duality.

4. Algebraic Perspective
4.1. T-Duality

Non-abelian T-duality as a particular case of Poisson–Lie T-duality is based on the
notion of Drinfeld double Lie algebra, which is basically a Manin triple (g, g̃, η), with g and
g̃ being Lie algebras with bases {Ta} = bas g and {T̃a} = bas g̃ and η a non-degenerate
invariant symmetric bilinear form on g⊕ g̃. Defining {TA} = {Ta, T̃a} = bas g⊕ g̃, the
commutation relations read

[TA, TB] = FAB
CTC, (57)

where in general, the only non-vanishing structure constants are Fab
c =: fab

c and F ab
c =:

f̃ ab
c. For NATD, either g or g̃ should be Abelian. Non-vanishing components of the

ad-invariant symmetric form η(TA, TB) = ηAB are then ηa
b = δa

b = ηb
a.

Geometrically, such a defined Drinfeld double can be realised by choosing a maximally
isotropic subalgebra, say g, to be a “physical” subalgebra. Group element g = exp xaTa
of the corresponding Lie group G defined by generators of the physical subalgebra will
define left-invariant 1-forms σ = g−1dg on the group manifold. In this setup, a non-abelian
T-duality corresponds to transfer the role of the physical subalgebra to the dual algebra g̃

and constructing space–time 1-forms from group element g̃ = exp xaT̃a. Note that, here, xa
is a physical coordinate and no further T-duality is required. More generally, a Poisson–Lie
T-duality is a constant transformation of the generators TA preserving the bilinear form η,
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i.e., an O(d, d) rotation T′A = CA
BTB, under which a given Drinfeld double is invariant. A

split of the Drinfeld double into sets of physical and dual coordinates breaks O(d, d) into
the physical GL(d), upon which the vector representation decomposes as

2d −→ d⊕ d̄. (58)

The d will be chosen to correspond to the physical subalgebra, while the alternative
choice corresponds to taking d̄. The corresponding physical algebra gl(d) will be embedded
into o(d, d) differently, and switching between these two is represented by the external
automorphism of o(d, d) corresponding to switching the two spinorial roots.

More transparently, this is seen when looking at generalised vielbeins EA
M with the

inverse defining the generalised metric HMN = EM
AEN

BHAB. These can be explicitly
constructed in the component form in terms of the left-invariant 1-forms and a B- or β-field.
For us, it important is that the generalised vielbein EA

M realises the same double Drinfeld
algebra with respect to to the generalised Lie derivative (see [35] for more details):

[EA, EB] = FAB
CEC. (59)

Hence, a transformation CA
B can be understood as acting on the algebraic indices of

the generalised vielbein. As was explicitly shown at the level of the sigma-model in [29],
an NATD transformation is precisely a B-shift and a series of O(d, d) reflections along all d
directions, performed on the undressed generalised vielbein EM

A. From the DFT point of
view, the latter are necessary to turn all x̃a into geometric coordinates, while in the Drinfeld
double language, this replaces all generators Ta by T̃a. The set of d T-dualities interchanging
d and d̄ (normal and winding coordinates) can be equivalently understood as choosing a
different embedding of the maximal GL(d) subgroup, such that d̄ becomes its fundamental
and d its co-fundamental representations. This indeed corresponds to changing the deleted
spinorial root of the Dynkin diagram of O(d, d) and, hence, to the external automorphism.

One notices that, according to the B-shift+T-dualities procedure, one has to replace all
winding coordinates by their geometric partners, which can be done in a unique way for
O(d, d) theory (for group manifolds that are not a product of Lie groups). This seems to be
in tension with the Poisson–Lie T-plurality picture, where a given Drinfeld double can be
decomposed into a set of more than two Manin triples [61]. Backgrounds corresponding to
such Manin triples generate the same Drinfeld double and hence are indistinguishable from
the point of view of the two-dimensional sigma-model. Examples of such backgrounds
can be found in [26]. In the O(d, d) language, Poisson–Lie T-plurality corresponds to
performing a rotation by an O(d, d) matrix CA

B, preserving the Drinfeld double, which in
particular can be a set of d reflections [35]. This latter case is precisely the transformation,
which turns all winding coordinates into geometric ones. Hence, in all other cases, one
would expect backgrounds that do not solve equations of normal supergravity due to the
remaining dependence on the winding coordinates. Indeed, as shown on explicit examples
in [26], such a procedure in particular gives solutions of generalised supergravity equations.

