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Actions for Regge Piecewise Flat

Quantum Gravity. Universe 2022, 8,

268. https://doi.org/10.3390/

universe8050268

Academic Editor: José Velhinho

Received: 23 March 2022

Accepted: 27 April 2022

Published: 29 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Effective Actions for Regge Piecewise Flat Quantum Gravity
Aleksandar Miković †
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Abstract: We review the construction of the path integral and the corresponding effective action for
the Regge formulation of General Relativity under the assumption that the short-distance structure of
the spacetime is not a smooth 4-manifold, but a piecewise linear manifold based on a triangulation of
a smooth 4-manifold. We point out that the exponentially damped 4-volume path-integral measure
does not give a finite path integral, although it can be used for the construction of the perturbative
effective action. We modify the 4-volume measure by multiplying it by an inverse power of the
product of the edge-lengths such that the new measure gives a finite path integral while it retains all
the nice features of the unmodified measure.

Keywords: piecewise flat spacetimes; Regge path integral; effective action

1. Introduction

Construction of a well-defined quantum gravity (QG) theory that has General Rel-
ativity (GR) as its classical limit has been an area of active research in the past 30 years.
The difficulties with the Quantum Field Theory (QFT) quantization of GR led to the idea
that the short-distance structure of spacetime may be something different to a smooth
4-manifold. The most prominent approach of this type is String Theory [1,2], which is
based on the assumption that the short-distance structure of the spacetime is given by a
loop manifold. Another prominent approach is Loop Quantum Gravity [3], where spin
foams (2-complexes carrying the Lorentz group representations) are used to model the
quantum spacetime.

More recently, a new proposal involving a novel short-distance structure of the space-
time has appeared, which can be described as quantum gravity for piecewise flat spacetimes
(PFQG) [4,5]. In this paper we will review the PFQG approach in its simplest realization,
which is based on the Regge formulation of GR, so we will call it Regge PFQG. A PFQG
theory is a quantum gravity theory which is based on a spacetime represented by a piece-
wise linear (PL) 4-manifold, which is a triangulation of a smooth 4-manifold such that in
each 4-simplex there is a flat metric. The simplest realization of such a PL manifold is the
Regge formulation of GR and the corresponding QG theory is based on the Regge GR path
integral [6,7].

Other examples of PFQG theories are the spin-foam models; see [8] for a review and
references and the spin-cube models [9]. However, in the spin-foam approach, as well
as in the original Regge approach, the PL structure is considered an auxilliary structure,
which is introduced only for the purpose of constructing well-defined quantum transition
amplitudes. It is expected that the PL structure will disappear after making the smooth-
manifold limit. The same idea is used in the Causal Dynamical Triangulations approach [10],
where the PL structure is removed by performing a sum over different triangulations.

If the spacetime is really a PL manifold based on a triangulation of a smooth manifold,
then for a triangulation which has a large number of 4-simplices, the PL manifold will
look like a smooth manifold at scales much larger than the maximum edge length in the
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triangulation. Therefore, given a Regge path integral, one does not need to find its smooth-
manifold limit (which is a difficult and still an unsolved problem) but instead it is sufficient
to find a smooth-manifold approximation of the corresponding effective action. This is the
same approach one uses when describing the dynamics of fluids, since a fluid consists of
a large number of molecules and, at length scales much larger than the inter-molecular
distance, one can use a smooth vector field describing the average velocity of the molecules
in a microscopic volume.

Another novelty of the PFQG approach is that a triangulation becomes a physical
feature of spacetime, so that at sufficiently small distances one would be able to see the
effects of the PL structure. These distances are not necessarily of the order of the Planck
length (10−35 m), but can be larger. Note that in the LHC experiments, one can probe the
distances down to 10−20 m. Although no sign of quantum gravity effects was detected in
the LHC experiments, still there are 15 of orders of magnitude to be explored.

In Section 2 we review the standard Regge formalism for the Riemannian metrics
and point out the problems with the corresponding Regge path integral. In Section 3 we
review the Regge calculus for pseudo-Riemannian metrics of the Minkowski signature,
and define the corresponding Regge action. In Section 4 we discuss the finiteness of the
Regge path integral for a class of path-integral measures, which allow the construction of
the perturbative effective action. In Section 5 we review in some detail the construction of
the effective action, while in Section 6 we explain how to construct the smooth-manifold
approximation for the effective action. In Section 7 we review the properties of the effective
cosmological constant determined by the effective action, and discuss the implications for
the cosmological constant problem. In Section 8 we present our conclusions.

2. Regge Formulation of GR

The Regge discretization of GR [6,7] amounts to replacing the smooth spacetime
manifold M with a PL manifold T(M) which corresponds to a triangulation of M. The
metric on T(M) is determined by the set of the edge lengths

{Lε > 0 | ε ∈ T(M)} , (1)

where ε are the edges of T(M). Although an Lε can be arbitrarily small, we will exclude
the zero edge lengths.

