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Abstract: A method for consistent quantization of conformal gravity treating conformal symmetry in
a very controllable way is presented. First, we discuss local conformal symmetry in the framework of
gravitational interactions, where we view it as an example of a general gauge theory. We also present
some early attempts at quantization of conformal gravity and use the generalized framework of
covariant quantization due to Faddeev and Popov. Some salient issues such as the need for conformal
gauge-fixing, an issue with conformal third ghosts, and discontinuities in conformal gravity are
studied as well. Finally, we provide some explanations of the original ad hoc methods of computation
valid at the first quantum loop level in conformal gravity.

Keywords: quantum gravity; quantum field theory; higher-derivative gravity; conformal symmetry;
conformal gravity; covariant quantization

1. Introduction and Motivation

Conformal gravity is a very promising model of relativistic gravitational dynamics. It
embodies not only symmetries of general relativity (diffeomorphisms) but also is invariant
under conformal transformations of the metric tensor. In this class of theories we view
the metric tensor gµν as the fundamental variable completely describing the gravitational
field. In d = 4 spacetime dimensions, conformal gravity, (also known as Weyl gravity) is
naturally a four-derivative model. This means that from the beginning we have to deal
with higher-derivative theories [1,2], contrary to the original Einstein–Hilbert theory which
was described just by two-derivative dynamics. Hence, Weyl gravity is the first model of
modified gravitational dynamics, and this was introduced by Hermann Weyl in 1918, just a
few years later after the original Einstein construction. When describing the dynamics of the
gravitational field in a conformal manner we have to be very careful and pay some special
attention to this higher-derivative nature of quantum conformal gravity [3,4]. Generally,
the higher-derivative nature of gravity is quite inevitable when one considers the effects
of quantum matter fields [5]. Conformal gravity is a special case of such a generated (or
induced) gravitational theory when all the matter fields are massless.

Conformal gravity is the simplest gravitational model in which we have only di-
mensionless gravitational couplings. This is why one of the prerequisites for it is scale
invariance on the classical level. By placing further restrictions, this latter is constrained
more and results in conformal invariance, where the metric tensor is effectively charged
under conformal group. This being said, in conformal gravity, we cannot have any standard
dimensionful gravitational coupling such as famous gravitational Newton’s constant GN
or the cosmological constant. On the classical level, this theory is completely described by
the action which is a 4-dimensional volume integral of the conformal Lagrangian. The last
one is given by the square of the Weyl tensor (tensor of conformal curvature) according
to the formula with contractions, C2 = C2

µνρσ = CµνρσCµνρσ, where, in the last tensor
Cµνρσ, the indices are raised using the contravariant metric tensor gµν. This is the unique
four-dimensional Lagrangian, which is conformally covariant (transforms with a conformal
weight w = −4) in such a way that together with the proper metric density

√
|g| they
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make the Lagrangian density
√
|g|C2 a conformal invariant exclusively in d = 4 spacetime

dimensions.
There are various motivations for considering classical conformal gravity as a viable

theory of the gravitational field [6–8]. First, the relativistic dynamics of such a system
are constrained even more due to the presence of additional symmetry besides the diffeo-
morphism symmetry. Local conformal symmetry leads classically to new conservation
laws and to new integrals of motion. For example, the trace of the energy-momentum
tensor T = gµνTµν must vanish all the time. This conformal symmetry is also essential for
constructing new, exact gravitational solutions. It is also essential for the issue of black
holes dynamics, high-energy particle physics [9–11], and also for the issues of singular-
ities [12]. Conformal gravity is a first scale-invariant model; hence, it is consistent with
what is generated from quantum loops of matter when the last ones are integrated out
on the level of path integral. The gravitational action of conformal gravity can absorb
all UV divergences which are produced on non-trivial curved spacetime when massless
matter fields exist there. This also implies that conformal gravity in its minimal framework
gives rise to a consistent renormalizable theory of gravitational interactions when it is
considered in the quantum field theoretical (QFT) framework. On the classical vacuum
level, one proves that all Ricci-flat solutions of Einstein gravity are automatically solutions
in conformal gravity in four dimensions as well [13]. Finally, the presence of additional
symmetry of gravitational interactions is instrumental in solving the issue with spacetime
singularities, which are otherwise quite ubiquitous [14–16]. With the power of conformal
symmetry, one can show that all curvature singularities are eradicated [15] and that they
are not a problem anymore for classical gravitational theory.

Above, we have given mainly theoretical reasons for studies of conformal gravity.
There exists also successful phenomenological predictions of conformal gravity which
makes this gravitational model completely falsifiable using future gravitational experi-
ments and also observations from astrophysics and cosmology. As a model of modified
gravitational dynamics (but still preserving Lorentz symmetry), conformal gravity explains,
for example, flat rotation curves in galaxies without the need of local dark matter compo-
nents. Moreover, when picking the solutions of conformal gravity, one has to pay some
special attention to the global (conformal) aspects of spacetime, since the conformal gravi-
tational dynamics fully realize Machian ideas. Additionally, in conformal gravity, one has
naturally classical cosmological solutions which describe both early inflationary phase as
well as late-time accelerated expansion of our Universe. This is achieved without explicitly
adding the cosmological constant term to the action or without a specially designed inflaton
scalar field. In the latter case, for exponential evolution, we do not need any dark energy
ingredients in the contents of the Universe. To summarize conformal gravity solves the cur-
rent important problems of present-day cosmology without explicitly invoking dark matter,
dark energy, and inflaton fields. For a review of these experimental and observational
issues, one can consult [17–19]. One can also study interactions of conformal gravity with
particle physics models, especially with its impact on the Higgs potential, Stueckelberg
fields, and also on spontaneous breaking of conformal symmetry generated from matter
fields such as in [20,21]. For phenomenological applications, it is interesting, for example,
to study evaporation of black holes in conformal gravity [22,23], and their computation of
entropy [24], the RG flow towards the IR regime [25,26] in one-loop conformal quantum
gravity, and also its implications on the dark sectors of the universe as studied in [27].

1.1. Motivations and Important Issues on the Quantum Level

With the above theoretical and phenomenological successes of conformal gravity on
the classical level, one is tempted to use it also to describe the quantum dynamics of the
gravitational field. Here, one enters into the domain of quantum gravity (QG), where the
things become much more complicated. For the moment, there is not any experimental
proof or evidence that the conformal gravity is a correct theory of quantum gravity. In our
framework, adopted in this paper, we want to quantize the dynamics of the gravitational
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field in a covariant relativistic manner and in a way that attempts to preserve all classical
symmetries of the model. The most successful and suitable approach here is to consider
the quantized theory of gravitational interactions in the setup of old good quantum field
theories. In this minimal and conservative approach, we study the quantum theory of the
gravitational field and its interactions with matter fields. In particular, we focus on the
propagation of quanta of gravitational radiation (gravitons), their consistent interactions
with other matter particles, and also their self-interactions. The way quantum particles
interact is dictated and is very strongly constrained by the symmetries of the quantum
theory in question, and here, the fact that we also use conformal symmetry should help in
finding a unique and consistent theory of quantum gravitational interactions.

The first results regarding quantum conformal gravity are promising. This model in
d = 4 spacetime dimensions is renormalizable so there is a control over UV divergences.
This already improves over the situation existing in quantum gravity described by the
Einstein–Hilbert model in d = 4. On the quantum level, one can ensure that gravitons’
interactions are consistently described with the diffeomorphism symmetry of any grav-
itational theory. One generally knows quite well how to quantize the system in such a
way that this last local symmetry is completely preserved on the level of quantum dy-
namics and in the general-relativistic (GR) setup. There exist well-known procedures of
covariant quantization due to Faddeev and Popov, and ways to deal with gauge-fixings,
gauge conditions, and additional fields of ghostly nature needed only on the quantum
level for diffeomorphism local invariance. All these developments can be understood in
the framework of quantization of general gauge theories, where the symmetries are local.
However, the situation with local conformal symmetry understood in the framework of
GR (so equivalently on curved spacetime background) is more intricate.

The quantization of gravitational theories with conformal symmetry faces the problem
of the fate of this symmetry on the true quantum level. If one works in the framework of
conformal field theories (CFT), then on the quantum level, in order to preserve conformal
invariance, very special conditions must be satisfied [28]. The presence of unbroken
conformal invariance means that, in particular, all correlation functions must show a scale-
invariant behavior and they cannot depend on any mass or energy parameter [29]. This
implies that there cannot be any UV divergences in the quantum model. The theory must
be completely UV-finite. There are only a few known examples of such theories in the
gravitational framework [30–33], and in particular around maximally symmetric spacetime
backgrounds [34]. More simple, however, are models with only gauge symmetries on
flat spacetime [35]. All the results of loop computations in such models must provide
finite convergent results. There should not be any reason for renormalization of the theory
and for hiding infinities, hence the scale of arbitrary renormalization µ0 should be absent
in the formulation of the theory on the quantum level. No need for µ0, no need for
renormalization, and only finite redefinitions of couplings are possible in such a model
with true quantum conformality. From the point of view of the renormalization group
(RG) flow, such a model sits always at the fixed point (FP) so there is actually no RG
flow. All the beta functions of couplings must be zero at these circumstances. Due to the
absence of any dependence on the energy scale, the quantum fluctuations, corrections,
and phenomena, they all look the same, no matter at which scale one looks at them. The
situation at the FP of RG, where the scale invariance is automatically realized, allows one
to consider full upgrade to the quantum conformal symmetry. Then, one can speak about
true quantum CFT, where the conformal symmetry is so powerful to severely constrain
correlation functions (for example, 3- and 4-point functions are completely determined),
and holding conformal Ward identities places strong conditions on the resulting dynamics
of the quantum system. All this is happening obviously when the conformal symmetry is
not violated on the quantum level.

When one tries to quantize the pure conformal gravity model C2 in d = 4 spacetime
dimensions in a natural covariant way, one unfortunately finds that the above conditions
do not hold. The theory, for example, at the one-loop level, is not UV-finite; there are
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non-vanishing beta functions of dimensionless coupling constants of the theory. There is,
however a hope, since not all is lost regarding the conformal symmetry in such circum-
stances. The counterterms that one needs in this quantum model are also conformally
invariant when understood as terms in the gravitational action. Therefore, although the
UV divergences are present, then the divergent form of the effective action also formally
preserves the conformal symmetry. One could say that at this level the conformal invariance
is hardly violated

In actuality, there are various ways that the conformal symmetry can be broken on
the quantum level. They include violations due to the conformal anomaly (CA) [36–39],
a non-trivial RG flow of some dimensionless coupling parameters, a presence of some
dimensionful parameter in the quantum theory and its running [40], an addition of some
non-conformal deformation parameter, or, finally, via vacuum expectation value of some
conformally charged scalar field present in the theory [20]. We would like to strongly
emphasize here that despite that in most generic situations the conformal symmetry is
present on the classical level, but then disappears on the first quantum level, etc., the
quantization procedure is never a formal reason for the violation of conformality. After
all, quantization is a mathematical procedure invented by humans, and nature does not
have to follow this, nor did it ever, since we know that the quantum Planck constant } is
already non-zero. We stress that if the quantum conformal symmetry is broken, then this is
because of the effects of some quantum physical phenomena. As remarked above, there are
various physical means due to which conformal symmetry may not be fully realized on the
quantum level, but we will not discuss them here, leaving this interesting, though difficult,
future research.

We stated that the generic situation with Weyl gravity on the quantum level is that
at the quantum level the conformal symmetry is only partially realized. At the classical
level this symmetry is fully present, then on the first loop level it is violated by the RG
running of the dimensionless coupling constant of the theory, i.e., βαC 6= 0, where αC is
a scale-dependent coupling in front of the C2 term in the action of the Weyl theory. Still,
at the one-loop level, counterterms are conformally invariant and of the form

√
|g|C2

and
√
|g|GB, where the last one is the famous Gauss–Bonnet topological density. Then,

due to the presence of CA already at the one-loop level, the worse situation is expected
at the two-loop level. The anomaly heralds the presence of the R2 term in the effective
action, which is not generally conformally invariant—it is only invariant with respect to
the so-called restricted conformal transformations satisfying the condition �Ω(x) = 0.
However, in pure Weyl gravity, the situation at the second and higher loops requires more
detailed studies. Generally after the quantization, in Weyl gravity, conformal symmetry
is not fully visible on the quantum level, but for this drawback, the formal quantization
procedure cannot be blamed.

1.2. A Need for New Conformal Quantization Method

From the purely theoretical view, one should still have a reliable quantization method
that allows for a clean distinction between spurious artifacts and true physical effects which
are responsible for violation of quantum conformality. For example, such a method when
applied to the FT conformal supergravity model ought to provide results and rules which
do not break conformal symmetry, except when this is really needed (but then it is fully
under control), such as in the case of performing conformal gauge-fixing. The same method,
when used in the case of ordinary conformal gravity (due to Weyl), would give everyone a
theoretical advantage of clear separation of sources for violation of conformal invariance
on the quantum level. Then, one could better understand the fate of conformal symmetry
there and whether this survives quantum corrections. Additionally, such a framework with
properly quantized conformal gravitational theory will be a good starting point for writing
all covariant Feynman rules of the theory. This, in a long perspective, will allow us to
perform perturbative computation of various theoretical processes in quantum conformal
gravity to higher loop orders too. It is known, for example, that the covariant technique of



Universe 2022, 8, 225 5 of 50

traces of differential operators is not easily applicable to the two-loop level and beyond,
while the computation using Feynman diagrams, although very tedious, could be still
attempted using some computer software programs that now can deal very effectively with
tensor algebra.

In particular, such two-loop explicit results could shed some light on the fate of
consistency of pure quantum Weyl gravity since, as we remarked above, the two-loop
level is the first one where we should see, perhaps, some disastrous influence of conformal
anomaly. Therefore, this computation there could be crucial, and for this we need a very
secure way of obtaining Feynman rules of the theory. We need to include the propagators
of all fields in the spectrum (also those additional, such as Faddeev–Popov ghost and third
ghost fields) and also pay some special attention to perturbative vertices of interactions
and the role of proper gauge-fixing of all local symmetries present in the model. The same
also regards, for example, the case of the two-loop level accuracy of computation in the FT
supergravity theory in d = 4. It is expected that at this level one could explicitly derive the
relation that must exist between the Yang–Mills and conformal gravitational couplings in
this model. The one-loop condition for UV-finiteness of the full quantum coupled model is
not sensitive to such relation; however, the presence of it is needed for a consistent absence
of perturbative divergences at higher loop orders and also for support of some claims of
even more extended supersymmetry there, which would be, presumably, here realized
nonlinearly on fields of the theory.

In order to write with confidence such Feynman rules and perturbative spectrum
of all propagating modes, one needs to have a very clear and methodological means of
quantization of general gravitational theories with conformal symmetry present in the
local version. Generally, we think that such a scheme of quantization which treats the
conformal symmetry very gently is naturally needed to write and deal with perturbative
rules of the models, in which it is known that conformal symmetry is present also in the
quantum domain of the theory. Then, by achieving this, one could provide a necessary
tool of the preferred quantization method which is consistent with all the symmetries of
the model, present both on the classical and quantum level. Such a quantization method
does not violate conformal symmetry accidentally, and if it does so, this is performed
in a very controllable way. The consistent formulation of such a quantization method
within the framework of general gauge theories (with local symmetries) and with various
other constraints is possible and we devote the main part of this paper to providing an
introduction to such a topic.

We think that, above, we have sufficiently motivated the need for a new quantization
method when dealing with local conformal symmetry in the gravitational framework. The
quantization method which conserves conformal symmetry is a natural generalization
of previous methods which were suitably constructed in such ways to preserve gauge
symmetries (in YM theories), diffeomorphisms (in general gravitational theories), and also
local supersymmetry (in supergravitational models). We think that this generalization to
treat the conformal symmetry consistently is a natural, and probably an ultimate, general-
ization of all these above methods. This claim could be supported by the belief that the
local conformal symmetry in the framework of gravitational interactions is probably the
last gauge symmetry to be discovered since it requires a limiting attempt to reach formally
infinitely high energies. As we explained above, the true quantum conformal symmetry
should probably reside there in the deep UV regime, so then it could be very difficult to be
proven or rejected by experiments in the QG domain.

1.3. Contents of the Article

The structure of this paper is as follows. First, we discuss the conformal symmetry as
a gauge symmetry. This we study in the framework of flat spacetime, curved spacetime
(GR), and also in the setup of general gauge theories. In the next section, we present
the main details of the construction of the suitable quantization method that preserves
conformal symmetry. For this purpose, we initially analyze all the necessary elements of the
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construction present already when the theories with diffeomorphisms are quantized using
generalized Faddeev–Popov trick. Then, we motivate the need for conformal gauge-fixing
and conformal third-ghosts fields. To end this section, we also present a small account
of Veltman-like discontinuities in conformal gravity on the classical level and also on the
problems with counting perturbative degrees of freedom in the spectrum of Weyl gravity
in d = 4. Finally, we discuss the pioneering, although a bit ad hoc, method of Fradkin and
Tseytlin to arrive at the correct one-loop quantum results in conformal gravity. At the end,
we draw our conclusions and sketch some possible future directions of developments of
these interesting conformal topics.

2. Conformal Symmetry as a Gauge Symmetry in Gravity
2.1. Conformal Symmetry in Flat Spacetime

First, one can consider conformal symmetry in the flat spacetime framework. In this
setting, one can also generate gravity as a gauge theory of small tensorial fluctuations
around flat spacetime. Moreover, conformal transformations may also have their origin
here. Originally, we start with scale transformations or global conformal transformations.
When one picks up a Cartesian coordinate system (xµ) to describe events on flat Minkowski
spacetime, the following transformations,

xµ → (xµ)′ = x′µ = λxµ (1)

are called scale transformations for λ > 0 and λ = const. They change how the scales
(units) of lengths and distances are measured and defined. By rules of quantum physics,
the scale of length corresponds to inverse of the energy scale (the transcription is performed
using the Planck constant h̄), so we also effectively change characteristic scales of the energy
of the physical system under consideration. The transformation (1) leads to

ds2 → ds′2 = λ2ds2, (2)

where the Minkowskian infinitesimal length element (or proper time dτ2 along geodesics)
ds2 is shown not to be invariant under scale transformations. Instead, it rescales with the
positive factor λ2, so its sign is untouched and this also implies invariance of the character
of the world-lines in relativistic physics (time-like, light-like, or space-like). This informs us
that the causal structure is not modified by scale transformations, at least on flat spacetime
background. It is obvious that for any non-zero λ, the square λ2 is positive in (2), while
for definiteness we have chosen λ > 0 in (1). The infinitesimal distance ds2 being only
covariant under scale transformations is fully consistent with finite lengths and energies,
also transforming with some scale factors under changes of the scale.

Already in the flat spacetime field theory, a requirement of scale invariance (so, in-
variance of the physical observables of a model under scale transformations (1)) is quite
constraining. Namely, in the construction of such a classical field theory we cannot obtain
help from any dimensionful quantity such as an energy scale or a length scale (in high
energy units, where [E] = [L]−1 = GeV). In addition, all coupling constants of the model
describing interactions have to be properly dimensionless when the dimension of the un-
derlying Minkowski spacetime is fixed. In particular, this condition excludes any presence
of mass parameters for fields in the model. The fields themselves, of course, may carry
energy dimensions according to their canonical (engineering) dimensionalities. As a result,
we end up with a model which, for its definition, does not rely upon any particular choice
of physical units of mass, time, length, energy, etc. This is contrary to other models that,
for their definitions, have to use ratios of some scales with some other reference scales.
Additionally, one could say that in such a theory there is no scale (scale-less or scale-free
models). On the quantum level, full quantum scale invariance implies that there is no
renormalization group (RG) flow of all the necessarily dimensionless couplings of the
theory, so the theory sits all the time at the fixed point (FP) of RG flow.



Universe 2022, 8, 225 7 of 50

Still, on flat spacetime, which in four dimensions comes with the full Poincaré symme-
try group SO(1, 3)n T4, scale symmetry can be viewed just as a one-dimensional group of
global transformations isomorphic to a positive ray of the real line: R+. The subgroup of
rescalings (also known as conformal dilatations) directly multiplies the full Poincaré group
since it is known that a commutator of two conformal rescalings does not additionally
boost, rotate, or translate the physical system. This is not the case with the relation between
Lorentz subgroup SO(1, 3) and translation subgroup T4, and they enter into Poincaré
group being multiplied semi-directly. If one focuses on the 10-element Poincaré group,
then one can map it into SO(2, 3) group with translations T4 included as “rotations” in
extended five-dimensional spacetime. This results in a non-trivial structure of the algebra
of commutators between generators (both boosts and rotations) from the full Poincaré
group.

