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Abstract: An alternative theory of gravity that has attracted much attention recently is the novel
four-dimensional Einstein-Gauss-Bonnet (4D EGB) gravity. The theory is rescaled by the Gauss-
Bonnet (GB) coupling constant α→ α/(D− 4) in D dimensions and redefined as four-dimensional
gravity in the limit D → 4. Thus, in this manner, the GB term yields a non-trivial contribution to the
gravitational dynamics. In fact, regularized black hole solutions and applications in the novel 4D
EGB gravity have also been extensively explored. In this work, motivated by recent astrophysical
observations, we present an in-depth study of the optical features of AdS black holes in the novel
4D EGB gravity coupled to exponential nonlinear electrodynamics (NED), such as the shadow
geometrical shape, the energy emission rate, the deflection angle and quasinormal modes. Taking
into account these dynamic quantities, we investigate the effects on the black hole solution by varying
the parameters of the models. More specifically, we show that the variation of the GB and NED
parameters, and of the cosmological constant, imprints specific signatures on the optical features of
AdS black holes in the novel 4D EGB gravity coupled to nonlinear electrodynamics, thus leading to
the possibility of directly testing these black hole models by using astrophysical observations.

Keywords: black holes; higher-derivative theories of gravity; observational signatures

1. Introduction

A natural generalization of general relativity is Lovelock gravity, which lead to second
order differential equations for the metric functions. The simplest Lovelock theory of grav-
ity is well-known as Gauss-Bonnet (GB) gravity, which contains higher curvature terms in
the action and encompasses non-trivial dynamics for higher-dimensional (D > 4) theories
of gravity. Nevertheless, in a four-dimensional description, the GB term is topological
invariant, and hence does not contribute to the gravitational dynamics. To generate a
nontrivial contribution, one usually couples the GB term to a scalar field. Recently, Glavan
and Lin suggested that by rescaling the GB coupling constant α→ α/(D− 4) and defining
the four-dimensional theory as the limit D → 4, the GB term can yield a non-trivial contri-
bution to the gravitational dynamics and the theory can bypass the Lovelock theorem [1].
The theory, now dubbed as the novel 4D Einstein-Gauss-Bonnet (EGB) gravity, is free from
the Ostrogradsky instability [2].

In fact, the novel 4D EGB theory has attracted extensive attention recently, ranging
from applications of black hole physics and in investigating their properties [3–8], ro-
tating black holes [9,10], black holes coupled with magnetic charge [11–14], Born–Infeld
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black holes [15], relativistic stars [16,17], gravitational lensing [18,19], radiation and ac-
cretion phenomena [20,21], stability issues [22–24], quasi-normal modes [25,26], black
hole shadows [27–29], to thermodynamics and phase transitions [30–34], amongst other
topics. Nevertheless, a number of questions [35–42] have been raised on the adopted
approaches in [1,43], and some remedies have also been suggested to overcome these
difficulties [39,44–46]. In a number of papers [39,45,46], several authors have attempted to
solve this problem by inserting additional scalar fields, however, in Refs. [47–49], it has
been shown that if a D-dimensional solution of EGB gravity satisfy specific conditions
such as possessing a vanishing Weyl tensor of the spatial metric, the D → 4 limit of this
solution is a solution of the well-defined 4D EGB theory. In Ref. [50], it has been shown that
any static and spherically symmetric solution of EGB gravity with just one metric function
(including the solution studied in present paper) satisfies the required conditions so that its
D → 4 limit is a solution of well-defined 4D EGB gravity.

In fact, research in astrophysical black holes has recently received much interest, due
to the breakthrough discovery of the reconstruction of the event-horizon-scale images of
the supermassive black hole candidate in the centre of the giant elliptical galaxy M87 by the
Event Horizon Telescope project [51,52]. This was the first direct evidence of the existence
of black holes consistent with the prediction of Einstein’s general relativity. The image
shows that there is a dark part surrounded by a bright ring, which are called the black hole
shadow and photon ring, respectively. The shadow and photon ring are caused from the
light deflection, or gravitational lensing by the black holes. Indeed, the gravitational field
near the black hole’s event horizon is so strong that it can affect light paths and causes
spherical light rings. The black hole image provides us with information concerning jets
and matter dynamics around black holes. Moreover, the black hole shadow is one of
the useful tools for comparing alternative theories of gravity with general relativity and
provides us with information of the black hole parameters including the mass, charge and
rotation. In fact, the possibility of probing fundamental physics using such a shadow was
studied in the context of extra dimensions [53] and non-linear electrodynamics [54].