Given a set of the edge lengths (1), one would like to define a metric on the PL manifold
T(M) such that the PL metric in each 4-simplex σ of T(M) is flat and of the euclidean
signature, i.e., (+,+,+,+). This can be performed by using the Cayley–Menger metric [11]

Gµν(σ) = L2
0µ + L2

0ν − L2
µν , (2)

where the five vertices of σ are labeled as 0, 1, 2, 3, 4 and µ, ν = 1, 2, 3, 4. Although the CM
metric is flat in a four-simplex, it is not dimensionless and hence it is not diffeomorphic to
gµν = δµν. This can be remedied by defining a new PL metric,

gµν(σ) =
Gµν(σ)

(det G(σ))1/4 , (3)

which is a rescaled CM metric such that det gµν = 1, provided det Gµν > 0.
Insuring the Euclidean signature of a PL metric requires the following restrictions on

the edge lengths:

det G(σ) > 0 , (4)

det G(τ) > 0 , (5)

det G(∆) > 0 , (6)
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for every 4-simplex σ, every tetrahedron τ and every triangle ∆ of T(M). The last inequality
is equivalent to the triangular inequalities for the edge lengths of a triangle. These inequali-
ties permit us to define the volumes of n-simplexes via the Cayley–Menger determinants

det G(σn) = 2n(n!)2V2(σn) , n = 2, 3, 4 . (7)

Note that, for an arbitrary assignment of Lε, the volumes Vn can be positive, zero or
imaginary. Just taking the strict triangular inequalities will ensure the positivity of the
triangle areas, but then some of the higher volumes can be zero or imaginary. Hence, all
three inequalities must be imposed.

The Einstein–Hilbert (EH) action on M is given by:

SEH =
∫

M

√
det g R(g) d4x , (8)

where R(g) is the scalar curvature associated with a metric g. On T(M) the EH action
becomes the Regge action,

SR(L) = ∑
∆∈T(M)

A∆(L) δ∆(L) , (9)

where A∆ is the area of a triangle ∆. The deficit angle δ∆ is given by:

δ∆ = 2π − ∑
σ⊃∆

θ
(σ)
∆ , (10)

where a dihedral angle θ
(σ)
∆ is defined as the angle between the 4-vector normals associated

with the two tetrahedrons that share the triangle ∆. Therefore,

sin θ
(σ)
∆ =

4
3

A∆Vσ

VτVτ′
. (11)

Given the Regge action (9), the corresponding Euclidean path integral can be written as

ZE =
∫

D

N

∏
ε=1

dLε µ(L) e−SR(L)/l2
P , (12)

where D is the maximal subset of (R+)N consistent with the triangular inequalities1 . The
path-integral measure µ(L) is usually chosen as:

µ(L) =
N

∏
ε=1

(Lε)
α , (13)

where α is a constant, see [11], but other choices can be made, which we will discuss.
The immediate problem with the path-integral (12) and the measure (13) is that the

finiteness of ZE is not guaranteed because SR(L) is not bounded from bellow, i.e., the scalar
curvature can be unboundedly negative, and the measure (13) does not fall off sufficiently
quickly for large Lε and negative α. A simple way to remedy this is to complexify the
Euclidean path integral via

ZEC =
∫

D

N

∏
ε=1

dLε µ(L) eiSR(L)/l2
P . (14)

This will be an absolutely convergent integral for

µ(L) =
N

∏
ε=1

(l2
0 + L2

ε)
−p , (15)
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where p > 1/2 and l0 > 0, see [9]. However, the problem with (14) is that it is not clear
how to relate it to a path integral for the Minkowski signature metrics.

3. Lorentzian PL Metric

The problems with the Euclidean path integrals (12) and (14) can be avoided by using
the Minkowski signature metric from the very beginning. In order to formulate the Regge
action in the Lorentzian case, we need to discuss certain aspects which are absent in the
Euclidean case.

The novelty in the Lorentzian case is that L2
ε can be positive or negative, so that

Lε ∈ R+ or Lε ∈ i R+. Consequently, we have to indicate in T(M) which edges are space-
like (S) and which edges are time-like (T). We will not use the light-like edges (L2

ε = 0).
Although one can triangulate a pseudo-Riemannian manifold such that all the edges are
spacelike [4], it is more natural to use the triangulations where we have both the spacelike
and the timelike edges, see [10].

The CM metric is now given by the same expression as in the euclidean case (2), while
the physical PL metric is given by:

gµν(σ) =
Gµν(σ)

|det G(σ)|1/4 , (16)

where the module of the determinant accounts for the fact that we now require det G(σ) < 0.
In order to ensure the Minkowski signature of the PL metric we need to impose

det G(σ) < 0 , (17)

and
det G(τ) 6= 0 , det G(∆) 6= 0 , (18)

for any σ, τ and ∆ in T(M). This is analogous to the first restriction in the Euclidean case (4).
The analogs of the second (5) and the third restriction (6) are weaker, since the signatures
of det G(τ) and det G(∆) are not fixed in the Minkowski case. Namely, det G(τ) > 0
if τ belongs to a euclidean hyper-plane of gµν(σ), while det G(τ) < 0 if τ belongs to
a Minkowski hyper-plane. Also det G(∆) > 0 if ∆ belongs to a euclidean plane while
det G(∆) < 0 if ∆ belongs to a Minkowski plane.

