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Abstract: We explore the behaviour of barotropic and irrotational fluids with a small viscosity
under the effect of first-order acoustic perturbations. We discuss, following the extant literature,
the difficulties in gleaning an acoustic geometry in the presence of viscosity. In order to obviate
various technical encumbrances, when viscosity is present, for an extraction of a possible acoustic
geometry, we adopted a method of double perturbations, whereby dynamical quantities such as
the velocity field and potential undergo a perturbation both in viscosity and in an external acoustic
stimulus. The resulting perturbation equations yield a solution which can be interpreted in terms of a
generalised acoustic geometry, over and above the one known for inviscid fluids.
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1. Introduction

Hawking radiation from black holes is theoretically an extremely plausible and com-
pelling phenomenon. However, this phenomenon is astrophysically unobservable from
any stellar black hole observed through its accretion disc emission. This is due to the fact
that the Hawking temperature for a stellar black hole of a mass of the order of a solar mass
is a fraction of a degree Kelvin. Thus, any astrophysical signal of Hawking radiation from
such a black hole is very likely swamped by the 3◦ Kelvin cosmic microwave background
(CMB). Similarly, the Penrose process of energy extraction from a rotating black hole, and
its wave analogue superradiance, while remarkably compelling, have never been detected
observationally in emissions from accretion discs of the spinning stellar black holes which
have been studied extensively. The reason here is the same: if the superradiant signal from
a black hole has a thermal spectrum, its equilibrium temperature can never exceed the
CMB temperature. If this signal has a coherent component, unless it is very intense, it
is likely to thermalise and be swamped again by the CMB. Another phenomenon occur-
ring in the spacetime of spinning black holes is the dragging of inertial frames leading
to the Lense–Thirring precession of spinning text gyroscopes in those spacetimes. This
phenomenon has actually been observed, not for a black hole, but in the weakly curved
spacetime around the earth—by Gravity Probe B [1]. However, in strong gravity situations,
as in black hole spacetimes, this phenomenon is still beyond observational accessibility.
Note that the phenomena mentioned occur in spacetimes of fixed non-dynamical geometry.

This latter fact was brilliantly adapted by W. Unruh [2,3] in 1981 as an acoustic ana-
logue in inviscid, barotropic fluids, to demonstrate the possible observability of acoustic
Hawking radiation of phonons from black hole analogues corresponding to acoustic per-
turbation of specific fluid flows. Likewise, acoustic superradiance [4] and Lense–Thirring
precession [5,6] have also been shown to be within the realm of observability for rotating
acoustic black hole analogues. More recently, definitive reports of actual observation of
acoustic Hawking radiation [7] (see also [8]) and acoustic superradiance [9] have lent
credence to this entire effort.
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The acoustic analogy is defined for first-order acoustic perturbations propagating on
barotropic, irrotational and inviscid background fluid flows. Such perturbations appear
to simulate a scalar field propagating in a curved (acoustic) spacetime background with
a Lorentzian signature. For quantum fluids such as superfluid helium or indeed a Bose–
Einstein condensate in the hydrodynamic approximation, the inviscidity is never an issue.
However, for real fluids like water, the viscosity is a property that cannot be ignored.
Visser, in his 1998 review [3] of analogue gravity, showed that the direct introduction of
viscosity in these systems leads to a violation of the Lorentz symmetry. This implies that
an acoustic geometry cannot be demonstrated as simply for viscous fluid systems under
acoustic perturbations. However, it might be worthwhile to study slightly viscous fluids
and treat their very small viscosity as a perturbation while considering the flow of the fluid.
This can also help in developing more insight into the existence of an acoustic metric in
viscous backgrounds.

Torres et al. [9] have demonstrated the existence of superradiance resulting from
acoustic perturbations using water as the background for their experiment. Although small,
water has a non-zero viscosity, and this needs to be taken into account when working on
such phenomena vis-a-vis the acoustic analogy. The reported observation and verification
of the phenomenon of superradiance in water provided the motivation for exploring the
possibility of an acoustic metric in slightly viscous fluids by introducing the viscosity
perturbatively.