In almost all classical field theory examples usually considered on flat spacetime,
the scale invariance can be promoted to a bigger symmetry group, which includes also
“vectorial”-like transformations (or “translations”-like transformations) [28,41]. This group,
together with Poincaré factor, constitutes a 15-dimensional conformal group Conf on
four-dimensional flat spacetime. The five additional generators compared to the group
containing standard spacetime symmetries (Poincaré algebra has 10 generators) are one
dilatation (for scale symmetry) and a four-dimensional vector of special conformal transfor-
mations (SCTs). One can see that the full conformal group Conf is isomorphic to SO(2, 4),
so to the group related to Lorentz transformations but only in a six-dimensional spacetime
with signature (+,+,−,−,−,−). This could be understood by following the so called
“embedding formalism” for conformal symmetry due to Dirac. The structure of the full
15-element conformal group Conf is more complicated (than just of the underlying Poincaré
group SO(1, 3)n T4) due to various semi-direct products used in its definition. Moreover,
it is known that two subsequent SCTs also generate resulting Poincaré transformations on
a physical system, and that their generators behave similar to Lorentz vectors under boosts
and rotations. Therefore, the structure of commutators in the Conf algebra is more intricate
around flat spacetime, but we will not need an explicit form for it here.

Finally, we mention that while dilatations can be presented as a global part of the full
conformal group Conf and they can be performed with constant transformation parameters
λ, the intrinsic nature of SCTs prevents the same identification for them. The character
of SCTs is that they depend on some special Lorentz vector (usually denoted by bµ),
and in an explicit transformation law in four-dimensional Cartesian coordinates, one can
see also a non-trivial dependence on the spacetime location point and the Minkowskian
distance from the origin x2 = xµxµ. This is not so surprising when one recalls that the
full conformal group Conf of flat spacetime contains conformal inversion transformations,
that is x2 → 1

x2 . To complicate this case, such dependence is found in the denominators of

the nonlinear transformation laws for Cartesian four-dimensional standard coordinates1.
The conclusion is that the SCTs cannot be performed with constant parameters and their
action actually depends on the spacetime point characterized by Cartesian coordinates
xµ. This means that, for example, two SCTs with the same vector bµ will act differently
in two different spacetime points xµ

1 and xµ
2 with x2

1 6= x2
2. We can say without too much

rigor that part of the full conformal group which generates SCTs is already in the “local”
version, contrary to the other parts which are global (as dilatations are). This implies that it
is actually incorrect to try gauging the generators of SCTs by force [42,43]. One can also
convince oneself about this fact by comparing a count of number of generators in the full
15-dimensional conformal group with the number of associated vector gauge bosons. In
the conformal part of this group (consisting of dilatations and SCTs) after gauging and
making the gauge potentials dynamical, one finds only one gauge boson (Weyl vector field,
originally associated incorrectly by Weyl to a photon) corresponding to the generator of
dilatations. The SCTs do not add new fields in the gauge theory framework.

One remark is in order here. When we consider matter field theories around flat
spacetime background, which are without dimensionful coupling parameters, thus, scale-
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invariant and later easily promoted to conformally invariant in the sense of transformations
given in (1), and from the full Conf group, then we mean global scale transformations, with
parameters of conformal transformations which are not spacetime-dependent functions
of coordinates xµ. As explained in the introductory sections, this is the story on the
classical level. On quantum level to require full conformality, one must have vanishing
beta functions for all dimensionless couplings of the theory, or in other disguised scale
invariance of all Green functions, when the fields on external legs are not rescaled. The set
of examples for such a behavior is, of course, more restricting, the N = 4 super-Yang–Mills
(SYM) theory being the standard one. However, we remark that, despite that N = 4 SYM
on flat background is completely UV-divergence free and scale-invariant, this model of QFT
is not invariant under gauged conformal transformations; for example, it is not invariant
under conformal dilatation transformations with λ = λ(x), where the latter is an arbitrary
function of spacetime points. Hence, gauging of the conformal group Conf (only parts
related to dilatation generator) brings a new kind of symmetry to the system and constrains
the dynamics even more. This symmetry with new added values can be fully understood
only in the proper gravitational context.

The class of theories (matter models) which are symmetric under transformations
from the global and full conformal group Conf (in particular, with respect to dilatations
with constant parameters λ = const) is already very special and the theories in it are
called conformal field theories (CFTs in short). Such CFTs describe quite constrained
quantum dynamical matter systems different than ordinary QFTs because here there is
no RG flow. The CFT is located at the quantum FP of the RG. The requirement of global
(rigid) conformal symmetry places severe constraints on the dynamics, and, for example,
quantum (to all orders) two- and three-point functions are completely determined. Higher
n-point functions satisfy some recurrence relations, but all the story so far has been without
any influence of gravity and for global scale (or conformal) transformations with λ = const.
When one performs the gauging of dilatations and the final theory is brought to the form
invariant under local scale transformations with λ = λ(x), then this framework is already
more constraining than the original CFTs were. Similarly, the original CFTs are not global
conformal anomaly-free when they are coupled to external background metric of spacetime
different than Minkowski metric ηµν

2. Therefore, coupling to external metric field (to
gravity) or gauging the conformal group Conf takes us out from the domain of CFTs
analyzed around flat background and we must necessarily consider conformal symmetry
in the gravitational setup. Here, there are various ways possible to perform the mentioned
above gauging [44], such as Ricci gauging, Weyl gauging, etc. For the moment, only very
special coupled theories (matter+gravity) satisfy demands of local quantum conformal
symmetry, and the participation of quantum conformal gravity in this dynamics is essential.

The analysis of dimensions of various subgroups and the structure of the full confor-
mal group Conf can be extended to be valid in any dimension of spacetime d. For this
purpose, one only notes that if there is one time dimension (to have a consistent physical de-
scription) and (d− 1) spatial dimensions, then the Lorentz group is SO(1, d− 1) with d(d−1)

2
generators, and the Poincaré group is SO(1, d− 1)n Td isomorphic to SO(2, d− 1) with
d(d+1)

2 generators. Finally, adding one d-dimensional vector of SCTs and one generator of

dilatations, we obtain the full conformal group Conf isomorphic to SO(2, d) with (d+1)(d+2)
2

generators. Of course, these general considerations make sense only for dimensions d > 2
since it is well known that in d = 2 special dimensions of spacetime (or two-dimensional
Euclidean space), the conformal group and algebra are infinite. This infinitely enhanced
power of two-dimensional conformal symmetry has its roots in powerful complex analysis
on Argand plane, as it is well known and used in mathematics. Moreover, this powerful
infinite-dimensional conformal algebra is the reason for various successes of d = 2 world-
sheet formulation (both Euclidean and Minkowskian) of string theory. Eventually, this
gauged conformal symmetry in string worldsheets is so omnipotent that it cancels target
spacetime ultraviolet divergences otherwise ubiquitous and usually problematic in other
quantum gravity models.
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In order to obtain a gauged theory of gravity, one can perform gauging of all 10 Poincaré
generators as well as of the dilatation generator from the full conformal groups [45]. The
SCTs do not need to be gauged. When all symmetries are made local from global and a
special care is exerted to construct physical actions, which are invariant under these new
local transformation symmetries, then one can conclude that an extended gauge theory of
conformal gravity is accomplished. This is in the framework of gauged Poincaré gravity
(with curvature and torsion as two independent field strengths) and with an addition of
conformal symmetry [46]. For this end, one only gauges dilatations from the conformal
part of the full conformal group Conf. In what follows, we will concentrate only on this
conformal part of the whole story. Actually, one can show that first, it is consistent to
consider only gauging of the conformal part, leaving untouched the gravitational part
of the full 15-element Conf group, and second, for the last end, only dilatation generator
and scale transformations (1) need to be changed from global to local (with spacetime
dependent parameters λ→ λ(x) in full generality in (1)).

2.2. Conformal Symmetry in Curved Spacetime

Instead of discussing the explicit gauging of the dilatation generator, we will follow
below a different, in a sense more geometrical, route. Namely, we will consider conformal
transformations and conformal symmetry in the framework brought about by differential
geometry of curved manifold backgrounds. That is, in the spacetime setting, we discuss
conformal symmetry in a fully general-relativistic (GR) framework [47,48]. By this we
do not mean a full dynamical setup coming with Einstein’s gravitational theory. For
what matters here we will consider only the kinematical aspects of gravitational theory
while the specification of precise dynamical content in some models to be considered later
will be clear when we will discuss the quantization of dynamical gravitational systems
also enjoying conformal symmetry. Therefore, by GR we mean here a theory describing
spacetime physics independently of the particular coordinate system chosen and all ensuing
consequences of such a view on physical systems.

In actuality, the origin of the construction of the word “conformal” for conformal
transformations, maps, images, and geometry is related to the way to preserve a specific
geometric form of some objects studied in geometry. In a rough translation from Italian,
“con forme” means in English “with the forms” (to be understood with appendix “pre-
served”), so conformal means “with the forms preserved”. The “forms” in question are
angles between vectors which are unchanged in this kind of geometry3.

In conformal geometry of spacetime, (hyperbolic) angles between four vectors are pre-
served, and the causal structure (also named because of this conformal structure) remains
untouched when one performs conformal geometric transformations. Such a transforma-
tion does modify lengths or magnitudes of vectors and scalar products between them. This
means that the differential structure on the manifold is not invariant in conformal geometry
and depends on the choice of conformal gauge. In addition, the distances (in the sense
of four-dimensional proper Minkowskian intervals) are now not absolute, not invariant,
and become relative. They all depend on the conformal gauge. The last one is realized by
a selection of the conformal factor of the metric (such as λ2(x) in (2) or Ω2 in (3) below)
since, typically, the conformal symmetry does not come with its own set of coordinates, and
borrows the ones also used standardly in differential geometry, nor does it often come with
its own set of gauge potential fields to be fixed by this choice (the notable exception here is
the gauge theory proposed by Weyl with Weyl gauge connections). In the framework of
conformal geometry and field theories enjoying conformal symmetry, only angles are still
absolute, but they always constitute very beautiful geometrical structures (exemplified in
Escher’s pictures of anti-de-Sitter-like geometries).

In the GR setup (on a general curved manifold), the scale transformation is the follow-
ing active operation on the covariant metric tensor field gµν = gµν(x) on the manifold

gµν → g′µν = Ω2gµν = e2 ln Ωgµν, (3)
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where Ω is a constant parameter of the transformation.
This very much resembles a global U(1) transformation of QED for a charged scalar

field φ = φ(x) given by
φ→ φ′ = ei ln αφ, (4)

where we also require that α = const. One notices that there is a difference of imaginary
unit i between exponents in formulas (3) and (4), respectively. Similarly to the QED case,
the metric field gµν can be treated as being effectively charged under conformal group. Or,
even more, the metric fields are matter fields from the point of view of conformal symmetry,
they transform similar to electrons but with the real, not a complex, prefactor phase, and
the module of the conformal coupling charge of the metric is universal and equals two (by
convention).

In general gauge theory, the fields can be divided into two groups: gauge potentials or
matter fields. The difference is only how they transform under gauge transformations. Let
us assume that these transformations are linear (the fields in question must for this furnish
a linear representation of a gauge group) and for definiteness we only consider them in an
infinitesimal form. Then, if the transformation laws are homogeneous, then the fields upon
which the transformation is performed are matter fields, if instead they are inhomogeneous
but still linear, then these are gauge transformations of gauge potentials. We remark that
for different symmetries the same field can play different roles, similar to the metric tensor
for diffeomorphisms, and GCT is a gauge potential but it behaves similar to matter field for
conformal symmetry.

However, there are also very important differences between these two cases, giving
rise to the dichotomy between gauge theories (in internal spaces) as used extensively in
non-gravitational field theory models and conformal gravitational theories (in external
spacetime) used sometimes to describe relativistic gravitational fields. First, for the complex-
valued scalar field φ in (4), the invariant module square, that is |φ|2 = φ†φ, is QED-invariant,
while for the real-valued metric in (3), the Lorentz-invariant infinitesimal length element
ds2 is not invariant under scale transformations (cf. (2))4.

Moreover, due to the fact that in the QED case, the complex phase factor ei ln α is
present, the U(1) group is topologically identical to the circle S1 and hence is compact. In
the case of the real and positive scale factor Ω2 in (3), this is isomorphic to R+ and hence
this is a non-compact group of dilatations. This implies that some mathematical aspects
will be very different for the R+ group of conformal dilatations and the U(1) group of
complex phase transformations in QED. For example, when one tries to construct a gauge
theory of a scalar field φ which is invariant under real rescaling of the field, then one cannot
use the invariant |φ|2 = φ†φ or even simple square φ2 (such as for the real-valued Higgs
field) in construction of the invariant action functional, and even the globally symmetric
R+ theory on Minkowski background is not well-defined. To achieve this, one has to leave
the flat absolute Minkowski background and move to the framework of general relativity,
where these scale transformations show the structure of spacetime under the influence of
gravitational field embodied in the proper metric tensor field gµν(x).

On the other hand, if one has overcome the above problems, and tries to build a
locally symmetric theory, then the differences are present, too. In the case of QED, it
is well established that the proper covariant derivative of the scalar field is inherently
complex-valued, when the U(1) gauge connection field is taken as real, but this part of
the definition for the U(1) gauge covariant derivative must be with the imaginary unit i.
On the contrary, in the case of group of dilatations, the proper covariant derivative (Weyl
covariant derivative with a real Weyl gauge connection field) is entirely real-valued and
there is no room for any imaginary unit. Eventually, one should recall the London brothers’
correspondence, thanks to which the complex-valued electron fields ψ (analogs of used
here charged matter scalar field φ) give interpretation to complex-valued and normalizable
electron wave functions in quantum mechanics. Of course, such interpretation is not
possible when one deals with real-valued metric fields gµν which are charged under
conformal symmetry group, but their transformation law is with the real positive overall
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factor Ω2, so one stays all the time in the real space formalism, which cannot be applied
directly to quantum theory. Additionally, the original identification by Weyl of the Weyl
gauge potential as the vector potential of the electromagnetic field suffers from all the above
problems and cannot be retained anymore in field theory models. We can understand that
in his time Weyl was seeking for a very economical model combining (or even unifying
based on some geometrical arguments) together gravitation and electromagnetism. As
we think nowadays, he was not right and the road towards a full unification is still very
long, because gravitation (even if the models of conformal gravitation are being considered)
is quite different from internal space gauge theories (such as electromagnetism and non-
Abelian Yang–Mills (YM) theories). However, as we will show below, the formal procedure
of gauging the global symmetries in these two models works very similarly and we do not
see any big differences here.

By exploiting the well-known formula

ds2 = gµνdxµdxν, (5)

one sees that (3) implies (2)
ds2 → ds′2 = Ω2ds2, (6)

in accordance with our previous considerations of conformal transformations on flat space-
time background described in Cartesian coordinates. For this, in the GR framework, con-
trary to (1), one postulates that coordinates xµ, in any coordinate system, are not changed
by the transformations, the same for their contravariant differentials dxµ.

Gauging means that we promote the constant parameters of transformations to space-
time dependent parameters of the same kind of transformations, namely,

α→ α = α(x) (7)

in QED and
Ω→ Ω = Ω(x) (8)

in spacetime physics. This last operation produces full-fledged conformal transformations
within the meaning of GR:

gµν → g′µν = Ω2(x)gµν = e2 ln Ω(x)gµν (9)

with the local parameter of conformal transformations Ω = Ω(x) and there is no need
of further gauging of these transformations. This is local scale invariance or conformal
invariance in GR. This is, in a sense, a gauging of global scale invariance (3) understood in
the GR framework. For general conformal transformations, the parameters Ω = Ω(x) are
local functions of the spacetime point x. We emphasize that within the GR, the conformal
transformations are already in the local version and the conformal symmetry could be
viewed here as a gauge symmetry of the system, provided that the description of the con-
figurations of the system is invariant under action of these transformations. This, of course,
depends on the dynamics in the gravitational sector of the theory. We note that, not for all
theories, the conformal symmetry in the version from (9) is a symmetry of gravitational
dynamics. In actuality, the requirement for such a symmetry of the gravitational action is
very restrictive in gravitational models, also when they are coupled to conformal matter
models. Basically, when one fixes the number of spacetime dimensions, the number of
possible different theories enjoying conformal symmetry, even on the classical level, is
finite and is usually quite small. When one moves to lower degenerate dimensions, such
as d = 2, such theories may not exist at all. Therefore, the requirement for consistent
conformal symmetry of the gravitational system constrains quite tightly the possible form
of the dynamics in this system.

The local conformal symmetry finds its proper place in the context of gravitational
physics, where it is understood as a possible transformation of the spacetime, thus of the
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gravitational background. Despite that it was originally studied and constructed on flat
absolute Minkowski spacetime and promoted there from simple scale invariance to the full
15-element conformal group (in d = 4), its natural embedding is in the setup of differential
geometry. This is because a conformal transformation really touches the measurement of
distances, so crucial to the mathematical definition of infinitesimal (differential) geometry.
Since gravitational field has as one of its manifestations the form of curved spacetime as
differential manifold, then the conformal symmetry, or the conformal group in general,
will also primarily be related to the dynamics of gravitational fields. At the end, we
conclude that the conformal symmetry is one of the possible symmetries of relativistic
gravitational fields. This symmetry in a gauged form can be an additional (and last to
be discovered) gauge symmetry of gravitation in addition to the local Poincaré group of
spacetime symmetries.

We also emphasize that, strictly speaking, the examples of CFTs that we considered in
the previous subsection on the flat background (such as N = 4 SYM theory), which are
conformal on the full quantum level, are not invariant under scale transformations in GR,
even when they are described by constant parameters Ω = const. In the last case, one could
come back easily to the form of Minkowski metric (absolute, not rescaled) by performing
a compensating rescaling of Cartesian coordinates according to (1) with λ = Ω−1. On
flat background, Minkowski metric ηµν is considered as an absolute element, which is
in obvious contradiction with GR, but even if we allow this compensating coordinate
transformation, then this extended setup cannot work on more general manifolds than
the flat one. Or, speaking physically, when we couple a flat spacetime CFT to external
gravitational field, then such a theory will not be automatically invariant under local
(gauged, so with Ω = Ω(x) and not rigid anymore) scale transformations with the sense
from GR, from (3), and (9) below. Moreover, we know that after such transformations the
Minkowski metric ηµν changes into a general conformally flat metric of spacetime and not
into a necessarily flat one. We remind the reader that the original CFT was not defined in
such circumstances. This disappointing feature is also related to the fact that most of flat
spacetime CFTs are not free from the conformal anomaly problem in external metric fields.

It must be noted that gauging of dilatation transformations is not the same as ap-
pending SCTs to global scale transformation group (isomorphic to R+) and subsequent
promotion of global scale invariance to full global conformal invariance under transforma-
tions from the full 15-dimensional Conf group. In the flat spacetime framework presented
in the previous subsection, the conformal group Conf was still a group of global trans-
formations, even if it contained somewhat local parts related to SCTs. The situation with
gauging of scale transformations (9) on the metric tensor as understood in GR leads to
a different group of conformal transformations. These last transformations should be
understood only in the framework of GR, and after the gauging is finished, their general
form is with precisely one spacetime dependent parameter Ω(x). Thus, the resulting group
of transformations is different than a 15-dimensional global Conf group. The relations
between these groups and their flat spacetime global analogs is the same as between a
diffeomorphism group Diff and the global Poincaré group SO(1, 3)n T4 on flat spacetime.
The former is known to be infinite-dimensional (because it contains local transformations),
while the latter has only 10 generators. Similarly, a local conformal group in GR is infinite-
dimensional, while there are one generator of dilatations, four of SCTs, or altogether 15
generators in global flat spacetime Conf group. Hence, these conformal groups are clearly
different.