The volumes of n-simplexes can be defined as

(Vn)
2 =
|det Gn|
2n(n!)2 > 0 , n = 2, 3, 4 , (19)

so that Vn > 0. Note that in the n = 1 case we should distinguish between the labels Lε ∈ C
and their 1-volumes as |Lε| > 0. We will also use an equivalent labeling Lε → |Lε| with an
indication S for Lε ∈ R+ or T for Lε ∈ i R+ . In order to avoid pathological zero volumes,
we will require

det G(τ) 6= 0 , det G(∆) 6= 0 , (20)

for all tetrahedrons and triangles in T(M).
Given that the edge lengths can take real or imaginary values in a Minkowski space,

this implies that the angles between the vectors can be real or complex. Let us consider the
angles in a Minkowski plane. Such angles can be defined as

cos α =
~u ·~v
||~u|| ||~v|| , sin α =

√
1− cos2 α , α ∈ C , (21)

where ~u = (u1, u0), ~u ·~v = u1v1 − u0v0 and ||~u|| =
√
~u · ~u.
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Consider two spacelike vectors ~u = (1, 0) and ~v = (cosh a, sinh a), a ∈ R. Since
||~u|| = ||~v|| = 1 then

cos α = cosh a , sin α = i sinh a ⇒ α = i a . (22)

In the case of a spacelike vector ~u = (1, 0) and a timelike vector ~v = (sinh a, cosh a),
we have ||~u|| = 1 and ||~v|| = i, so that

cos α = −i sinh a , sin α = cosh a ⇒ α =
π

2
− i a . (23)

If we have two timelike vectors ~u = (0, 1) and ~v = (sinh a, cosh a), then

cos α = cosh a , sin α = i sinh a ⇒ α = i a . (24)

The definition (21) then implies that the sum of the angles between two intersecting
lines in a Minkowski plane is 2π.

In order to define the dihedral angles in the Minkowski case we will introduce

(vn)
2 =

det Gn

2n(n!)2 , n = 2, 3, 4 , (25)

so that vn = Vn for det Gn > 0 or vn = i Vn for det Gn < 0. In the n = 1 case we have
vε = Lε for a spacelike edge or vε = iLε for a timelike edge where Lε > 0. Then the angle
between two edges in a triangle is given by

sin α
(∆)
π =

2 v∆

vε vε′
, (26)

where π the common point (known as the hinge).
The dihedral angle between two triangles sharing an edge in a tetrahedron is given by

sin φ
(τ)
ε =

3
2

vε vτ

v∆ v∆′
, (27)

while the dihedral angle between two tetrahedrons sharing a triangle in a four-simplex is
given by

sin θ
(σ)
∆ =

4
3

v∆ vσ

vτ vτ′
. (28)

Formulas (26)–(28) are generalizations the corresponding euclidean formulas such
that Vn → vn, and the novelty in the Minkowski case is that sin θ is not restricted to the
interval [−1, 1], but sin θ ∈ R or sin θ ∈ iR. This also means that the Minkowski dihedral
angles can take the complex values.

In the case of a dihedral angle θ
(σ)
∆ there are two possibilities. If the triangle ∆ is in a

Minkowski (ST) plane, then θ will be an angle in an orthogonal Euclidean (SS) plane, so
that sin θ = sin a. If ∆ is in an SS plane, then θ will be in an orthogonal ST plane, so that
sin θ = cosh a or sin θ = i sinh a.

The deficit angle will then take the following values:

δ∆ = 2π − ∑
σ⊃∆

θ
(σ)
∆ ∈ R , (29)

when ∆ is an ST triangle, while

δ∆ = 2π − ∑
σ⊃∆

θ
(σ)
∆ ∈ π

2
Z + iR , (30)
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when ∆ is an SS triangle. Note that for an SS triangle the triangle inequalities are valid,
while for an ST triangle they do not apply.

The appearance of the complex values for the deficit angles in the Minkowski signature
case raises the question of how to generalize the euclidean Regge action such that the new
action is real. A proposal for a lorentzian Regge action was given in [10]

SR = ∑
∆∈SS

A∆
1
i

δ∆ + ∑
∆∈ST

A∆ δ∆ . (31)

However, the problem with this definition is that a priori SR ∈ R + i π
2 Z, so that one

has to verify for a given triangulation that Im SR = 0.
In order to avoid this difficulty, we will take

SR = Re

(
∑

∆∈SS
A∆

1
i

δ∆

)
+ ∑

∆∈ST
A∆ δ∆ . (32)

This definition can be justified by the fact that the authors of [10] have verified that
Im S̃R = 0 for a special class of triangulations, which are physically relevant, and they are
called the casual triangulations.

4. GR Path Integral

Given the definition of the Regge action in the Lorentzian metric case (32), we can write

Z(T(M), µ) =
∫

D

N

∏
ε=1

dLε µ(L) eiSR(L)/l2
P , (33)

where D is the maximal subset of RN
+ consistent with a choice of the spacelike and the

timelike edges.
The convergence of the integral (33) is of the fundamental importance for the Regge

PFQG theory. Also, in order to have an effective action with the correct classical limit we
have to use a PI measure which satisfies the following criterion

ln µ(λ L1, · · · , λLN) ≈ O(λa) , a ≥ 2 , (34)

for λ→ ∞, see [4].
A choice for µ(L) can be made such that it obeys (34) and it insures the diffeomorphism

invariance of the smooth-spacetime effective action [4]. It is given by

µ(L) = exp
(
−V4(L)/L4

0

)
, (35)

where V4 is the volume of T(M) and L0 is a new parameter in the theory, see [4].
Although (35) is an exponentially damped measure when Lε → ∞, the convergence of

the path integral is not guaranteed because of the existence of the degenerate configurations
where some or all of the Lε → ∞ while V4 → 0. If we denote the union of such regions as
D0 and let D′ = D \ D0, then

|Z| ≤
∫

D
∏

ε

dLε e−V4(L)/L4
0 ≈

∫
D0

∏
ε

dLε +
∫

D′
∏

ε

dLε e−V4(L)/L4
0 . (36)

The integral over D0 is clearly divergent, so that we cannot prove the absolute conver-
gence of Z. This does not mean that Z is divergent, but it is an indication that we have to
check the convergence of Z in some other way.

