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Abstract: In this paper we will detail an approach to generate metrics and matter models on end-
periodic manifolds, which are used extensively in the study of the exotic smooth structures of R4.
After an overview of the technique, we will present two specific examples, discuss the associated
matter models by solving the Einstein equations, and determine the physical viability by examining
the energy conditions. We compare the resulting model directly with existing models of matter
distributions in extragalactic systems, to highlight the viability of utilizing exotic smooth structures
to understand the existence and distribution of dark matter.
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1. Introduction

The understanding of our physical Universe as fundamentally a question of geometry
is rooted in the key quantitative tool we have to study it, General Relativity (GR). Not
only are space and time inexorably linked into a single geometric structure, which dictates
how matter moves through it, but the matter content influences that geometric structure
directly. Through the development of GR, as physicists have been amassing evidence for
it’s physical validity, mathematicians have been studying it’s formal structure. These formal
structures start with the 4D spacetime manifold, and have now branched out into the study
of fiber bundles, spinors, strings, and noncommutative algebras, among many others. All
of these areas have very well-developed physical motivations as well as mathematical
explorations and rigor.

A particular example of an interesting and productive avenue of mathematical ex-
ploration has been that of exotic smooth structures. In brief, an exotic smooth structure
of a manifold M is a smooth manifold Mθ for which a map between them f : M → Mθ

can only be found to be continuous, not smooth (for a more extensive introduction to this
topic, see [1,2]). This relationship between M and Mθ means they share the same topology
(large-scale structure), but are inequivalent under diffeomorphisms (small-scale structure),
the gauge symmetry of GR. In addition, by evidently evading the various uniqueness theo-
rems associated with the existence of a Cauchy surface [3], these spacetimes are necessarily
non-globally hyperbolic. Metrics on Mθ would be inequivalent solutions to the Einstein
equations, despite the two spacetimes having the same topological structure. Specifically,
physical predictions requiring the use of derivatives (which characterizes most predictions
in physics) would not match on the two manifolds.

Although a seemingly esoteric phenomena, exotic smooth structure has been exten-
sively studied and marveled at in the mathematical community for many years. The first
examples were discovered in dimension 7 in 1956 by John Milnor [4], with work in dimen-
sion 4 occurring the 1980s and 1990s [5–7]. At this point, there had been little discussion
regarding how these structures might impact physical models of our Universe. One of
the major complications was the manner of presentation of the available examples-they
were very abstract, lacking sufficient details regarding the local geometry that would be
needed to define a metric. Early progress was made by Schileich and Witt [8], who used
the 7-dimensional Wallach spaces SU(3)/ik,l(S1) with an embedding ik,l : S1 → SU(3)
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that winds S1 around a maximal torus in SU(3) according to the integers k, l. Through
an analysis of the characteristic classes of these spaces it was known that some sets of
these spaces were exotic (that is, homeomorphic but not diffeomorphic), and also that
they admitted Einstein metrics. As coset spaces, it was possible to find a metric explicitly,
and they constructed a semi-classical model in Euclidean quantum gravity to demonstrate
that the inclusion of the exotic structures impacted a physical observable (specifically, the
expectation value of volume).

Progress in 4-dimensions took somewhat longer. A key approach was initiated by
Salvetti [9], who used iterated branched covers of CP2 to calculate the Seiberg-Witten
invariants [7] and prove there were an infinite number of exotic smooth structures presented
in this way. This branched cover π : M→ N construction over a manifold N with metric g
easily leads to a metric π∗g over a particular cover M, and this technique was then used to
create a model inspired by Schileich and Witt, but this time in four-dimensions [10]. The
findings were similar-the inclusion of exotic smoothness structures impacted a physical
observable, at least semi-classically.

It’s worth mentioning a parallel track of research to access the physical implications
of exotic smooth structure, in which knowledge of the metric is foregone in favor of
knowledge of the action [11–14]. Briefly, this approach uses techniques from knot theory
and surgery to construct exotic smooth structures, and then considers what happens to the
curvature under the various actions on the embedded or immersed submanifolds. Using
these techniques, a wide variety of interesting phenomena can be developed-for example,
exotic smooth structures can be seen to mimic the inclusion of fermions in spacetime, or
predict values for the cosmological constant. This is a formally different approach then we
will be taking in the present work, and has been included here primarily for context.