We also remark that although naturally placed in the gravitational and differential
geometry context, the conformal symmetry is not the same as a symmetry pertaining to
general coordinate transformations (GCTs). For them, we have

x → x′ = x′(x), (10)

where x′(x) are differentiable but arbitrary functions. Moreover, general coordinate trans-
formations preserve the value of the most fundamental scalar invariant of differential
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geometry, namely of ds2. In actuality, this is not a consequence, but rather a postulate from
which one can derive, for example, the transformation law under GCTs of the covariant
metric tensor field gµν(x). Taking a quick look at (6), one easily understands that general
conformal transformations in GR are, most of the time, not general coordinate transforma-
tions. This is, for example, clear from the fact that the group of conformal transformations
is different than the group of GCTs, known as diffeomorphisms (and denoted below by
Diff). Therefore, in the most general situation in the dynamics of gravitational fields, we
can have two symmetries of diffeomorphisms and of conformal transformations. These
two symmetries do not overlap each other and can be treated quite separately, for example,
for the quantization aims. In a rough sense, one can state that in such a case, the total
group is a direct product of subgroups of diffeomorphisms Diff and of a local conformal
symmetry (this is a different group than 15-element Conf group, it is, rather, only a group
of symmetries under local conformal transformations, so it is, in a sense, a one-dimensional
group of gauged dilatations). The two groups do not disturb each other, although they use
the same field variables as the objects upon which corresponding transformations act. This
is a peculiar feature of metric gravitational theories, where the metric tensor is the basis for
everything related to gravitation. These two groups both act on the metric; their actions are,
however, distinguished by the character of transformations and by different parameter(s)
used to characterize such transformations.

2.3. Conformal Symmetry in General Gauge Theories

As emphasized above, the local conformal symmetry in the GR framework can be
understood as a local gauge symmetry of the gravitational system, possibly also coupled to
some matter models. Therefore, for this symmetry one can apply the general formalism
of general gauge theories and their ensuing Faddeev–Popov quantizations. Placing the
conformal symmetry in this formalism is particularly convenient for the sake of covariant
quantization approach [3,4,49] applied to the classical system of gravitational field, enjoying
full conformal symmetry with the hope of obtaining consistent theory of conformal and
gravitational interactions. To this end, one first needs to recall some facts about conformal
symmetry in this framework. First, we will use a general metric background characterized
by the symmetric rank-2 tensor field gµν(x). Below, and in later sections, we will use the
condensed notation due to DeWitt. One can also consult the textbooks [50,51], where this
notation was employed for the first time for the case of general gauge theories. One can
consider the possibility of obtaining conformal gravity from general gauge theory as in [52].

The conformal symmetry transformations were defined in (9) but for the sake of
emphasizing the spacetime dependence, we write the last formula as

gµν(x)→ gµν(x)′ = Ω(x)2gµν(x), (11)

where Ω = Ω(x) is a finite parameter of conformal transformations, possibly also spacetime-
dependent. In the infinitesimal version, this transformation reads,

δgµν = δgµν(x) = ξ(x)gµν(x) = ξgµν, (12)

where the infinitesimal parameter of transformation ξ � 1 is a general spacetime-dependent
function ξ(x) and we have that Ω2 ≈ 1+ ξ. Of course, as obvious from (12), the infinitesimal
conformal transformations are characterized by only one scalar transformation parame-
ter ξ, which is spacetime-dependent for local conformal symmetry (compared with the
case of diffeomorphisms, where a GCT is characterized by d parameters collected in one
GR-covariant vector ξρ). For the purpose of covariant quantization, it is very important to
derive the form of an infinitesimal generator R of conformal transformations5.

The general formula for R reads,

R = R(x, y) =
δφ(x)
δξ(y)

. (13)
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In our case, when we look for the generator of infinitesimal conformal transformations,
the “charged” field is the metric field, so we take δφ(x) = δgµν(x), and the parameter of
this transformation is ξ = ξ(y). Therefore, we obtain that in our case, the corresponding
formula is

R = Rµν(x, y) = gµνδ(d)(x, y). (14)

As we see, the general form of this generator R inherits two covariant indices from the
metric tensor. Moreover, it also possesses ultra-local dependence on two spacetime points
x (where the charged field is located) and y (where the parameter ξ(y) resides), and this
dependence is expressed via the d-dimensional Dirac delta function. In general, one could
say that the generator in this case is a bitensor, or more precisely, a rank-2 symmetric tensor
(such as the metric tensor gµν) from the point of view of the point x, and a scalar from the
point of view of the point y [50,51].

Already, here, one can notice a few important things which will be important in what
follows later regarding the quantization in different choices of conformal gauges. First, the
conformal gauge transformations act on a metric field in a linear way. This is true not only
for the infinitesimal version of these transformations, but also for finite local conformal
rescalings. This is a good feature simplifying the covariant quantization procedure. The
generators create a linear algebra of conformal gauge symmetries, which closes off-shell
(and then we do not have to employ the Batalin–Vilkovisky more complicated quantization
method). Secondly, the conformal transformations do not involve any derivatives of the
metric tensor which are charged here. This is also a feature which is well received, since
this will have some positive consequences on the ghost sector of conformal symmetry.
In actuality, in the quantization, we can exploit both of them. With the explicit formula
in (14), we can conclude the part with understanding of conformal symmetry as a gauge
symmetry in the gravitational setup. All further developments depend on the choice of the
conformal gauge for quantization procedure, and hence they are not universal pertaining
to the knowledge of general gauge theories.

2.4. Fradkin–Tseytlin Conformal Supergravity

We must also remark here that there exists an extended model of conformal gravity
which is UV-finite on the full quantum level. This is realized when additional matter fields
are included but they are all united with gravity in the same multiplet. Moreover, the
symmetry which achieves this also mixes bosonic and fermionic degrees of freedom, hence
we have the right to call it extended supersymmetry. In a model when this extension is
maximal possible and where in the pure bosonic spin-2 sector we deal with Weyl gravity in
d = 4, we may have a special situation where all perturbative and also non-perturbative
divergences completely vanish. Such an extended supergravitational model was first
proposed by Fradkin and Tseytlin in 1985 [53]. These two copies of N = 4 super-Yang–
Mills theories are coupled to N = 4 conformal supergravity, which is a supersymmetric
generalization of the Weyl conformal gravity in the spin-2 sector of fluctuations.

In the N = 4 Fradkin–Tseytlin (FT) conformal supergravity model, the UV diver-
gences were checked for the complete absence at the first perturbative loop level. However,
the argument for UV-finiteness in this case is much stronger since the presence of quantum
conformal symmetry is guaranteed on the quantum level from some algebraic consider-
ations, and this holds to all loop orders and also non-perturbatively. Basically, being in
the same multiplet of currents, the conservation of conformal (virial) current is related by
the extended N = 4 supersymmetry argument to the conservation of the matter energy–
momentum tensor ∇µTµν = 0 together with the conservation of vectorial Yang–Mills (YM)
current Dµ jµ,a = 0. From the last statement about the conformal current, one derives
the implication of non-violated conformal symmetry in the model purely from algebraic
reasons, so it does not matter whether this is on the classical or on the quantum level. Such
conservation holds automatically in the theory.

The example of FT supergravity shows that it is possible to find a QFT theory (actually
a CFT) which also includes quantum gravitational interactions that are completely free
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of any UV infinities and also of classical singularities of spacetime, since the conformal
symmetry and invariance are present both on the classical and quantum levels of this model.
From the point of view of RG, this is a very special and highly symmetric theory which
is defined at the FP of RG, and the CFT which describes it is supersymmetric and with
gravity included. It was very difficult to find similar CFT models with gravitation since
other known examples considered only matter theories and on flat spacetime backgrounds
(such as mentioned before, N = 4 super-Yang–Mills theory [54]). On the quantum level,
the finiteness also implies complete absence of conformal (trace) anomaly, and even the
trace of the quantum energy–momentum tensor is vanishing, i.e., T = 0. The conformal
symmetry is fully realized on the quantum level and around any spacetime background
in this model. There is not any problem with its violation, and moreover, the power of
conformal symmetry is at use here since all Green functions are heavily constrained, similar
to in any CFT. This is properly an anomaly-free gravitational theory [55]. Gravitational
conformal Ward identities hold and this is the true representation of the fact that conformal
symmetry is unbroken here.

One could also wonder whether in such symmetric theories, which are also quantum
conformal, there is a further enhancement of supersymmetries beyond the case of N =
4. However, here, the counting of possible generators (charges) of the superconformal
algebra excludes such possibilities—at least that such a hypothetical gravitational CFT
with higher than 16 supercharges cannot exist around flat spacetime and when all these
symmetries are realized linearly [56]. Maybe some nonlinear versions can exist with
superconformal algebras with N = 8 unifying together conformal supergravity and also
quantum conformal N = 4 super-Yang–Mills theories. For such a model of quantum
conformal gravitational interactions, from the physical standpoint we shall view it emerging
as true and UV-finite, and thus a completely sensible theory of QG interactions at the very
high energies (in the deep UV regime). Therefore, one expects that when one lowers energy
scale from the UV limit, the conformal invariance is somehow broken and we end up with
effective models not so symmetric and without full constraining power of all symmetries
of the gravitational theory. One should relate this, in the future low-energy phenomena,
with the breaking of conformal symmetry. Moreover, one should be able to embed in
this gravitational framework without UV-divergences some UV-finite models of particle
physics, as were proposed in [57,58].

3. An Example of Covariant Quantization of Diffeomorphisms

At the beginning, we remind the successful covariant quantization prescription when
applied to a generic higher-derivative gravitational theory. As emphasized in Section 2,
gravitational theories with conformal symmetry, away from dimensionality of spacetime
being two, d > 2, are necessarily very special types of higher-derivative gravitational
theories, and with only all couplings dimensionless. The general higher-derivative (HD)
theories were quantized in the covariant way by applying the general Faddeev–Popov (FP)
methods based on functional analysis (originally such covariant quantization scheme, but
only working up to one-loop level, was invented by Feynman). In the general gravitational
setup, FP analysis has to be exploited for diffeomorphism symmetries, which are the gauge
symmetries of gravitation (at least in the minimal setting). The consideration of higher-
derivative theories of gravity, rather than Einsteinian gravity, is here beneficial, as we will
see shortly. The situation with higher derivatives is the most general possible one, more
general than the case of two-derivative gravitational theories. This will also be important
for quantization of conformal symmetry in various gauges and in various dimensions of
spacetime.

The expression for the true quantum partition function of a general gravitational
theory with diffeomorphisms reads,

Zgrav[Jµν] =
∫
DhµνDC̄αDCβDbγ exp

[
i
(

Sgrav + Sgfix + Sgh + hµν Jµν
)]

, (15)
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where the main quantum field is the metric fluctuation field hµν defined as a deviation
from the background metric gµν such that the total metric is gµν + hµν. Notice that we have
decided that our main quantum field will be a symmetric rank-2 tensor field with two
covariant indices—this is our choice of the parametrization of the quantum metric field. As
stated before, we work exclusively in metric theories of gravity and we do not allow any
dynamical or quantum variables with torsion or non-metricity of spacetime. Therefore, the
choice of the covariant fluctuations hµν as the quantum variable is very natural. The covari-
ant metric tensor field gµν is the most standard choice since the coordinates are typically
chosen as contravariant objects xµ and this metric tensor enters into the expression (5) to
construct a Diff invariant scalar, that is, ds2. Of course, other choices of the parametrization
of quantum metric fluctuation variable are also possible. Moreover, although not explicitly
mentioned, here we work in general background field method, keeping the background
classical metric gµν as fully general. In this way, we realize all physical requirements related
to hyped background independence of quantum gravity. Because of this, the functional
of quantum partition function Zgrav in (15) also contains not-path-integrated background
metric gµν.

In (15), we path-integrate (notation with Dφ for differentials of fields under path
integrals) not only over the quantum metric fluctuation field hµν, but also over a set of
additional quantum fields needed because of the diffeomorphism symmetry present in the
model and because of a general higher-derivative nature of gravitational theory. All fields
in this set are good ghost fields needed to keep the BRST remnants of diffeomorphism
symmetry also on the quantum level of the theory and to avoid potential problems with
anomalies. They are added to make the quantization procedure covariant and to preserve
diffeomorphism symmetry, such that the theory after the procedure (quantum theory)
is defined as with fully realized BRST symmetry originating from the full classical Diff
symmetry, the same as the original classical theory defined by Sgrav. The quantization
performed in this way controls very well the local symmetries of the model, and there is no
any spurious or accidental breaking of diffeomorphism or any other local symmetry. The
framework fixes a coordinate gauge (of diffeomorphisms) by adding the action Sgfix, but in
a very controllable way. One can fully follow the dependence on gauge-fixing parameters
present in Sgfix and convince oneself that in the final physical results the dependence
on them completely drops out. In this way, the quantization act does not violate the
local symmetries, here diffeomorphism symmetries. This is the essence of the meaning of
covariant quantization procedure. The quantum theory obtained in this way is gauge-fixed
but with gauge-fixing performed in a very clear and parametric way. The BRST symmetry
is what remains at the quantum level after gauge-fixing of all the local symmetries. It
controls the form of the total action Stot appearing in the exponent of the integrand of path
integral in (15),

Stot = Sgrav + Sgfix + Sgh. (16)

3.1. Ghost Fields

The ghost fields needed for the local gauge consistency of the model are of two types
here. The original FP ghosts are complex-valued quantum fields (the first ghost Cβ and
the second ghost C̄α being the anti-ghost of Cβ), and a third ghost real field bγ. Since
the local symmetries here are diffeomorphisms, then each of these ghosts come with one
Lorentz index, so they have intrinsically vectorial nature from the spacetime point of view.
We emphasize that the canonical position of these spacetime indices is covariant index
on the FP ghost field Cβ, contravariant index position on the FP anti-ghost field C̄α, and
covariant index on the third ghost bγ. Since the covariant metric tensor of fluctuations hµν

is our quantum variable, then it is also natural to choose a linear diffeomorphism gauge-
fixing condition as a covariant vector χµ. Then, the fact that a parameter of infinitesimal
Diff transformation is also taken as a covariant vector ξν (because δgµν = ∇µξν +∇νξµ)
implies that the ghost field has to be with one covariant index Cβ in the canonical position,
since in the derivation of the FP determinant this ghost field takes position of an arbitrary
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parameter ξν. The anti-ghost field has to contract in a natural way with the covariant
index on the gauge-fixing condition χµ from the left side, so it must carry a contravariant
index according to C̄α, as we wrote above. Finally, the third ghost field substitutes the
diffeomorphism gauge-fixing χµ, hence its index is also naturally covariant in bγ.

All these ghosts are spurious fields appearing only on the quantum level since they
have anti-commuting character and mathematically are described using Grassmannian
variables (similar to fermions), although they do not obey the usual spin-statistics theorems.
They never appear on external legs of any correlation functions and also never in the per-
turbative spectrum of the theory, hence they are harmless for the unitarity issue. However,
they are crucial for the issue of gauge invariance of the resulting effective quantum theory.
Since they were not present in the classical theory and they show up only on the quantum
level when one uses the covariant quantization prescription, then the reason for their names
is obvious. They are classically non-existing, anti-commuting fields, therefore they satisfy
classical anti-commutation relations,{

C̄α, C̄κ
}
=
{

C̄α, Cβ

}
=
{

C̄α, bγ

}
=
{

Cβ, Cλ

}
=
{

Cβ, bγ

}
= {bγ, bκ} = 0 (17)

even before these fields are treated as quantum operators in the second quantization (not
needed here). These “phantom” fields are present only inside perturbative loops of the
quantum covariant theory and they are needed there, for example, to secure the gauge
invariance of the final results of computation of some Green functions or physical processes
using Feynman diagrams. The necessity to introduce them as virtual particles running in
the loops is the price to pay when one wants to deal with gauge symmetry and redundancy
of the formalism of general gauge theories on the quantum level in a perturbative and
covariant manner. These ghost particles never appear as asymptotic states or on external
legs (that is, on-shell, satisfying classical equations of motion (EOM) of the theory) of any
Feynman diagram. In actuality, it is without any sense to speak about classical EOM for
ghosts or on-shell conditions for ghost fields since the classical action and ensuing EOM for
physical fields are defined entirely by the functional Sgrav

[
gµν

]
.

FP ghosts are not visible on the level of classical theory described by the action Sgrav,
where the gauge-fixing procedure is not necessary to obtain classical equations of motion
for the classical metric field gµν. They are not present in the perturbative spectrum of
classical theory (obtained from classical two-point functions when the background is
chosen and some gauge-fixing has to be performed); hence, these fields have nothing
to do with the violation of unitarity in higher-derivative theories6. If one moves to the
level of classical higher n-point functions (again when the background is specified and
gauge-fixing is performed), one also does not see any effect of these truly quantum virtual
modes. Therefore, we draw a clear distinction between these good ghosts and bad ghosts
present in higher-derivative theories and related to the famous Ostrogradsky theorem.
The latter ones arise at the perturbative spectrum of classical theory, and in principle
can appear on external legs before they are not consistently forbidden to appear there by
various prescriptions of how to save perturbative unitarity in classical higher-derivative
and non-local theories [60–62].

Let us here discuss in more detail this issue with Ostrogradsky instabilities on the
classical level or equivalently with the presence of “bad ghosts” on the tree level of the
spectrum of the quantum theory. Generally, in any class of higher-derivative theories
(including not only gravity but also other fundamental interactions), perturbative unitarity
of S-matrix is in danger because there are perturbative states with negative kinetic energy
or equivalently with negative mass square parameter—so-called ghosts or tachyonic states,
respectively [63]. In fact, the optical theorem implies that the S-matrix based on the
perturbation theory in such cases is non-unitary. Obviously, both ghosts and tachyons are
undesirable, and various approaches have been invoked to remove them (or their effects)
from the observable predictions of the theory.

One of such approaches was based on the consideration of higher-than-quadratic
polynomials (in derivatives or curvatures) in the gravitational actions. However, soon it
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was realized that with every polynomial theory, the ghost states must inevitably appear
in the physical spectrum of particles [64]. Besides this, various cures have been proposed
in the literature for dealing with the ghosts–tachyon issue: Lee–Wick prescription [65,66],
fakeons [67–69], non-perturbative numerical methods [48,70–72], ghost instabilities [73,74],
non- Hermitian PT-symmetric quantum mechanics [75,76], when applied to conformal
gravity [6–8,77], etc. (see also other discussions in [62,78]). One might even entertain the
idea that unitarity in quantum gravity is not a fundamental concept [79–81]. We think
that so far, none of the proposed solutions conclusively solves the problem. However, we
also express the hope that these various research directions on the issue of unitarity in
conformal gravity will be revealed to have a lot in common. Maybe in the future they will
merge into one, conclusively and definitely solving this problem since in each of them one
finds a bunch of good theoretical ideas.

These last bad ghosts show up also in other disguises on the level of exact and
perturbative classical solutions [82,83], where they signal instabilities of the theory in a
form of various possible runaway solutions [73,84]. Some progress with resolution of these
important problems can be seen in [85]. The clearest way to see the presence of Ostrogradsky
ghosts (also called Boulware–Deser ghosts in higher-derivative gravitational theory, or
simply Weyl ghost in Weyl conformal four-dimensional gravity) is to study the form of
the perturbative tree-level propagator of the theory, for example, around flat spacetime
background and to perform a simple fraction decomposition there. Bad perturbative
ghosts are defined as modes whose residues are negative in this last decomposition of the
propagator of all fluctuating modes of the theory. They are dangerous for the unitarity of
the resulting quantum theory but various ingenious proposals were invented to circumvent
these dangerous (or even disastrous for the whole consistency of the theory) effects of them.
The FP ghosts are truly different.

Since FP ghosts are complex-valued, in order to give a real total action Stot, they always
have to show up in a complex pair, which we take as C̄C, as is usually performed with
complex fields (such as fermions or charged scalar fields). The remaining third ghost field
bγ is real and this condition does not apply; however, as one sees, the essence of the FP
construction of introducing anti-commuting ghost fields to the quantum theory is to rewrite
Faddeev–Popov determinants as expressions quadratic in the corresponding ghost fields,
so we also necessarily have a pair of third ghost fields in the ghost actions below. Namely,
we have

Sgh =
∫

ddx
√
|g|
(

C̄α Mα
βCβ +

1
2

bγGγδbδ

)
. (18)

As is clear from the construction of this action Sgh, the ghost fields do not have
higher self-interactions, and they do not interact between themselves either. They do
interact only with the background metric gµν, actually to infinite order in the last field. The
requirement of this construction for quadratic and diagonal action (between FP sector and
the sector of the third ghost) originates from the desire to rewrite various positive powers
of determinants of various differential operators as integrations over some quantum fields
under path integrals. Since these powers are positive, one has to use Grassmannian field
variables to achieve such expansion. As is well known for this purpose, one can consistently
concentrate on the expressions which are quadratic in these new ghost variables. For
simplicity, higher terms with self-interactions of ghosts are not included in this minimal FP
construction. In actuality, the Grassmannian nature of ghosts forces them to appear every
time in the action with even powers (similar to standard fermions), and the power two is
here the minimal possible choice.