By using the spherical coordinates in RN
+ , the path integral Z can be written as

Z = cN

∫ ∞

0
LN−1 dL

∫
ΩN

dN−1θ JN(θ) e−L4v(θ)/L4
0+iL2s(θ)/l2

P , (37)
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where

L2 =
N

∑
ε=1

L2
ε ,

and
θ = (θ1, θ2, · · · , θN−1) ,

are the angles corresponding to the points of RN
+ . cN is a constant and JN(θ) denotes the

angular dependence of the Jacobian.
If we integrate the L variable first, we obtain

Z = cN

∫
Ω

dN−1θ JN(θ)
∫ ∞

0
LN−1 e−v(θ)L4/L4

0+is(θ)L2/l2
P dL

=
∫

Ω
dN−1θ JN(θ) F(v(θ), s(θ)) , (38)

where Ω is the angular region corresponding to the path-integral integration region
D ⊂ RN

+ .
The function F(v, s) has the following asymptotic properties. For s→ 0 we have

F(v, s) ≈ cN

∫ ∞

0
LN−1 e−vL4/L4

0 dL

= cNv−N/4
∫ ∞

0
ξN−1 e−ξ4/L4

0 dξ = c′N v−N/4 . (39)

Similarly, for v→ 0 we obtain

F(v, s) ≈ cN

∫ ∞

0
LN−1 e−sL2/l2

P dL = c′′N s−N/2 . (40)

Since Ω is a compact set, the angular integral (38) will diverge if F is not bounded in
Ω. From (39) and (40) we can see that F is not bounded when v ≈ 0 and s ≈ 0. Note that
v ≈ 0 corresponds to V4(L) ≈ 0, and s ≈ 0 corresponds to SR(L) ≈ 0. Hence the integral Z
with the measure (35) is divergent.

Let us now consider the following class of PI measures

µp(L) = ∏
ε

(l2
0 + L2

ε)
−p exp

(
−V4(L)/L4

0

)
, (41)

such that p > 1/2 and l0 > 0. This is a product of the measures (15) and (35) and we have

|Z| ≤
∫

D
∏

ε

dLε

(l2
0 + L2

ε)
p e−V4(L)/L4

0 ≈
∫

D0
∏

ε

dLε

(l2
0 + L2

ε)
p +

∫
D′

dN L µp(L) .

The first integral is convergent for p > 1/2, while the second integral is also conver-
gent, and this can be shown by using the N-dimensional spherical coordinates in D′. We
then have

|Z| ≤ I2 = C + cN

∫ ∞

L′
LN−1 dL

∫
Ω′

dN−1θ JN(θ)
e−L4v(θ)/L4

0

L2Np ,

where L′ � l0. We can write

I2 ≈ C + cN

∫
Ω′

dN−1θ JN(θ) (v(θ))N(p−1/2)/2
∫ ∞

ξ ′
ξN−1 e−ξ4/L4

0 dξ

= C + c′N
∫

Ω′
dN−1θ JN(θ) (v(θ))

N
2 (p− 1

2 ) .

The angular integral in I2 is finite, because it is an integral of a bounded function over
a compact region. Hence Z with the measure (41) is absolutely convergent. This measure
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also satisfies the criterion (34) for the construction of the effective action, so that it can be
used to define a PFQG theory.

One wonders whether the p = 0 measure could be still used, despite the fact that
Z is divergent. We will see in the next section that the construction of the perturbative
effective action does not depend on the finiteness of Z. However, if one wants to construct
a non-perturbative effective action, then the finiteness of Z is important.

5. Effective Action

The effective action is an important tool for understanding the semiclassical prop-
erties of a quantum theory, because it is an action which gives the EOM for quantum
corrected classical trajectories. It was first introduced for QFTs by using the path-integral
formulation, and one can also use an effective action to understand the non-perturbative fea-
tures, because an effective action is a generating functional for the one-particle irreducible
correlation functions.

For the purposes of constructing an effective action for a Regge PFQG, we need to
define the path integral for the case of a manifold M = Σ× [a, b], where Σ is a 3-manifold.
Let [a, b] = [0, nt], n ∈ N and t > 0. We will use a time-ordered triangulation, which is also
known as a causal triangulation [10]. Let

T(M) = ∪n−1
k=0 T̃k(Σ× [k, k + 1]) , (42)

where T̃k is a triangulation of a slab Σ× [k, k + 1] such that

∂T̃k = Tk(Σ) ∪ Tk+1(Σ)

and Tk are triangulations of Σ. We then choose vε = Lε for ε ∈ Tk(Σ) and vε = iLε for
ε ∈ T̃k \ (Tk ∪ Tk+1).

We will determine the semiclassical properties of a Regge PFQG by using a perturba-
tive effective action. It can be constructed by solving the effective action equation in the
semiclassical limit Lε � lP =

√
GN h̄.