After the EHT announcement, a large amount of research has been devoted to deter-
mining the shadows of a vast class of BH solutions and the confrontation with the extracted
information from the EHT black hole shadow image of M87* [55–57]. By doing so, one can
obtain the allowed regions of the parameters of different theories of gravity for which the
obtained shadow is consistent with the observational data (see for instance Refs. [54,58]).
In fact, this method can be an observational and experimental test to understand which of
the generalized gravity theories are more consistent with the experimental data. Another
interesting phenomenon appearing while studying black holes is the accretion disk. In the
sub-mm band, EHT’s ∼25 µas images of M87 revealed the first evidence for the central
depression and ring of light associated with the accretion flow and photon orbits close to
the black hole [51]. The matter flow from the star to a companion BH creates the accretion
disc and the system starts to irradiate in the X-ray diapason due to strong friction of the
matter near the ISCO. Although one cannot observe a black hole or its event horizon,
the accretion disk can be seen, releasing heat and powerful X-rays and gamma rays out
into the universe as they smash into each other. The study of X-ray emission from accreting
supermassive black holes have suggested that the primary source of X-rays is very compact
and a large fraction of this emission is reflected and reprocessed by the innermost parts
of the accretion disc. X-ray imaging can clearly reveal how far the accretion disc extends
down towards the black hole. The spacetime structure of the central black hole govern
two basic classes of accretion disks: (i) the geometrically thin, Keplerian, accretion disks
whose structure is mainly governed by the spacetime circular geodesics [59] and (ii) the
geometrically thick, toroidal accretion disks governed by the effective potential of an orbit-
ing perfect fluid determined by the Euler equation [60]. Most of the observed black hole
candidates have an accretion disk constituted from conducting plasma whose dynamics can
generate a magnetic field external to the black hole. In both thin and thick accretion disks,
magnetic fields could play very important roles. The internal magnetic fields are crucial
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due to the magneto-rotational instability generating the disks’ viscosity causing accretion
itself, while the external magnetic fields could substantially modify the structure of the
disk and create non-equatorial charged-particle circular orbits [61]. Motivated by specific
interesting properties of the accretion disk, much research has been undertaken, including
accretion disks surrounding a BH as a source of QPO in different models [62–64], studying
the efficiency of energy release from the accretion disk [65], images of the Kaluza-Klein
black hole surrounded with thin accretion disk [66] and influence of cosmic repulsion and
magnetic fields on accretion disks [67].

An interesting way to analyse the behaviour and stability of black holes is the study
of their quasinormal modes (QNMs). QNMs are the response of black holes to external
perturbations, and they appear as damping oscillations after the initial outbursts of radi-
ation. QNMs have been observed in a recent series of experiments by the LIGO/VIRGO
collaborations when detecting gravitational waves from astrophysical black holes [68–70].
These frequencies depend on the black hole properties such as the mass, charge and the
angular momentum and on the type of the perturbation (scalar, Dirac, vector or tensor),
but not on the initial conditions of the perturbations [71,72]. The QN frequencies which
are characterized by complex numbers, ω = ωR − iωI , encode the information of how a
black hole relaxes after a perturbation. The sign of the imaginary part indicates if the mode
is stable or unstable. For ωI < 0 (exponential growth), the mode is unstable, whereas for
ωI > 0 (exponential decay) it is stable. In the case of a stable mode, the real part gives
the frequency of the oscillation, ωR/2π, while the inverse of |ωI | determines the damping
time, t−1

D = |ωI | [73].
There are several approaches to study the black hole’s QNMs including the WKB

approximations, monodromy methods, series solutions in asymptotically AdS backgrounds
and Leaver’s continued fraction method. Among the above-mentioned methods, the WKB
approach has received much interest during the past decades as it provides sufficient
accuracy. This method was suggested by Schutz and Will at the first order [74] and then
later developed to higher orders [75–77]. The studies in the context of QNMs showed that
there exists a close relation between them and phase transitions of black holes [78–80]. The
phase transition is a thermodynamic phenomenon, while QNMs which are determined
by the intrinsic properties of black holes are related to the dynamics. Such a connection
enriches the relationship between the black hole dynamics and black hole thermodynamics.
The relation between the quasinormal frequencies and the thermodynamical quantities at
the eikonal limit has been studied for static solutions [81] and rotating cases [82]. In Ref. [83],
it was shown that the real and imaginary parts of the QNMs are related to the geodesic
angular velocity and the Lyapunov exponent, respectively. Furthermore, a connection
between QNMs in the eikonal limit and lensing in the strong deflection limit has been
obtained in Ref. [84]. Recently, a connection between the QNMs and the shadow radius has
been found for static black holes [85] and rotating solutions [86].