It is important to notice here that while preserving the section constraint, a general
O(d, d) transformation does not necessarily keep a background in the set of solutions to
supergravity equations. The well-known example is the linear dilaton background of
generalised supergravity. One starts with a background for which only the dilaton depends
on a given coordinate, say x9, while all other fields are isometric along it. Normally, T-
duality is forbidden along non-isometric coordinates; however, DFT allows performing an
O(d, d) rotation turning x9 into non-geometric x̃9, and the dilaton becomes

φ = f (x0, . . . , x8) + cx̃9. (60)

Apparently, the section condition is preserved, as nothing depends on x9, and the
background still solves the DFT equations. However, the equations of supergravity are
violated due to the dependence on the dual coordinate. Instead, since the dilaton always



Universe 2022, 8, 276 17 of 23

enters the equations via its derivatives, the background can be shown to satisfy a deformed
version of supergravity [42]. Another example of a background depending on dual coordi-
nates in a section condition preserving way is given by localised exotic branes, considered
in [41]. These are obtained by global O(d, d) reflections and are solutions to DFT equations,
while violating the supergravity equations.

For DFT backgrounds represented by group manifolds, equivalent gl(d) embeddings
into o(d, d) can be obtained from a given one by O(d, d) rotations and by the external
automorphism of the algebra. Only the latter turns the fundamental of a given embedding
of gl(d) into the antifundamental of the dual embedding. Crucial here is that no weight
belongs to both these representations, which is apparent for the o(d, d) algebra, but is not
always true for symmetry algebras of exceptional field theories.

To conclude, one starts with an irrepR1 of the abelian T(U)-duality group in which
extended coordinates transform. Upon an embedding of the geometric GL(d) subgroup,
this decomposes into R1 → d⊕ . . . , where d corresponds to geometric coordinates and
ellipses denote irreps under which winding coordinates transform. Now, one considers
a different embedding of the geometric GL(d) such that R1 → d′ ⊕ . . . , where d′ is the
fundamental of GL(d), none of whose weights inside R1 coincide with that of d. Let us
provide more details for U-duality groups SL(5), where this cannot be done, and SO(5,5),
which can be shown to allow 11-dimensional NAUD.

4.2. U-Duality and Exceptional Drinfeld Algebras

We start with the set of simple roots of the Lie algebra sl(5) in the canonical ω-basis of
fundamental weights:

α12 = (2,−1, 0, 0),

α23 = (−1, 2,−1, 0),

α34 = (0,−1, 2,−1),

α45 = (0, 0,−1, 2),

(61)

where labelling of the roots will become clear momentarily. The remaining positive roots are

α13 = α12 + α23, α14 = α12 + α23 + α34,

α24 = α23 + α34, α25 = α23 + α34 + α45,

α35 = α34 + α45, α15 = α12 + α23 + α34 + α45.

(62)

In addition, one has the same number of negative roots and four Cartan generators.
The weight diagram of the fundamental representation 5 of sl(5) is depicted in Figure 3,
where µ1, . . . , µ5 denote basis vectors. Notations for simple roots of the algebra are chosen
in such a way that, say, the root α12 sends the weight vector µ1 to µ2 or, equivalently, the
exponent exp(ωα12) acts by SL(2) rotations on the plane (µ1, µ2).

From the Dynkin diagram of sl(5) in Figure 4, one finds two embeddings of the subal-
gebra gl(4), corresponding to deleting the root α12 or the root α45. In matrix representation,
this corresponds to embedding a 4× 4 matrix as an upper left or lower right block. As is
shown in Figure 3, depending on the chosen deletion of a root, one ends up with different
decompositions of the fundamental 5 → 4⊕ 1. It is important to note that the weights
µ2, µ3, µ4 belong to a 4 for both of the decompositions, while one of µ1 and µ5 becomes
a singlet.

Following the analogy with NATD, one is interested in embeddings of the physical
gl(4) subalgebra related by the external automorphism. In particular, for the SL(5) theory,
we are interested in decomposing the 10 of sl(5) upon two embeddings of gl(4), which are
shown in Figure 5. Consider first the decomposition corresponding to deleting the root α45
(cutting blue arrows). In this case, weight vectors X5a with a = 1, . . . , 4 belong to the 4 of
gl(4), while the rest Xab belong to the 6. In the ExFT language, the former get identified
with geometric coordinates, while the latter represent winding modes.
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µ1 µ2 µ3 µ4 µ5

S
2

S
1

Figure 3. Weight diagram of the fundamental 5 of sl(5) with the highest weights represented by µ1.
The action of different roots is denoted by different colours, and the direction of arrows shows the
lowering of the weight. Depending on the chosen deletion of a simple root, one obtains two different
decompositions 5→ 40 + 1−4 under sl(5)←↩ gl(4).