In the present paper, we investigate the implications of introducing viscosity perturba-
tively in a barotropic and irrotational fluid and calculate the viscosity-perturbed acoustic
metric. The rest of the paper is arranged as follows: Section 2 contains a brief summary
of the existing literature on acoustic analogue gravity and points out the gaps for further
investigation. In Section 3, we describe the double perturbation method and derive the
necessary equations. Using these equations, we obtain, in Section 4, the viscosity perturba-
tion correction to the symmetric rank 2 tensor f αβ discussed in [3] for inviscid fluids. The
corresponding acoustic metric in slightly viscous fluids, using these viscosity perturbation
corrections. In this section, we also focus on slightly viscous fluids in two space dimensions
and derive the acoustic metric in (2+1)-dimensional vortex-type flow in viscous fluids. Our
results, along with the outlines of future work, are presented in Section 5.

A remark as a disclaimer: The entire field of ‘analogue gravity’ is primarily intended
to provide experimental and observational evidence, as an analogy, for proposed and emi-
nently plausible phenomena in physical spacetime physics which are beyond observational
accessibility. No practitioner in this field of activity ever considers this as a replacement of
actual gravitational physics. However, the use of analogies in theoretical physics contin-
ues unabated because analogies provide approaches which may circumvent seemingly
unassailable obstacles in theory and/or experiment. In astrophysics, the analogy of pulsar
emissions from rotating neutron stars, with the light emitted from a lighthouse, has been
rather useful in constructing a theory of pulsar emissions when neutron stars have strong
magnetic fields. Theories of origins of interstellar and intergalactic magnetic fields, based
on an analogy with an electrical dynamo, have considerably aided in understanding where
such magnetic fields may originate from. In elementary physics, the analogy between a
damped harmonic oscillator and an electrical LCR circuit is often the basis of textbook
treatments of circuit theory. Thus, analogies often open up new ways of looking at those
parts of physics where understanding and/or observational evidence is sparse.

2. Essentials of Acoustic Gravity Analogy

The basic framework of acoustic analogue gravity for first-order acoustic perturbations
in barotropic and irrotational fluids in both the inviscid and viscous case is briefly reviewed
in this section, as a motivation for the subsequent sections.
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2.1. Auxiliary Fluid Mechanics

The fluid mechanics equations [10,11] governing viscous fluid systems are given by

Continuity equation : ∂tρ +∇ · (ρ~v) = 0

Navier− Stokes equation : ρ(∂t~v +~v · ∇~v) = −∇p− ρ∇ψ− ρ∇Ψ

+ η∇2~v + (ζ +
1
3

η)∇(∇ ·~v) (1)

Here ρ and ~v are the density and flow velocity of the fluid, respectively, and ζ and η
are the two viscosity coefficients. The terms present on the RHS of the Euler equation are
all the external forces acting on the system, namely, due to pressure gradient, due to the
gravitational potential (ψ) and due to any other external potential (Ψ), respectively. The
last two terms denote forces due to viscosity.

In our calculations, we assume, ζ = 0. The modified Navier–Stokes equation after
making this assumption is given by

ρ(∂t~v +~v · ∇~v) = −∇p− ρ∇ψ− ρ∇Ψ + η∇2~v + 1
3 η∇(∇ ·~v).

Considering the flow to be locally irrotational, i.e., ∇×~v = 0, we can assume that the
flow velocity ~v has a form, ~v = −∇φ, where φ is the velocity potential. Incorporating this
in the Euler and Navier–Stokes equations, we get

∂tρ−∇ · (ρ∇φ) = 0

ρ(∂t∇φ−∇φ · ∇(∇φ)) = ∇p + ρ∇ψ + ρ∇Ψ− η∇2(∇φ)− 1
3

η∇(∇ · (∇φ)) (2)

Following standard vector algebra, Equation (2) can be written as

∇[−∂tφ +
1
2
(∇φ)2 + h + ψ +

4
3

ν∇2φ] = −4
3

ν∇ log ρ∇2φ (3)

where ν = η
ρ is the kinematic viscosity and h is the specific enthalpy, given by, ∇h = 1

ρ∇p.
Equation (3) is known as Burgers’ equation [12].