This paper is organized as follows. In Section 2, we briefly review the novel 4D EGB
gravity coupled to exponential nonlinear electrodynamics and present the AdS black hole
solution, which we analyse throughout this work. In Section 3, we present a study of
the optical features of the AdS black hole geometry. More specifically, in Section 3.1, we
investigate the shadow behavior of this black solution and discuss the influence of the
black hole parameters on the size of photon orbits and the spherical shadow. In Section 3.2,
we calculate the energy emission rate and explore the effect of different parameters on
the emission of particles around the black hole. In Section 3.3, we further analyse the
effective role of these parameters on the light deflection angle around this kind of black
holes. In Section 3.4, we present a study of quasinormal modes of scalar perturbations and
discuss the influence of the parameters. Finally, In Section 4, we summarize the results
and conclude.
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2. Action and Black Hole Solution

The action of EGB gravity coupled to exponential nonlinear electrodynamics (ENED)
is expressed as [87]

S =
1

16π

∫
dDx

√
−g[R− 2Λ + αG − 2L(F)], (1)

where the cosmological constant Λ is related to the AdS length as Λ = −(D− 1)(D− 2)/2l2,
α is the GB coupling constant and G is the GB quadratic curvature correction given by

G = R2 − 4RµνRµν + RµνρσRµνρσ. (2)

The Lagrangian density L(F) is a function of the invariant F = 1
4 FµνFµν, where

Fµν = ∂µ Aν − ∂ν Aµ and Aµ is the potential. The specific form used in this work is of
the exponential type [88] defined as

L(F) = β F exp
[
−kq−γ(2F)ζ

]
, (3)

where β = (D− 2)(D− 3)/2, γ = (D− 3)/(D− 2), ζ = (D− 3)/(2D− 4), and in which
q and k are the magnetic charge and the NED parameter, respectively [87]1.

Varying the action (1) results to the following equations of motion

Gµν + Λgµν + αHµν = Tµν , (4)

and

∇µ

(
∂L(F)

∂F
Fµν

)
= 0 , ∇µ(

∗Fµν) = 0, (5)

respectively. The Einstein tensor Gµν and Lanczos tensor Hµν are defined by

Gµν = Rµν −
1
2

gµνR,

Hµν = 2
[

RRµν − 2RµσRσ
ν − 2RσλRµσνλ + R σλρ

µ Rνσλρ

]
− 1

2
gµνLGB,

and the energy-momentum tensor is given by

T µ
ν ≡ 2

[
∂L(F)

∂F
FµσFνσ − δ

µ
νL(F)

]
. (6)

We consider a static and spherically symmetric D-dimensional metric ansatz

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2dΩ2

D−2. (7)

In the limit D → 4, the solution is given by [87,88]

f±(r) = 1 +
r2

2α

1±

√
1 + 4α

(
2Me−k/r

r3 − 1
l2

), (8)

where M can be identified as the mass of the black hole. In the limit of k = 0, the above
form reduces to the Glavan and Lin solution [1]. For the case r � k the solution (8) takes
the form

f±(r) = 1 +
r2

2α

[
1±

√
1 + 4α

(
2M
r3 −

q2

r4 −
1
l2

)]
+O

(
1
r3

)
,
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which is the form of a charged black hole in 4D EGB gravity with a negative cosmological
constant [7], by identifying the electric charge as q2 = 2Mk [88].

Note that in the limit α→ 0 or large r, the solution (8) behaves asymptotically as

f−(r) ≈ 1− 2Me−k/r

r
+

r2

l2 +O
(

1
r3

)
,

f+(r) ≈ 1 +
2Me−k/r

r
− r2

l2 +
r2

α
+O

(
1
r3

)
,

where the negative branch corresponds to a regular 4D AdS black hole, while the positive
branch leads to instabilities of the graviton, due to the opposite sign in the mass [87]. Thus,
since only the negative branch leads to a physically meaningful solution, we will limit our
analysis to this branch of the solution.