So while this brief overview should make it clear that progress is being made, we have
not presented any solid predictions of a particular observation which might be explained
by exotic smooth structure. The most important possibility for this is undoubtedly that
of Brans [15], which has come to be known as The Brans Conjecture. It is based on the
idea that so-called “small exotic R4” can by embedded in regular R4, and photons crossing
the boundary would be deflected as they crossed. One consequence of this conjecture is
that this effect would be observed as gravitational lensing, with the source of the lensing
not being matter, but rather this exotic manifold structure. Since excess gravitational
lensing is attributed to the existence of dark matter [16], the Brans Conjecture represents an
alternative explanation for this excess lensing that does not require new or exotic particles or
interactions. Since direct experimental searches for these exotic particles have consistently
failed to find evidence for them (at the LHC, for example [17]), exploring manifestations of
the Brans conjecture is looking more attractive.

It should also be clarified what the Brans conjecture represents in the overall study of
dark matter. Evidence for dark matter is found at essentially two different astrophysical
scales-the galactic and the cosmological. At the galactic scale, this comes in the form of
rotation curves of spiral galaxies [18], or gravitational lensing [19,20]. At the cosmological
scale, it comes (for example) in the form of the acoustic peaks in the Cosmic Microwave
Background (CMB) [21]. The Brans conjecture is generally regarded to apply to just the first
type of evidence, on galactic scales, rather then on cosmological scales. Of course, there
is no reason that exotic smooth structure could not play a role in the study of the early
universe ([22,23], for example), but the signal would presumably be cleaner at the galactic
scale because the only physics involved there is that of the gravitational field, and only at
relatively low energies. This is in contrast to the complex modeling required to understand
the early universe and structure formation. So in this work we are not attempting to address
every particular observational evidence we have for dark matter, only the evidence that
appears at the galactic scale. This limitation is also true for many of the other approaches
we will be discussing [2,13,24,25].

As an aside (and by way of comparison to the current study), there are several other vi-
able alternatives to the existence of dark matter as “exotic matter” from the particle physics



Universe 2022, 8, 167 3 of 15

perspective. We highlight two of these, the first being Modified Newtonian Dynamics
(MOND) [26]. In MOND, the gravitational force is modified in low-density regions like the
outer regions of a galaxy to match observations of galactic rotation curves (a relativistic ver-
sion exists as well [27]). Another approach is f (R) gravity, which is actually a constellation
of theories in which scalar functions of the curvature and/or connection are added to the
Einstein-Hilbert action [28]. Both of these approaches have been successful in describing
various aspects of dark energy and dark matter, but we want to emphasize that they are
modifying the theory of gravity at the level of the action. This is in contrast to exotic smooth
structures, which are alternative solutions to the standard Einstein-Hilbert action (although,
as outlined below, sometimes these alternative solutions can be explicitly parameterized at
the level of the action). One might classify MOND and f (R) theories as “exotic physics”,
whereas exotic smooth structures might be classified as “exotic mathematics”.

In this paper we will be presenting a spacetime model (with a concrete metric and
matter content) for such an exotic R4. It is based on earlier work [24], which clarified
a technique for finding explicit metrics on end-periodic manifolds [29]. In the present
work, we will be focusing on finding a valid matter model and comparing the model to
those commonly used when studying dark matter, and we will see that the models are
comparable at this initial level of analysis. Specifically, for one particular choice of building
block we will find matter distribution matching a singular isothermal sphere.

In fact, the appearance of this particular matter distribution is not new in the field
of exotic smooth structure; a recent study found the same using an entirely different ap-
proach [25]. In brief, that work starts with gravitational solitons in the weak-field limit,
and uses a particular foliation to both construct the spacetime and demonstrate that the
smoothness structure of the spacetime can be tracked by the Seiberg-Witten equations.
Following this, the explicit presentation of the metric demonstrates that the matter distribu-
tion is again a singular isothermal sphere. We will point out the various and interesting
similarities and differences in this approach compared with the one we are taking.

