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Abstract: Scalar Tensor Vector Gravity (STVG) or MOdified Gravity (MOG) is a metric theory of
gravity with dynamical scalar fields and a massive vector field introduced in addition to the metric
tensor. In the weak field approximation, MOG modifies the Newtonian acceleration with a Yukawa-
like repulsive term due to a Maxwell–Proca type Lagrangian. This associates matter with a fifth force
and a modified equation of motion. MOG has been successful in explaining galaxy rotation curves,
cosmological observations and all other solar system observations without the need for dark matter.
In this article, we discuss the key concepts of MOG theory. Then, we discuss existing observational
bounds on MOG weak field parameters. In particular, we will present our original results obtained
from the X-COP sample of galaxy clusters.
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1. Introduction

The theory of gravitation underwent a significant revolution over the last few centuries
from the heliocentric model of Copernicus to discovering Kepler’s laws of planetary motion
to Newton’s treatise Principia [1]. The idea also underwent a significant breakthrough
during the early 20th century with Albert Einstein’s General Theory of Relativity [2]. This
was a tremendous leap considering the notion of gravity we had before Einstein. General
Relativity (GR) received a warm welcome from the physics community with two immediate
successes; the prediction of the advance of perihelion of mercury and the confirmation of
gravitational deflection of light in 1919. Now it is beyond doubt that GR is an unavoidable
tool in astrophysics. According to [3], the modern experimental relativity can be divided
into four periods: Genesis, Hibernation, the Golden era and the quest for strong gravity.
This quest for strong gravity over the last three decades took us to a position of detecting
and studying the most violent events in the Universe such as the merging of binary
blackholes, which has not only opened a new window to the universe but also supporting
the validity of Einstein’s equation in a strong and highly dynamical regime [4]. Over the
last few decades, GR has been subjected to several other stringent tests, all confirming the
validity of GR within the experimental precision. Therefore, it is quite natural that one will
encounter a question—why do we need an alternative to GR?

Attempts to modify GR are motivated by one or more of the following factors. Mea-
surements of galaxy rotation curves [5], cluster mass and precise measurement of Cosmic
Microwave Background all suggest that most of the observable universe is dark. Based
on our currently accepted ΛCDM cosmology, 26% of the universe is made of dark matter
and around 68% is made of dark energy. Although we have plenty of theoretical models
to fit most of our astrophysical observations, we still lack answers to the most important
questions regarding the nature of dark stuff, their fundamental composition and properties.
This so called dark matter candidate believed to be a particle in some theories beyond
standard model physics. However, efforts to detect such candidate particles in experiments
have not obtained any evidence yet [6,7]. Another unsolved mystery is the existence of
dark energy confirmed by supernovae studies. Apart from the above mentioned difficulties,
some approaches to look beyond GR were motivated by the high energy perspective, the
incompatibility of general relativity with quantum mechanics and studies related to the
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nature of spacetime singularities in GR. A century ahead now, we have so many alternative
theories which modify general relativity motivated by the above mentioned factors.

MOdified Gravity (MOG), also known as Scalar-Tensor-Vector-Gravity (STVG), is
a relativistic covariant extension of GR with a massive vector field and scalar fields. It
was proposed by John. W. Moffat in 2006 [8] to address the issue of the dark matter
component in a natural way. The massive vector field in MOG is sourced by a gravitational
charge, which means that, in MOG, all massive objects possess a gravitational force charge
proportional to its inertial mass. As a consequence of this gravitational force, massive test
particles do not free fall on geodesics and are subjected to a Lorentz-like force. Moreover,
in the weak field limit the equations of motion in MOG reduce to a Yukawa type repulsive
potential in addition to an attractive Newtonian potential. Since its formulation in 2006,
MOG was able to explain several astrophysical observations without invoking any non-
baryonic models which GR employ. MOG was able to fit the galaxy rotation curves, cluster
data and reproduce the acoustic peaks of the CMB power spectrum [9–12] without any
non-baryonic matter. In a recent study [13] it is shown that MOG is consistent with ΛCDM
cosmology and is also successful in explaining the growth of structure without dark energy
and dark matter.