3. Optical Features of the AdS Black Hole Spacetime

In this section, we present an in-depth study of the optical features of AdS black holes
in the novel 4D EGB gravity coupled to ENED, given by the solution (8), such as the shadow
geometrical shape, the energy emission rate, the deflection angle and quasinormal modes.
Taking into account these dynamic quantities, we investigate the effects on the black hole
solution by varying the parameters of the theory.

3.1. Photon Sphere and Shadow

Here, we are interested in investigating the shadow of the black hole solution (8),
with the negative branch, and exploring the effect of the GB coupling constant, the NED
parameter and the cosmological constant on the radius of the photon sphere and the
spherical shadow. To do so, we take into account the Hamilton-Jacobi method for null
curves in the black hole spacetime as [90,91]

∂S
∂σ

+ H = 0, (9)

where S and σ are the Jacobi action and affine parameter along the geodesics, respectively.
A photon travelling along null geodesics in a static and spherically symmetric space-

time is governed by the following Hamiltonian: H = 1
2 gij pi pj = 0. Since the black hole

solution (8) is spherically symmetric, we consider photons moving on the equatorial plane
with θ = π/2, without a significant loss of generality. Thus, the Hamiltonian can be
written as

1
2

[
− p2

t
f (r)

+ f (r)p2
r +

p2
φ

r2

]
= 0 (10)

Using the fact that the Hamiltonian is independent of the coordinates t and φ, one can
define two constants of motion as

pt ≡
∂H
∂ṫ

= −E, pφ ≡
∂H
∂φ̇

= L, (11)

where the quantities E and L are the energy and angular momentum of the photon, respec-
tively. Using the Hamiltonian formalism, the equations of motion can be derived as

ṫ =
∂H
∂pt

= − pt

f (r)
, ṙ =

∂H
∂pr

= pr f (r), φ̇ =
∂H
∂pφ

=
pφ

r2 .

where pr is the radial momentum and the overdot denotes a derivative with respect to the
affine parameter σ. These equations provide a complete description of the dynamics by
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taking into account the orbital equation of motion, ṙ2 + Veff(r) = 0, where the effective
potential is defined as

Veff(r) = f (r)
[

L2

r2 −
E2

f (r)

]
. (12)

Since the photon orbits are circular and unstable associated to the maximum value of
the effective potential, we use the following conditions to obtain such a maximum value,

Veff(r)
∣∣
r=rp

= 0,
∂Veff(r)

∂r

∣∣∣
r=rp

= 0, (13)

which result in the following equation

(3 + 4αΛ)r4
p − 3M2e−2k/rp(3rp − k)2 + 24αMrpe−k/rp = 0. (14)

Equation (14) is complicated to solve analytically, so we employ numerical methods to
obtain the radius of the photon sphere. To this effect, several values of the event horizon
(re) and photon sphere radius (rp) are presented in Table 1. We verify that increasing
values of the NED and GB parameters tend to decrease re and rp. Thus, specific constraints
should be imposed on these parameters in order to have a real event horizon. Regarding
the effect of the cosmological constant, we verify that as Λ increases from −0.17 to −0.01,
the event horizon (the radius of photon sphere) increases (decreases).

Table 1. Event horizon and photon sphere radius for variation of the cosmological constant, the NED
and the GB parameters for the specific case of M = 1.

k 0 0.1 0.3 0.5 0.6

re(α = 0.2, Λ = −0.02) 1.84 1.73 1.47 1.02 0.8–0.3 I
rp(α = 0.2, Λ = −0.02) 2.91 2.76 2.43 1.99 1.62

α 0.02 0.2 0.4 0.6 0.7

re(k = 0.2, Λ = −0.02) 1.73 1.61 1.44 1.14 0.9–0.2 I
rp(k = 0.2, Λ = −0.02) 2.70 2.60 2.47 2.30 2.19

Λ −0.01 −0.05 −0.09 −0.13 −0.17

re (α = k = 0.2) 1.63 1.56 1.51 1.47 1.43
rp (α = k = 0.2) 2.60 2.61 2.63 2.65 2.66

We next analyse the radius of the shadow and explore the impact of the parameters of
the theory. To this effect, consider the orbit equation for the photon given by

dr
dφ

=
ṙ
φ̇
=

r2 f (r)
L

pr. (15)

Using Equation (10) and the constraint dr/dφ|r=R = 0, one finds

dr
dφ

= ±r

√
f (r)

[
r2 f (R)
R2 f (r)

− 1
]

. (16)

Consider a light ray sent from a static observer at position r0 and transmitted with an
angle ϑ with respect to the radial direction, which results in [91,92]

cot ϑ =

√
grr

gφφ

dr
dφ

∣∣∣
r=r0

. (17)