Beyond this introduction, this paper is organized as follows: Section 2 will briefly
present the theoretical and mathematical background needed to understand the metric
generation procedure on end periodic manifolds, and Section 3 will give some context for
how this approach fits into the larger question, “what is the dynamical source of exotic
smoothness structures?” We will then present two specific examples of this approach, using
a Kruskal black hole (Section 4) and an embedded conformal surface (Section 5) as building
blocks. A consistent matter model for the latter can be found in Section 6, and we will
conclude by briefly summarizing our findings in Section 7.

2. Metrics on End-Periodic Manifolds

In this section we present the basic background and tools we are using to generate
metrics on end-periodic manifolds, the Z-transformation1. This was first presented in [29],
where it was used to prove that the number of exotic smoothness structures on R4 is un-
countably infinite. The approach was finally clarified for the physics community in [24,30],
and we take this last reference as our primary starting point.

An end-periodic manifold is constructed with a building block 4-manifold W and a
map i that identifies the ends of the building block, Y = W/i. The end-periodic manifold is
the cover

Ỹ = ...∪N W−1 ∪N W0 ∪N W1 ∪N ...

with projection π : Ỹ → Y. We also have a map T : Wi → Wi+1 which identifies the
copies of the building block (this map is also used to define the end-periodic bundles in
the original work of [29], and the specific details about the map T can be found there or
in [24]). We will pick the metric on the building block W to be ĝ, which we first have to
extend to Y ×C∗ to keep track of the order of the cover. We will do this by making one
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of the coordinates complex and denote this metric ĝz, z ∈ C∗ = S1. Since this metric is
periodic, we can define a transformation

ĝz =
n=∞

∑
n=−∞

zn(Tng),

where g is the metric on Y and Tng is the metric on the block n. We can invert this expression
in a formal way to determine the metric on each block,

Tng =
1

2πi

∮
|z|=s

z−n ĝz
dz
z

. (1)

This expression is independent of the magnitude of the complex coordinate |z| = s thanks
to Cauchy’s theorem (note that compared to the conventional Z-transformation we have
here exchanged z ↔ 1/z in these two expressions to match what was done originally
in [29]).

We would like to mention one aspect of this approach (initially outlined by [24]) that
differs from the original presentation by Taubes, and that is the use of a Lorentzian metric
rather then Riemannian. Although the proof of the existence of the exotic smooth structures
in [29] did use a metric with a positive signature, the obstruction to finding a Lorentzian
metric is topological, and should be independent of the signature of the metric (specifically,
we need a nowhere vanishing timelike vector field-further details can be found in [13]).
Further, there is a simple argument that a Wick rotation of the metric will pass unaffected
through the Z-transformation. Following the basic argumentation of [31], we can define
the “not quite Lorentzian metric”

gε = gL + iε
V ⊗V

gL(V, V)

associated to the Lorentzian metric gL and timelike vector field V. For example, in the cases
discussed in this paper we could take V = (1/

√
g00, 0, 0, 0), and the Z-transformation on

that component of the metric will be

1
2πi

∮
|z|=s

1
zn+1 (−(1 + iε)g00)dz =

−(1 + iε)
2πi

∮
|z|=s

1
zn+1 g00dz.

It is then relatively easy to see that a transition from a Lorentzian metric (ε = 0) to a
Riemannian (ε = 2i) just needs to satisfy the same conditions that as a usual Wick rotation-
namely, that one avoids ε = i.

The next step is to pick an appropriate building block W and metric ĝ, and decide
which part of the metric is going to be periodic. In [24], the metric choice was Kruskal
and the complex coordinate was chosen to be z = exp(ir) with the Kruskal coordinate v
tracking the order of the cover. This choice lead to some singular structure in the form of
a Heaviside function, suggesting a dimensional reduction from 4 to 2. This dimensional
reduction is associated to the a collapse of the 3D hyperbolic spatial section into a 1D tree
in the large curvature limit [30], and may have interesting implications for the quantum
theory [32]. In Section 4 we will take an alternative approach and discuss the differences.