2.2. Analogue Gravity in Inviscid Fluids

This subsection summarizes the rudiments of Unruh’s incipient work on the derivation
of an acoustic analogue spacetime with a Lorentzian metric from the acoustic perturbation
of a barotrpic, irrotational and inviscid fluid [2,3]. For inviscid systems, the continuity
equation remains the same as described in Equation (1), while Burgers’ equation becomes

− ∂tφ + h +
1
2
(∇φ)2 + ψ + Ψ = 0 (4)

This is the Euler equation for the velocity potential φ. Equations (1) and (4) are
linearized around the background (ρ0, φ0), using ρ = ρ0 + ερ1 and φ = φ0 + εφ1. Here
ρ1 and φ1 are the perturbations caused in the background density and velocity potential,
respectively, due to the sonic disturbances.

Linearizing the continuity equation leads to the following equations:

O(ε0) : ∂tρ0 − ~∇ · (ρ0~∇φ0) = 0 (5)

O(ε) : ∂tρ1 − ~∇ · (ρ1~∇φ0 + ρ0~∇φ1) = 0 (6)

Using ∇h(p) = 1
ρ∇p, we can linearize h as h = h0 + εh1, where h1 = 1

ρ0
p1. The Euler

equation at O(ε0) and O(ε1) is given by



Universe 2022, 8, 205 4 of 12

O(ε0) : − ∂tφ0 + h0 +
1
2
(~∇φ0)

2 + ψ = 0 (7)

O(ε) : − ∂tφ1 +
p1

ρ0
+ ~∇φ0 · ~∇φ1 = 0 (8)

Substituting p1 from Equation (8) into Equation (6) by using ρ1 = (∂ρ/∂p)p1, we get

− ∂t(
∂ρ

∂p
ρ0(∂tφ1 −∇φ0 · ∇φ1)) +∇ · (ρ0∇φ1 + ρ0

∂ρ

∂p
∇φ0(∂tφ1 −∇φ0 · ∇φ1)) = 0 (9)

Equation (9) can be compactly written in the form

∂α( f αβ∂βφ1) = 0 (10)

where

f αβ = ρ0
c2

[
−1 −vi

0

−vj
0 c2δij − vi

0vj
0

]

Here 1
c2 = (∂ρ/∂p)0 with c being the local speed of sound in the unperturbed fluid.

Now, the equation of motion followed by scalar fields (φ1) propagating on a Lorentzian
spacetime with a metric gαβ is given by

∆φ1 =
1√−g

∂α(
√
−ggαβ∂βφ1) = 0 (11)

where ∆φ1 is the d’Alembertian of φ1 and g = det(gαβ). For Equation (10) to resemble
Equation (11), we must have √

−ggαβ = f αβ (12)

Using this equation, we get

gαβ = 1
ρ0c

[
−1 −vi

0

−vj
0 c2δij − vi

0vj
0

]

Inverting gαβ, we get the acoustic metric

gαβ = ρ0
c

[
−(c2 − v2

0) −vi
0

−vj
0 δij

]
The signature of this metric is Lorentzian (-,+,+,+) and it thus describes the geometry

of a Lorentzian acoustic spacetime as seen by the first-order sonic perturbations. It is
clear that this metric is dependent on the flow parameters of the inviscid fluid in question,
namely, the density and velocity of the unperturbed fluid. For quantum fluids such as
superfluid helium or Bose–Einstein condensates in the hydrodynamic approximation,
this acoustic metric is the starting point of many an assay to produce experimentally
accessible phenomena. As already mentioned, some of these have actually been observed.
However, most classical fluids are not inviscid and therefore remain outside the realm of
observational accessibility. Nevertheless, Torres et al. [9] broke new ground by beginning
experimentation with water, a low-viscosity liquid which is freely available naturally. This
raises the question whether one can relax the condition of inviscidity and study viscous
fluids to explore possible acoustic geometries under perturbation. To this we now turn.