Universe 2022, 8, 182 7 of 18

Hence, the shadow radius of the black hole as observed by a static observer at the position
r0 is given by

rs = r0 sin ϑ = R

√
f (r0)

f (R)

∣∣∣∣∣
R=rp

. (18)

The apparent shape of a shadow can be obtained by a stereographic projection in
terms of the celestial coordinates x and y which are defined as [93,94]

x = lim
r0−→∞

(
−r2

0 sin θ0
dφ

dr

∣∣∣
(r0,θ0)

)
, (19)

y = lim
r0−→∞

(
r2

0
dθ

dr

∣∣∣
(r0,θ0)

)
. (20)

where (r0, θ0) are the position coordinates of the observer. Figure 1 depicts the influence
of the GB coupling constant, α, the NED parameter, k, and the cosmological constant, Λ,
on the spherical shadow radius. We notice that increasing the NED and GB parameters
decreases the shadow radius, whereas increasing the cosmological constant consequently
increases the shadow radius. Comparing Figure 1b with Figure 1a,c, we find that the
variation of α has a weaker effect on the shadow size than the other two parameters and a
more significant effect occurs for the cosmological constant.

(a) (b) (c)

Figure 1. Black hole shadow in the Celestial plane (x − y) for M = 1. Note that increasing the
NED (k) and GB (α) parameters, decreases the spherical shadow radius, as depicted in Figure 1a,b,
respectively, whereas increasing the cosmological constant, increases the radius (Figure 1c). See the
text for more details. (a) α = 0.2 and Λ = −0.02; (b) k = 0.2 and Λ = −0.02; (c) k = α = 0.2.

3.2. Energy Emission Rate

In this subsection, we study the effect of the parameters of the theory on the emission
of particles around the black hole given by solution (8). It was shown that the black hole
shadow corresponds to its high energy absorption cross section for the observer located at
infinity [95–97]. In fact, at very high energies, the absorption cross-section oscillates around
a limiting constant value σlim which is approximately equal to the area of the photon sphere
(σlim ≈ πr2

s ). The energy emission rate is expressed as

d2E(ω)

dtdω
=

2π3ω3r2
s

e
ω
T − 1

, (21)



Universe 2022, 8, 182 8 of 18

where ω is the emission frequency and T denotes the Hawking temperature, which for the
present case is given by

T =
−Λr4

e (3re − k) + 3r2
e (re − k)− 3α(re + k)

12πr2
e (r2

e + 2α)
. (22)

In order to study the radiation rate of the solution (8), we obtain the energy emission
rate from Equation (21). In Figure 2, these energetic aspects are plotted as a function of the
emission frequency for different values of k (Figure 2a), α (Figure 2b) and Λ (Figure 2c),
respectively. It is transparent from the plots that the energy emission decreases with increas-
ing values of these three parameters. This reveals the fact that as the coupling constants
get stronger or when the curvature background becomes higher, the energy emission rate
becomes insignificant. In fact, the black hole has a longer lifetime in a high curvature back-
ground or with a stronger coupling. Comparing Figure 2b with Figure 2a,c, one verifies
that the radiation rate is highly affected by the GB coupling constant, whereas the variation
of Λ has a weaker effect on the radiation rate compared to the other two parameters.

(a) (b) (c)

Figure 2. Energy emission rate of the black hole for M = 1 and different values of k, α and Λ. It is
transparent from the plots that the energy emission decreases with increasing values of these three
parameters, and that the radiation rate is highly affected by the GB coupling constant, whereas the
variation of Λ has a weaker effect on the radiation rate compared to other two parameters. See the
text for more details. (a) α = 0.2 and Λ = −0.02; (b) k = 0.2 and Λ = −0.02; (c) k = α = 0.2.