3. Perspective Taken in This Paper

The Einstein equation tells us the equality between the matter model of the Universe
and the geometry (with the cosmological constant being interpreted either way). The
traditional way to solve the Einstein equation is to impose symmetries (or Killing vectors)
on this system of equations to simultaneously solve for both the matter and geometry
together. However, doing this does not usually furnish a complete description of the matter
content. For example, a traditional solution for the FLRW provides the scale factor as a
function of the density and pressure of an ideal fluid, but does not yet tell us what the
matter content of the model is. For the case of FLRW, we often have a mixture of radiation,
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matter, and cosmological constant (as well as more exotic options, see for example [33]).
Typically observations are required to determine the actual matter content in a particular
relativistic model.

Due to the tool we have available to us in the study of end-periodic manifolds, we
are going to be taking a slightly different perspective on solving the Einstein equations.
The Z-transformation generates new metrics on end-periodic manifolds, but it does not
explicitly affect the matter model. Naturally, changing the metric must impact the matter
content since that the system still solves the Einstein equation, but the point is that rather
then starting with symmetries of spacetime, we are starting with a (hopefully new) metric,
and then solving the Einstein equation. By doing this we will be finding a valid matter
model (still likely without knowing the specific matter content) for a particular choice of
geometry. The natural next steps would be to verify that the matter model is physically
reasonable, and then checking to see if it can be used for our particular study-to model
gravitational lensing without needing dark matter. Stated another way, a solution to the
Einstein equations is simply the set of metric components gab and matter components
Tab that solves Gab = 8πGTab, and we are going to be looking for a Tab that corresponds
to a particular gab, before actually asking what form Tab should be for a given class of
matter models.

A challenging aspect of this field is understanding what the “dynamical” source of this
exotic smoothness actually is. As discussed in Section 1, they arise because of the existence
of a continuous map

f : M→ N,

but the lack of a smooth one (diffeomorphism). As such, a metric g on N that solves the
Einstein equations cannot be pulled back to a metric f ∗g on M that is also a solution to the
Einstein equations. In other words, solutions to the field equations on M are non-isometric
to solutions on N. So how should we go about finding the exotic structures M associated to
a particular manifold N with known geometric structures? If we knew what the continuous
map f was (or say C1 so the pullback was defined), we could use f ∗g, but not only are such
maps typically not part of the construction of exotic smooth structures, that implies that
f ∗g would at least not be C∞, raising questions about how it could solve the field equations
at all.

Some clarification might come from considering what happens at the level of the
action. For a pair of exotic smooth structures M1 and M2, being non-diffeomorphic means
the equation

δS(g) = δ(S(g)EH + S(g)M) = 0

for the Einstein-Hilbert action SEH and matter action SM, must have different solutions g1,
g2. However, what kinds of differences in the action would lead to alternative solutions?
First, let us restrict our considerations to cases in which the matter content does not change-
that is, S(g1)M = S(g2)M. This is consistent with our perspective in this paper, since
one could consider the matter action to be independently verified by observations (in
the specific case of gravitational lensing, by mass-to-light ratios). If we are therefore just
considering what happens to the Einstein-Hilbert action SEH , based on the discussion in
the introduction it appears we have two essential cases:

1. Explicit differences in the action that are parameterized by the construction of the
exotic structure. In other words,

S(g1)EH − S(g2)EH = F(geometric parameters).

For a specific example of this, we briefly discuss [14], in which there is an additional
term in the action that takes the form∫

U(Σ)
Φ̄DU(Σ)ΦdV.
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Here Σ is an embedded 3-manifold in a neighborhood U(Σ) ⊂ M, which is described
via a Weierstrass representation with the spinor Φ. What is important about this
characterization is that the geometric parameters of the construction of the exotic
smooth structure appear as an extra term in the action. Thus, the dynamical source
of the exotic structure is the geometric construction of the structure-surgery, knots,
framing, handles, etc. Incidentally, in the work of [25], the dynamical source is the
non-orthogonal vector fields on the leaves of a foliation.

2. Differences in the action which cannot be explicitly parameterized as above. In short,
these are inequivalent solutions to the Einstein equations which do not have any
apparent simple parameterization at the level of the action-one would expect them
to have different curvature invariants, for example. Since the field equations are
only sensitive to local geometry, the fact that they are topologically identical must
come from their abstract presentation. Therefore in this case the dynamical source of
the exotic structure are local minima in the solution space of the Einstein-Hilbert
action, for a fixed topological background. The primary examples for this second
category are found in the semi-classical models, such as [8,10,34].