This paper has been organized as follows; in Section 2, we introduce the MOG action,
the field equations and conservation laws. In Section 3, we explain the modified equation of
motion in MOG for a test particle and show that it satisfies the weak equivalence principle.
In Section 4 we discuss the gravitational waves in MOG. Finally, we show that MOG
can explain the galaxy cluster data and best fit values of the running parameters α and µ
are evaluated for the X-COP galaxy cluster sample in Section 5.Further we discuss some
observations in MOG in Section 6 and conclude in Section 7.In this paper we use the metric
signature (+,−,−,−).

2. MOG Field Equations

Modified Gravity is a metric theory of gravity which has, in addition to the metric, a
dynamical massive vector field which couples universally to the matter, the gravitational
constant G promoted to the status of a field and the mass of the vector field µ. The
gravitational interaction is mediated by a massless spin-2 graviton, a massless spin-0
graviton and a massive spin-1 graviton and hence MOG was known in the beginning as
Scalar-Tensor-Vector-Gravity (STVG) [8]. MOG has undergone some changes not only in
its name but also in its action in the last few years from its original form in [8], which will
be discussed later this section. The most recent version of MOG has the following action:

S = SG + Sφ + Ss + SM. (1)

SG is the Einstein–Hilbert action with a non-zero cosmological constant. Sφ denotes the
action for the vector field, Ss corresponds to the scalar field which includes the gravitational
coupling strength G and the mass of the vector field µ and, finally, SM denotes the matter
action. They are defined as follows:

SG =
1

16π

∫
d4x
√
−g

1
G
(R + 2Λ) (2)

Sφ =
∫

d4x
√
−g[− 1

16π
BµνBµν +

1
8π

µ2φµφµ − Jµφµ] (3)

Ss =
∫

d4x
√
−g[

1
G3 (

1
2

gµν∇µG∇νG)−VG

+
1

µ2G
(

1
2

gµν∇µµ∇νµ−Vµ)],
(4)

where Bµν = ∂µφν − ∂νφµ is the antisymmetric Faraday tensor of the vector field. In the
original version, MOG [8] had an additional scalar field ω which is called the dimensionless
vector field coupling parameter ω(x). This parameter has been set to unity as it does not
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introduce any new physics; this is not something new but followed in most of the recent
papers; [9] is one example. For a detailed discussion of this issue, we refer the reader to
Section 5 of [14]. The terms VG(G), Vµ(µ) denote the self-interacting potentials associated
with the scalar field G and µ. For simplicity, we assume the self-interacting potential to
vanish in the rest of our discussion. The energy momentum tensor is defined as follows:

TM
µν =

−2
√

g
δSM
δgµν ; Tφ

µν =
−2
√

g
δSφ

δgµν ; Ts
µν =

−2
√

g
δSs

δgµν . (5)

The field equations corresponding to the action in Equation (1) can be obtained using
the standard techniques, such as using first and second order Euler Lagrange equations.
For more details in this regard, we refer the reader to [15]:

Gµν −Λgµν + Qµν = 8πGTµν (6)

∇νBµν + µ2φµ = 4π Jµ (7)

�G = K (8)

�µ = L, (9)

where Gµν = Rµν − 1
2 Rgµν is the Einstein tensor, Qµν = 2

G2

(
∂αG∂αGgµν − ∂µG∂νG

)
−

1
G

(
�Ggµν −∇µ∂νG

)
and Tµν = TM

µν + Tφ
µν + TS

µν. In the field equations for scalar field G
and µ the terms K and L are given by:

K =
3
G
(

1
2
∇µG∇µG−VG)−

G
µ2 (

1
2
∇µµ∇µµ−Vµ)−

∂VG
∂G
− G

16π
R (10)

L =
1
G
∇µG∇µµ +

∇µµ∇µG
G

− Gµ3φµφµ +
2
µ

Vµ −
∂Vµ

∂µ
. (11)

Using Equation (6) along with Bianchi identity ∇νGµν = 0, it is straight forward to
obtain the following conservation law:

∇νTµν +
1
G
∇νGTµν − 1

8πG
∇νQµν = 0. (12)

Jν in the in-homogeneous vector field equation is the new gravitational force matter current
density which acts as a source for the vector field φµ, it can be obtained by varying its action.