Let us recall first the effective action definition from quantum field theory. Let φ be a
real scalar field on M and let

S(φ) =
1
2

∫
M

d4x
√
|g|
[

gµν ∂µφ ∂νφ−m2 φ2 − λ φ4
]

,

be a flat-spacetime action. The effective action Γ(φ) can be determined from the following
integro-differential equation

eiΓ(φ)/h̄ =
∫
Dh exp

[
i
h̄

S(φ + h)− i
h̄

∫
M

d4x
δΓ

δφ(x)
h(x)

]
, (43)

see [12,13].
Equation (43) follows from the definitions

Z(J) =
∫
Dϕ e

i
h̄ [S(ϕ)+

∫
M d4xJ(x)ϕ(x)] = e

i
h̄ W(J)

and
Γ(φ) = W(J)−

∫
M

d4xJ(x)φ(x) ,

so that
e

i
h̄ Γ(φ) =

∫
Dϕ e

i
h̄ [S(ϕ)+

∫
M d4xJ(x)(ϕ(x)−φ(x))] .
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By changing the integration variable ϕ(x) to h(x) = ϕ(x) − φ(x), we obtain the
Equation (43). Note that the limits of integration for the variable h are the same as those for
ϕ, since

ϕ ∈ (−∞, ∞)→ h = ϕ− φ ∈ (−∞, ∞) .

However, in the case when ϕ ∈ I ⊂ R, then the integration limits of the variable h
become φ-dependent. For example

ϕ ∈ (0, ∞)→ h = ϕ− φ ∈ (−φ, ∞) .

This happens in the case of the Regge action, since then φ(x) ∼ Lε > 0 and h(x) ∼ lε,
see Equation (46).

Equation (43) can be solved perturbatively as

Γ(φ) = S(φ) + h̄Γ1(φ) + h̄2Γ2(φ) + · · · ,

and a perturbative solution will be a complex-valued function. A real effective action is
obtained by using the Wick rotation. This is done by solving first the EA equation in the
Euclidean spacetime

e−ΓE(φ)/h̄ =
∫
Dh exp

[
−1

h̄
SE(φ + h) +

1
h̄

∫
M

d4x
δΓE

δφ(x)
h(x)

]
, (44)

so that all the solutions are real. Then x0 = −it is inserted into a solution ΓE(φ), where
(x0, xk) are the spacetime coordinates, and one takes

Γ(φ) = −ΓE(φ)|x0=−it .

However, the Wick rotation cannot be used in quantum gravity, since in many prob-
lems of interest, introducing a flat background metric does not make sense. One way to
resolve this difficulty is to use the fact that the Wick rotation in QFT is equivalent to

Γ(φ)→ Re Γ(φ) + Im Γ(φ) , (45)

where Γ(φ) is a perturbative solution of (43), see [4,14]. This prescription is convenient
for quantum gravity because it does not involve a background metric, nor a system
of coordinates.

In the case of Regge quantum gravity without matter, the effective action equation is
given by

eiΓ(L)/l2
P =

∫
D(L)

dN l µ(L + l)eiSRc(L+l)/l2
P−i ∑N

ε=1 Γ′ε(L)lε/l2
P , (46)

where SRc is the Regge action plus the cosmological constant term and D(L) is a subset
of RN obtained by translating D by a vector −L [4]. Note that D(L) ⊂ [−L1, ∞)× · · · ×
[−LN , ∞).

We will look for a semiclassical solution

Γ(L) = SRc(L) + l2
PΓ1(L) + l4

PΓ2(L) + · · · ,

where Lε � lP and
|Γn(L)| � l2

P|Γn+1(L)| .

When Lε → ∞, then D(L)→ RN and

eiΓ(L)/l2
P ≈

∫
RN

dN l µ(L + l)eiSRc(L+l)/l2
P−i ∑E

ε=1 Γ′ε(L)lε/l2
P . (47)



Universe 2022, 8, 268 10 of 16

Actually, one can use Equation (47) to determine Γ(L) for large L when µ falls off
sufficiently quickly [4]. The reason is that

D(L) ≈ [−L1, ∞)× · · · × [−LN , ∞) ,

for Lε → ∞, so that the relevant behaviour is captured by the following one-dimensional
integral ∫ ∞

−L
dx e−zx2/l2

P−wx =
√

π lP exp
[
− 1

2
log z + l2

P
w2

4z

+lP
e−zL̄2/l2

P

2
√

πzL̄

(
1 + O(l2

P/zL̄2)
)]

,

where L̄ = L + l2
P

w
2z and Re z = −(log µ)′′. The non-analytic terms in h̄ will be absent if

lim
L→∞

e−zL̄2/l2
P = 0⇔ (log µ)′′ < 0 for L→ ∞ . (48)

Hence the perturbative solution exists for the exponentially damped measures, and
the toy model requirement (48) becomes the criterion (34) when we have more than one Lε.

For D(L) = RN and µ(L) constant, the perturbative solution is given by the EA diagrams

Γ1 =
i
2

Tr log S′′Rc , Γ2 = 〈S2
3G3〉+ 〈S4G2〉 ,

and
Γ3 = 〈S4

3G6〉+ 〈S2
3S4G5〉+ 〈S3S5G4〉+ 〈S2

4G4〉+ 〈S6G3〉 , ...

where G = i(S′′Rc)
−1 is the propagator and Sn = iS(n)

Rc /n! for n > 2, are the vertex weights,
see [4,13]. The contractions 〈X · · ·Y〉 are the sums over the repeated DOF indices

〈X · · ·Y〉 = ∑
k,...,l

Xk...l · · ·Yk...l .