The numerical factors in (18) correspond to standard normalization of the Lagrangians
for canonically normalized scalar fields which are complex (similar to FP ghosts) and real
(similar to the third ghost). The two matrix-differential operators Mα

β and Gγδ (with the
canonical positions of spacetime indices as indicated) can be understood as kinetic operators
(defined on a general background) between respective ghost fields. They give rise to the
dynamics of the ghosts on the quantum level (inside perturbative loops) and that is why
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the quantum propagator for these ghost fields exists and is invertible. In conclusion, one
can judiciously write Feynman rules for the ghosts, in particular, the rules for ghost lines
(ghost propagators), and use them in construction of more complicated Feynman diagrams
of the theory. One notices that the two propagators are completely independent and there
is no mixing between FP ghosts and the third ghost field. Moreover, the precise forms of
these matrix-differential operators Mα

β and Gγδ can be found in general higher-derivative
gravitational theories, but they are not relevant in the present discussion.

Simply speaking, the requirement to preserve the BRST remnant of gauge invariance
in the quantum theory forces, due to the presence of the FP determinant, the introduction
of FP two ghosts fields C̄α and Cβ, while the third ghost field bγ is introduced only when
one deals with higher-derivative theories (possessing higher than two-derivative classical
EOM). In actuality, in the case of two-derivative theories, one can still deal with the third
ghosts and their kinetic operator Gγδ (also called gauge-weighting operator), but this is a
superfluous construction. The simpler one is just to take Gγδ in the form proportional to
the contravariant metric function gγδ multiplied by ultralocal d-dimensional Dirac delta
function in two spacetime points x and y, without any differential operator character. Then,
in such a situation, the sector of the third ghost is completely algebraic, since their action
S3gh reduces to b2 = bγbγ and then they do not have any dynamics, their propagator does
not exist, and they do not show up in perturbative loops. Then, simply, one can safely
forget about them on the quantum level and for all covariant quantization purposes.

The third ghosts are instead helpful and are a convenient trick in higher-derivative
theories, especially when considered on general background or in background field method
formalism (so also in pure non-Abelian gauge theories). Their role is related to the third
and last part of addition in Stot in (16), namely, to the action functional denoted as Sgfix.

3.2. Gauge-Fixing

Now, we come to the discussion of this last element of the total covariant action used in
the Faddeev–Popov procedure for quantization. The last part of the action in (16) is entirely
responsible for adding the gauge-fixing in a covariant manner to the gauge-invariant action,
which for gravity was denoted as Sgrav. Fixing of the gauge is a necessary step in the
covariant quantization procedure due to Faddeev and Popov. Typically, one achieves this
by exploiting some gauge-fixing conditions χ particularized to various local symmetry
groups present in the model. In the case of quantum gravity, these conditions are standardly
taken as linear local conditions in metric fluctuation fields hµν. Due to the character of a
coordinate choice related to a specific gauge choice, these gauge-fixing conditions should
be covariant vectors from the spacetime point of view χγ and they should carry precisely
one covariant index. Their Lorentz form is exactly the same as for the third ghost fields
bγ. The precise form of the linear gauge-fixing conditions χγ is not important for the
discussion that follows. We just remark that because of Lorentz covariance, they should
contain odd number of derivatives acting on the metric fluctuation field hµν and, of course,
in the smallest version, this means precisely one covariant derivative (constructed with the
usage of the background metric gµν) acting on one fluctuation field hµν (the last is due to the
assumed linearity of the gauge-fixing condition χγ in hµν). However, of course, some forms
of χγ can be selected from some broad families of gauge-fixings and then these conditions
χγ contain a dependence on various gauge-fixing parameters, usually called β, γ, etc.

In the minimal version, applicable with full success to two-derivative theories, the
gauge-fixing action Sgfix is enough to be constructed from the square of the gauge fixing
condition χ2 = χγχγ properly weighted by another gauge-fixing parameter (which is often
called α), hence the name of the gauge-weighting functional Gγδ; here, it is equal to 1

2 α−1gγδ.
We need to remark that, in general, the gauge-fixing functional Gγδ should not be confused
with the gauge-fixing condition χγ. In actuality, on the classical level, to solve EOM one
typically chooses a coordinate gauge for diffeomorphisms by a condition χγ = `γ, where
`γ is some covariant vector field on the manifold; in particular, this last one can be selected
to be zero. What we do instead, on the level of action, is fix the gauge by conditions which
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are quadratic in χγ, which, of course, are not gauge-invariant conditions. By varying these
conditions on the level of action with respect to the metric fluctuation field hµν, one obtains
related linear gauge-fixing conditions, but still different than original χγ (because they
often contain more derivatives), to be used during solving EOM or finding higher n-point
functions of classical theory. Moreover, by employing the gauge-fixing functional Gγδ, we
effectively perform an average over all conditions `γ according to ’t Hooft ideas, when,
again, Gγδ plays the role of the weighting functional during this mathematical averaging
process.

In a more general case, of theories with higher derivatives, the general form of the
gauge-fixing action is given by

Sgfix =
∫

ddx
√
|g| 1

2α
χγGγδχδ, (19)

where the matrix-differential operator Gγδ is quite arbitrary (besides concurring with
Lorentz symmetry in its two contravariant indices γ and δ, but it does not even have
to be symmetric as an operator in these two indices). The choice of the particular form
of this operator Gγδ is dictated solely by practical purposes. Namely, one also wants to
be able to invert the kinetic operator between (gravitational) fluctuations on a general
background, in particular around flat spacetime. This choice of Gγδ is parameterized by
various gauge-fixing parameters, such as α, β, etc.

The situation around flat spacetime for metric fluctuations is that in two-derivative
Einsteinian theory, gauge-fixing achieved by addition of 1

2α χ2 is completely sufficient, and
the Hessian (kinetic operator between fluctuations) is completely invertible as an operator.
This happens because, typically, the gauge conditions χγ already contain one derivative
acting on metric fluctuations hµν and, after integrating by parts, one sees that from the term
1

2α χ2 one obtains precisely an addition to the kinetic term of graviton with exactly two
derivatives. This is sufficient to completely remove the degeneracy of the kinetic operator
between small gravitational perturbations and to find the propagator (being the inverse of
the Hessian) by algebraic inversion procedure.

The general feature of theories with local symmetry is that the kinetic operator (Hes-
sian, or second variational derivative with respect to fluctuating gauge modes) is degenerate
as a consequence of local symmetries present. To remove this problem and make the oper-
ator invertible, one needs to add some gauge-fixing terms which explicitly break gauge
symmetries, but are still under full control due to the presence of controlling parameters,
such as α, β, etc. Only then can the perturbative propagator of gauge modes be found,
even around flat and flat gauge connection backgrounds. Typically, such propagator then
explicitly depends on gauge-fixing parameters α, β, etc., but here this is not a problem
since the propagator by itself (or even when embodied as a two-point function in quantum
theory) is not an observable, physical quantity. The gauge-fixing functional Sgfix is then
crucial even for finding flat spacetime propagator.

Now, one can easily understand the nuisances of higher-derivative theories (both
gravitational or pure gauge theories). In such circumstances, the kinetic operator is with
higher derivatives, and addition of just a term 1

2α χ2 containing always only two derivatives,
does not modify the degeneracy due to local gauge symmetry on the level of the Hessian
and on the level with the highest number of derivatives, which is then, here, higher than
two. One solves the problem by adding the full non-minimal form of the gauge-fixing
functional as presented in (19). One also has to require that the matrix operator Gγδ now
contains some derivatives and cannot be purely algebraic and proportional to gγδ. Of
course, the precise number of derivatives in it depend on the number of higher derivatives
above two present in the construction of classical EOM of the theory.

In general, the matrix-differential operator Gγδ is not algebraic and must be chosen
as a self-adjoint operator for a consistent construction of the quantum theory, or theory
of linear perturbations to a quadratic level, so on the level of the effective action to the
accuracy of one loop. Exactly the same operator Gγδ appears in the kinetic action for the
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third ghost fields. This is not a mere coincidence but a fact stemming from the consistency
of the whole covariant quantization formalism in gauge theories. Hence, exactly the same
considerations can be repeated for the dynamics in the sector of third ghost fields. One now
understands that they are crucial for perturbative covariant treatment of gauge theories
with higher derivatives in the classical action.

As clearly seen from the action in (18) and resulting from the perturbative vertices, the
third ghosts interact only with background metric (or gauge) fields. This is already a great
simplification for their treatment in the method of Feynman diagrams. For example, when
restricted to the flat spacetime perturbation theory, third ghosts may not couple to metric
fluctuations hµν, and the background is trivial ηµν, so despite that they have their own
propagator and internal dynamics in the sector, one can completely forget about their effects
in all perturbative loops. For this, one chooses the form of matrix-differential operator
Gγδ as proportional to the metric ηγδ and constructed out of exclusively flat spacetime
d’Alembertian operator ∂2. Of course, such a choice does remove the degeneracy in kinetic
operator for gravitons around flat spacetime and allows the perturbative propagator to
be computed. However, from some esthetical reasons, one can object that the form of the
operator Gγδ when proportional to powers of ∂2 is in disagreement with general covariance
of the framework used for gravitational theories. Of course, this is the price for not having
effects of third ghost fields around flat spacetime.

One could instead use a generally covariant operator Gγδ constructed now out of
� = ∇2 = gµν∇µ∇ν, but then the interactions between perturbative gravitons hµν and
third ghost fields bγ in the second part of (18) would be resurrected, even on flat spacetime
background. However, even on flat background when using a non-covariantly-looking
form of the matrix-differential operator Gγδ built with ∂2, one can forget about the third
ghosts in Feynman diagrams, but one cannot forget about adding the gauge-fixing term
χγGγδχδ to the action of the theory to fix the degeneracy and to be able to find the pertur-
bative propagator.

When using the theory in other backgrounds than flat, the interactions of third ghost
fields bγ with gravitons hµν (perturbations around this chosen background) are natu-
rally generated. Therefore, the presence of the third ghost field is very natural in higher-
derivative gauge theories when analyzed using background field method on general curved
backgrounds and in covariant manner. Moreover, one notices that the similar arguments
as raised above about the simplification happening on flat spacetime background for the
third ghost field cannot simplify the sector of complex normal FP ghosts. This is because
the matrix-differential operator Mα

β cannot be constructed only using partial derivatives
on flat spacetime ∂µ or their square in the form of the d’Alembertian operator ∂2. The
construction of the FP ghosts kinetic operator Mα

β requires that at least one derivative there
must be fully gravitationally (or gauge) covariant. That is, in the framework of perturbative
quantum gravity, this must be a generally covariant derivative ∇µ since such is used in
the infinitesimal generator for local symmetry of diffeomorphisms. All this is a simple
consequence of the fact that the FP operator Mα

β is the covariant change of the gauge-fixing
condition χγ under infinitesimal coordinate transformations (diffeomorphisms in gravity
or gauge transformations in full generality). Of course, now the formalism looks much
better when all derivatives used in the operator Mα

β are generally covariant, but this, of
course, implies non-trivial form of interaction between FP ghost fields and perturbative
gravitons around any background and up to infinite order in graviton fields.

3.3. Gravitational Action and Correlation Functions

Having discussed at length the issues related to gauge-fixing and ghost actions and
to their construction, now we come to the last ingredients present in the expression for
the general partition function in (15) in general higher-derivative gravitational theories.
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This simplest element is the gravitational action with higher derivatives Sgrav. In a general
setting, when we work within background field method, this functional

Sgrav = Sgrav
[
ĝµν

]
= Sgrav

[
gµν, hµν

]
(20)

depends on both the fluctuation (graviton) fields hµν (over which we path-integrate) as
well as on the background metric gµν. Only in the special case of flat spacetime is this
entirely a functional of only graviton fields: Sgrav

[
hµν

]
. In the general situation, this action,

when understood classically, is with all local symmetries realized on the level of full metric
tensor ĝµν = gµν + hµν, hence it must be written generally covariantly with respect to the
full metric ĝµν. The construction of such actions with higher derivatives is a standard topic
that we will not repeat here. As we emphasized in previous sections, we will deal with
actions that, on top of local symmetries related to diffeomorphism group, also possess the
invariance under local conformal transformations understood in the proper GR framework.
As explained earlier, the construction of such actions is more tricky and the results are more
constrained.

Above, we have discussed the issues of how to build parts of the total action in (16)
responsible for gauge-fixing, for fully consistent ghost sector(s), and also for the main
gravitational part. This discussion will be very useful and very beneficial when we will
deal in a strikingly similar manner with quantization of local conformal symmetry in the
next section. The form of analysis of presence or algebraic triviality of various sectors,
various fields, or various operators for local conformal symmetry will parallel much of what
we have just said in this section. There are many common similarities between quantization
of diffeomorphism and local conformal symmetry, since both of them fit in the broad
framework of general gauge theories. We will see that the situation with all additional
quantum sectors present in Stot in (16), as it is in general HD gravitational theories, for
local conformal symmetry will find its counterparts in some models of conformal gravity
in some dimensions and with some specific conformal gauge choices.

Finally, we remark that in the form of the general partition function in (15), we added
in the exponent of the integrand a coupling of graviton fields hµν to an external current
(could be viewed as an external energy–momentum tensor (EMT) of some external matter
fields) Jµν preserving both locality and general covariance of the extended action. This
is a known trick in quantum field theory since all Green functions are now, in principle,
obtainable by respective variational differentiation of the full partition function Ztrue[Jµν]
with respect to the current field Jµν(x) and then setting its vanishing value. We add that in
general background field method, the partition function in (15) depends also functionally
on the background metric gµν which was not path-integrated out in this formula, hence it
is obvious that the full non-perturbative partition function Zgrav is, in a sense, dependent
on the choice of the classical background.

Moreover, another emanation of ghostly nature of fields C̄α, Cβ, and bγ is that they
do not come with any classical background values (although some generalizations in this
direction are possible [50]) and we path-integrate only over their, in a sense, quantum
fluctuation fields. These fields possess only quantum loop nature, as explained above. This
means that from our form of the partition function in (15) we cannot, even in principle,
obtain correlation functions with any of these ghost fields on external lines, because we can
differentiate only with respect to the current Jµν naturally coupled to the graviton field hµν.
Therefore, within this view it is senseless to speak about Green functions with good ghosts
on external legs, or even about scattering amplitudes with ghosts on external lines, since
it is without sense to place them on-shell since they do not come with any well-defined
classical EOM. However, some generalizations in these directions are also possible, and a
quantum theory with correlators between ghosts and gauge fields can be also formulated,
and for some aspects these are even fruitful extensions.

Additionally, the Green functions one obtains from (15) when the external current
Jµν is turned on are, as it is well known, not properly gauge-invariant. They would be
in the absence of this current, but then from the partition function we could obtain only
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one sensible amplitude, namely, the vacuum persistence amplitude or the transition of
perturbative vacuum into vacuum. Of course, such an amplitude has its meaning in
gravitational theory, per se, although it is typical in usual quantum field theory around
flat spacetime or in statistical mechanics to treat this one number as just a convenient
normalization of other Green functions. Along with standard knowledge here, we know
that the presence of external current violates gauge invariance of the full system of quantum
correlators. However, the resolution comes from the fact that the physical observables
are typically taken not as rough correlators, but as S-matrix elements between dressed
and on-shell fields derived from general n-point functions. For such objects, not for mere
quantum correlation functions, Weinberg’s theorems guarantee that physical observables
are gauge-invariant and independent of various gauge-fixing parameters used at any
intermediate step of computations. We add that truly physical observables, such as cross
sections, are obtained from invariant squares (complex absolute moduli) of the S-matrix
elements (amplitudes) to remove complex phases that are often too difficult to measure.
This corresponds to measuring of probabilities and densities of them, but not of mere
scattering or transition amplitudes.

One can prove, using standard tools of general gauge theories, that the partition
function in the absence of the coupling to the external current Jµν is completely indepen-
dent of the choice of the gauge-fixing conditions χγ used to define it. The form of χγ

and the matrix-differential operator Gγδ can be arbitrarily changed and the resulting Zgrav
remains the same. We only remark that for different, rather than standard and minimal,
choices of these auxiliary elements needed for the definition of quantum theory, the ex-
plicit computation may be very difficult, and a much more tedious task than for minimal
cases. However, the general proof holds for any local symmetries. This is a gauge-fixing
independence of the true representation for the partition function Z without coupling
to an external current. When one adds this coupling of the form hµν Jµν, then all Green
functions (such as propagators or effective higher-order vertices) are gauge-dependent
objects. This happens entirely due to the term hµν Jµν added to the total action Stot. At
the end, we indeed compute higher n-point functions using the functional Z[Jµν] with the
current Jµν turned on and by consecutive variational differentiations with respect to it (and
only typically after having performed the variations, setting it to zero value). Finally, due
to the mentioned equivalence theorems due to Weinberg, on the level of single elements
of the S-matrix, we see full gauge-independence and also full gauge-fixing-independence.
This last one signifies that nothing there depends on arbitrary elements χγ and Gγδ of the
FP construction related to fixation of gauges for all local symmetries present in the models
under study.

4. Early Attempts of Quantization of Conformal Symmetry
4.1. A Need for Conformal Gauge-Fixing

Now, we discuss the issues related to conformal gauge-fixing. This parallels the discus-
sion of fixing the gauge for diffeomorphism symmetry in general HD gravitational theories.
This issue is at the heart of covariant and perturbative quantization of conformal gravity
in any even dimension d > 2. We just emphasize that since local conformal symmetry
is a different symmetry than diffeomorphisms, then on the level of FP quantization it
will come with a different set of gauge-fixing conditions, different set of ghosts, different
weighting functionals, and different kinetic operators in the ghost sectors. We will, in what
follows, distinguish these new objects related to conformal symmetry from ones related to
diffeomorphism symmetries by appending the subscript “c” on related quantities in the
formalism of covariant FP quantization for conformal symmetry. Besides this, there is an
obvious fact that the action for such a conformal gravitational theory is different than a
generic action of globally scale-invariant HD gravitational theory in any even dimension
d > 2 of spacetime. We also emphasize that here it is not enough to constrain and gauge-fix
only diffeomorphism symmetry of an HD gravity, since the conformal symmetry is in the
local version too, and this local conformal gauge invariance has its usual consequences
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as any local symmetry has on the formalism of quantization and also on the structure of
field configurations and physical representatives of fields there. The only similarity and
common overlap between these two local symmetries is that they will use the same field
as their gauge potential—namely, the covariant tensor of metric fluctuation field hµν(x),
on which transformations act and which will become a proper quantum variable. This is
because we do not introduce here the Weyl gauge connection field (an analogue of photon
field for conformal symmetry).

First and foremost, however, we need to fix the conformal gauge in quantum conformal
gravity, because the graviton kinetic operator in conformally invariant theory is degenerate,
and some steps with its processing are not well-defined. This degeneracy is again the
consequence of conformal symmetry present in the local version. Moreover, we have
to properly extract the factor of the volume of the conformal group for the start of the
successful FP quantization procedure. As it is well known in general gauge theories, the
full space of configuration fields comes with a big over-baggage. This redundancy comes
from the fact that gauge fields are a very redundant description of the physical system
with a lot of symmetries. In actuality, in the covariant framework of quantization, the
more symmetries present, the more fields need to be added, and the description is more
redundant. This is in clear opposition to the case of canonical treatment of gauge theories,
when more symmetric theories come with more constraints and the space of physical
field configurations is effectively smaller. For example, quantum conformal gravity is a
system with very particular and highly constrained relativistic dynamics. In two special
dimensions, d = 2, the number of constraints is so big that the quantum gravitational
system is practically over-constrained and it becomes a completely integrable and even
solvable system of quantum (conformal) gravitational field theory.