Jν =
−1√−g

δSM
δφν

. (13)

An important feature of MOG is that all massive particles possess a new gravitational
force charge Qg =

∫
J0(x)d3x. The homogeneous equations that follow as a consequence

of the definition of Bµν are:

∇αBµν +∇νBαµ +∇µBνα = 0. (14)

3. EOM and Weak Field Limit of MOG
3.1. Equation of Motion in MOG

Test particle motion in MOG is different from general relativity due to the presence
of extra dynamical fields. In MOG, all massive particles possess a gravitational charge qg
proportional to its inertial mass and experiences a Lorentz like force. It is shown in [14,16]
that a test particle has an action of the form:

Sm = −
∫

(m + qgφµuµ)dτ, (15)
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where τ is the proper time along the world line of the test particle of mass m, uµ is the four
velocity and the gravitational fifth force charge is given by:

qg =
∫

J0(x′)d3x′ = κM, (16)

where κ =
√

αGN and GN is the Newton’s gravitational constant. The dimensionless
parameter α to be discussed in Section 3.2 measures the enhancement of gravitational
strength, given by G = GN(1 + α). Test particle action in Equation (15) is different from
the one in [16]. The vector field coupling constant ω in [16] is not considered as it does not
affect the equation of motion. We can obtain the test particle equation of motion in MOG
by finding the Euler Lagrange equation:

d
dτ

∂L
∂uν
− ∂L

∂xν
= 0 (17)

where L = −m
√

gαβuαuβ − qgφµuµ and uν = ẋν = dxν

dτ

∂L
∂ẋν

= −mgνβ ẋβ − qgφν (18)

∂L
∂xν

= −m
2

gαβ,ν ẋα ẋβ − qgφµ,ν ẋµ (19)

d
dτ

∂L
∂uν
− ∂L

∂xν
= −mgνβ ẍβ + (−mgνβ,α +

m
2

gαβ,ν)ẋα ẋβ + qg ẋµ(φµ,ν − φν,µ) = 0 (20)

m
(d2xµ

dτ2 + Γµ
αβ

dxα

dτ

dxβ

dτ

)
= qgBµ

α
dxα

dτ
. (21)

A careful analysis of Equation (21) shows that MOG satisfies the Weak Equivalence
Principle as the gravitational force charge of the test particle is proportional to its mass, this
makes Equation (21) as a whole independent of mass of the particle. Unlike in GR, the test
particles do not free-fall along the geodesics of spacetime as it is evident from the presence
of a non-zero term on the right hand side of Equation (21). It is also important to note
that, for massless particles such as photons and spin-2 gravitons, the gravitational charge
vanishes and they free-fall along the geodesics of the spacetime and obey the geodesic
equation of general relativity.

d2xµ

dτ2 + Γµ
αβ

dxα

dτ

dxβ

dτ
= 0. (22)

The theory is consistent with LIGO GW170817 results [17], a binary merger of two
neutron stars with an electromagnetic counterpart confirming that gravitational waves and
electromagnetic waves travel at the same speed [18].

3.2. Weak Field Approximation

MOG field equations are non-linear and therefore exact solutions require efficient
numerical simulations. However, most of the astrophysical systems the we are interested in
do not require exact solutions and there exists a weak field approximation to MOG in which
we recover an effective potential with a Yukawa-like repulsive contribution in addition to
the usual attractive Newtonian term. This weak-field limit to MOG was first derived in [9].
To derive the field equations in the weak-field approximation, we perturb the metric gµν

around the flat Minkowski metric ηµν as in GR:

gµν = ηµν + hµν. (23)
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In addition to the metric there are vector and scalar fields in MOG and they can be
perturbed in the following manner:

φµ = φµ(0) + φµ(1) (24)

G = G(0) + G(1) (25)

µ = µ(0) + µ(1). (26)

The numbers in the subscripts denote the order of perturbation, where φµ(0) denotes the
zeroth order contribution and it vanishes in the Minkowski spacetime in the absence
of a gravitating source. Similarly, the scalar field G and mass of the vector field µ are
also perturbed around the Minkowski space. G(0) and µ(0) are treated as constants. We
follow the same notation as in [9] and treat µ(0) = µ as a constant in the weak field
approximation and all higher order contributions are assumed to be negligible. The
energy momentum tensor is perturbed and we assume the density of the vector field to be
negligible T(φ)

µν << T(M)
µν .