2.3. Violation of Lorentz Invariance Due to Viscosity

Acoustic general relativity retains its local Lorentz invariance akin to the formulation
of physical spacetime geometry in general relativity. This is taken to be a hallmark of the
entire acoustic gravity analogy. However, Visser [3] has argued that for fluids with viscosity,
this local Lorentz invariance may have to be sacrificed, thereby disturbing one of the key
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underpinnings of the acoustic analogy per se. In this subsection we summarize this argu-
ment, showing how viscosity breaks Lorentz invariance, with an important modification.
It has been assumed [3] that the kinematic coefficient of viscosity (ν) is spatially constant,
so that it remains constant under acoustic perturbations. However, it is well known [11]
that the dynamic viscosity (η) remains constant under pressure/density fluctuations. Since
ν ≡ η/ρ, and under acoustic perturbations ρ = ρ0 + ερ1, we have

ν ' ν0

(
1− ε

ρ1

ρ0

)
(13)

where ν0 is the kinematic coefficient of viscosity in the absence of acoustic perturbations.
We also absorb the 4/3 factor into ν0. This coefficient of kinematic viscosity is itself not
spatially constant, as assumed in [3], if, as stated in [11], the dynamic coefficient of viscosity
is under pressure/density perturbations. This calls into question the derivation of Burger’s
equation for viscous fluids given in [3], whose acoustic perturbations are then studied
there. Fortunately, there is a physical argument for which Burger’s equation is still valid
as an approximate equation: the case for small kinematic viscosity ν and, also, a slowly
varying density, such that ∇ log ρ0 is small. If both these hold, i.e., more precisely, if
|ν∇ log ρ∇2φ| << |∇(ν∇2φ)|, everywhere in the fluid, then indeed Burger’s equation
holds as an approximate equation:

−∂tφ +
1
2
(∇φ)2 + h + ψ + ν∇2φ ≈ 0 (14)

We shall assume in this subsection that Equation (14) is obeyed as an exact equality,
even though we do not assume that ν is exactly spatially constant. In other words, the
acoustic density perturbation effect in Equation (13) shall indeed be taken into account.

Following the procedure of linearization on Equation (14) as described in the previous
section, we have

O(ε0) : − ∂tφ0 + h0 +
1
2
(~∇φ0)

2 + ψ + ν0∇2φ0 = 0 (15)

O(ε1) : − ∂tφ1 +
p1

ρ0
+ ~∇φ0 · ~∇φ1 + ν0(∇2φ1 −

ρ1

ρ0
∇2φ0) = 0 (16)

The linearized continuity equations remain the same as in the inviscid case
(Equations (5) and (6)). Using p1 = c2ρ1 in Equation (16), we can solve for ρ1, yielding

ρ1 =
ρ0

c2 − ν0Dt log ρ0

(
Dtφ1 − ν0∇2φ1

)
,

' ρ0

c2 [Dtφ1 − ν0(∇2φ1 −
1
c2 Dt log ρ0Dtφ1)] (17)

where we have assumed |(ν2
0 /c2)Dt log ρ0| << 1 and defined Dt ≡ ∂t +~v0 · ∇. It is obvious

that without this restriction of a small ν0, a correction to the wave equation for the acoustic
perturbations in the form of ∂µ[( f µν + ν0hµν)∂νφ1] = 0 is impossible to extract, since the
correction term hµν itself is a function of ν0. Thus, in this form it is not easy to extract an
effective velocity-dependent spatial correction metric, as has been obtained in [3]. However,
with this restriction, some progress towards showing Lorentz violation can be made.

If we ignore the non-constancy of ν or its change under density perturbations, i.e., fol-
low [3], the continuity equation under acoustic perturbations (6) can be used with (17)
to obtain

∂α( f αβ∂βφ1) = −ρ0ν(∂t −∇φ0 · ∇)(
1
c2∇

2φ1) (18)
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Writing the lhs of the equation using the d’Alembertian for the inviscid acoustic metric,
we get

∆φ1 = −νc
ρ0

(∂t −∇φ0 · ∇)(
1
c2∇

2φ1) (19)

Defining the fluid 4-velocity, Vα = 1√
ρ0c (1, vx

0 , vy
0, vz

0), and a modified metric with the
modification only having a spatial part gspace, Equation (17) can be written as

∆φ1 = − νc2
√

ρ0
Vα∂α(

1
c2∇

2φ1) (20)

The Laplacian in the above equation is expressible only in terms of the spatial met-
ric gαβ

space.
The acoustic metric can be written in terms of the spatial metric and the fluid 4-

velocity as

gαβ = −VαVβ +
c

ρ0
gαβ

space (21)

The presence of Vα in this equation breaks the Lorentz invariance as all inertial frames
are no longer equivalent. Thus, the direct introduction of viscosity leads to the violation of
Lorentz symmetry. Inclusion of the non-constancy effects of the viscosity complicates the
extraction of a modified spatial metric since terms O(Dtν) will have to be taken into account.