α12 α23 α34 α45

S
2

S
1

Figure 4. Dynkin diagram of sl(5) with simple roots coloured differently for further convenience.
Depending on the two possible ways to delete one root keeping three connected, depicted by S1 and
S2, one obtains two embeddings of the gl(4) subalgebra related by the external automorphism.

X12 X13 X14 X15

X23 X24 X25

X34 X35

X45

2Q

1Q

Figure 5. Weight diagram of the 10 of sl(5) with two possible embeddings of the gl(4) subalgebra.

Now, according to the procedure of NAUD described above, one needs to find such a
different embedding of gl(4) that all weights contributed to the irrep governing geometric
coordinates of the first embedding belong to that governing winding modes. Explicitly, all
weights from the old 4 must belong to the new 6, which is impossible, according to Figure 5.

Indeed, suppose one starts with four left-invariant 1-forms σa that depend on four
coordinates on the (unimodular) group manifold x1, x2, x3, x4. Next, one constructs a back-
ground with a flat metric and C-field given by Cabc = −3ỹd[a fbc]

d with ỹab = 1/2εabcdXcd

being coordinates along winding directions. This has been shown to solve the equations of
ExFT; however, to end up with an ordinary supergravity solution, one has to turn all ỹab
entering the linear dependence into geometric coordinates. From Figure 5, one observes
that the external automorphism exchanging the roots α12 and α45 relates two different
gl(4) embeddings such that the weights labelled (X15,X25,X35,X45) form the 4 of the first
gl(4), while (X12,X13,X14,X15) form the 4 of the second gl(4). Hence, to end up with the
dependence of Cabc on four geometric coordinates after turning from one gl(4) to the other,
one has to start with the dependence on the coordinates (X12,X13,X14,X15), as is clear from
the weight diagram. However, X15 is defined as a geometric coordinate with respect to the
first embedding of gl(4) and, hence, must not enter the linear dependence. One is thus left
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with dependence on only three coordinates (X12,X13,X14) in the C-field, which correspond
to the duality M-IIB. Simple adding a term proportional to X5a into the linear ansatz for the
C-field will not work as there is no way to combine the irreps 4 and 4̄⊕ 15 into the 4.

Put differently, one starts with a group manifold background defined by Maurer–
Cartan forms (σ15, σ25, σ35, σ45) in ExFT notation. Upon the external automorphism, their
duals are (σ15, dX12, dX12, dX14), i.e., the σ12 transforms into itself. On the other hand,
the forms σ5a depend on coordinates X5a, which we call geometric. It is quite clear that
after the duality, the coordinates (X25,X35,X45) become geometric, and according to the
Maurer–Cartan equation:

dσ5a = fbcσ5b ∧ σ5c (63)

the only way to avoid their appearance in σ15 is to set dσ15 = 0. In other words, the form
σ15 should represent a separate U(1) or R isometry turning the transformation into NATD.
Hence, one concludes that the described procedure applied to a 4-dimensional group
manifold always provides a solution of 10-dimensional supergravity equations, which is
consistent with the observations made in [33]. Another option would be to generalise the
notion of T-plurality to the case of non-abelian U-duality. From the DFT point of view, T-
plurality generates backgrounds with dependence on dual coordinates, which in particular
cases solve generalised supergravity equations. However, no generalised supergravity
extension to 11 dimensions is known, and moreover, this is widely accepted to not exist.

Consider now a more fruitful case of five dimensions and U-duality algebra so(5, 5).
Its Dynkin diagrams with two possible deletions of simple roots giving gl(5) is depicted in
Figure 6. This has three simple roots generating the vector representation, antisymmetric
tensor of second and third rangerepresentations, and two spinorial representations.

α1 α2 α3

α

ᾱ

S
2

S
1

Figure 6. Dynkin diagram of so(5, 5) with simple roots coloured differently for further convenience.
Depending on the two possible ways to delete one root keeping three connected, depicted by S1 and
S2, one obtains two embeddings of the gl(5) subalgebra.

Embeddings of gl(5) are recovered by deleting one of the two spinorial roots: α or
ᾱ. Here, we focus on the 16 of so(5, 5) under which coordinates of the SO(5,5) ExFT
transform and which governs transformations of generators of the SO(5,5) exceptional
Drinfeld algebra (Ta, Tab, T) with a, b = 1, . . . , 5. The weight diagram for the spinorial
representation XM with M = 1, . . . , 16 is given in Figure 7.