Tµν = Tµν(0) + Tµν(1). (27)

Substituting the perturbations from Equations (24)–(26) in the MOG field equations,
we obtain:

Rµν(1) −
1
2

ηµνR(1) = −8πG0T(M)
µν(1), (28)

where R(1) is the first order perturbations in the Ricci scalar, for the field G we have:

�G(1) = −
G(0)

16π
R(1). (29)

Under the assumption of pressure-less dust, T(M)
µν = diag(ρ, 0, 0, 0) and using the trace

of Equation (28), R(1) = 8πG0ρ, we obtain:

R00(1) = −
1
2
∇2h00 (30)

1
2
∇2h00 = −4πG0ρ. (31)

If we assume the new gravitational force matter current to be conserved,∇µ jµ = 0, we
can impose a Lorenz gauge condition on the vector field ∇νφν = 0. With this assumption,
we obtain the static weak-field limit of the vector field equation as:

(∇2 − µ2)φ0 = −4π J0. (32)

The solution is given by:

φ0(x) =
∫ e−µ|x−x′ |

|x− x’| J0(x′)d3x′. (33)

Using the modified equation of motion (21), it is straight forward to obtain the effective
potential. Taking the divergence of the spatial component of EOM (21), along with the
definition of modified acceleration a = −∇Φe f f , we arrive at:

∇(∇Φe f f − κ∇φ0) = 4πG0ρ. (34)

The left hand side of the above expression can be equated to the familiar Newtonian
Poisson equation:

ΦN = Φe f f − κφ0. (35)
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Using the solution for ΦN and the solution for φ0 from Equation (33), we obtain
the MOG effective potential in the required weak field limit. Substituting for the matter
density ρ(x′) and the fifth force matter current density J0(x′), one can study the dynamics
of physical systems in the weak field limit of MOG:

Φe f f = −
∫ G0ρ(x′)
|x− x’| d

3x′ + κ2
∫ e−µ|x−x′ |

|x− x′| J0(x′)d3x′ (36)

Φe f f (~x) = −GN

∫
ρ( x

′
)

| x− x′ |

(
1 + α− αe−µ|x−x

′ |
)

d3x
′
. (37)

In contrast to the Newtonian force, the fall in Newtonian attractive force with radial
distance is counter acted by the repulsive Yukawa-like potential arising from massive vector
field. Therefore, rotation curves in MOG are flatter than the Newtonian. The terms α and µ
appearing in effective potential are not universal constants but depend on the mass of the
physical system. The effective potential in Equation (37) reduces to GR in the limit α = 0. A
phenomenological formula for these parameters is obtained in [16] for static spherically
symmetric systems.

µ =
D√
M

(38)

α = α∞
M

(
√

M + E)2
. (39)

D and E appearing in the above equations are universal constants in MOG and take
values D = 6.25× 103 M1/2

� kpc−1, E = 2.5× 104 M1/2
� , where α∞ is given by α∞ = G∞−GN

GN
,

where G∞ is the asymptotic limit of G for very large mass concentrations. For the Milky Way
galaxy, estimates obtained from galaxy rotation curves suggest that the parameters take the
following values αMW = 8.89 and µMW = 0.04 kpc−1. Using the above expression for α and
µ it is easy to show that MOG can produce the Tully–Fisher relation [19]. There exists an
empirical relation between mass and rotational velocity obtained from observations, which
suggests that v4 ≈ M. Assuming a circular orbit, one can equate MOG radial acceleration
to centripetal acceleration of the particle and obtain the rotational velocity:

v =

√
[1 + α− α(1 + µr)e−µr]

GN M
r

. (40)

At scales r = µ−1 and using the phenomenological formula for µ given in Equation (38)
one obtains:

v =

√
[1 + α(1− 2e−1)]DGN

√
M. (41)

This is in agreement with observation.