We are not suggesting these are the only two possibilities, but they contain all known
examples (either the action can be presented differently or not) and provide a useful
framework to think about the source of exotic smooth structure. In this paper, we are
focusing on the second case, and in the future work we will perform a similar analysis for
the first case, to bring models in both categories closer to potential observational verification.

4. The Exotic Kruskal Metric

We will first use the Z-transformation, presented in Section 2, with the Schwarzschild
metric in Kruskal-Szekeres coordinates as our building block:

ds2 =

(
32G3M3

r

)
exp

(
− r

2GM

)
(−dT2 + dR2) + r2dΩ2,

where the radius is implicitly defined via

T2 − R2 =
(

1− r
2GM

)
exp

( r
2GM

)
.

We choose the (T, R) part of the metric to be periodic, tracked by the integer part of the
timelike coordinate n = bTc (the lower brackets here indicate the floor function). For the
complex coordinates, we will simply complexify the radius by setting r = zr0 for r0 = 2GM,
so that |r/r0| = s is unitless. This should be compared with the original choice in [24],
which was z = exp(ir). That choice leads to a natural logarithm in the denominator and an
essential singularity in the inverse transformation.

With our choice r = zr0, our inverse transformation (1) becomes

16G2M2

2πi

∮ exp(−z)
z2+n dz,

and we need to perform a pole analysis on this to determine the value of the integral.
Immediately we see that there are no poles for n < −1, but for n ≥ −1 we can determine
the pole structure by expanding the exponential:

exp(−z)
z2+n =

∞

∑
m=0

(−z)m

m!
1

z2+n =
∞

∑
m=0

(−1)m

m!
zm−n−2.

So for a given value of n we will have a simple pole in the term with m = 1 + n, with
residue given by ∮ exp(−z)

z2+n dz = 2πi
(−1)(1+n)

(1 + n)!
, n ≥ −1.
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As in [24] (and discussed at the end of Section 2), in these coordinates we have a dimensional
reduction 4 → 2 for certain values of the timelike coordinate T < −1. We can relate this
region back to the original spacetime to create a spacetime diagram for this Exotic Kruskal
metric, which is shown in Figure 1. Since the transformation blocks everything T < −1,
the white hole that existed in the past of the usual Schwarzschild geometry does not exist.

Figure 1. The Exotic Kruskal spacetime diagram with complex radial coordinate. The darkened
region T < −1 is absent due to a dimensional reduction in these two coordinates-the spacetime is
simply a 2-sphere there.

The full exotic Kruskal metric is therefore

ds2 =

{
(−1)(1+n)

(1+n)! (16G2M2)(−dT2 + dR2) + r2dΩ2 T ≥ −1
r2dΩ2 T < −1

(2)

Note that this metric is not yet a solution to the Einstein equations, since we have not
yet specified an appropriate stress-energy tensor. The form of this metric is slightly different
from [24], due to the differences discussed above in the choice of periodic variables. In
principle, the next step here would be to find a matter model amenable to this metric,
starting with options like pressureless dust and perfect fluids, moving on to anisotropic
options. However, because r is defined implicitly in terms of (T, R), this metric is quite
complicated and is likely to fail. More explicitly, if we move back to the physical (t, r)
coordinates, the metric becomes relatively complicated:

g =
re(

r
2Gm )

2Gm(n + 1)!

{
−
(

1− 2Gm
r

)
dt2 +

(
1− 2Gm

r

)−1
dr2

}
+ r2dΩ2 (3)

We will not attempt to solve the field equations for this metric here, but draw some
inspiration from (2): our formulation of the Z-transformation produces a conformal trans-
formation on the R2 part of the spacetime. These types of metrics may have interesting
properties in their own right (for example, how might they play a role in conformal grav-
ity [35]?), but we will instead use this as inspiration for another choice of our building block
metric in the next section.