When µ(L) is not a constant, then the perturbative solution is given by

Γ(L) = S̄Rc(L) + l2
PΓ̄1(L) + l4

PΓ̄2(L) + · · · ,

where
S̄Rc = SRc − il2

P log µ ,

while Γ̄n is given by the sum of n-loop EA diagrams with Ḡ propagators and S̄n ver-
tex weights [4].

Therefore,

Γ1 = −i log µ +
i
2

Tr log S′′Rc

Γ2 = 〈S2
3G3〉+ 〈S4G2〉+ Res[l−4

P Tr log Ḡ] ,

Γ3 = 〈S4
3G6〉+ · · ·+ 〈S6G3〉+ Res[l−6

P Tr log Ḡ] + Res[l−6
P 〈S̄

2
3Ḡ3〉] + Res[l−6

P 〈S̄4Ḡ2〉] ,

see [4].
Since the PI measure µ(L) has to vanish exponentially for large edge lengths, a nat-

ural choice is the measure (35). This measure satisfies the criterion (34) for the classical
limit, since

log µ(L) = O
(
(L/L0)

4
)

, (49)

where the notation f (x1, ..., xn) = O(xα) means that

f (λx1, ..., λxn) = O(λα)
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for λ→ ∞.
Then for Lε > Lc and

L0 >
√

lP Lc , (50)

where L−2
c = Λc, we get the following large-L asymptotics [14,15]

Γ1(L) = O(L4/L4
0) + log O(L2/L2

c ) + log θ(L) + O(L2
c /L2) (51)

and
Γn+1(L) = O

(
(L2

c /L4)n
)
+ L−2n

0c O
(
(L2

c /L2)
)

, (52)

where L0c = L2
0/Lc.

Note that the construction of the perturbative EA only requires the criterion (34),
while the finitennes of Z is not necessary. However, if we want to construct exact (non-
perturbative) solutions of the EA equation, this requires that the integral in (46) is finite. If
the PI mesure is such that Z is absolutely convergent, than the integral in (46) will also be
absolutely convergent.

The modified PI measure (41) gives an absolutely convergent Z, and satisfies the
criterion (49), so that we can use it to define a Regge PFQG.

6. The Smooth-Manifold Approximation

In order to understand the effects of the Regge effective action for a smooth spacetime,
we need to see how to approximate the Regge effective action with a QFT effective action.

Let T(M) has a large number of the edges (N � 1) and let the variation of the edge
lengths from each triangle to its neighbour be small. Given a function f (L), we would
like to approximate it with a functional of a smooth metric on M. The smooth limit can be
defined as the limit N → ∞ and Lε → 0 such that

g(σ)µν (L)→ gµν(x) ,

where x are the coordinates of a point inside the 4-symplex σ and the partial derivatives of
gµν(x) are continuous on M up to order n ≥ 2 .

In the case of the Regge action, for large N and a small local variation of the edge
lengths, there is a smooth metric on M such that

SR(L) ≈ 1
2

∫
M

d4x
√
|g| R(g) . (53)

We also have
ΛcV4(L) ≈ Λc

∫
M

d4x
√
|g| = Λc VM , (54)

where |g| = |det g|. These are the standard formulas of the Regge calculus and they nicely
illustrate how functions f (L) on the PL manifold T(M) can be approximated by functionals
of a smooth (differentiable) metric g on M for N → ∞.

Similarly, the effective action Γ(L) can be approximated by a QFT effective action Γ̃(g),
where g is a smooth metric on M. In the region where Lε ≥ LK such that LK � lP, the
following approximation is valid

Tr log S′′R(L) ≈
∫

M
d4x
√
|g|
(

aR2 + bRµνRµν + · · ·
)

ln
K
k0

(55)

where a and b are numerical constants, while k0 is an arbitrary constant such that
k0 � K. The · · · indicate some additional terms which may be present in the QFT ef-
fective action, for example,

c R log

(
2

m2
0

)
R + d Rµν log

(
2

m2
0

)
Rµν ,
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see [16], where 2 = gµν∇µ∇ν and m0 = 1/k0.
The formula (55) follows from the fact that a PL function on a lattice with a cell size LK

can be written as a Fourier integral over a compact region |q| ≤ π/LK where q is the wave
vector2. Hence the PL trace-log term can be approximated by the one-loop QFT effective
action for GR by using a momentum cutoff K = 2πh̄/LK. That is how one obtains the
approximation (55).

Besides the standard trace-log term, the first-order effective action will also contain
the log µ term, so that

Γ1(L) = Tr(log S′′R(L)) +
V4(L)

L4
0
− p ∑

ε

ln

(
1 +

L2
ε

l2
0

)
, (56)

where we have discarded the constant term −pN ln l2
0 .

The last term in (56) cannot be expressed as a functional of a metric in the smooth-
manifold approximation. However, one can argue that it becomes negligibly small when
N → ∞ and Lε → 0. Let Lε ≈ l0/N, then

∑
ε

ln

(
1 +

L2
ε

l2
0

)
≈ N ln

(
1 +

1
N2

)
≈ 1

N
.

Hence the measure correction term will not affect the smooth-manifold approximation.
However, when Lε → ∞, the measure correction term will be subdominant with respect to
the V4(L) term, since

V4(L) = O(L4) , log µp − log µ0 = O(ln L) ,

so that µp will have the same semiclassical properties as µ0.