4. Gravitational Waves

The LIGO Science Collaboration and Virgo Collaboration observed the first GW event
in 2015 [20]. This has opened a new window for observing the universe and has also
provided us with a tool for testing general relativity like never before. The gravitational
waves in general relativity have two polarization states, which are ’plus’ and ’cross’, but
other theories of gravity could have more degrees of freedom which could be detected using
gravitational waves. It has been shown in [21] that MOG has five polarization states—two
tensor polarization states same as in GR due to the presence of a metric tensor, two vector
polarization states due to the presence of a vector field and a scalar mode of the field G.
In [21], the mass of the vector field is neglected as it has been known from experiments [18]
that the mass of vector graviton is approximately of the same order of the experimental
bound of photon mass 2.8× 10−28 eV. However in the presence of a non-vanishing µ,
the vector field could excite a longitudinal mode increasing the polarization states to six.
The spin-2 mass-less gravitons travel along the same null- geodesics due to a vanishing
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gravitational charge (qg = 0). In this section we derive the linearized gravitational wave
equations and also discuss the polarization states in MOG. The field equations can be
linearized by using the perturbations (23)–(26), and the indices are raised and lowered
using the Minkowski metric ηµν. In this discussion, we set the cosmological constant Λ = 0
and obtain the field equation for the metric as:

Gµν + Qµν = 8πGTµν, (42)

which, after substituting the metric perturbation (23), we arrive at the following equations
for the Einstein tensor Gµν and Qµν.

Gµν =
1
2
(∂µ∂αhα

ν + ∂ν∂αhα
µ − ∂µ∂νh−�hµν + ηµν(�h− ∂α∂βhαβ)) (43)

Qµν = −ηµν�ψ + ∂µ∂νψ, (44)

where ψ = G(1)

G(0) is the scalar perturbation.The field equation can be written in a more
compact form by re-writing in terms of the following tensor γµν introduced in [21] and its
trace γ = 4ψ− h, where h is the trace of first order metric perturbation.

γµν = hµν −
1
2

hηµν + ψηµν. (45)

Hence, we obtain the field equation as:

∂µ∂αγαν + ∂ν∂αγαµ − ∂α∂βγαβ −�γµν = 16πGTµν. (46)

Now exploiting the gauge freedom we have by imposing Hilbert gauge condition
∂µγµν = 0, we obtain the final tensor field equation, which is the same as in general
relativity.

�γµν = −16πGTµν (47)

In the absence of source Tµν = 0 Equation (47) becomes

�γµν = 0. (48)

The solution to the above equation can be expressed as a plane wave with wave vector kµ.

γµν = Aµν exp(ikµxν), (49)

where Aµν is a complex tensor. Using the above solution in the vacuum field Equation (48)
and the Hilbert gauge condition we obtain:

ηµνkµkν = 0 (50)

Aµνkν = 0. (51)

This shows that gravitational waves corresponding to the tensor fields travel along
the null surface, i.e., we do not observe any difference between speed of light and speed of
this component of the gravitational waves in MOG. This has been tested with the nearly
simultaneous detection of electromagnetic signals and gravitational waves produced by
the merger of binary neutron stars [18] GW170817/GRB170817A. For the vector field, using
the perturbation (24) in the field equation of vector field (6) and imposing the Lorenz gauge
condition ∂νφν = 0 we obtain:

(�+ µ2)φν = 4π Jν. (52)

In the absence of a source and neglecting the mass µ of the vector graviton owing to
its negligible value [21] we get:

�φν = 0. (53)
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Similarly, for the perturbations of scalar field G given in (25), the equations of motion
reduce to �Ψ = 0. The immediate solutions are plane waves:

ψ = Aψ exp(ilµxµ) (54)

φα = Aα exp(ipµxµ). (55)

Therefore, MOG has five polarization states which are plus, cross, Vector-X, Vector-Y
and a breathing mode excited by the metric, vector field and the scalar field G respectively.
If the mass µ of the vector field is taken into account, it would give rise to a longitudinal
mode of polarization. A rigorous study of gravitational waves in MOG and a test with
LIGO data are yet to be performed.

5. Hydrostatic Mass Profiles from X-ray Observations

Clusters are the most massive gravitationally bound structures in the universe. In the
current understanding of structure formation, galaxy clusters are formed by the hierar-
chical sequence of mergers and the accretion of smaller systems driven by gravity with a
dominant role of dark matter. This causes the Intra Cluster Medium (ICM) to heat up to a
temperature T ∼ (2− 100)× 106 K and the electrons in the ICM radiate in the X-ray band
via thermal bremsstrahlung. Therefore, one of the most robust methods for studying their
properties is based on X-ray data. The success of such an approach lies in the ability of
the modern instruments to spatially resolve gas temperature and density profiles which
helps in the reconstruction of total mass of the cluster. In particular, measuring the X-ray
surface brightness integrated along the line of sight provides the total gravitating mass.
Considering the Inter Cluster Medium (ICM) matter to be a perfect gas in hydrostatic
equilibrium with the gravitational potential of the cluster, one can use the acceleration
experienced by the gravitating mass g = GMtot(< r)/r2 in the equation of hydrostatic
equilibrium:

dPgas

dr
= −ρ(r)g(r), (56)

to obtain:

Mtot(< r) =
r2

Gρgas(r)
dPgas

dr
, (57)

where Mtot(< r) is the mass of the cluster measured within a given radius r. The as-
sumption that ICM behaves as a perfect gas obeying the equation of state of the form
Pgas = ngaskBT, leads to

Mtot(< r) = − kB
µmµ

rTgas(r)
G

[d ln ρgas(r)
d ln r

+
d ln Tgas(r)

d ln r

]
. (58)

It is convenient to describe a galaxy cluster as a spherical region of radius R∆ with mean
density ∆ times the critical density ρc,z at the clusters redshift z, where ρc,z = 3H2

z /8πG and
Hz = H0[ΩΛ + Ωm(1 + z)3]0.5 is the expansion rate at the redshift z. Then the convenient
quantity M∆ is defined as:

M∆ ≡ Mtot(< R∆) =
4
3

π∆ρc,zR3
∆. (59)

Similarly, the total mass of the cluster within the virial radius R∆ in MOG can be
obtained by using the expression for the modified acceleration with the parameters α and
µ. The most general expression for the total mass within the radius r in MOG theory is
obtained in [22] and the best fit values of the running parameters are obtained using X-COP
galaxy cluster data.

MMOG(< r) =
Mtot(< r)

1 + α− αe−µr(1 + µr)
, (60)
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where Mtot(< r) is the total mass given by the Newtonian potential (58).
Hydrodynamical simulations predict that a certain amount of energy content in the

galaxy clusters may not be thermalized and could be present in the form of turbulence
and bulk motions. Therefore masses estimated under the assumption that kinetic energy is
fully thermalized might be biased and need to account for non-thermal pressure support to
estimate total cluster mass. Although non-thermal pressure support is a difficult quantity to
calculate, there exist some promising approaches to this problem. For example, total baryon
fraction can be used to estimate the integrated non-thermal pressure support [23]. Another
approach could be to use the Sunyaev–Zel’dovich effect. Its essence is that high energy
ICM electrons change the temperature distribution of the Cosmic Microwave Background
observed in the cluster direction through inverse Compton scattering: ∆TCMB

TCMB
= f (x)y,

where y is the Compton parameter, i.e., average fractional energy per collision multiplied
by the average number of collisions (hence it is proportional to the integrated pressure),
f (x) =

(
x ex+1

ex−1 − 4
)
(1 + ∆SZ(x, Te)), with x = hν/kBTCMB being the dimensionless pho-

ton frequency and ∆SZ(x, Te) the relativistic correction. The sample comprises 12 massive
galaxy clusters with redshifts in the range 0.04 < z < 0.1 observed in X-rays on the XMM-
Newton telescope in combination with the SZ effect observed within the Planck all-sky
survey [24,25]. The Planck SZ signal for these clusters has been recorded with the highest
signal-to-noise ratio [25] translating into the especially good quality of Mtot(< r) estimates
with relative uncertainties around 5%. Hence, the X-COP galaxy cluster sample provided
high-confidence total mass measurements. The best fit values of the running parameters
for the XCOP galaxy sample are given in Table 1 and their average value is found to be
α = 9.1 and µ = 0.196 Mpc−1. They can be obtained using the phenomenological formula
given in (38,39) after estimating α∞ given in Table 2.

Table 1. Best fit values for α200 and µ200 estimated for X-COP cluster sample.