3.3. Deflection Angle

In this subsection, we explore the light deflection around the black hole solution (8).
We employ the null geodesics method [98–101] to calculate the total deflection Θ. This
optical quantity can be obtained by the following relation

Θ = 2
∫ ∞

b

∣∣∣dφ

dr

∣∣∣dr− π, (23)

where b is the impact parameter, defined as b ≡ L/E. Using Equation (16), the deflection
angle is given by

Θ =
2Me−k/b(3− 2αΛ)

3k

(
1 +

3b
k

+
6b2

k2 +
6b3

k3

)
−αM2e−2k/bχ

k
+

7
3
+

1
9

Λb2(−3 + αΛ), (24)

where

χ =
2
b3 +

6
kb2 +

15
bk2 +

30
k3 +

45b
k4 +

45b2

k5 +
45b3

2k6 .
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The behavior of Θ with respect to the impact parameter b, is illustrated in Figure 3.
As we see, the deflection angle is a decreasing function of b. According to the relation
b ≡ L/E, one can say that the light deflection is low when the energy of the photon
decreases as compared to its angular momentum. This figure also demonstrates how
the cosmological constant, the NED and the GB parameters affect the deflection angle.
From Figure 3a, one verifies that the k parameter increases the light deflection, whereas,
the GB parameter has an opposite effect on Θ (see Figure 3b). In other words, the effect of
k and α on the deflection angle is opposed to each other. In Figure 3c, we investigate the
influence of the cosmological constant on Θ which displays its decreasing contribution on
the light deflection. As we see, this effect is negligible compared to the other two parameters.
As a result, one may conclude that the light deflection is low around this black hole solution
with a stronger GB coupling or if it is located in a higher curvature background.

(a) (b) (c)

Figure 3. The behavior of Θ with respect to the impact parameter b for M = 1 and different values of
k, α and Λ. One verifies from Figure 3a, that the k parameter increases the light deflection, and from
Figure 3b that the GB parameter has an opposite effect on Θ. In Figure 3c, we verify that the
cosmological constant exhibits a decreasing contribution on the light deflection. See the text for more
details. (a) α = 0.2 and Λ = −0.02; (b) k = 0.2 and Λ = −0.02; (c) k = α = 0.2.

3.4. Quasinormal Modes

An interesting dynamic quantity is the quasinormal mode, where we consider scalar
perturbations by a massless field around the black hole. A massless canonical scalar field Φ
is described by the Lagrangian density L = 1

2 (∂Φ)2. The equation of motion for a scalar
field is given by ∇µ∇µΦ = 0, which takes the following form

1√−g
∂µ(
√
−ggµν∂νΦ) = 0. (25)

Using the method of separation of variables, the scalar field can be written as

Φ(t, r, θ, φ) =
uL(r)

r
e−iωtYLm(θ, φ), (26)

where YLm(θ, φ) are the standard spherical harmonics. The radial part of the wave equation
satisfies an ordinary second order linear differential equation as follows

d2uL

dx2 +
[
ω2 −V(x)

]
uL = 0, (27)
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where x =
∫ dr

f (r) represents the tortoise coordinates. The corresponding effective potential
barrier is given by

V(r) = f (r)
[

f ′(r)
r

+
L(L + 1)

r2

]
, (28)

where the prime denotes differentiation with respect to r, while L ≥ 0 is the angular de-
gree, and f (r) is given by Equation (8). For scalar and electromagnetic fields, the effective
potentials have the form of a positive definite potential barrier with a single maximum.
In Figure 4, the effective potential is plotted to display how it changes with the NED param-
eter, the coupling constant, the cosmological constant and the spherical harmonic index L.
As we see the height of the potential increases when k, α and L increase. The cosmological
constant Λ has a decreasing effect on the maximum height of the potential (see Figure 4c).
A significant point about this parameter is that the condition of the single maximum is
satisfied just for a large cosmological constant (Λ ≥ −0.02).

(a) (b)

(c) (d)

Figure 4. The effective potential for the specific case of M = 1 and different values of k (Figure 4a),
α (Figure 4b), Λ (Figure 4c) and L (Figure 4d). See the text for more details. (a) α = 0.2, l = 1 and
Λ = −0.02; (b) k = 0.2, l = 1 and Λ = −0.02; (c) k = α = 0.2 and l = 1; (d) k = α = 0.2 and
Λ = −0.02.
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The quasinormal modes were studied with different methods over the last decades,
as mentioned in the Introduction. Here, we employ the semi-analytical WKB approximation
which was first used in the 1980’s [75,102] and then extended to 6th order [103], and to 13th
order [76]. It is worthwhile to mention that increasing the WKB order does not always lead
to a better approximation for the frequency, so we consider the 3rd order expansion for the
purpose of our work, which leads to

ω =

{
V +

V4

8V2

(
ν2 +

1
4

)
−
(

7 + 60ν2

288

)
V2

3
V2

2
+ iν

√
−2V2

[
X1

2V2
− 1
]} 1

2

r=r0

, (29)

where

X1 =
5V4

3 (77 + 188ν2)