5. A Building Block with a Locally Embedded Conformal Surface

Based on the appearance of a locally embedded conformal surface after the
Z-transformation in the exotic Kruskal Metric (2), we will consider building blocks of
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our end periodic manifold M that produce these same structures more generally. We
consider situations when the end period manifold has a metric that looks like

ds2 = Z(t, r)(−dt2 + dr2) + r2dΩ2,

where Z(t, r) is the result of some Z-transformation on the nth block,

Z(t, r) = Tng =
1

2πi

∮
|z|=s

z−n ĝz
dz
z

.

Mimicking what we have done so far with Kruskal, let us start with a building block
with topology R2 × S2,

ds2 = g(t, r)(−dt2 + dr2) + r2dΩ2.

Further, let us continue to suppose the order of the transformation is tracked by the time
coordinate (n = btc), we will complexify by r → z ∈ C, and additionally that our metric
function is separable, g(t, r) = f (t)g(r). We also suppose that g(r) is analytic in a region
r1 < |r − r0| < r2 around a singular point r0 = |z0|, so its complexification will have a
Laurent series

g(z) =
j=∞

∑
j=−∞

gj(z− z0)
j, gj =

1
2πi

∮
C

g(z′)dz′

(z′ − z0)j+1 .

The transformation will then be

Z(t, r) =
f (t)
2πi

∮
|z|=r

g(z)z−(n+1)dz = f (t)gn, n = btc.

In other words, the effect of the transformation is to grab the nth term in the Taylor expan-
sion of the metric on the building block, which will be specified by the time coordinate.

Under this transformation our metric is then

ds2 = f (t)gn(−dt2 + dr2) + r2dΩ2. (4)

This will be the starting point for the later analysis. If f (t) is sufficiently well-behaved, we
can shift the time and radial coordinates;

t̄ =
∫ t̄

bt′c

√
gn f (t′)dt′, t̄ = 0 at t′ = bt′c, t̄ < 1,

r̄ =
√

f (t̄)gnr,

ds2 =

(
r̄2 ḟ 2

4 f 2 − 1
)

dt̄2 + dr̄2 − r̄ ḟ
f

dr̄dt̄ +
r̄2

f (t̄)gn
Ω2. (5)

Note that this transformation is t̄ = t − btc, so that 0 < t̄ < 1 and the order of the
cover n = btc is constant. When ḟ = 0, this metric is equivalent to the Barriola-Vilenkin
monopole [36],

ds2 = −dt2 + dr̃2 + (1− ∆)r̃2(dθ2 + sin2 θdφ2),

which appears at this level to have an angle deficit that depends on time. When we look
for a valid matter model in this case, we will see that the function f (t) must necessarily be
constant. The scalar curvature for this geometry is

R =
2 gn f (t)3 − r2

(
∂ f
∂t

)2
+ r2 f (t) ∂2 f

∂t2 − 2 f (t)2

gnr2 f (t)3 .
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The curvature vanishes as r → ∞, and is singular at r = 0. Additionally, for
f (t) = 1/gn the curvature is zero, but looking at (5) we see that this condition simply
brings us back to Minkowski space.

Making a comparison to [25]; the metric (5) is similar to what is found in Section 5
of that paper, but with very different origins. In our case, we have performed a metric
transformation and required that the resulting matter is reasonable, whereas the metric
in [25] follows from the weak field limit of the optical metric. In either case, the result is
essentially a metric with a conical angle deficit.

6. A Self-Consistent Matter Model forM
As discussed in Section 3, the next step is to find a matter model for the metric (5)

which satisfies the energy conditions. We don’t want to yet enforce the static condition
of f (t) = constant, but the metric is at least symmetric, so the Einstein tensor Gµν and
the energy-momentum tensor will inherit that restrictions. Given that, one might start
with a pressureless dust model with T00 = ρ(t, r) and Tij = 0; in this case the Einstein
equations are (this and most of the following differential geometry calculations were done
with SageMath [37]) (κ = 8πG here):

−gnκρ f (t) +
gn f (t)

r2 − 1
r2 = 0, − gn f (t)

r2 +
1
r2 = 0,

r2 ∂
∂t f (t)2

2 gn f (t)3 −
r2 ∂2

(∂t)2 f (t)

2 gn f (t)2 = 0.