The field space in conformal gravity, besides the redundancies related to the diffeomor-
phisms, has the structure of orbits related to conformal transformations. We have to find
proper conformal representatives of field configurations, since in the covariant formalism,
different field configurations, but related by some conformal transformations, physically
describe the same configurations. Therefore, one has to remove this multiple counting
of the same physical configurations in a true representation for the partition function of
the quantum conformal gravitational system. In other words, one has to properly extract
the volume of the conformal group, the five-dimensional part (or local part with GR scale
transformations from (3)) of the full 15-element conformal group Conf in d = 4 spacetime
dimensions. As usual in the FP procedure, this restriction of the path-integration to a physi-
cal subspace spanned only by physical representatives of gauge configurations, is achieved
by a choice of the particular conformal gauge. For the consistency of the whole procedure,
we must ensure that we integrate precisely once over each physical configurations, which
must be different from the point of diffeomorphism symmetries, and also they cannot be
conformally related.

The geometric structure of the full conformal gauge configuration space is an inter-
esting topic. However, as often performed in physics, rather than applying very formal
methods of computation, we use heuristic ones due to Faddeev and Popov. Instead of
describing the structure of conformal orbits in the space of all metric fluctuation fields
hµν(x) by picking some suitable coordinate system for this infinite-dimensional linear
space, and instead of restricting the path integral only to a subspace which is physical and
crosses each conformal orbit precisely once, we prefer to add a conformal gauge-fixing to
the theory given by a suitable functional. We could restrict the integration to this, usually
a nonlinear curved subspace of lower but still infinite dimensions and of conformal field
representatives, and we could introduce geometric coordinates there. However, due to
explicit and intrinsic nonlinearities present in such a natural geometric framework, we
adopt a different heuristic method. We still want to integrate over the full vastly redundant
configuration space, but we need then to modify the integrand of the partition function
and make it different from the naive original integrand which was simply exp

(
iSgrav

)
.

The modification should take into account that we want to restrict the integration to some
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“physical” subspace which completely solves the gauge-fixing condition with special atten-
tion given to the fact that this submanifold may be extrinsically curved in the embedding
configuration space. All these geometrically sound conditions and demands are taken fully
by the addition of the FP determinant to the integrand under path integral. By properly
exponentiating this FP determinant, one sees that the ensuing total action of the theory is
modified and it does not consist only of Sgrav: there are necessary quantum additions to
it with new quantum dynamical fields, new ensuing actions for them, and a gauge-fixing
part for local conformal symmetry.

On the other hand, the geometric condition that each conformal orbit crosses the space
of conformal representatives precisely once is typically difficult to check explicitly. One can
quite easily ensure this in a small neighborhood of the first crossing point, but for further
neighborhoods, this becomes more challenging. This problem was first described by Gribov
in gauge theories and the resulting ambiguity brings his name, together with the possibility
of having different theories with different non-perturbative vacua, so-called Gribov copies,
coming from the same quantum partition function defined by the same classical theory.
We will discuss the tentative solution to the Gribov ambiguity issue of local conformal
symmetry in conformal gravity in one of the later publications.

As a simple choice of the conformal gauge we may choose to fix the value of the trace
of the metric fluctuations

h = gµνhµν (21)

for various quantum computations. This is one of the possible conformal gauge-fixing
conditions. In principle, there could be many of such gauge conditions. We restrict our
attention only to gauge conditions enforced on the metric fluctuation field hµν(x), since this
is the gauge potential in our gravitational context available at our disposal. Moreover, we
focus on linear gauge-fixing conditions which do not contain higher than the first power
of the fluctuation hµν(x). This restricts quite a lot class of possible conformal gauges. The
trace of the metric is a scalar from the point of view of flat spacetime Lorentz symmetry,
hence this condition is quite simple.

It is important to note the following obvious thing: the gauge-fixing condition has to
be non-invariant under transformations of symmetries that it is supposed to fix. By using
a conformal invariant constructed out of the metric fluctuation field hµν, one would not
sufficiently specify any conformal gauge since arbitrary conformal transformations would
still keep this invariant untouched, hence there would still be a freedom in performing
them. One has to check that indeed the trace of the metric fluctuations h, contrary to the ex-
pressions as built in footnote 4 , transforms non-trivially under conformal transformations,
and hence fixing it to some value constrains the freedom of conformal transformations to
the level that none of them can be additionally performed anymore. This is detailed in
the section where there is a discussion of the solution to the conformal Gribov ambiguity
problem.

In general, we can form a family of gauges by requiring that

χc = χc
[
hµν

]
= h− `c = 0 (22)

for arbitrary (also spacetime-dependent) (non-dynamical) field `c = `c(x). The choice
in (22) we will call the simple conformal gauge. The choice we made for the scalar was not
a vector, as a conformal gauge condition is dictated by the fact that the parameter Ω = Ω(x)
of conformal transformation is also a scalar, so it does not carry any spacetime or Lorentz
index. This is an important property of the conformal transformations, in distinction to
diffeomorphisms when such a choice must be made for a vector χµ. One can see that the
vector (or, in general, any tensor of odd rank) will not work well with the FP quantization
procedure since then, for local conformal symmetry, the FP operator would be with odd
number of spacetime indices (two from the infinitesimal generator in (14) and three from the
variational derivative of a hypothetical vector conformal gauge-fixing condition χc,µ with
respect to the metric field which is here a charged potential field for conformal symmetry;
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at the end we contract two pairs of indices, but the parity remains unchanged). Of course,
then it is impossible to take a determinant of such an operator and then naively the whole
FP procedure fails7. One must also admit that the scalar conformal gauge-fixing condition
χc is much simpler than the next theoretically possible tensorial one χc,µν. For simplicity,
here, we will restrict our considerations only to this first choice.

The conditions in family (22) are linear admissible gauges, but they do not contain
any derivatives acting on the potential field hµν. Of course, this choice is also dictated by
simplicity, however one can easily complicate the simple choice from (22) by inserting in
the middle some differential operator constructed with the background metric and being
covariant with respect to it. For example, we can use GR-box operator � = gµν∇µ∇ν

or simply two derivatives ∇µ∇ν acting on the field of metric fluctuations hµν. By the
arguments stipulated above, it is obvious that we must use an even number of derivatives.
These are more complicated gauges; however, they may have some advantages over simple
conformal gauges.We will also show later that the physical results properly do not depend
on this choice of the conformal gauge-fixing conditions.

4.2. Hidden Local Conformal Symmetry and Veltman-like Discontinuities

According to the general philosophy, one must be very careful with all local symme-
tries present in a model that is being prepared for quantization, both in the visible (manifest)
form and also in invisible forms. For example, if one superficially looks at the theory

S =
∫

d4x
√
|g|
(

R2
µν −

1
3

R2
)

, (23)

then one sees only diffeomorphic symmetries of general relativity and a theory with
HD gravitational action. One does not recognize that this action is actually conformally
invariant since the usage of Gauss–Bonnet identity in d = 4 dimensions valid under
spacetime volume integral reduces manifestly conformally-invariant-looking action with
the square of the Weyl tensor C2 to this form above in (23). However, the conformal
symmetry is still present there but in a hidden form. It is still there in a local version and it
should be always properly treated and gauge-fixed for the quantization purposes. One sees
the problems with a naive interpretation of the action in (23), if one attempts to compute a
propagator for gravitational fluctuations in such a theory. The standard tricks with minimal
gauge-fixing for (only) diffeomorphisms do not work here since after them the kinetic
operator for small fluctuations is still degenerate. One may rediscover in this way that
the theory is with enhancement of symmetries and that these symmetries need a special
treatment—basically, the hidden conformal symmetry should be revealed. In conclusion,
no matter what our knowledge is of the symmetries of the theory, we always have to be
prepared that for every not-manifest symmetry that we find enhanced and hidden, we
must perform a proper separate FP quantization procedure (a special treatment of local
gauge symmetries) if we want to move to a quantum level with such a theory.

All gauge symmetries of a given model should be treated with care, gauge-fixed, and
their violations by inclusion of explicit gauge-fixing conditions should be controlled in
order not to produce any unwanted anomaly of gauge symmetries on the quantum level.
The latter ones are signaling that something very bad is happening with the quantum
version of the theory and that the theory is sick and sustains itself only on the classical level
and does not survive the quantization procedure. This is our general philosophy in this
paper to treat all local gauge symmetries with their due respect, and they should not be
neglected (or overlooked) for the quantization process, even if one knows a posteriori that
these local symmetries cease to exist on the quantum level (for example, due to anomalies
or explicit breaking), but this is caused by some other physical circumstances related to
other physical mechanisms or phenomena. Basically, we do not want the quantization
act by itself to produce some fatal violations of local gauge symmetries that cannot be
recovered on the quantum level. We hope that all local symmetries are here with adequate
respect and that their breaking is performed in a fully controllable manner. This is similar
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to what is performed, for example, with the covariant treatment of gauge symmetries in
standard YM theories, where one has full control (due to the introduction of gauge-fixing
parameters). One introduces gauge-fixing conditions, properly parametrized, and as a
result, the gluon propagator in some gauges is able to be derived, allowing for computation
of more complicated Green functions at loop levels and off-shell. However, at the end, one
recovers on-shell quantum physical results as gauge-invariant, gauge-independent, and
gauge-fixing-independent. We want to apply the same attitude, following from a successful
FP quantization when applied to YM theories, here to other symmetries in the local form,
in particular to conformal symmetry present in the gravitational context.

The action of conformal gravity in d = 4 spacetime dimensions is typically taken as
S =

∫
d4x
√
|g|C2, since in this form conformal invariance is manifest. One can perform

integration by parts and neglect (or add—depending on the point of view) some boundary
terms. They are important for the canonical approach to quantization of gravitational
gauge theories. By neglecting the Gauss–Bonnet (GB) density term (see also (31)), which
integrates to the boundary term, one can rewrite the original action in the form

S = 2
∫

d4x
√
|g|
(

R2
µν −

1
3

R2
)

. (24)

Its properties under conformal transformations are the same (up to the boundary
terms, so one neglects the derivatives of the parameter Ω(x) on the boundary). The action
as written above has simplicity and one notices the fact that now one removes the terms
with Riemann tensor. Since it is a completely equivalent action on the classical level,
then one can study its exact solutions. For example, in gravitational vacuum situations,
one finds immediately that all Ricci-flat solutions are also exact vacuum solutions of this
higher-derivative theory [13].

Besides this nice feature of conformal gravity in d = 4, the reason for using the action
of conformal gravity in the form (24) is also of the more theoretical nature. One keeps
neglecting the GB terms presently hidden in the original action with Weyl tensors. The
reason for doing this is evident, when the canonical charges [86] subject to appropriate
boundary conditions are constructed in this theory. It is worthwhile to mention that the
surface terms as present implicitly in (24) render the conformal gravity action (24) to have
well-defined functional derivatives, under some suitable boundary conditions (such as, for
example, on AdS asymptotics [87,88]). Not surprisingly, the resulting total Hamiltonian
derived from the form of the action in (24) is already an improved gauge generator under
these boundary conditions, so then it does not need an improvement by surface integrals.
Additionally, due to the specific form of one of the secondary constraints, the extended
Hamiltonian arising from (24) also has well-defined functional derivatives under these
boundary conditions. Therefore, the inclusion of boundary terms and usage of the action
as in (24) is more favored theoretically, since asymptotic charges of conformal gravity are
then clearly extracted. We remark that the Hamiltonian here is the generator of all local
gauge transformations present in the system (diffeomorphisms and local conformal (Weyl)
rescalings).

According to what we said before, we would like to have a quantum theory resulting
from the covariant quantization procedure such that it treats well (as much as possible)
the local conformal symmetry present in some gravitational models. The gauge symmetry
has to be fixed, but at the same time its violation has to be fully controlled by gauge-fixing
parameters, which later drop out from physical observables. This is the essence of the
covariant quantization act, but the quantization procedure is not the end of the story on
the quantum level. It is well known that one also has to regularize the theory on the
quantum level due to UV-divergences arising due to perturbative loop diagrams. Such
regularization procedures also have to satisfy some stringent conditions. In particular, they
have to preserve as much symmetry of the original classical theory as possible. Therefore,
they have to be selected from a set of covariant regularization procedures. They must not
touch the gauge symmetries of the model; for example, they cannot be based on sharp



Universe 2022, 8, 225 28 of 50

ultraviolet momentum cutoff. The preferred regularization for ordinary gauge theories is
dimensional regularization or covariant ζ-function regularization.

However, in the setup of a gravitational theory also enjoying conformal symmetry, one
cannot play with the dimensionality of regularized spacetime, since the dimension is a very
delicate feature there and conformal symmetry depending on the form of a gravitational
action is realized only in a fixed number of dimensions. They cannot be even perturbed
by a small ε > 0. Other covariant regularization schemes for UV-divergences have to
be employed in quantum conformal gravity to regularize these divergences in a fully
conformally invariant manner. Moreover, one requires that the counterterms should be
written in a conformally covariant way, so the divergent part of the effective action is
also a conformally invariant functional in a fixed number of dimensions. Then, in such a
setup of quantum conformal gravity, one could say naively that the conformal symmetry is
preserved by the UV-regularization procedure and the effective action in quantum theory
also seems to look as with full conformal symmetry realized8. In conclusion, both the
quantization procedure and the regularization of ultraviolet physics in quantum field theory
approaches to conformal gravity have to treat the delicate local conformal symmetry gently.

Let us take, in particular, the example of conformal gravitational theory in d = 4
spacetime dimensions. The action for this theory was introduced in Section 2 in (16). One
may think that this is a very special case of a generic four-derivative theory which is scale-
invariant precisely in d = 4 dimensions. The action of such a HD gravitational theory can
be conveniently written as

SHD =
∫

d4x
√
|g|
(

αR2 R2 + αC2 C2
)

, (25)

where we have deliberately chosen the basis with curvature invariants R2 and C2, which
make explicitly manifest the conformal covariance of the part with the C2 term there9. One
would think (naively) that to specify to a conformal gravitational theory in d = 4, one has
to simply take a limit αR2 → 0 from the generic HD theory in (25).

One notices that for generic HD gravitational theories such as in (25), there are no prob-
lems or subtleties with the FP quantization procedure of the existing diffeomorphism local
symmetry, which can successfully be brought to the very end here, and, for example, the
propagator around flat spacetime of graviton or covariant functional traces of the Hessian
operator understood around general background can be computed. In general, the method
of FP quantization of higher-derivative gravitational theories (with local diffeomorphism
symmetries) works for the cases when both αR2 6= 0 and αC2 6= 0. One may think that the
results of the same procedure in the case when the limit αR2 → 0 is taken will be smooth
and continuous ones.

However, this is not the case and one sees some strong discontinuities in the details
of this procedure as well as in the final results obtained within the QFT framework. One
can see this discontinuity already in the perturbative spectrum of the two theories (with
αR2 6= 0 and with αR2 = 0) when analyzed around flat spacetime. As it is well known in
general higher-derivative gravitational theories with four derivatives, one typically has
eight degrees of freedom, where also the Einstein–Hilbert term κR with the Newton’s
constant is included into the action in (25). These results are derived either from the
canonical formalism of treatment of theories with gauge symmetries and performed by
counting constraints [89], or by taking a covariant perturbative approach and looking at
the spectrum of modes which solve linearized EOM of the theory. A similar procedure
can be also applied there to Weyl conformal gravity. However, there are more subtleties
due to new constraints due to local conformal symmetry in the canonical framework and
due to the masslessness character of all fluctuations considered in the perturbation theory
(some poles of the propagator are double and need an additional resolution). But, using
some tricks with well-designed limiting procedures [90,91], one obtains from both the two
methods the consistent result, namely six degrees of freedom in conformal gravity in d = 4.
This last number of degrees of freedom in conformal gravity is unambiguous. As one
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can see, this result is clearly discontinuous from the other one (eight degrees of freedom)
obtained for any non-zero value of the coupling αR2 and for GN 6= 0. Hence, the limit
αR2 → 0 will also not change anything and we inevitably find a discontinuity.

4.3. Counting of Degrees of Freedom

The full story of counting active degrees of freedom in two theories (generic HD
gravity in (25) and Weyl conformal gravity in d = 4) is, however, more complicated and
more twisted. For scale-invariant HD theory, one should never include the κ coupling
related to the Newton’s constant multiplying the Ricci scalar R term in the Einstein-Hilbert
action. This is obvious from the fact that this dimensionful parameter gives rise to masses
of perturbative modes, which are, however, strictly forbidden in theory without scales.
On the other side, the κ coupling is technically needed to resolve the double poles of the
graviton propagator, otherwise it is problematic both in generic HD theory and in conformal
Weyl gravity too. The standard particle interpretation is only available for modes whose
propagation after simple fraction decomposition is described by simple poles in the k2

variable. To resolve the multiple poles, one tries to modify the theory and introduce a
spurious massive parameter M (breaking conformal and even scale invariance). At the
end of the computation, one should, as the last limit, take M→ 0 hoping that for physical
observables this limit will be unambiguous and possible to define. In this way, the problem
with multiple poles can be resolved and physical quantities can be determined.

If instead one naively counts possible number of degrees of freedom in massless
theory (HD theory in (25) with GN = 0), then one may have at most six degrees of freedom
(2× 2 = 4 from two massless poles of the spin-2 part of the propagator and 2× 1 = 2 from
two massless poles of the spin-0 part). This final number is in clear disagreement with the
number obtained using other methods, also when κ = 0 (such as by counting dynamical
constraints or computing one-loop functional determinants in scale-invariant HD theory).
However, as one of the advantages of the previous method, we notice that we do not
anymore play with the mass to resolve the double poles and we do not inadvertently violate
the scale invariance by intrusion of mass to the definition of the theory and perturbative
states around flat spacetime.

Still, assuming that in generic scale-invariant HD theory in (25) we have eight per-
turbative degrees of freedom, it is difficult in a standard way to assign these degrees of
freedom to particular spin states. This is because we do not have mass in the theory, so we
cannot have massive spin-2 excitations either, and this forbids us from having 2 + 5 = 7
degrees of freedom in the spin-2 sector. In the massless spin-2 sector with two modes, we
can have at most four degrees of freedom, while in the spin-0 sector we can have at most
only two degrees of freedom when we have two poles. This does not sum up to eight.
Instead, the maximal number of degrees of freedom we can obtain in this way is six. This
different way of counting shows that there may not be such strong discontinuity when
one takes the limit αR2 → 0 from generic massless HD gravity to a special conformal Weyl
gravity in d = 4 spacetime dimensions. In actuality, one may think that since in this case
of counting, the number of active degrees of freedom is continuous 6→ 6, then the limit
αR2 → 0 is not so dangerous and signifies the mere different accounting or reshuffling of
degrees of freedom. One could be tempted to say that in generic scaleless HD gravity in
d = 4, we have six degrees of freedom distributed as two spin-2 massless particles, each
with two polarizations, and two spin-0 massless particles. When the transition to conformal
gravity happens, the two scalar degrees of freedom (from spin-0) merge into one massless
spin-1 vector particle with two helicities. It is clear from this counting that the number
of degrees of freedom is conserved in this limiting procedure. They just obtain different
specification and distribution in conformal gravity into slightly different irreducible repre-
sentations of Lorentz group describing massless particle perturbative excitations around
flat spacetime. The emerging massless vector spin-1 gauge particle is reminiscent of the
Weyl gauge photon, but here, its role in the gravitational context is completely different.
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Due to additional constraints and symmetries of the conformal gravitational theory,
one also makes visible the discontinuity in the structure of the two theories. New symme-
tries are present in the special theory with αR2 = 0. The discontinuity in the number of
degrees of freedom signals that something is very special with the theory characterized by
the absence of the R2 term in (25). The symmetries are enhanced in this case, the limit is not
continuous, and this is not similar to any other generic HD gravitational theory. This point
in the theory space (actually a line parametrized by any value of the coupling αC2 > 0) is
very special and it is isolated from its neighborhood; hence, any limiting procedures do
not give any continuous results here. Moreover, one can view that the conformal gravity is
a critical or extremal point in the theory space, not reachable by any sequence of generic
HD theories asymptoting to it. We already know the reason for such a behavior, since
the symmetries are enhanced and the conformal symmetry of rescaling transformations
appears there in the local form.