6912V4
2

−
V4V2

3 (51 + 100ν2)

384V3
2

+
V2

4 (67 + 68ν2)

2304V2
2

+
V5V3(19 + 28ν2)

288V2
2

+
V6(5 + 4ν2)

288V2
, (30)

with ν = n + 1
2 and n is the overtone number. Vj and r0 represent, respectively, the j-th

derivative of the potential V and the place in which the height of the potential is maximum.
The interesting fact regarding r0 is that it exactly matches the photon sphere radius rp [104].
Expanding the relation (29), we obtain at the eikonal regime ω = ωR − iωI , where

ωR = L
√

f (r)
r

∣∣∣∣
r=r0

+

√
f (r)
2r

∣∣∣∣
r=r0

+O(L−1) , (31)

and

ωI =
ν√
2

√
f (r)
r

∣∣∣∣
r=r0

√
6r f ′ − 6 f − r2 f ′′ − r2 f−1 f ′2

∣∣∣
r=r0

+O(L−1), (32)

respectively.
According to the condition dV/dr|r=r0 = 0, one finds that

d
dr

(
f (r)
r2

)∣∣∣∣
r=r0

= 0. (33)

Using Equation (33), the relations (31) and (32) reduce to

ωR = r−1
s

(
L +

1
2
+O(L−1)

)
,

ωI =
2ν + 1
2
√

2
r−1

s

√
2 f − r2 f ′′ +O(L−1), (34)

respectively.
Taking Equation (34) into account, we are in a position to probe how the black hole

parameters affect quasinormal frequencies. It is evident that the real part of the modes is
proportional to the angular degree, while the imaginary part depends on the overtone num-
ber only. As already mentioned, the sign of the imaginary part indicates if the mode is stable
or unstable. Our findings show that the imaginary parts of the QNMs are always negative,
revealing that the system is stable under perturbations. In Ref. [22], the authors considered
4D charged EGB black holes (which is the limit case of the solution (8) for the case r � k
in the absence of the cosmological constant) and investigated the stability/instability of
the system through superradiant effects in detail. To investigate QNMs, one can consider
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ingoing waves near the event horizon and outgoing waves at infinity. If the reflected wave
amplitude is larger than the incident amplitude, the wave is amplified. This phenomenon
is called superradiance. To trigger the instability, there should be an effective potential
well outside the event horizon to trap the reflected wave from the near-horizon region.
In Ref. [22], it was shown that superradiance is the necessary but not sufficient condition for
instability. In fact, to confirm the stability of the system, one must ensure that the imaginary
part of the frequency is negative. By comparison, we found that our results are similar to
the results obtained in Ref. [22].

In Figure 5, we show the real and the imaginary part of the frequencies vs the GB
coupling constant for three different values of the NED parameter, namely, k = 0.1, 0.2, 0.3
(Figure 5a,b) and three different values of the cosmological constant Λ = −0.01,−0.02,−0.03
(Figure 5c,d). We see that as the GB parameter increases the real part of the QNM frequency
grows monotonically, while the absolute value of the imaginary part of ω reduces. This
shows that when the coupling constant gets stronger, the scalar perturbations oscillate more
rapidly and due to the decreasing imaginary part, they decay more slowly. Figure 5a shows
how Re(ω) changes under varying the NED parameter. Evidently, the curves shift upwards
by increasing k, meaning that the real part of the QNMs is an increasing function of this
parameter. Whereas, its effect is opposite on |Im(ω)| (see Figure 5b). In fact, the effect of the
NED parameter on the QNM frequency is similar to that of GB parameter. In Figure 5c,d,
we explore the impact of the cosmological constant on the quasinormal frequency. We verify
that this parameter has a decreasing contribution on both of the real and imaginary parts of
QNM. This reveals the fact that the scalar perturbations have less energy for oscillations
and decay slower in a higher curvature background.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. The behavior of Re(ω) and Im(ω) with the GB parameter for M = 1, n = 0, L = 2 and
different values of k (Figure 5a,b) and Λ (Figure 5c,d). See the text for more details. (a) Λ = −0.02;
(b) Λ = −0.02; (c) k = 0.2; (d) k = 0.2.