7. Effective Cosmological Constant

The asymptotics (51) and (52) imply that the series

Γ(L) = ∑
n≥0

(lP)
2nΓn(L)

is semiclassical (SC) for Lε � lP and L0 �
√

lP Lc.
Let Γ→ Γ/GN so that Se f f = (Re Γ + Im Γ)/GN . The effective action is then given by

Se f f = SRc +
l2
P

L4
0

V4 +
l2
P
2

Tr log S′′Rc − p l2
P ∑

ε

ln(1 + L2
ε/l2

0) + O(l4
P) ,

for Lε � lP. For the sake of simplicity, we will consider only the p = 0 case, since p > 0
cases are essentially the same. Hence the O(h̄), or the one-loop, cosmological constant (CC)
for pure gravity is given by

Λ = Λc +
l2
P

L4
0
= Λc + Λqg . (57)

One can show that the one-loop cosmological constant is exact because there are
no O(L4) terms beyond the one-loop order [14,15]. This is a consequence of the large-L
asymptotics

log S̄′′Rc(L) = log O(L2/L̄2
c ) + log θ(L) + O(L̄2

c /L2)

Γ̄n+1(L) = O
(
(L̄2

c /L4)n
)

,

where L̄2
c = L2

c
[
1 + il2

P(L2
c /L4

0)
]−1/2.



Universe 2022, 8, 268 13 of 16

Hence the one-loop formula (57) is exact in the case of pure gravity. If Λc = 0, the
observed value of Λ is obtained for L0 ≈ 10−5m so that l2

PΛ ≈ 10−122 [4]. Note that
L0 ≈ 10−5m is consistent with the requirement that L0 � lP, which replaces the SC
condition L0 �

√
LclP when Λc = 0.

The formula (57) is intriguing but unrealistic, since there is matter in the universe. In
order to obtain a realistic expression for the effective CC, we need to study the EA equation
with matter.

The effect of the matter on the CC can be studied by introducing a scalar field on M

Sm(g, φ) =
1
2

∫
M

d4x
√
|g|
[
gµν ∂µφ ∂νφ−U(φ)

]
, (58)

where U = 1
2 ω2φ2 + λ φ4, where ω = m/h̄.

On a PL manifold T(M) the action (58) becomes

Sm =
1
2 ∑

σ

Vσ(L)∑
k,l

gkl
σ (L) φ′k φ′l −

1
2 ∑

p
V∗p (L)U(φp) ,

where φ′k = (φk − φ0)/L0k and k, l, 0 are vertices in a 4-simplex σ, p labels the vertices of
T(M) and V∗ is the volume of the dual cell. Then the total classical action of gravity plus
matter on T(M) is given by

S(L, φ) =
1

GN
SRc(L) + Sm(L, φ) .

The corresponding EA equation is given by

eiΓ(L,φ)/l2
P =

∫
DE(L)

dEl
∫

RV
dVχ exp

[
iS̄(L + l, φ + χ)/l2

P − i ∑
ε

∂Γ
∂Lε

lε/l2
P

− i ∑
p

∂Γ
∂φp

χp/l2
P

]
, (59)

where S̄ = SRc − il2
P log µ + GNSm, see [14].

We will look for a perturbative solution

Γ(L, φ) = S(L, φ) + l2
PΓ1(L, φ) + l4

PΓ2(L, φ) + · · · ,

and require it to be semiclassical for Lε � lP and |
√

GN φ| � 1. This can be checked on the
E = 1 toy model

S(L, φ) = (L2 + L4/L2
c )θ(L) + L2θ(L)φ2(1 + ω2L2 + λφ2L2) ,

where θ(L) is a homogeneous function of degree zero.
It is not difficult to see that

Γ(L, φ) = Γg(L) + Γm(L, φ) ,

and
Γm(L, φ) = V4(L)Ue f f (φ)

for constant φ where Ue f f (0) = 0. Furthermore,

Γg(L) = Γpg(L) + Γmg(L) ,

where Γpg is the pure gravity contribution and Γmg is the matter induced contribution.
In the smooth-manifold approximation one has

Γmg(L) ≈ ΛmVM + Ωm(R, K) ,
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where K = 2πh̄/LK is the momentum cutoff. One can show that

Ωm = Ω1l2
P + O(l4

P)

and

Ω1(R, K) = a1K2
∫

M
d4x
√
|g| R

+ log(K/ω)
∫

M
d4x
√
|g|
[

a2R2 + a3RµνRµν + a4RµνρσRµνρσ + a5∇2R
]

+ O(1/K2) , (60)

where Rµνρσ is the Riemann curvature tensor, see [14].
The effective CC will be then given as

Λ = Λc + Λqg + Λm ,

where Λqg is given by (57). Note that the matter contribution to CC can be approximated
by a sum

Λm ≈∑
γ

v(γ, K), (61)

where v(γ, K) is a one-particle irreducible vacuum Feynman diagram for the field-theory
action Sm in flat spacetime with the cutoff K. One can show that

∑
γ

v(γ, K) ≈ l2
P K4

[
c1 ln(K2/ω2) + ∑

n≥2
cn(λ̄)

n−1(ln(K2/ω2))n−2

+ ∑
n≥4

dn(λ̄)
n−1(K2/ω2)n−3

]
, (62)

for K � ω, where λ̄ = l2
Pλ, see [15]. Therefore one has a highly divergent sum of matter

vacuum-energy contributions to the cosmological constant when K → ∞.
This demonstrates the great difficulty for obtaining the value of the cosmological

constant in a perturbative QFT approach to quantum gravity, see [17]. Even if one assumes
that there is some non-perturbative value for Λm, one still has the problem of how to
calculate the QG contribution to Λ, given that GR is a nonrenormalizable QFT. A plausible
assumption is that

Λqg + Λm ≈
1
l2
P

,

so that
Λ ≈ 1

l2
P
+ Λc . (63)

The problem with (63) is that the observed Λ has a value l2
PΛ ≈ 10−122, so that the

free parameter Λc has to be chosen such that l2
PΛc has to be different from 1 at the 122-nd

decimal place, which is an example of the extreme fine-tuning. This extreme fine tuning
would not be a problem if the relation (63) was an exact result, so that any value of Λc
would be acceptable. However, (63) is not an exact relationship, so that the extreme fine
tuning indicates that something is wrong with the assumptions which lead to (63).