Name
M200 R200

α200
µ200

(1014 M�) (Mpc) (Mpc−1)

A1644 6.58± 0.66 1.778± 0.051 9.102± 2.715 0.244± 0.012
A1795 6.76± 0.36 1.755± 0.021 9.102± 2.715 0.240± 0.006
A2029 13.29± 0.69 2.173± 0.034 9.108± 2.716 0.171± 0.004
A2142 16.37± 0.89 2.224± 0.027 9.109± 2.717 0.154± 0.004
A2255 10.70± 0.68 2.033± 0.081 9.106± 2.716 0.191± 0.006
A2319 20.11± 1.23 2.040± 0.035 9.110± 2.717 0.139± 0.004
A3158 7.34± 0.41 1.766± 0.035 9.103± 2.715 0.231± 0.006
A3266 14.49± 2.70 2.325± 0.074 9.108± 2.716 0.164± 0.015
A644 8.35± 0.61 1.847± 0.059 9.104± 2.715 0.216± 0.008
A85 9.56± 0.49 1.921± 0.027 9.105± 2.716 0.202± 0.005
RXC1825 6.87± 0.59 1.719± 0.024 9.103± 2.715 0.238± 0.010
ZwC11215 13.03± 1.25 2.200± 0.069 9.107± 2.716 0.173± 0.008

Table 2. Best fit values for α estimated for the modified cluster mass in Equation (60).

R∆ α∞ χ2/N σ1

R200 9.12 1.13 2.72
R500 9.99 1.13 3.40

6. Observations in MOG

The weak field limit of MOG has two running parameters—(1) α, which measures
the magnitude with which the attractive Newtonian force is enhanced; (2) the mass of
the vector field µ—both of these are discussed in Section 3.2. These parameters can be
constrained from observations. In a recent study [26], the motion of S2- star around the
super massive black hole at the center of our Milk Way galaxy has been used to constrain



Universe 2022, 8, 259 10 of 11

the parameter to α . 0.410. Gravitational lensing of light is another important prediction
of GR and it has now become an unavoidable tool in dark matter studies. Light bending in
MOG was first studied in [16] and later recalculated in [27]. MOG has also been used in
the study of lensing in Abell 3827 [28] and the Einstein ring of it has been estimated to be
θE = 10′′. The velocity dispersion in the Globular Cluster (GC) located in our Milky Way
galaxy provides us with another opportunity to test theories such as MOND and MOG [29].
The GCs experience gravity at varying strengths, measured from the galactic center, which
also depends on the mass and size of the GC in question. The velocity dispersion of GC
in the context of MOG has been studied in [30] and found to be in agreement with the
observed data. It is also claimed in the literature that MOG needs large stellar mass-to-light
ratios in the range of 10 to 100; one such issue in this regard is found in fitting the velocity
dispersion of dwarf Spheroidal galaxies in the Milky Way [31]. Such high mass-to-light
ratios are unacceptable according to population synthesis models. Another issue reported
in the literature includes the inability of MOG to reproduce the dynamics of the very diffuse
Low Surface Brightness galaxy Antlia II [32]. However, in a recent study [33] it has been
reported that dwarf Spheroidal galaxies such as Antlia II show strong evidence for tidal
disruption; this may inflate the sizes of dynamical masses and affect the measurement of
dispersion velocities. The tidally disrupted galaxies significantly influence predictions of
alternate gravity theories such as MOG.

7. Conclusions

MOG is a covariant modification of General Relativity with a massive vector field φµ

and two scalar fields G and µ. MOG was developed as an alternative to dark matter models,
which believe them to be some hypothetical particles whose presence has not been reported
so far in any particle physics experiments whose primary objective is to detect them. The
main ingredient of MOG is the presence of a massive vector field which is sourced by the
gravitational force charge qg, which all matter possess in addition to its mass. This new
gravitational force charge qg is proportional to the inertial mass of the particle and as a
consequence the weak field approximation, MOG reduces to an effective potential which
has a contribution from attractive Newtonian term and a repulsive Yukawa-like interaction.
The effect of this Yukawa potential becomes negligible far away from the gravitating source.
Unlike in GR, the equation of motion of a test particle bearing non-zero mass does not free
fall along the geodesics of space-time due to a non zero Lorentz like interaction arising
from the massive vector field. However, massless particles such as spin-2 gravitons and
photons obey geodesic equation and hence follow the same null geodesics as in GR. MOG
is successful in explaining galaxy rotation curve, bullet cluster data and CMB data. We have
shown here that MOG is also consistent with X-COP galaxy cluster data and estimated
the best fit values of the two running parameters α and µ for 12 X-COP galaxy clusters.
MOG has to be subjected to more stringent tests to confirm its validity. A test of MOG with
strong gravitational lensing systems and gravitational wave observations would help us
shed light in this regard.
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