Now, from the diagram, it is clear that upon the first embedding, the geometric
coordinates (equivalently, “physical” generators of the SO(5,5) EDA) correspond to the
weights (X1, . . . ,X5), while the rest correspond to winding modes. Upon the second
embedding, the “physical” subalgebra of EDA is spanned by generators corresponding
to the weights (X12, . . . ,X15). One notices that the two sets of physical coordinates do not
intersect and one is able to perform such an SO(5,5) transformation as to shift all 1-forms
σa into the non-geometric set. Equivalently, this demonstrates the existence of two possible
choices of the “physical” subalgebra inside the exceptional Drinfeld algebra with SO(5,5)
symmetry, which do not conflict.
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X1

X2 X3 X4 X5

X6 X7 X8

X9 X10 X11

X12 X13 X14 X15

X16

1Q

1Q

2Q

2Q

Figure 7. Weight diagram of the 16 of so(5, 5) with two possible embeddings of the gl(5) subalgebra.

5. Discussion

In this work, a generalisation of the non-abelian T-duality Buscher rules for 10D
supergravity backgrounds to 11D backgrounds was proposed. For that, one starts with the
representation of the conventional NATD as a B-shift of the undressed generalised metric
linearly proportional to dual coordinates ∆Bab = fab

cỹc with further abelian T-dualities
along all directions to turn all ỹa into geometric coordinates. Naturally, this translates
into a procedure that starts with the C-shift of the generalised metric of exceptional field
theory ∆Cabc = −3ỹd[a fbc]

d, which produces a field configuration depending on dual
coordinates. To end up with a solution of the supergravity equations, one either performs a
formal conventional U-duality transformation that turns dual coordinates into geometric
or chooses appropriate IIB section. These procedures can be understood as the construction
of a background with a flat metric and gauge fields linearly depending on dual coordinates
such that it has precisely the same generalised fluxes as the initial one. Such a defined
background is then guaranteed to solve equations of double (exceptional) field theory
and, hence, of the usual supergravity upon T(U)-duality of all winding directions. For the
NAUD case, the procedure was checked to work only for backgrounds with a unimodular
symmetry group, i.e., group manifolds with fab

b = 0. For NATD, such backgrounds would
generate non-vanishing trombone gauging, which in general would require a generalised
supergravity framework. A similar observation can be made in the ExFT case. Indeed, the
tension between generalised flux components of the SL(5) theory due to terms containing
fab

b can be removed by passing a linear dependence on dual coordinates to the field φ
proportional to the determinant of the external metric. At the level of fluxes, this has
many similarities with the dilaton d of DFT, whose linear dependence on dual coordinates
gives rise to generalised supergravity. However, it is widely accepted that generalised
supergravity does not exist in 11 dimensions based on the observation that no Weyl
symmetry to break is present for the membrane. Observations made in the present work
suggest further investigation of the possible relaxation of this statement.
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From the algebraic point of view, the set of T-dualities along all directions is equivalent
to replacing generators Ta by their duals T̃a in the double Drinfeld algebra (Manin triple).
For supergravity backgrounds, that means that one embeds the “physical” gl(d) in two
different ways: such that Ta or T̃a transform in the fundamental d of gl(d). This corresponds
to the external automorphism of the o(d, d) algebra replacing the deletion of one of the
roots on either ends by the deletion of the root on the opposite end. This observation
and the requirement for U-dualisation of all dual coordinates suggests understanding
NAUD transformation as a switch between two “physical” algebras gl(d) by the external
automorphism of the corresponding exceptional symmetry algebra. We showed that for
the algebra sl(5), such a procedure can generate solutions of the conventional supergravity
only when a spectator field is present, which is consistent with the observation made in [33].
Investigating the example of the algebra so(5, 5), one concludes that larger U-duality
symmetry groups allow such non-abelian U-dualisation, and a solution of the equations of
11-dimensional supergravity can be constructed. The investigation of explicit examples
based on the SO(5,5) and E6 exceptional Drinfeld algebra is reserved for future work.

One becomes naturally interested in a generalisation of the obtained results to excep-
tional field theories to general manifolds with isometries along the lines of [30,31,35]. In
this case, symmetries manifest themselves in the algebra of Killing vectors, which can be
used to organise a tri-vector shift, in contrast to the 3-form shift in the present paper [62,63].
This provides tri-vector deformations of 11-dimensional backgrounds, which in certain
cases follow the same scheme as in Figure 2, e.g., one considers the tri-vector deformation
of Minkowski space–time, which in the IIB frame is again a Minkowski space–time, while
solving the equations of generalised supergravity in the IIA frame [62]. A more detailed
analysis of the relations between deformations and non-abelian dualities is required.
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