To satisfy the second we require f (t) = 1/gn, which not only implies a Minkowski metric,
but also makes the density vanish in the first of these expressions. Trying an ideal fluid
Tµ

ν = diag(ρ, P, P, P), the same analysis leads to the field equations

−gnκρ f (t) +
gn f (t)

r2 − 1
r2 = 0, −gnκP f (t)− gn f (t)

r2 +
1
r2 = 0,

−κr2P +
r2 ∂

∂t f (t)2

2 gn f (t)3 −
r2 ∂2

(∂t)2 f (t)

2 gn f (t)2 = 0.

In this case the first equation implies ρ ∝ ρ(t)/r2 and the second P ∝ P(t)/r2, but the
energy conservation equation ∇µTµ

ν = 0 is(
−

2 f (t) ∂ ρ
∂t + (T0(t, r) + P(t, r)) ∂ f

∂t
2 f (t)

)
dt +

∂ P
∂r

dr = 0,

telling us that ∂P/∂r = 0, showing that the field equations are inconsistent.
At this stage, let us consider a matter model which is weakly anisotropic-specifically, the

energy-momentum tensor in the radial direction is not identical to the angular directions:

Tµ
ν =


−T0(t, r)

T1(t, r)
T2(t, r)

T2(t, r)

 (6)

Note that we should not automatically associate the component T0 with the matter density
and Ti with fluid pressure-T1 is the radial pressure, and T2 is the angular pressure, which
accounts for possible anisotropies. This spacetime is Type I in the Hawking-Ellis classifi-
cation [38], and see [39] for more on our approach to anisotropic stress-energy tensors. In
fact, we could have expected this form of the energy-momentum tensor in the first place,
since the spacetime we started with only had S2-symmetry in the first place (not S3).
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The energy conservation equation ∇µTµ
ν = 0 is(

−
2 f (t) ∂ T0

∂t + (T0(t, r) + T1(t, r)) ∂ f
∂t

2 f (t)

)
dt +

(
r ∂ T1

∂r + 2 T1(t, r)− 2 T2(t, r)
r

)
dr = 0, (7)

and the Einstein equations are

−gnκT0(t, r) f (t) +
gn f (t)

r2 − 1
r2 = 0

−gnκT1(t, r) f (t)− gn f (t)
r2 +

1
r2 = 0

−κr2T2(t, r) +
r2 ∂

∂t f (t)2

2 gn f (t)3 −
r2 ∂2

(∂t)2 f (t)

2 gn f (t)2 = 0

It is immediately obvious that T0 = −T1 (or ρ = Pr), and further it appears T0 ∝ r−2

for the first field equation to be satisfied. So, setting

T0(t, r) =
K(t)

r2 ,

we can solve for the metric function

f (t) =
1

gn(1− κK(t))
.

However, if we implement these two conditions in the energy conservation Equation (7),
we find

− 1
r2

∂K(t)
∂t

dt− 2T2(t, r)
r

dr = 0.

So T2 = 0 and K must be a constant, so the density is constant in time. Further, K 6= 1/κ or
the conformal part of the metric will be singular.

Now we must demonstrate that this matter model satisfies some kind of energy
condition. In our case we will choose the weak energy condition,

Tµνtµtν ≥ 0,

for any timelike tµ as our criteria. Of course, this is the easiest one to satisfy, but without
further physical constraints, passing this bar should be considered sufficient for the solution
to be considered interesting. For us this expression reads

f gn(T0(t0)2 + T1(t1)2) + r2T2(t2)2 + r2 sin2 θT2(t3)2 ≥ 0.

For a timelike vector, we have (this calculation is similar to that which one does for
the energy conditions of the ideal fluid) f gn(t0)2 = 1 + f gn(t1)2 + r2(t2)2 + r2 sin2 θ(t3)2,
so putting this into the expression above we arrive at

T0 + f gn(T0 + T1)(t1)2 + r2(T0 + T2)(t2)2 + r2 sin2 θ(T0 + T2)(t3)2 ≥ 0.

So, this condition will surely be satisfied if T0 is positive, and if each of T0 + Ti is
also positive. If we choose K > 0, the radial pressure and density in this model are equal
and positive,

ρ = Pr =
K
r2 > 0.