4. Summary and Concluding Remarks

Among the higher curvature gravitational theories, the recently proposed novel 4D
EGB gravity has received an extensive and intensive interest, especially in terms of appli-
cations in regularized 4D EGB black hole solutions. Motivated by the importance of such
black holes, in this work, we presented a study in the context of dynamic optical features of
AdS black holes coupled to nonlinear electrodynamics, including the shadow size, the en-
ergy emission rate, the deflection angle and quasinormal modes. We first investigated the
photon sphere and the shadow observed by a distant observer and discussed how the black
hole parameters affect them. We found that both the photon sphere radius and the shadow
size decrease with an increasing GB parameter. Studying the impact of the cosmological
constant, we verified that the shadow size shrinks by increasing this parameter which
is opposite to the behavior observed in the photon sphere radius. Regarding the NED
parameter, it had a decreasing contribution on both the radius of the photon sphere and
shadow similar to the GB coupling constant.

Then, we continued by studying the energy emission rate and explored the effect of
the black hole parameters on the radiation process. The results showed that as the coupling
constants and the cosmological constant increase, the emission of particles around the black
hole decreases. This revealed the fact that the radiation rate grows when the effects of
the coupling constants get weaker or the background curvature becomes lower. In other
words, the lifetime of a black hole would be shorter under such conditions. Furthermore,
we studied the gravitational lensing of light around such black holes. We found that
there is an inverse relationship between the deflection angle and impact parameter. Thus,
the deflection angle decreases with the increasing of the impact parameter. Both the GB
parameter and the cosmological constant exhibited decreasing effects on Θ, unlike the NED
parameter which had an increasing contribution. We also noticed that the variation of
the cosmological constant does not have a remarkable effect on the deflection angle. This
revealed the fact that varying the background curvature does not affect the path of light
significantly. In contrary to Λ, the NED parameter had a significant contribution on Θ
compared to the other two parameters.

Finally, we presented a study of the quasinormal modes of scalar perturbation. We
found that increasing the coupling constants lead to increasing (decreasing) of the real part



Universe 2022, 8, 182 14 of 18

(absolute value of the imaginary part) of the quasinormal frequencies. This indicated that
as the effect of the coupling constants gets stronger, the QNMs oscillate faster and decay
slower. The cosmological constant had a decreasing effect on both the real and imaginary
parts of the QNMs. This indicates that although the scalar perturbations have less energy
for oscillation in a higher curvature background, they decay slower in such a situation.
Here, we studied the optical features of regular AdS black hole solutions of 4D EGB gravity
coupled to exponential nonlinear electrodynamics. There are other nonlinearly charged
black solutions in this context as well, such as Born-Infeld charged solution presented
in [15]. It is also interesting to study such optical properties for these solutions. These
issues are now under investigation, and the results will appear elsewhere.

As we know, modern observational results have shown that our universe is expand-
ing with acceleration, indicating the fact that a static or stationary observer may see a
time-dependent shadow. One of the well-known models of dark energy to explain the
accelerating expansion is the cosmological constant, which has been the subject of exten-
sive studies in the context of gravitational lensing in recent years [105–107]. It should be
noted that although the expansion of the universe was based on a positive cosmological
constant, there are also some evidence that show that it may be associated with a nega-
tive cosmological constant. For instance, the studies related to the Hubble constant data
H(z) at low redshift showed that the dark energy density has a negative minimum for
certain redshift ranges which can be simply modeled through a negative cosmological con-
stant [108]. The other reason is related to the concept of stability of the accelerating universe.
The analysis of the de Sitter expanding spacetime with a constant internal space showed
that the de Sitter solution would be stable just in the presence of the negative cosmological
constant [109]. The other interesting reason is through supernova data. Although astro-
physical observations from high-redshift supernova have shown that the expansion of
the Universe is accelerating due to a positive cosmological constant, the supernova data
themselves derive a negative mass density in the Universe [110,111]. According to the
results of Ref. [112], such a negative mass density is equivalent to a negative cosmological
constant. In fact, the introduction of negative masses can lead to an anti de Sitter space.

It is also remarkable to mention that the phase structure of black holes can be reflected
in the shadow size [91] and the corresponding QNMs [78–80]. So, the study of these
phenomena can provide important information about black hole thermodynamics and is
significant from a holographic point of view where the black hole is dual to a system on the
AdS boundary. Such a study was behind the aim of the present paper and the issue will
be investigated elsewhere. Moreover, from a cosmological viewpoint, there is a possibility
to have an accelerating expansion in the context of theories accompanied by a negative
cosmological constant [108–113] and thus the present results may also be relevant in such
a case.
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Note
1 We refer the reader to Ref. [89] for an interesting solution of a black hole as a magnetic monopole within exponential nonlinear

electrodynamics.
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