As is known, the counting of degrees of freedom can be also performed in canonical
(Hamiltonian) formalism for gauge field theories. This formalism [86] is also very useful as
a starting point for canonical quantization of theories with degeneracy of the Lagrangian,
so when not all of the generalized velocities can be re-expressed via generalized momenta,
this generically happens due to the presence of symmetries (in local form). The freedom
related to gauge symmetries typically indicates that there is more than one set of canonical
variables that corresponds to the same physical state. This choice can be realized by
adding some gauge-fixing conditions. General gauge theory can be viewed as a mechanical
theory with constraints, since not all canonical momenta are non-zero during the spacetime
evolution of fields. For example, these constraints are analogues of the Gauss laws for the
electric part of the field strength tensors. The constraint is of the first class if its Poisson
bracket with every other constraints vanishes on the constraint surface, but not necessarily
in the full phase space. Then one could say that they vanish weakly. If Poisson bracket of
a constraint with at least one other constraint does not vanish even weakly, then they are
of the second or higher class. Typically in gauge theories, first-class constraints play the
role of generators of local gauge symmetries. The same interpretation cannot be applied to
the second-class constraints since they do not preserve constraints even on the constraint
manifold. They are non-physical and they have to be treated differently to generators
of gauge symmetries. The second class constraints can be set strongly to zero (so valid
in the whole phase space and not only on the constraint surface) either before or after
the evaluation of a Dirac bracket, which here substitutes for the Poisson bracket for the
considerations of the extended Hamiltonian function. They just become identities which
must be satisfied during the field evolution, expressing some canonical variables in terms
of others.

In the case of conformal gravity, setting second-class constraints strongly equal to
zero can actually be used to eliminate some of the canonical dynamical variables of the
formalism. In this way, one can completely select the gauge by eliminating all first-class
constraints and ending up only with second-class constraints. Following this approach,
one arrives at the following counting of physical degrees of freedom (understood as field-
theoretical degrees of freedom, contrary to mechanical ones) Ndof in generic gauge field
theory:

Ndof = Ncan = Ntot,can − N1 − N2 − Ngfix = Ntot,can − 2N1 − N2, (26)

where by Ncan we denote the number of independent canonical variables in the formalism.
Moreover, Ntot,can stands for total number of canonical variables (possibly mutually depen-
dent) and N1 and N2 are for the number of first- and second-class constraints, respectively.
Finally, by Ngfix we mean the number of gauge-fixing conditions added to unambiguously
pinpoint the dynamics of the system in question. This counting in the case of Weyl gravity
is as follows [92]: the physical degrees of freedom are Ndof = 12− 3− 0− 3 = 12− 6 = 6
(according to (26)). The interpretation of these resulting six physical degrees is as follows:
two of these describe a massless graviton, such as in the case of two-derivative general
relativity, and the remaining four can be used for a description of a “partially massless”
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graviton, as in [93,94]. Following appendix C.3 of [92], one can see that due to the higher-
derivative nature of the conformal gravity, two additional primary constraints are actually
of the second class; however, one can set them strongly to zero, and they are effectively
eliminated from the Lagrangian of the conformal gravity. In other words, these second-class
constraints can be solved everywhere in the phase space. This also implies that instead of
the extended Dirac bracket, one can use, for the extended Hamiltonian, simple Poisson
bracket here without too much complication.

In these above two paragraphs, the conformal gravity theory was formulated in the
Hamiltonian formalism. The original work can be found in [87]. Earlier, a Hamiltonian
formulation of generic higher-derivative theories in d = 4 spacetime dimensions, including
conformal gravity, was considered in [50,89].

The general fact of discontinuity is an emanation of a quite ubiquitous phenomena
which was first discovered by Veltman and van Dam in 1970 [95]. When some parameters
of the theory reach critical values, then the limits are discontinuous and the resulting theory
can be very special. Of course, originally Veltman discovered these discontinuities in
massive vector theories when taking the mass parameter (which from the nature of things
is dimensionful) to zero, which changes the character of symmetries present in the theory,
and local gauge symmetry arises. This new symmetry and new dynamical situation is
not possible to predict, being always within massive vector models. Of course, there we
also have the discontinuities in the number of degrees of freedom, namely, three in the
massive case and two in the massless situation with enhanced gauge symmetries. One may
think that it is the gauge symmetry which kills the propagation of one longitudinal mode
of the massive vector gauge boson. In the case when m2 = 0, the dynamics are different
and there is an enhancement of symmetries as well. The perturbative spectrum is different
and also the quantum correlation functions differ. One also understands well the reason
behind this case, because then local gauge symmetry is born. However, one could view
sending the mass parameter to zero as a very crude procedure. Similar considerations in
the gravitational setup were also given to transition: massive gravity into massless gravity,
first by Veltman, van Dam, and Zakharov. The discontinuities in that case bear their names.
The reasoning is exactly the same as in the case of massive and massless gauge theories
analyzed already by Veltman. In the gravitational context, the local enhanced symmetry
of the massless gravitation here kills three “longitudinal” states of the previous massive
spin-2 graviton, morphing it into a massless spin-2 graviton with only two polarizations.

We emphasize that in the case of various limits of HD theories, and in particular
of the limit αR2 → 0, the situation is more delicate since the coupling parameter here is
dimensionless. Hence, its limit is not as rough as for a dimensionful parameter. One actually
may expect that these kind of limits are better behaved and are continuous. This is still not
the case for the transition to conformal gravity from generic HD gravitational theory, since
the number of degrees of freedom changes abruptly, that is, this symmetry, when present,
modifies the perturbative spectrum of active degrees of freedom. This could be viewed as
a more subtle form of the Veltman discontinuity; however, it is still a discontinuity. We
see that, in principle, it is possible to distinguish two types of Veltman-like discontinuities.
When the transition from scale-invariant HD gravity to conformal gravity occurs, we see
a softened version of discontinuity. The more strong is when we modify the HD gravity
from (25) by adding the dimensionful parameter, as in with the Einstein–Hilbert term. The
situation with both these limits is not so clear because one time they are treated as technical
tricks, but the other time they change the counting of degrees of freedom and interfere with
symmetries of the models in question. One still sees that the limit to conformal gravity
αR2 → 0 is very special and delicate and should be approached with great care, as the
last one in the computation procedure, where the order of different limiting procedures
matters.

This unpleasant situation with the problems of definition of spectrum of perturbative
modes around flat spacetime happens also for conformal gravities in higher dimensions of
spacetime, and here, the case of the C2 gravity from d = 4 is not an exception. In general,
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even in dimensions d of spacetime, the Lagrangian of conformal gravity may be found in
the schematic form

αC2 C�(d−4)/2C + O
(

C3
)

, (27)

while the Lagrangian of scale-invariant respective HD and quadratic (in curvatures) gravity
there has the similar form

αC2 C�(d−4)/2C + αR2 R�(d−4)/2R. (28)

However, the same problems with limits (such as αR2 → 0), discontinuities, disagree-
ments in number of active perturbative degrees of freedom, and resolutions of poles in the
propagators are met in this higher-dimensional setting with only modifications of different
counting of degrees of freedom in different dimensions.

All the arguments above again and again confirm that the theories with local conformal
symmetry have to be treated specially and no naive limiting procedures can reproduce
their results. Since the symmetry is the mathematical embodiment of the beauty of nature,
this simply means that theories with local conformal symmetries are discontinuous from
any other scale-invariant HD theories in (25). This fact of discontinuity is true, but it makes
the conformal gravitational theories even more beautiful.

Let us repeat that the conformal gravity is special and is not obtainable by a continuous
limit from a general Stelle theory, when αR2 → 0. There is an enhancement of symmetries
in this critical point, where the R2 term is not present for Stelle four-derivative gravitational
theory. This is an enhancement to full local conformal symmetry on the classical level,
and on the first loop quantum level (up to the issue of conformal anomaly). This theory
with enhanced symmetry should be treated specially and differently to generic HD theo-
ries. First, the FP method for fixing conformal gauge symmetry (with proper conformal
gauge-fixing and additional conformal sector of ghosts fields) should be used in conformal
gravitational models. In such a way, the quantization procedure is performed as confor-
mally covariant as possible and with due care given to local conformal symmetry. Finally,
conformally invariant regularization procedure should be employed to define quantum
theory, especially to take care of perturbative UV-divergences. If all these requirements are
satisfied then we can announce an achievement of a construction of quantum theory with
local conformal symmetry conserved in field theory models. The physical predictions in
such quantum theories preserve the underlying local conformal symmetry as much as is
possible and dictated by the quantum nature of the model. The last is shaped and controlled
exclusively by nature and completely independently of what regards the formalism used
by theoreticians to describe the nature and to perform the artificial acts of quantizations or
regularizations within given models.

5. Fradkin–Tseytlin Approach to Pure Conformal Gravity in d = 4

In the context of a limiting procedure from generic HD gravitational theories in (25),
one must notice the paper by Fradkin and Tseytlin from 1982 [96]. They worked in the
four-dimensional setup and analyzed perturbative one-loop UV-divergences of some HD
theories generically described by the action in (25). Their computation is fully well-defined
for the case when αR2 6= 0 and αC2 6= 0. To perform the covariant quantization process
they use the general FP method for diffeomorphisms, as elucidated at length before. Here,
this method was applied to higher-derivative gravitational theories. For extracting UV-
divergences, they use general diffeomorphism, preserving regularization of QFT of the
HD gravitational model. Their computation gives correct results in the generic case when
αR2 6= 0 and αC2 6= 0. However, as one of the additional developments, they wanted also to
consider the conformal Weyl gravity as a special case of HD theories and also as the limit
of HD theories, when αR2 → 0. Of course, the authors were aware of the discontinuity
present in such a limit. However, they also knew that the model, in the case when precisely
αR2 = 0, has enhanced symmetries, and this new symmetry, on the classical level before
quantization, was the local conformal symmetry of conformal Weyl gravity.
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5.1. The Limit αR2 → 0

The strategy that authors of [96,97] followed was the following. Knowing that the
conformal symmetry was present at the classical level of the theory with αR2 = 0, they also
expected it to be present in some unbroken form on the quantum level, here analyzed to the
level of one-loop accuracy. This assumption allowed them, as we will explain later, to use
the power of conformal symmetry at the end of their computation for clearing the situation
with counterterms of the UV-divergent one-loop effective action. As a matter of fact, these
counterterms in d = 4 are all globally scale-invariant for generic HD gravitational theories.
They are, namely, of three possible forms here; R2, C2, and E = GB, where the last one is a
Gauss–Bonnet scalar term.

As analyzed before, the Weyl squared term, given explicitly by

C2 = CµνρσCµνρσ = RµνρσRµνρσ − 2RµνRµν +
1
3

R2, (29)

when properly densitized to the form
√
|g|C2, is a conformal invariant. That is, we have

for infinitesimal conformal transformations (denoted below by δc), which only matter here,
that

δc

(√
|g|C2

)
= 0. (30)

On the other hand, the last invariant is topological and is known as the celebrated
Gauss–Bonnet scalar (or as an Euler density

√
|g|E in a densitized form). Its expansion, in

other terms quadratic in standard gravitational curvatures, reads,

GB = E = RµνρσRµνρσ − 4RµνRµν + R2. (31)

Since it is a topological term (depending only on the boundary of spacetime), then any
of its bulk variation carried out in the volume of spacetime (in particular the conformal
infinitesimal one δc) vanishes, that is, we have

δ

(∫
d4x
√
|g|GB

)
= 0 (32)

as an identity of variational four-dimensional calculus.
Finally, the last invariant with respect to diffeomorphisms (scalar) out of the group of

three local invariants in curvature in quantum gravity, that is, quadratic in the curvature, is
simply the square of the Ricci scalar R2. Here, one notices an interesting thing pertaining to
conformal transformations of this invariant which is quadratic in gravitational curvatures
(similar to Riemann tensor, Ricci tensor, and Ricci scalar). This term is globally conformally
invariant in d = 4, i.e., it is scale-invariant because its energy dimension as the operator
is dim

(
R2) = 4. The coupling coefficient in front of it in the action in (25), this αR2 , is of

course a dimensionless parameter in d = 4 spacetime dimensions. This fact is common also
for all the other invariants considered above (in (29) and (31)), and this happens precisely
because all these invariants contain four derivatives on the metric tensor and this number
coincides here with the dimension of spacetime. Hence, the R2 term, C2 term in (29), and
the GB term in (31) are properly scale-invariant terms when densitized on the level of action
functional. As we have seen above for the last two, we have upgrade of these symmetry
invariance properties to the full invariance under local conformal symmetry understood in
the GR framework.

For the first term R2, however, the situation is different and its symmetry invariance
obtains some promotion but not to the full conformal invariance. Namely, the R2 term is
invariant in d = 4 dimensions under so-called restricted conformal transformations, that is,
the transformations from (9), satisfying the additional condition that

�Ω(x) = 0, (33)
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which is a kind of GR-covariant wave equation (GR-covariant d’Alembert equation) for
the parameter of the conformal transformations Ω(x). This means that this parameter
Ω = Ω(x) can be spacetime-dependent here (already this is more than a case of invariance
under global transformations when we have that Ω = const), but this dependence cannot
be arbitrary here. It must satisfy an analogue of the wave equation, which in Euclidean
signature would require the Ω field again to be constant. Instead, in the Minkowskian
signature, this wave equation for Ω(x) does have some non-trivial spacetime-dependent
solutions. This signifies that the condition of restricted conformal invariance is more general
than global scale invariance in GR with constant parameter Ω = const, but still it is less
than a general invariance under fully local conformal symmetry with completely arbitrary
spacetime dependence in Ω(x).

One can easily see this fact by recalling the following properties of conformal transfor-
mations of the Ricci scalar. For full generality, we write them in arbitrary dimensions d. We
have explicitly, that under local conformal transformations,

R→ R′ = Ω−2(R− 2(d− 1)� ln Ω− (d− 2)(d− 1)∇µ ln Ω∇µ ln Ω
)

(34)

and then using the Leibniz property of the box operator: � f 2 = 2 f� f + 2∇µ f∇µ f , and
the fact that ∇µ ln Ω = Ω−1∇µΩ, we rewrite above as

R→ R′ = Ω−2
(

R− 2(d− 1)Ω−1�Ω− (d− 4)(d− 1)Ω−2∇µΩ∇µΩ
)

. (35)

Now, exactly in d = 4 (and only in d = 4, neglecting the degenerate case of d = 1
where R = 0 automatically), we see that the last term in the bracket in the above formula
disappears, and we are left with the following simple local conformal transformation law
in d = 4, that

R→ R′ = Ω−2
(

R− 6Ω−1�Ω
)

, (36)

which indeed shows that for restricted form of conformal transformations satisfying that
�Ω = 0, we obtain that the Ricci scalar transforms fully covariantly under such local
conformal rescalings. In actuality, one sees that this is the special property of d = 4
spacetime dimensions, since in other dimensions even restricted conformal transformations
do not make Ricci scalar transform conformally covariantly because of the second term
in (35) multiplied by the factor (d− 4) and by a mixed term (∇Ω)2. From this, one easily
concludes the transformation law√

|g|R2 →
(√
|g|R2

)′
=
√
|g|
(

R− 6Ω−1�Ω
)2

, (37)

which shows that, indeed, for restricted conformal transformations, the densitized term√
|g|R2 is (partial) conformal invariant.

5.2. Final Conformal Transformation

Equipped with the above knowledge, we can discuss the trick and the method used
by Fradkin and Tseytlin to obtain, a bit heuristically, the UV-divergences of conformal Weyl
gravity in d = 4 dimensions. The computation for the αR2 6= 0 case showed that, generally,
the R2 term is present in UV-divergences, and this term is not conformally invariant as
a counterterm, when we mean full arbitrary conformal transformations. Therefore, its
presence violates the assumed conformal symmetry at the one-loop level. It would be
desirable for consistency of the theory to make it vanish. We explain below what was
performed to achieve this.

In an HD theory from (25), the one-loop UV-divergent part of the effective action when
the limit αR2 → 0 is taken explicitly reads,

Γ1−loop
div = − 1

(d− 4)(4π)2

∫
d4x
√
|g|
(

133
20

C2 +
5

36
R2 − 196

45
GB
)

, (38)
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where we effectively used the dimensional regularization scheme (DIMREG), and whole
divergences are written as singular expressions in the deviation from d = 4 spacetime
dimensions. As obvious from above, the R2 term in this naive procedure is generated at the
one-loop level; therefore, conformal symmetry seems to be broken by quantum corrections.

Assuming, in contrary and a posteriori, that the local conformal symmetry was present
also on the level of the first quantum loop, the authors decided to, after the computation,
take the limit αR2 → 0 in a naive way and eventually performed a compensating additional
conformal transformation, as in (9). They simply wanted to exploit the freedom of making
arbitrary post-computation conformal transformations on the results of the non-conformally
covariant calculation. The parameter of such a conformal transformation Ω(x) could be
chosen at one’s will. The authors chose such Ω(x) that R′ = 0 in (36), that is, the result of
final conformal transformation completely nullifies the presence of the square of the Ricci
scalar R2 counterterm. Exactly this term before was spoiling the conformal invariance of the
full set of counterterms. In this way, and somehow by hand manipulations, the non-fully
conformal counterterm R2 is completely cancelled out, so the problem with the desired
and originally-not-present conformal invariance of the UV-divergent action in conformal
gravity at one-loop is solved.

For consistency, the following question then arose: Is it possible to find solutions for
the spacetime dependence of the Ω(x) parameter of conformal transformations in (9), such
that indeed we find that in the result R′ = 0? The solution of the related equation in d = 4,

R− 6Ω−1�Ω = 0 (39)

or to an equivalent equation, (
�− R

6

)
Ω = 0 (40)

exists and it is given for Ω by

Ω = Ω(x) = 1 +
(
�− R

6

)−1 R
6

. (41)

In the last formula, we performed some formal manipulations with treatment of the
operator �− 1

6 R as completely algebraic, although of course it is a differential operator, and
taking its inverse requires some additional care. One can convince oneself that the solution
for Ω in (41) satisfies the equation (40), when one notices that (�− 1

6 R) when acting on 1

gives − 1
6 R as the result of the operatorial linearity, and moreover

(
�− 1

6 R
)−1

is treated
here as the operatorial inverse of the operator in the last parentheses. In particular, to define
the inverse of such shifted GR-box covariant operator by possibly spacetime-dependent
Ricci scalar, understood here as an arbitrary scalar field R(x) on a curved manifold, one
must resort to operating with Green functions of the operator since only then can we
sensibly speak about the inverse on the general curved backgrounds. Moreover, the last
formula in (41) is valid only when the metric gµν, whose Ricci scalar R = R

(
gµν

)
appears

there, is asymptotically flat.
Therefore, one concludes that the solution for Ω in d = 4 always exists for any form of

the spacetime-dependent Ricci scalar R = R(x). However, the price is the resulting strong
non-locality in the expression for the Ω = Ω(x) in (41), which is the parameter of the
conformal transformation that has to be performed at the end to bring back the conformal
invariance to the theory on the level of one loop. This is how the authors of [96] recover,
at the end, conformal invariance in the model under studies on the quantum level. It is
well understood that this procedure looks very ad hoc. This is so because the formalism
they used was suitable only for dealing with diffeomorphisms as local symmetries, and
the regularization that they used was only preserving this last symmetry. The care was
not exerted to properly treat the local conformal symmetry and to gauge-fix it and to
add appropriate FP determinant and FP ghosts for conformal symmetry. At the end, the
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authors performed quite arbitrarily-looking conformal transformations somehow to cure
their results obtained in the limit αR2 → 0. For this, they had to know a priori, but not a
posteriori, that conformal symmetry survives on the quantum level. Somehow, they knew
it and understood why the conformal symmetry is still present on the level of one-loop
counterterms and they worked out an ingenious solution and procedure to improve on
their non-conformally covariantly-looking results. Eventually, they were able to show that,
indeed, the conformal invariance was preserved on the level of one-loop divergent effective
action.

As emphasized already a few times, it seems that the authors of [96] assumed what
they wanted to prove by explicit computation, that is, that the conformal symmetry is
not violated on the first-loop quantum level. A posteriori, they proved that their initial
assumption was indeed correct, but in this way they entered into some kind of logical
vicious circle. Somehow, we need an argument that does not rely on the presence of
conformal invariance before it is explicitly checked that it is there. This argument is given
in the form of analysis of the conformal anomaly at the one-loop level, that the same
authors also discussed in later publications. We will discuss it also below. Here, we want to
remark that all the considerations of the presence or absence of the conformal symmetry
were considered so far only on the level of the divergent effective action, and the issue
of conformal anomaly (CA) and its form were completely neglected for these aspects. So
far, we have just analyzed whether the counterterms are conformally invariant, while, as
emphasized earlier, the mere existence of them breaks full conformal symmetry due to
presence of non-vanishing beta functions for couplings, and thus also of non-trivial RG
flow and of non-trivial scale dependence of various correlation functions.