In the PL formulation of quantum gravity, there is no problem of fine tuning, since we
have an exact relationship between Λ and the free parameters of the theory. Namely, one
has Λqg = l2

P/L4
0 and Λm is determined by a solution of the EA equation. Therefore,

Λm = V(m2, λ, l2
P) , (64)

so that

Λ = ± 1
L2

c
+

l2
P

2L4
0
+ V(m2, λ, l2

P) . (65)
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The free parameters are L0 and Lc. By equating Λ with the experimentally observed
value, we obtain

λ∗ = x + y + λm (66)

where λ∗ = l2
PΛ ≈ 10−122, x = ± l2

P/L2
c , y = l4

P/2L4
0 and λm = l2

PV. The equation (66) has
infinitely many solutions, but we also have to impose the condition for the existence of the
semi-classical limit (50). This gives the restriction

0 < y < 2|x| . (67)

The value of λm is not known, but for any value of λm the equation (66) has infinitely
many solutions which obey the restriction (67). Note that the solution x = −λm and
y = λ∗, which was proposed in [14], will be acceptable if |λm| > λ∗/2. This solution is
special because it gives a value for L0, which is independent of the value of λm, which is
L0 ≈ 10−5m. This is the same value which was obtained in the case of pure PL gravity
without the cosmological constant [4].

Note that in the case of string theory the cosmological constant can be expressed as a
function of the discrete moduli parameters, so that the CC spectrum is discrete [18]. The
CC spectrum in Regge PFQG is continuous, so that there is no problem in matching the
observed CC value with the values of the parameters. However, in string theory there are
no free parameters, and therefore one has to show that the CC spectrum is sufficiently dense
in the interval [0, 1], so that the observed CC value, which is in the order of 10−122, can
belong to the spectrum. One can argue that this is the case, because there are 10500 values
in the string CC spectrum [19]. However, this not a proof, but only a plausibility argument.

8. Conclusions

Testing the idea that at short distances the structure of the spacetime is given by a PL
manifold will require experimental verification. The distance scale where one could see the
PL structure is not necessarily of the order of Planck length. It could be 100 or 1000 times
smaller than the smallest distance we have probed so far, which is 10−20 m in the LHC
experiments. In those experiments we have not seen any significant deviations from the
QFT predictions. The fact that we still see a smooth spacetime at LHC energies may mean
that the minimum edge length in the local spacetime triangulation is several orders of
magnitude smaller than 10−20 m.

Note also that one can have spatial triangulations3 such that in the vicinity of our
planet we have small edge lengths, smaller than 10−20 m, while in the interstellar space we
can have larger, or even much larger, edge lengths. Then the propagation of light or γ-rays
from distant sources could be significantly affected by the PL structure of the spacetime,
due to the refraction effects at the boundaries of flat 4-simplices. Basically, the time of
arrival of light from a distant source to Earth will depend on the moment of emission
since the number of triangles where the spacetime curvature is concentrated and where the
light is refracted varies with time. This effect is different from the effect of time-dependent
arrival of light due to possible frequency-dependent speed of light, see [20]. These effects
could be observed, given a sufficient precision of the detectors. The same applies to the
gravitational waves.

The modification of the exponentially damped four-volume PI measure by a product
of inverse powers of the edge lengths given by (41) was introduced in order to achieve
the finiteness of the path integral. This modification is of a subleading order in log µ for
large edge lengths with respect to the 4-volume term, so that it did not change the classical
limit of the effective action nor affect the cosmological constant analysis. However, for
large N and small Lε, the measure modification contribution to the effective action will be
negligible in relation to the usual trace-log term. Hence in the spacetime regions where
the triangulation can be approximated by a smooth spacetime (the late-time Universe) the
physics does not depend on the values of the parameters l0 and p.
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The p > 1
2 measure (41) has all the desirable features such as the the p = 0 measure (35),

with the added bonus of the possibility to construct the non-perturbative effective action
as an exact solution of the EA equation. The exact solutions of the EA equation will be
relevant for the early-time universe, when the QG effects are large.

As far as the CC problem is concerned, the existence of the exact relationship (65)
solves the difficulty of fine tuning. The relation (65) also distinguishes the Regge PFQG
approach from other QG approaches, since it allows one to relate the observed CC value
with the values of the parameters of the theory.
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Notes
1 The number of the edge lengths N can be made finite in the case of a non-compact manifold M by labellenig only an appropriate

compact subset of T(M). For example, one can take T(B4), where B4 is a four-ball in M.
2 This region is known as the first Brillouin zone.
3 We assume that after a certain time from the Big Bang the Universe has a topology Σ× [a, b] and the PL structure is given by a

causal triangulation (42). We will refer to this situation as the PL structure of the late-time Universe.
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