It is not an easy proposition that an acoustic metric à la Unruh [2] be envisaged from
this formulation. Under the circumstance, perhaps a new strategy must be evolved to
deal with fluids with a small viscosity. It appears logical to adopt a method of double
perturbations, where we perturb the fluid potentials (and hence the velocity field) in terms
of both acoustic perturbations and viscosity. Clearly, the fluid density/pressure are exempt
from the viscosity perturbations, since these, in some sense, are intrinsic parameters of the
fluid, and hence independent of the viscosity coefficient. In any case, this is the assumption
we make here. It will turn out that, with this assumption, up to the first order in both
perturbations, the sequence in which the perturbations are introduced does not make
any difference. Our perturbations equations will indeed reduce to Equation (18) in some
approximation. However, simplifications will result from our approach over and above
that of [3], as we show in the next section.

3. Double Perturbation
3.1. The Formulation

To investigate slightly viscous fluid systems, we consider viscosity as perturbations
and change the flow parameters of the fluid accordingly. Upon introducing first-order sonic
and viscosity perturbations into an inviscid system, around the equilibrium state of the
background (φ0, ρ0), one must remember that ν0 is not a constant because of its dependence
on the density. This implies that there will be additional terms given by the spacetime
gradient ∂µν0 = −ν0∂µ log ρ0 where µ = t, x, y, z. The perturbed density and velocity
potential are given by

ρ = ρ0 + ερ1 (22)

ν = ν0

(
1− ε

ρ1

ρ0

)
(23)

φ = φ0I + εφ1I + ν0φ0V + εν0φ1V (24)

∂µφ = ∂µφ0I + ε∂µφ1I + ν0(∂µφ0V − φ0V∂µ log ρ0)

+ εν0(∂µφ1V − φ1V∂µ log ρ0) (25)

where φ0I and ρ0 are the background velocity potential and background density, respec-
tively, φ1I and ρ1 are the acoustic perturbation on φ0I and ρ0I , respectively, φ0V is the
viscosity perturbation on φ0I and φ1V is the viscosity perturbation on φ1I . Observe that φ0V
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and φ1V are dimensionless quantities, since the kinematic viscosity coefficient ν0 carries the
dimension of the velocity potential.

Going back to the derivation of Burger’s equation as per [3], we realize that we must
replace (14) by

∇[−∂tφ +
1
2
(∇φ)2 + h + ψ + ν∇2φ] = −ν∇ log ρ∇2φ (26)

Defining the total derivative Dt ≡ ∂t +~v0I · ∇, the doubly perturbed continuity and
Euler–Navier–Stokes equations derived from (26), at different orders of perturbation, are,
respectively, as follows:

O(ε0ν0
0):

∂tρ0 −∇ · (ρ0∇φ0I) = 0 (27)

− ∂tφ0I + h0 +
1
2
(∇φ0I)

2 + ψ = 0 (28)

O(εν0
0):

Dtρ1 − ρ1Dt log ρ0 −∇ · (ρ0∇φ1V) = 0 (29)

− Dtφ1I +
c2ρ1

ρ0
= 0 (30)

O(ε0ν0):
∇ · (ρ0∇φ0V − φ0V∇ρ0) = 0 (31)

∇[−Dtφ0V + φ0V Dt log ρ0 +∇2φ0I ] = −∇ log ρ0∇2φ0I (32)

O(εν0):

∇ · [ρ1∇φ0V + ρ0∇φ1V − (ρ1φ0V + ρ0φ1V)∇ log ρ0] = 0 (33)

∇[−Dtφ1V + φ1V Dt log ρ0 + ∇2φ1I +∇φ1I · (∇φ0V − φ0V∇ log ρ0)−
ρ1

ρ0
∇2φ0I ]

= −∇ log ρ0∇2φ1I −∇2φ0I∇(
ρ1

ρ0
) +

ρ1

ρ0
∇ log ρ0∇2φ0I (34)

These are the complete first-order acoustic and viscosity perturbation equations re-
sulting from the continuity and Navier–Stokes equations. We retain terms of O(εν0) since
these terms are first order in the two small parameters ε and ν0, which are physically
quite distinct from each other and cannot be regarded as of the same order of magnitude
numerically.