The results from the limit αR2 → 0 did naively contain the R2 term, which is dangerous
for full local conformal symmetry, but these were only incomplete results since additional
care had to be given to them. By performing final conformal transformations, Fradkin
and Tseytlin were able to reduce to zero such non-conformal counterterms; however, the
parameter of such a transformation was expressed as highly non-local function in (41).
They could still perform the conformal transformations on the form of counterterms as the
last operation, because the symmetry they acknowledged earlier had to be present also on
the quantum level since it was present also on the classical level before the quantization
procedure. Implicitly, they assumed that the quantization act does not destroy conformal
symmetry. They just used the freedom to select a conformal gauge, although one has a
strong impression that their approach could be more clear since they knew only a posteriori
that local conformal symmetry must have been present on the level of the first quantum loop
in this theory. The fact that the solution for Ω contains this apparent non-locality in local
Weyl conformal gravity in four-dimensional QFT framework could be quite disappointing,
and one could wonder whether it is possible to perform all such procedures better and in a
more clean way. Moreover, the parameter Ω must be always spacetime-dependent since
constant values do not change the form of the Ricci scalar R according to (36), because we
always have that �Ω = 0 for Ω = const.

When one is finished with the dangerous conformal symmetry-violating R2 term in
UV-divergences, then this is not the end of the story because, as authors say, the contribution
of two scalar degrees of freedom has to be subtracted from the results in (38) without R2

term there. These are assumed to be two minimally coupled to gravity scalar modes on a
general background. At the end, the form of UV-divergences in Weyl conformal gravity in
d = 4 spacetime dimensions regularized in the DIMREG scheme reads,

Γ1−loop
div = − 1

(d− 4)(4π)2

∫
d4x
√
|g|
(

199
30

C2 − 87
20

GB
)

. (42)

The results in the formula above should be understood as final ones. No additional con-
formal transformation or subtraction of some contributions should be performed on them.

One also wonders whether the final conformal transformation nullifying the R2 term
can be reversed. It is easily acceptable that one obtains as the result of conformal trans-
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formation that R 6= 0 → R′ = 0. However, here is visible apparent irreversibility of the
conformal transformation because one does not obtain anything from R′ = 0 as the starting
point, since zero transforms to zero under homogeneous transformations. Of course, this is
only apparent since by inverse conformal transformations which are achieved with Ω−1

parameter, one obtains from R′ = 0 back to the case R′′ = R 6= 0, or one can even perform
a new transformation with Ω 6= 1, and then from R′ = 0 one will find oneself in the space-
time where R′′ 6= 0. One, therefore, has a strange impression that the power of conformal
transformations in a theory with conformal symmetry on the quantum level was only used
instrumentally by authors of [96] to reach the assumed goals and, for example, after doing
this, one is forbidden to use it anymore, or to use it for reversing its effects. Of course,
such a situation with understanding of the symmetry in the theory is not satisfactory, and
one asks for a natural formalism which makes such transformations obvious, and all of
them are allowed to be performed provided the symmetry is realized there on any level of
the theory.

In other words, we can say that the R2 term in UV-divergences of the theory is
conformal gauge-dependent, that is, by a choice of some conformal gauge one can eliminate
it but a priori it is there. We choose a conformal gauge by performing arbitrary conformal
transformation in the theory. Is the R2 term there or not?—This statement is not universal
and it is actually gauge-dependent in conformal gravity. The value of the R2 beta function
is not universal either. Therefore, in the description preserving conformal symmetry we
shall not speak at all about this term, and the issue related to its presence or non-existence
is not a physical issue, it is just another example of the gauge artifact statement, here due to
conformal gauge.

If one looks at the difference between formulas (42) and (38) (the last one obtained
as the limit in the case αR2 = 0), one sees that the correcting contribution of two scalars is
essential and that this together with the resolution of the problem of the R2 counterterm
signifies why the simple naive limit αR2 → 0 does not work for the case of quantum
conformal gravity. These are all post-computational procedures that one has to perform
after the naive limit αR2 → 0 is taken. They constitute the theoretical reasons (or the
problems within the formalisms of simple QFT of gravitational interactions with only
diffeomorphisms symmetries) why the limits in question are discontinuous and why the
case of conformal gravity is very special one.

5.3. Subtraction of Two Scalars

There could be various attempts to explain the role of the mysterious two scalar
degrees of freedom that have to be subtracted for the last corrections to the theory. The
possible questions are why they have to be subtracted, not added, why they are two, and
why scalar degrees of freedom, and not, for example, one massless vector (spin-1) or tensor
(spin-2), each of the last two coming with two helicity states as well. Finally, one could
ask, accepting that they are scalars, why they have to be minimally coupled to a curved
gravitational background, and not conformally coupled to gravity. The last option looks
to be the most reasonable one, especially in the framework of conformal gravity, where
conformal symmetry of the whole physical system (gravity + matter) on the quantum level
is the thing we care so much about here.

A possible explanation of the problem with two scalars may come from analyzing the
spectrum. Exactly two degrees of freedom are the difference between eight and six pertur-
bative degrees of freedom (as analyzed around flat spacetime background), respectively,
for generic HD gravitational theories and for Weyl conformal gravity. Hence, if one wants
to obtain six degrees of freedom one would have to subtract two degrees of freedom from
all degrees of freedom present in HD gravity with both C2 and R2 terms. The arithmetic
here agrees. However, there could be some problems with this interpretation. First, as we
discussed before, this way of counting degrees of freedom is not completely unambiguous
and one may be tempted to assume number of six degrees of freedom also in generic HD
gravitational theory without the Einstein–Hilbert term added. Secondly, when one looks
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at the spectrum of generic HD theory, one does not see that there are two more scalar
degrees of freedom compared to Weyl gravity. One sees only one physical scalar degree of
freedom in generic HD theory (with standard counting to give 8 = 2 + 5 + 1 degrees of
freedom), while in conformal gravity, there are no scalars at all10. The actual reshuffling
of degrees of freedom (from eight to six) is intricately more complicated: first, one must
subtract one scalar d.o.f. and then later divide five d.o.f.s from massive spin-2 field into
two helicities of massless spin-2 and another two helicity states of massless spin-1 (fields
present in conformal gravity), and finally one has to remove the last remaining degree
of freedom. This game with various Lorentz representations of perturbative degrees of
freedom would suggest to try something with one scalar, massless vector or massive spin-2
mode. However, it is incorrect to add or subtract here, for example, the contribution to
one-loop divergences of traces of a vector (spin-1) and the final results work only when
precisely two scalars minimally coupled are subtracted. Hence, this reinterpretation of
subtracting contribution of two scalars can be, at most, only viewed as a heuristic tentative
explanation.

On the other hand, one could also come up with a different idea that these two scalars
are conformal ghosts. This would explain why, at the end, Fradkin and Tseytlin had to take
them into account when limiting to Weyl gravity (with enhanced conformal symmetry).
These fields obviously were not present in generic HD gravities, but when one moves
to conformal theory, one has to gauge-fix this symmetry and also supply proper ghosts
(depending on the character of interactions, they have to be either FP ghosts of new local
symmetry or third ghosts if HD terms are present, or both). It is true that the authors
of [96] performed an additional simple conformal gauge-fixing, requiring vanishing of the
trace h = 0. This performs the first part of the job of treating with due care the eminent
conformal symmetry here. However, the next part is to deal with respective ghost fields
of conformal symmetry, and, moreover, what is reassuring here is that since they are of
Grassmannian nature (as all quantization ghosts are), then to add their contribution means
effectively to subtract the contribution of “normal” particles. Hence, this is consistent with
the idea that to reach conformal gravity, one has to add contribution of conformal ghosts,
or, in a sense, subtract contribution of normal particles.

As it could be explained thoroughly in the next publications on this matter, these
conformal ghost fields are here in four-dimensional conformal gravity of the type of third
ghosts exclusively, namely, they are not FP conformal ghosts. However, what is more
important here is that they are of scalar character, and they do not carry any Lorentz index.
Moreover, as will be made clear in the next section, they are just minimally (covariantly,
similar to in GR) coupled to the background and not conformally coupled, since such is
the feature of the FP quantization procedure. This fits very well with the description of
subtraction of two scalars; however, again, there could be some problems with such an
interpretation. First, ghosts used during the covariant quantization procedure (that is, FP
ghosts or third ghosts) are typically not counted for active perturbative degrees of freedom
around a given background, hence they would not entail any change in the number of
degrees of freedom between the two theories (limiting HD gravity and conformal gravity).
This is in clear contradiction with the counting suggesting that the change is 8→ 6, while it
is also in perfect agreement with other counting, where we have advocated before that there
is no change and we have 6→ 6. One cannot also say that potential additional two degrees
of freedom, as present in the standard counting of degrees of freedom of HD gravity, are
these two conformal ghost modes (counted negatively). The ambiguity and the potential
problem with this interpretation remain.

However, after all, the role of such ghost contributions (both whether these are FP or
third ghosts) is not to change the number of perturbative active (physical to some extent)
degrees of freedom, but to provide the correct expression for the partition function. For
example, from such an expression, one could, at the one-loop level when expressed via
determinants of some differential operators, obtain the one-loop partition function and,
finally, read from it the number of degrees of freedom. This number typically agrees with
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the number obtained via counting of constraints and other similar canonical methods (and,
for example, it gives eight degrees of freedom in scale-invariant HD gravity). However,
on the level of such an expression written using determinants in various subspaces, it
is not evident to understand the origin of various factors and functional traces there.
As emphasized and, for example, explained in the case of conformal gravity, one can
find there some various auxiliary elements of the theory used for quantization and for
writing path integrals, such as contributions from Jacobians of change of field variables
under path integrals, from gauge-fixing functionals, and also from FP and third ghost
determinants. One does not find there contributions clearly assigned to modes appearing
in the perturbative spectrum of the theory around flat spacetime, such as no clear origin
with massless spin-2 or spin-1 fields. Eventually, from one-loop partition function, one
finds the correct total number of degrees of freedom (including also these spin-2 and
spin-1 massless states in conformal gravity). However, eventually, there is no sign that this
counting manifestly takes FP ghosts or Jacobians into account. It only has to take them in
intermediate levels of computation for the whole consistency of the procedure.

To answer the question of why there are two scalars, one has to recall a few facts. First,
it is well known that the third ghost is just one single real field. This would already look
like a contradiction to our counting, since we stated that there are two scalar contributions
that need to be subtracted, but secondly, one has to pay enough attention to the fact that
the mentioned contributions of minimally coupled real scalars are understood as coming
from the following two-derivative scalar action coupled to curved spacetime background:

Ssc =
1
2

∫
d4x
√
|g|gµν

(
∂µφ

)
(∂νφ) = −1

2

∫
d4x
√
|g|φ�φ, (43)

where we do not write any scalar potential term V (containing mass terms or self-interactions)
since it is well known that the terms in V do not at all contribute to divergence proportional
to R2 and GB term. This is undoubtedly true at the one-loop order and for dimension-four
counterterms in the effective action, which could receive contributions only from dimen-
sionless couplings, but, for example, here they do not receive any contribution from quartic
self-interactions of scalars. Only the form of the kinetic operator (precisely, how many
derivatives there are) and the multiplicities of scalars (how many scalars there are) matter
for this computation. There is a slight dependence of the contribution to the C2 counterterm
on the non-minimal coupling ξ with gravity (that is, with a possible non-minimal term
ξRφ2, which is so-called coupling to a scalar curvature of spacetime), but these are all
neglected for our purposes. One could say that, at the end, our model is very poor, since it
describes here two massless scalar fields with no interactions, no self-interactions, and even
without mass parameters, just coupled simplistically and minimally to the background
geometry. Even the normalization of the scalar field here is not an issue for UV-divergences,
but here we stick to the canonical one.

One has to compare the above with the contribution from the Gc matrix. To make the
story short, the suitable operator in d = 4 is of the form Gc = �2 and this acts between two
real scalar third ghosts for conformal symmetry bc. Hence, due to fractionalization property
of functional traces of a logarithm of such an operator as Gc, one sees that on the level of
the trace of the logarithm, its contribution precisely agrees with two contributions from
one scalar box � in a simple scalar field representation in the last part of the formula (43).
This explains the presence of two scalars. In more generality, one could say that, in general,
even dimensionality of spacetime d, the number of simple two-derivative scalars, each with
action in (43), the contribution of which have to be subtracted, has to be equal to half of
the dimension 1

2 d. This assertion can place our theoretical explanation in verification, for
example, in six-dimensional conformal gravity models.

Within this second interpretation, we have a confirmation for why these two contribu-
tions have to be subtracted, but not added, and why they are scalar degrees of freedom,
and not massless vectors or symmetric rank-2 tensors. We also see why they are minimally
coupled to GR-covariant background and why they are two scalars. However, as remarked
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before, the whole existence or need for third ghosts (both of diffeomorphism symmetry or
of local conformal symmetry) depends on the choice of the background. As we emphasized
previously with some clever choice of partially covariant weighting functional Gc, their
contribution can be safely eliminated and they can be forgotten on the quantum level. Such
is, for example, the situation around flat spacetime, when, in the gauge-fixing functional
Gc, one uses only partial derivatives, and from them builds scalar d’Alembertian operator
∂2, and on the contrary, one does not use background-covariant derivatives from GR to
construct a proper GR-covariant box operator � = ∇2. Then, in such circumstances, there
are no conformal third ghosts at all and so their contribution also does not exist and then
this interpretation breaks down.

One could try to rescue this idea that the two scalars are third ghosts for conformal
symmetry by claiming that for GR-covariant results of one-loop divergences obtained
within some covariant framework, such as within the method of covariant Barvinsky–
Vilkovisky traces, one ought to use only the form of the weighting functional Gc, which is
GR-covariant, so it must be built using the covariant d’Alembertian operator �. Otherwise,
one could be afraid of losing the general covariance of the results at the end, but they are
guaranteed to be provided such that in the whole process of computation of them there are
no steps which explicitly and manifestly violate the general covariance. Using only partially
covariant Gc functional (or in a sense forgetting about the third ghosts contributions) is not
in line with such a formalism, and the results obtained by this oversight

are, of course, incorrect. Hence, one can conclude that third ghosts must be remem-
bered in all GR-covariant formalisms of computation, while one can still safely forget about
them around flat spacetime and when working with Feynman diagrams.

However, here one must remember that the original computation due to Fradkin and
Tseytlin was performed just in manifestly covariant framework and using background
field method (BFM), when they sum various contributions and they do not use non-gauge-
covariant results from some partial resummation of Feynman diagrams. It is well known
that the two methods at the end should agree for final results for UV-divergences, which are
proved to be expressed via gauge-invariant and gauge-fixing-independent counterterms.
One must remark that in the covariant BFM formalism, as the Barvinsky–Vilkovisky (BV)
trace technology is, the partial results, although looking generally covariant (so in this sense
they are better looking than results of some subset of Feynman diagram contributions,
which are not gauge-invariant), are without any sense if considered separately. Only their
total sum has a clear physical meaning. Therefore, one cannot say with a good meaning,
for example, what the generally covariantly written and unambiguous contribution of FP
ghosts (or third ghosts) is to total divergences. Namely, it is true that they contribute and
one usually should not forget about them, but their contribution alone is not physical. One
should not be deluded by intermediate results, which look covariant, and would invite an
interpretation of such partial results. Therefore, one must remember third ghosts for local
conformal symmetry, but, again, their contribution alone is not very meaningful.

It is still a very interesting fact that their contribution (with all the provisos mentioned
above) precisely agrees with the discontinuity between conformal gravity and a four-
dimensional HD gravity after the limit αR2 → 0, thus realizing the subtraction of two scalar
degrees of freedom minimally coupled to background geometry. It remains yet to be seen if
such a discontinuity has any physical meaning, or it is just an artifact of our clumsy way of
approaching conformal gravity from generic HD gravity. Therefore, the interpretation of
two scalars as two third ghosts for conformal symmetry in Weyl gravity is quite a plausible
one, since it defends itself quite well, and certainly it is worthy studying further. For this,
one should also better understand the issues related to conformal third ghosts.

Instead, here we summarize what is known about the contribution of two scalars to
UV-divergences. This does not presuppose that these scalar fields are real or physical or
whether they really live on a curved spacetime background. Nonetheless, their contribution
can be singled out (with all the provisos above). Namely, two minimally coupled scalar
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fields (each with one degree of freedom and with a two-derivative action from (43)) on a
curved general background contribute twice the following contribution to UV-divergences,

Γ1−loop
div, sc = − 1

(d− 4)(4π)2

∫
d4x
√
|g|
(

1
120

C2 +
1

72
R2 − 1

360
GB +

1
30

�R
)

. (44)

The last term above, proportional to �R, was written just for definiteness and we do
not use it in the final main computation. The contribution of two scalars in (42) can also be
studied in the R2 sector of UV-divergences, although the final result is non-universal and
it leads to a conformal gauge-dependent coefficient 1

9 R2, which was justifiably neglected
when writing the final formula (42).

5.4. Relation to Conformal Anomaly

When one speaks about UV-divergences at the one-loop level, one should not forget
to relate them to the celebrated conformal anomaly. Basically, on the quantum level where
there are UV-infinities and also resulting beta functions of couplings, there is an RG flow,
and Green functions do not show perfect scale invariance. They depend on energy scale,
and this dependence is dictated by RG phenomena. This means that inevitably in such
situation, the conformal symmetry of the matter model (global group, as we discussed in
Section 2.1) is broken and we do not have a globally conformally invariant model on flat
spacetime. This is also confirmed by analyzing conformal anomaly of global conformal
symmetry in the setup of a curved geometric background (as explained in Section 2.2). Then,
the global group of scale transformations from GR in some matter models (which were
globally conformally invariant) may be broken on the quantum level when one couples
these matter theories to a non-trivial gravitational background. As for global anomaly of
conformal symmetry, this is not a big deal in matter theories, where conformality on the
classical level might be just a lucky coincidence, and then one does not view the effects of
this anomaly as disastrous for the original matter theory. Simply, on the classical (tree-) level
before the quantization, the conformal symmetry was present, but just after quantization
of matter fields and matter symmetries (which could be also local internal symmetries)
due to quantum effects, this symmetry is not there anymore and it does not constrain
quantum dynamics anymore. One loses some power and simplicity of the theory but then
the quantum physics enters and all correlations have to be tediously computed according
to rules of QFT (in distinction from rules of CFT). One cannot use the rigidity of constraints
placed on Green functions due to CFT models anymore, since one is out of their realm.

Technically speaking, the conformal anomaly (CA) understood as an anomaly for
global conformal symmetry is equivalent to a trace anomaly. The last one signifies that
the trace of the energy-momentum tensor of the matter theory does not vanish, although
the theory on the classical level possessed scale invariance or even conformal invariance
(before this was coupled to gravity). These last two requirements on the classical level
imply that the classical EMT11 is trace-free (T = 0) upon using EOM from the matter sector,
and this is completely tantamount to invariance of the theory under infinitesimal conformal
transformations understood in the framework of GR (as they were studied in Section 2.2).
Therefore, we end up in the situation that on the quantum level, due to physical quantum
effects (but not due to an act of some uncareful quantization), one finds that the trace of
EMT on-shell is not zero anymore. For this, one has to use the quantum matter equation of
motion obtained from the full quantum effective action restricted to the matter sector. One
can specify the situation at the perturbative one-loop and then one correctly expects that
this violation of tracelessness condition (thus, violation of scale invariance) is proportional
to beta functions of the theory, which in turn are proportional to UV-divergences. Such a
simplistic identification is no longer true at higher loop orders, but we can restrict all of the
below analysis to this case only.

To summarize, there is an anomaly because some condition known from the classical
theory (here, that T = 0) is not present on the quantum level of the theory anymore. If
some symmetry is on the classical and was expected to be a symmetry of the theory at
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all conditions, then its lack on the quantum level is a true anomaly in a physical sense,
and this tells us that maybe we had a wrong expectation about the theory, and that theory
with this symmetry is simply anomalous and very sensitive to the quantum effects, or
that the original matter theory with conformal symmetry was not in a symmetric enough
situation to protect the conformal symmetry from violation at the quantum level. Since,
in the matter models, this conformal symmetry is not in a gauged form, there actually is
not a big problem with such an anomaly. One has to simply accept that symmetries on the
quantum level of the model are in the poorer form, and, for example, conformal symmetry
is not realized in the quantum dynamics.