Let us first verify that the inviscid case behaviour has been reproduced. Substituting
p1 from Equation (30) into Equation (29) by using ρ1 = p1/c2, we get

− ∂t(
ρ0

c2 (∂tφ1I +~v0 · ∇φ1I)) +∇ · (ρ0∇φ1I −
ρ0

c2~v0(∂tφ1I +~v0 · ∇φ1I)) = 0 (35)

This equation can also be written as

− ρ0Dt(
1
c2 Dtφ1I) +∇ · (ρ0∇φ1I) = 0 (36)

Equation (35) is the same equation that is obtained in the inviscid case (Equation (9))
for first-order acoustic perturbations and can thus be compactly written in the form

∂α( f αβ∂βφ1I) = 0 (37)

with f αβ being given in Section 2.2.
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3.2. Consequences: Slowly Varying Background Density

From the O(ε0ν0
0) continuity equation (27) we obtain

∇ ·~v0I ≡ −∇2φ0I = −Dt log ρ0 (38)

where Dt = ∂t +~v0I · ∇ , ~v0I = −∇φ0I . Similarly, from Equation (30), using the definition
h1 = c2ρ1/ρ0, we get

ρ1 =
ρ0

c2 Dtφ1I . (39)

As expected, Equation (39) considerably simplifies the complicated non-linear depen-
dence of ρ1 on the kinematic viscosity coefficient ν0 observed in Equation (17). Equation (39)
is of course the same relation obtained in the inviscid case.

It is clear that second-order derivatives and terms of second degree in the first deriva-
tive of log ρ0 appear in the continuity and Euler–Navier–Stokes equations above. If we
assume that log ρ0 is sufficiently slowly varying, we can ignore these second-order and
second-degree terms, as we shall do from now on. Solving the continuity equation (31),
we get

ρ0∇2φ0V − φ0V∇2ρ0 = 0 (40)

By inspection, in view of the the Navier–Stokes equation (32) at this order of perturba-
tion theory, a solution of φ0V is given by

φ0V =
ρ0

ρ̄0
+ log ρ0 (41)

where, ρ̄0 is an arbitrary dimensional constant. Substituting this in Equation (34), one
obtains

∇[−Dtφ1V + φ1V Dt log ρ0 +∇2φ1I −
Dtφ1I

c2 Dt log ρ0 +∇ log ρ0∇φ1I ] = 0 (42)

Using Equation (36) in the above equation and solving, we can cast Equation (42) into

(Dt − Dt log ρ0)(φ1V −
1
c2 Dtφ1I) = 0 (43)

This equation is satisfied by

φ1V =
1
c2 Dtφ1I +

ρ0

ρ̄1
(44)

where ρ̄1 is an arbitrary dimensional constant. Substituting this solution in Equation (33),
we get

∇2(
1
c2 Dtφ1I) = (∇2ρ0/ρ0)

1
c2 Dtφ1I (45)

Since (∇2ρ0/ρ0) = ∇2 log ρ0 + (∇ log ρ0)
2, the RHS of Equation (45) can be neglected.

Thus, we get the constraint equation:

∇2(
1
c2 Dtφ1I) ≈ 0 (46)

4. Aspects of Slightly Viscous Acoustic Geometry
4.1. Perturbed f µν Tensor

We are treating the viscosity of the system as a perturbation on its various flow
parameters. To explore the possibility of an acoustic geometry for this slightly viscous
system, we can perturb the f αβ tensor and calculate the perturbation correction to the f αβ

tensor, namely hαβ. This formalism allows us to write the equation of motion of sound
waves in slightly viscous fluids systems as
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∂α(( f αβ − ν0hαβ)∂β(φ1I + ν0φ1V)) = 0 (47)

Linearizing Equation (47) w.r.t. ν0, we have
O(ν0

0):
∂α( f αβ∂βφ1I) = 0 (48)

O(ν0):

∂α( f αβ∂βφ1V)− ∂α(φ1V f αβ∂β log ρ0) − ∂α log ρ0 f αβ∂βφ1V + φ1V f αβ∂α log ρ0∂β log ρ0

= ∂α(hαβ∂βφ1I)− ∂α log ρ0hαβ∂βφ1I (49)

Equation (48) is the same as Equation (37). Its existence at O(ν0
0) makes sense as this is

the equation of first-order acoustic perturbations in inviscid systems.
Substituting φ1V = 1

c2 Dtφ1I + (ρ0/ρ̄1) in Equation (49), we get

∂α( f αβ∂β(
1
c2 Dtφ1I))− ∂α(

1
c2 Dtφ1I f αβ∂β log ρ0)− ∂α log ρ0 f αβ∂β(

1
c2 Dtφ1I)

+
1
c2 Dtφ1I f αβ∂α log ρ0∂β log ρ0 = ∂α(hαβ∂βφ1I)− ∂α log ρ0hαβ∂βφ1I (50)

We get Equation (50) at O(εν0). At O(ε0ν), we considered the approximation of
neglecting second- and higher-order derivatives of log ρ0. AtO(εν0) it would be reasonable
to neglect first- and higher-order derivatives of log ρ0. Since f αβ is proportional to ρ0
(Section 2.2), we divided Equation (50) with ρ0 and apply the above approximation to get

1
ρ0

∂α( f αβ∂β
1
c2 Dtφ1I) = ∂α(

1
ρ0

hαβ∂βφ1I) (51)

Similar to Equation (36), we can rewrite the LHS of Equation (51) to obtain

− Dt(
1
c2 Dt(

1
c2 Dtφ1I)) +

1
ρ0
∇ · (ρ0∇(

1
c2 Dtφ1I)) = ∂α(

1
ρ0

hαβ∂βφ1I) (52)

Using Equation (36) in Equation (52) and solving, we get

2∇ 1
c2 · ∇Dtφ1I +

1
c2∇φ1I · ∇∇2φ0I −

2
c2∇ · ((∇φ1I · ∇)∇φ0I) + Dtφ1I∇2 1

c2

− Dt
1
c2∇

2φ1I = ∂α(
1
ρ0

hαβ∂βφ1I)

The components of hαβ are determined by comparing the coefficients of the second-
order derivatives of φ1I on both sides of the above equation. These components are then
verified by comparing the coefficients of first-order derivatives of φ1I . The perturbation
correction tensor, hαβ, thus calculated is given by

hαβ =

[
0 ρ0∂i

1
c2

ρ0∂j
1
c2 (−ρ0Dt

1
c2 )δij − ρ0∂i

1
c2 ∂jφ0I − ρ0∂j

1
c2 ∂iφ0I − 2

c2 ρ0∂i∂jφ0I

]

4.2. The Perturbed Acoustic Metric

The equation of motion followed by scalar fields (φ1) propagating on a Lorentzian
background with a metric gαβP is

1√−gP
∂α(
√
−gPgαβ

P ∂βφ1) = 0 (53)
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In our case, for the equation of motion of sonic perturbations (Equation (47)) to
resemble Equation (53), we must have, φ1 = φ1I + ν0φ1V , and√

−gPgαβ
P = f αβ − ν0hαβ (54)

Taking the determinant on both sides and solving, we get

√
−gP =

√
−det( f αβ)(1− ν0

2
fαβhαβ) (55)

Further solving, we get

√
−gP =

ρ2
0

c
(1 + ν0(Dt

3
2c2 +

1
c2∇

2φ0I)) (56)

Using Equation (54), we get the inverse metric gαβ
P as

gαβ
P = 1−ν0k

ρ0c[
−1 −vi

0I +
2
c ν0∂ic

−vj
0I +

2
c ν0∂jc (c2 − 2

c ν0Dtc)δij − vi
0Iv

j
0I +

2
c ν0vj

0I∂ic + 4
c ν0vi

0I∂jc− 2ν∂iv
j
0I

]

where, k = Dt
3

2c2 +
1
c2∇2φ0I , ~v0I = −∇φ0I is the background velocity of the fluid and vi

0I
are its spacial components.