Still, in the matter models, but coupled to an external geometry, one expects that
the lack of conformal symmetry on the quantum level manifests itself as the presence of
non-trivial counterterms. Here, we can concentrate on UV-divergences in the gravitational
sector, but one can also consider them in the matter part. For what we are going to say,
this last restriction will be completely sufficient. Therefore, we can define that conformal
anomaly Ac is exactly proportional to the b4 coefficient of UV-divergences of the theory at
the one-loop of accuracy. Moreover, one can view it as proper trace of the quantum EMT
defined from the effective action, that is, we have

T = gµνTµν = − 2√
|g|

gµν δΓdiv
δgµν

=
1

(4π)2 b4. (45)

It is important to realize that in the above expression, the divergent part of the effective
action is taken in full generality as off-shell, so without using quantum (or even classical)
EOM. For matter models, the divergent effective action there Γdiv is with all contributions
when the matter fields are taken quantum (so they run in the loops of Feynman diagrams),
while the gravity is treated as a classical external field to which the quantum matter
system is coupled (so graviton lines can be only external lines of the diagrams). Moreover,
in the above formula (45), a regulator which was used to isolate UV-divergences was
already extracted, so the expression for b4 (and also equivalently for T) is finite and not
UV-divergent.

The b4 coefficient of divergences is, of course, special to d = 4 dimensions because
then counterterms have the energy dimension equal to the dimensionality of spacetime
and couplings in front of them are dimensionless, so naively we already have classical
scale invariance. Its relation to the divergent part of the one-loop effective action (part with
classical scale invariance of the action) reads,

Γdiv =
1

(d− 4)(4π)2

∫
d4x
√
|g|b4. (46)

In the case of only gravitational counterterms that we are interested in, this coefficient
is related to the beta functions of couplings in the following way:

b4 = βCC2 + βRR2 + βGBGB + β�R�R. (47)

One notices a few interesting facts about this expression for anomaly. First, the
coefficient βR is not universal since it is conformal gauge-dependent (for example, in the
background conformal gauge, its value is zero). Secondly, the beta function of the total
derivative term β�R is known to be ambiguous on the level of the trace of EMT, but not on
the level of the b4 coefficient. In the results we can forget about these last two terms and
consider only universal contributions to two beta functions: βC and βGB. Once again, we
remind the reader that the presence of CA is not problematic for matter models, where this
symmetry does not show up in the gauged form on the quantum level. One really sees,
unambiguously, the presence of CA when, off-shell, the expression for it is not proportional
to matter EOM.

One can see the consequences of CA for the quantum matter theory not only on the
level of ultraviolet divergent expressions in correlation functions, but also in finite parts of
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these correlators on the quantum level computed to a given accuracy. For example, due to
RG flow phenomena and within RG formalism (which basically tells in the simplest way
that physical results should be independent on the arbitrary renormalization energy scale),
one finds that the finite terms in the semi-classical general off-shell action for gravity (when
quantum matter fields are integrated over) take the following form:

Γfin ⊃
∫

d4x
√
|g|
(

βCC log
�
µ2 C + βGBGBlog�/µ2

)
, (48)

where, for simplicity, we wrote only contributions which are universal on the level of the
trace of EMT T related to the b4 coefficient. The non-local insertion of the logarithm of the
GR-covariant box operator is both present between two Weyl tensors and also between
Gauss–Bonnet invariant. The last one explicitly rewritten takes the form

GBlog�/µ2 = Rµνρσ log
�
µ2 Rµνρσ − 4Rµν log

�
µ2 Rµν + R log

�
µ2 R, (49)

which is in the direct analogy with the formula (31). One sees that these contributions
in (48) explicitly break conformal symmetry, despite that on the level of divergent action,
so without non-local logarithms of the box operator, they entail completely conformally
invariant counterterms. This shows that in such a setting, the conformal symmetry is
explicitly broken and it is no longer there on the quantum level. As one confirms in (48),
the expressions vanish when the corresponding beta functions vanish. Only there we are
sure of quantum conformality present in some matter models. In the expressions in (48),
we see highly non-local functions, namely, of the logarithm of the covariant box operator.
Their origin is due to RG invariance of the total effective action when the running of
couplings is also taken into account and where µ is a physical scale of renormalization
which cancels with the µ-dependence of running coupling parameters for any physical
observable computed within the given model.

Thus far, we have only discussed some issues related to conformal anomaly when grav-
ity was the external dynamical classical field. When we use the same procedure towards
quantum gravity when it is both dynamical and quantum, and, for example, propagates
inside quantum loops (where there is finally graviton’s propagator), and gravitons can be
on internal lines of some Feynman diagrams, then in conformal gravity (so, the theory with
local conformal symmetry), one has to be very careful since now this symmetry is in the
gauged form. If one sees an anomaly, this might be a sign of a just creation of pathological,
sick theory. This issue of how CA in conformal gravity may create disastrous effects was
discussed at length in various previous works [36–39]. We will also discuss these issues
and potential resolution of them at full length elsewhere.

Now, if the conformal symmetry is in the gauged (local) form, then one can adapt the
discussion which was presented above to the total system composed of matter and gravity
when both components are quantum and dynamical. The conformal symmetry was the
defining local symmetry on the classical level of gravitational theory, hence the issue with
potential conformal anomaly for it is very important and crucial to resolve satisfactorily.
Moreover, local conformal symmetry is instrumental in defining the spectrum of the theory,
for example, around flat spacetime, so any change with this would ruin the spectrum and
classification of irreducible Lorentz representations of modes there. It would also destroy
the counting of perturbative degrees of freedom of the theory. All these problems show in
other disguise as violation of unitarity, not due to the HD character of gravitational theory,
but due to destroying one of the local gauge symmetries, here in this case of local conformal
symmetry. We will not comment on these perennial issues here, but we will refer to the
vast literature on this topic.

In the case of a total gravitational system where matter is coupled to gravity, one has
to analyze the total EMT of the full system. As is well known, it is composed of two pieces—
gravitational and matter parts. One also notices that following Weinberg’s definition, the
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total EMT is zero on-shell as a consequence of invariance of the total action (gravitational
part and coupled matter part) under GCT. Thus, on-shell we do not find any problem with
CA in the total system. This remark applies both to the classical and quantum level, since
in the last case, one can, for example, compute the effective EMT from the full quantum
effective action functional, and for this argument to work, the gravitational theory or matter
part alone do not have to be even classically conformally symmetric. This is indeed a very
robust argument valid in any diffeomorphism invariant theory, which also preserves this
symmetry on the quantum level (so, under the condition that there is no quantum anomaly
of diffeomorphism symmetry). In any such theories on-shell, we find that the trace anomaly
T vanishes. However, as usual in QFT, the situation off-shell is also very important, and,
actually, in these circumstances one can again relate this trace T = Ac to the coefficient b4
of divergences according to the last formulas (45)–(47). These formulas, also in the more
general case, with quantum gravitational part remain valid. Of course, the respective beta
functions now receive contributions from both quantum gravitational interactions and the
quantum matter sector.

In the total system interacting gravitationally, the issue of detecting physical conse-
quences from the expressions for b4 is more complicated than just a case of simple matter
theory. First, one knows that even on a classical level there exist some matter models for
which the trace T does not vanish classically off-shell but only using matter EOM. Now,
with gravity, we have this twist where T = 0 on-shell as a kind of tautology. One must
definitely analyze the situation quantum off-shell, but even if one finds there that T 6= 0,
this does not necessarily imply that there is a conformal anomaly in the total system. Some-
times one finds for the total T off-shell an expression which does vanish, then one is sure of
the absence of CA, or in the gravitational context, if the expression for it is proportional
neither to the gravitational EOM nor to the EOM from the matter sector. These EOM should
be derived from the respective quantum EOM originated from quantum effective action.
This is a conformal Noether identity for the total system (matter + gravity).

One could also in parallel analyze the situation in six dimensions since then the
space for all terms in conformal gravity is bigger. It is interesting viewing the situation
with divergences in six-dimensional conformal gravity of the type C�C + . . . which still
possesses the propagator around flat spacetime. We expect only three conformally invariant
counterterms, C�C + . . .,

(
C3)

1, and
(
C3)

2, out of 10 possible terms in the action with
six dimension operators [98,99]. There, we also expect that the conformal anomaly Ac is
described in a conformally covariant way such that Ac = b6 and that only three terms,
C�C + . . .,

(
C3)

1, and
(
C3)

2, out of 10 possible terms in the action with six dimension
operators appear there. What about the remaining seven terms? If all this formalism
is correct they should be made to vanish by just one conformal transformation in six
dimensions with just one parameter Ω(x). This is quite improbable in a general situation to
remove six counterterms (although they are related) by just one conformal transformation,
but it should be true in a general case when the reasoning with conformal anomaly is
correct. The UV-divergences after conformal transformations should be described by
conformally invariant terms only in Ac, according to the general wisdom that terms in
conformal anomalies are written in a way that preserves conformal symmetry (despite that
they are in the anomaly heralding the disastrous breaking of this symmetry).

5.5. Summary of the Method

The results of all these above procedures, although maybe not deeply justified, re-
vealed to be true for Weyl conformal gravity, as it was checked after using other methods
of computation. The coefficient of the R2 divergence indeed vanishes at the level of the
first loop, and the two other coefficients were correctly obtained in the limit αR2 → 0: for
C2 and for the Gauss–Bonnet divergences. This procedure was justified to be used and
to be a correct one. The potential general problem could be that only diffeomorphism
symmetry was treated with due care since quantization and regularization procedures
were performed in a way to preserve it. The conformal symmetry was restored by hand
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using final conformal transformations, where one actually admits that this symmetry was
always there, even on the quantum level, but maybe in its hidden form. Of course, one
could act much better and treat it well from the beginning, and then at the end, one would
not have to perform correcting conformal transformation. However, even if we want to
perform this rectification procedure, there would be a clear justification that this is possible
since it would be obvious in a more manifest formalism that the conformal symmetry is
present on the quantum level. One would not have to perform these compensating final
transformations with parameters which are apparently strongly non-local functions of
spacetime points.

Finally, this procedure, as employed confidently by the authors, recovers local confor-
mal symmetry on the quantum level, although there were some hidden assumptions and
not a priori justified steps in its rederivation. One could ask how such procedure can be
systematized, if at all, which transformations we should perform at the end, and whether
this works also to higher loop level, or only at the level of the first loop. One may wish to
work all the time from the start within the formalism that preserves conformal symmetry
in the framework of covariant quantization of theories with local gauge symmetries. This
is exactly what we plan to explain in the future sequel article of this paper.

6. Conclusions

In this introductory review article, we tried to present and extensively motivate the
need for a new quantization procedure. This method should be designed to specially treat
local conformal symmetry when this is present in gravitational interactions introduced
in the same way as Weyl did in 1918. Local conformal symmetry is very special, as we
emphasized in the introduction to this paper and also in the motivations.

We discuss how to view it as a gauge symmetry both on the flat spacetime and also on
curved spacetime framework. The latter is generally best suited to study fields and their
transformations, as in the proper GR framework. Keeping this in mind, we later viewed
conformal symmetry as a particular example of the general gauge theories. However,
compared to other gauge symmetries, in the minimal version, conformal symmetry comes
with some differences. It does not come with its own potential field, but it just uses the
metric, somehow borrowing it from the diffeomorphism group. This relation is another
emanation of the fact that the full conformal group is not a direct product of the Poincaré
group and the proper conformal factor (which consists of five generators in d = 4 spacetime
dimensions). Moreover, we emphasize that the transformation law for the metric field,
which could be treated similar to a charged matter for conformal symmetry, does not
contain any differential operators, and this is just an algebraic operation of multiplication.
In this way, the conformal gauge theory differs from any other local gauge theory with
standard potential fields, wherein the generators of infinitesimal gauge transformations are
generically differential operators.

This last observation has profound implications for the quantization program of con-
formal symmetry in conformal gravity. Namely, this implies that in simple conformal
gauges, we do not need to supply Faddeev–Popov ghost fields for conformal symmetry,
since they can always be algebraically eliminated. However, one always has to additionally
fix the gauge, remembering the local conformal symmetry with its special gauge-fixing
conditions. The simplest choice is to place some constraints on the trace of the metric
fluctuation field h = gµνhµν. The easiest choice is to just place some algebraic condition, the
more complicated conformal gauge choice is to place some differential condition here [100].
Irrespective of which choice is selected on a general background for the consistency of the
whole quantization approach, one must add to the spectrum one real minimally gravita-
tionally coupled scalar field, which here plays the role of the third ghost field for conformal
symmetry. This third ghost comes naturally with a four-derivative kinetic term. Equiva-
lently, one can add two real scalar fields minimally coupled and enjoying two-derivative
dynamics. The need for this additional third ghost scalar field is because of the higher-
derivative nature of conformal gravity in d = 4 (actually, this is true in any d > 2). We also
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emphasize that these conformal third ghosts are different to the usual third ghost fields
related to diffeomorphisms, which are also present in general theories (not necessarily
conformally invariant) with higher derivatives on a general background. Since these third
ghost fields couple only to the gravitational background, then if one studies Feynman rules
around flat spacetime (gravitational vacuum configuration), then one can safely forget
about them. They are needed for propagation of modes around non-trivial spacetime
configurations or for necessarily and inherently background-independent approaches to
QG, such as, for example, in Barvinsky–Vilkovisky (BV) [101] trace technology, which is
a generalization of the Schwinger–DeWitt covariant methods of computing the effective
action at the one-loop level around general curved backgrounds.

These conformal third ghost fields also played an essential role in our explanation for
the one-loop results correctly obtained for the first time by Fradkin and Tseytlin regarding
the UV divergences in Weyl gravity [96]. Their method, although looking a bit ad hoc, was
correct, and we found a justification for why this was so. From the generic results that
one obtains in Stelle quadratic theory with two independent terms, ωRR2 and ωCC2, one
first takes the limit ωR → 0, obtaining some finite results. However, they are not the final
ones because of the mentioned Veltman-like discontinuities in conformal gravity. Their
cure is to subtract the contribution of two real scalars minimally coupled. They worked in
the fully covariant framework of BV methods, hence it was natural for them to work on a
general curved background. The explanation why these are two scalar, real, and minimally
coupled conformal ghosts was found by identifying them as the third conformal ghost
fields, which are new fields in the here-presented proper conformal quantization approach
to conformal gravity, and they have to be included on general backgrounds. This proves
that our framework of quantization specialized to the cases of local conformal symmetry in
the gravitational setup already brings correct and valid results.

Having constructed a detailed framework for quantization which has breaking of
conformal symmetry under full control, we can now use this approach to write with full
confidence the Feynman rules of the perturbative theory that we can use for computation,
for example, at the two-loop level. Such computations are very interesting, though very
difficult too, in pure conformal gravity to check the consistency of conformal symmetry on
this loop level. They are also very important for the further developments in FT conformal
supergravity theories. As primary areas of application of our results, we mentioned the
two above. In pure conformal gravity in d = 4, we could investigate the situation at higher
loop orders and decide the fate of conformal symmetry on the quantum level, the presence
of conformal anomaly, and dangerous R2 terms. In this model, we need to exert special
care to check whether the conformal symmetry is finally dramatically violated by quantum
corrections and not by the mere quantization method or procedure. For example, having the
well-defined formalism of Feynman rules in conformal gravity around a flat background,
one could extend the computation of scattering amplitudes from tree-level [102] (where it
coincides with the results of Einstein–Hilbert gravity) to higher loop orders, the results of
which will surely be very interesting regarding the unitarity bound of gravitons’ scattering.

Instead, in the framework of N = 4 conformal FT supergravity, we know that the
symmetry is fully preserved on the quantum loop level. Therefore, one is required and
tempted here to work in the formalism, which preserves this symmetry on the quantum
level, or at least which performs the gauge-fixing of this symmetry in a fully controllable
way. Similarly to how one uses superfield formalism and supersymmetric gauge-fixing of
local symmetry to preserve this symmetry in local supergravity models, in the framework of
FT supergravity, we shall implement the same with the conformal part of the full supercon-
formal algebra of symmetries. As it is well known, to perform a real quantum computation
at some loop orders, one really has to fix the gauge for all local symmetries, otherwise
one meets a degeneracy problem of the kinetic terms for small fluctuations around the
flat spacetime, and then the perturbative propagator cannot be defined. To avoid these
unfortunate circumstances, one adds gauge-fixings and breaks all local symmetries, but in
the controllable manner. This is all quantified by the presence of gauge-fixing parameters.
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In the final results, for example, for S-matrix elements, one expects complete independence
of these spurious gauge-fixing parameters. Then, this means that the symmetry is restored
in these final results and the effects of intentional breaking are fully under control. When
one applies our results regarding the correct quantization method, then the computation
using, for example, Feynman diagrams and around flat spacetime can be brought to the
very end. Moreover, one is then sure that the conformal symmetry is not touched and
has its powerful impact and the constraining power on the final results. This is what is
expected in the highly symmetric framework of N = 4 FT conformal supergravity and
regarding perturbative results in this theory.

Of course, there are also other possible applications of the framework for conformal
quantization that we have presented here besides the two mentioned above. One can use
it also in the BV framework at the one-loop level to perform honest and fully controlled
computation of UV divergences in conformal gravity without any ad hoc unjustified
methods or tricks. We have already performed such a computation and these results fully
confirmed the ones obtained using standard non-conformally covariant techniques. We
will report about the details of them elsewhere.
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Notes
1 The situation looks much more simple when one uses Dirac formalism and works in extended six-dimensional spacetime,

although such a spacetime with the signature (2, 4) does not have a clear physical meaning. Moreover, here it can be understood
as a useful, but only a theoretical, tool.

2 One notices that the Minkowski metric ηµν is completely unchanged under transformations from (1) (conformal rescalings), even
with λ(x) spacetime-dependent. The same is true also for SCTs acting on the metric of flat spacetime.

3 One can note another interesting linguistic coincidence here, but this time in Polish language. The second morpheme “formal” in
the word “conformal” (translated as Polish “konforemny”) is related in Polish to the way that very symmetric regular polygons in
plane geometry are named, originally known as “wielokąty foremne”. Of course, such regular flat polygons have all the internal
angles identical.

4 But one sees a trivial thing here, that gµνgµν = d is invariant under conformal transformations, stating obviously that the
dimension of a spacetime is not modified by conformal transformations in (3). This may resemble an invariance in QED of
|φ|2 = φ†φ, although the sense of conjugation is completely different here for real metrics.

5 To avoid clash of notation with various curvature tensors, all denoted by the same letter “R” due to Riemann, Ricci, etc., we use
the letter “R” in the Roman font to denote various infinitesimal generators of transformations.

6 In actuality, it is completely opposite: for example, in standard Yang–Mills theories, perturbative FP ghosts are needed to save the
unitarity of the perturbative covariant quantum non-Abelian gauge theory, as explained in [59]. The Feynman diagrams with
them running inside loops are necessary to include for the whole consistency of the quantum theory.

7 The same arguments correctly show that in the case of diffeomorphism symmetry, due to the fact that the infinitesimal generator
of GCT comes with three indices, and we use a vector gauge-fixing χµ, the contraction in two pairs of indices results in only two
indices left on the FP operator whose determinant can be easily defined and taken.
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8 As introduced in Section 2, for the full quantum conformality, one must not have any UV-divergences. Hence, the developments
above are only formal and the quantum effective action in theory with non-vanishing divergences is only superficially conformally
invariant.

9 In principle, one could also add here a different term written as the Gauss–Bonnet density, but it is topological in d = 4 and its
variation is a total derivative, hence vanishes under spacetime volume integral.

10 In actuality, to twist the story even more, we could add that proponents of counting of six degrees of freedom in massless
scale-invariant HD gravity (but not in conformal gravity!) would see that there indeed are two perturbative scalar degrees of
freedom (with spin-0).

11 The definition of the energy-momentum tensor (EMT) that one uses here is the unambiguous Hilbert definition as the variational
derivative of the action with respect to metric fluctuations and properly de-densitized.
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