The acoustic metric, obtained by inverting gαβ
P , is given by

gαβP = (1−ν0k)ρ0
c

−[(c2 − v2
0I)(1 + 2kν0) + 4ν0(~v0I · ∇ log c) −vi

0I(1 + 2kν0) + 2ν0∂i log c
− 2

c2 ν0v2
0I Dt log c− 2

c2 ν0~v0I · ((~v0I · ∇)~v0I)] − 2
c2 ν0(vi

0I Dt log c + (~v0I · ∇)vi
0I)

−vj
0I(1 + 2kν0) + 2ν0∂j log c δij(1 + 2kν0) +

2
c2 ν0Dt log c

− 2
c2 ν0(v

j
0I Dt log c + (~v0I · ∇)v

j
0I) + 2

c2 ν0∂iv
j
0I


4.3. (2+1)-Dimensional Vortex-Type Flow

The application of the above-mentioned concepts in vortex geometries results in much
simplification as the flow is now restricted to only two spacial dimensions instead of three as
was described in the general case. The continuity equation and the vorticity free constraint,
along with the conservation of angular momentum, leads to the background density ρ0 to be
position independent. This also leads to a position-independent background pressure due
to the barotropicity of the fluid [3]. These two conditions together make the speed of sound
(c) spatially constant as well. Since the flow is non-turbulent, we also considered ρ0 and
thus c to be constant in time. These conditions imply that k = 0 and Dt log c = ∂i log c = 0.
The above-mentioned simplifications lead to the following acoustic metric:

gαβP = ρ0
c

[
−(c2 − v2

0I) +
2
c2 ν0~v0I · [(~v0I · ∇)~v0I ] −vi

0I −
2
c2 ν0(~v0I · ∇)vi

0I

−vj
0I −

2
c2 ν0(~v0I · ∇)v

j
0I δij +

2
c2 ν0∂iv

j
0I

]
As is evident, this metric is significantly less cluttered than the one in the general case,

which makes it much easier to work with.

5. Discussion

We have thus gleaned from the doubly perturbed irrotational fluid mechanics equa-
tions a geometrical structure as a generalization of that discerned by Unruh [2] for inviscid
fluids, to the case of fluids with a small kinematic viscosity. A perturbed acoustic metric,
seen by linear acoustic perturbations, was also derived in Section 4.3. What has not been
investigated in the foregoing subsections is the signature of the perturbed metric. However,
unlike the acoustic metric derived for the inviscid case, here the perturbations most likely
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change the signature away from the Lorentzian structure that the inviscid case exhibited.
We believe that this change in the signature of the acoustic metric under viscosity effects,
albeit small, is precisely as it should be. Viscosity heralds dissipation into an otherwise
non-dissipative system, which must underlie the discovery of the Lorentzian acoustic
geometry in the inviscid case. With dissipation present, a pristine Lorentzian-perturbed
acoustic geometry would be nothing short of a miracle. The description of fluids with
dissipation described as a macroscopic viscous flow, with microscopic physics details
coarse-grained over, must automatically break the local Lorentz invariance of the inviscid
acoustic geometry.

The situation with viscosity in fluids is in some ways reminiscent of Lorentz-invariance
violation in the electrodynamics of material media modelled as a macroscopic continuum
with some specific properties of permittivity and permeability [13]. The constitutive relation
between the electric and magnetic fields and their excitations, namely, the displacement
field and the magnetic induction field, whenever non-trivial, automatically signifies a
breakdown of Lorentz symmetry in the underlying spacetime. This happens because of
the coarse-grained continuum approximation of the material medium, which in reality is
atomistic in nature and therefore not a continuum. Coarse-grained continuum description
of matter necessarily breaks spacetime symmetries of vacua. From this standpoint, this
Lorentz violation in the acoustic geometry in viscous fluids is expected.

We end this paper with a mention of the pending issues which we have not addressed
in this essay. First of all, the restriction of our formulation to small viscosity was motivated
by ongoing experiments with water, which indeed has a small coefficient of kinematic
viscosity at laboratory temperature. This is therefore far from general. The technical
simplicity of this restriction enabled the use of the double perturbation scheme which
in turn led us to the viscosity-perturbed acoustic geometry. One certainly needs to go
beyond this approximation if one is to have a large array of fluids to deal with. Similarly,
the restriction to fluids with spatially slowly varying density enabled us to set up an
approximation where derivatives of the logarithm of the density could be ignored. The
acoustic geometry of fluids whose densities change rapidly over space is thus not captured
by our approach. Hopefully, though, our approach has expanded the scope, albeit in a
small way, of the acoustic analogue geometrical description of sonic perturbations in fluids
beyond the incipient works.
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