So this model satisfies the weak energy condition (although minimally so).
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The vanishing of the angular pressure T2 = 0 is a clear sign of the anisotropy, which
we will briefly discuss. For a stress-energy tensor with anisotropic stress we have the
generic equation [39]

Tab = (ρ + p)uaub + πab,

where the anisotropy can be parameterized as

πab =
√

3S
(

cacb −
1
3
(uaub + gab)

)
.

Here S is the magnitude of the anisotropy,

S =

√
1
2
|πabπab|

and ca = (0,
√

g11, 0, 0) is a radial vector. In the comoving frame we have

T0
0 = ρ, T1

1 = p +
2√
3

S, T2
2 = p− 1√

3
S,

where now p refers to the fluid pressure, rather than the radial pressure Pr. The vanish-
ing of T2 simply indicates that the magnitude of the anisotropy is proportional to the
fluid pressure,

S =
√

3p.

The source of the anisotropy could be self-interactions related to the microscopic
details of the matter in question, and demonstrates the issue discussed in Section 3 about
the lack of specific knowledge of the matter content. We do not want to go into extensive
detail on that here, but we do want to mention one interesting option for the source of
this anisotropy, and that is a perfect fluid combined with a massless scalar field with
stress tensor

Tµν
s = ∇µφ∇νφ− 1

2
gµν∇ρφ∇ρφ.

Following [40], we can make the pressure vanish in the transverse direction by setting
the fluid pressure to p f =

1
2 (∇φ)2. This implies the radial pressure is equal to the energy

density, pr = ρ = (∇φ)2, as we found above. There is extensive literature on modeling
dark matter as an ultra-light scalar field, which includes not just galaxy rotation curves and
lensing, but also structure formation; for a brief review, see [41]. Finally, we want to point
out that the presence of this anisotropy is a difference between our work and [25], which
used a perfect fluid as the matter model, and found an equation of state with w = 0.

This matter distribution is an example of a polytropic equation of state, P ∝ ργ, with
γ = 1, and is also known as the singular isothermal sphere. By solving the equation of
hydrostatic equilibrium, it can be determined that our constant K is related to the central
velocity distribution σv by [42]

K =
σ2

v
2πG

.

This matter model has been traditionally used to describe gravitational lensing in systems
such as individual galaxies and X-ray halos [20]. In addition, this mass distribution
produces flat rotation curves in spiral galaxies, a classic marker for dark matter [18].

We are primarily interested in the viability of this model to describe the excess gravita-
tional lensing usually associated to dark matter. Actually doing that involves reconstructing
the mass distribution from a statistical analysis of the deformation and sheer of the 2D
projected image of a galaxy cluster on the sky, which would take us quite far afield of our
theoretical focus. For a classic introduction to that approach, see [19]. It is also true that
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although the isothermal sphere is often a starting point for the analysis of such astrophysi-
cal systems, other models are commonly in use that appear to more accurately describe
systems with large amounts of dark matter. Here, we will simply demonstrate that the
mass distribution in this model is qualitatively similar to the distributions often found
when performing more detailed analysis.

To determine the luminous matter in such clusters, X-ray detection of the hot intra-
cluster medium is often used as a proxy. These β-models are parameterized by

ρ(r) = ρ0

(
1 +

(
r
rc

))−3β/2
,

where β ≈ 0.65, but varies for specific cases [43]. Figure 2 shows the minimum and
maximum values of β in a particular recent survey [44]. Dark matter halos in such systems
are often described with a Navarro-Frenk-White (MFW) profile, of the form

ρ(r) = ρ0

{
r
rc

(
1 +

r
rc

)−2
}

.

We include these comparisons not as a strong argument that we expect it to have
similar predictions in terms of lensing as either the β- or NFW-models, but only as a rough
comparison. The fact that our analysis produced one of the most successful models for
understanding matter distribution in extragalactic systems should be a strong argument
for the validity of the essential approach. We also point out that this validity argument
holds perfectly well for gravitational solitons in the weak field limit [25], since that also
results in the singular isothermal sphere as a matter distribution.

100 101 102
log(r)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

log(ρ/ρ0)

Here
β−model with β=0.35
β−model with β=0.8
Navarro-Frenk-White

Figure 2. A qualitative comparison between the model in use here (the isothermal sphere) and two
alternative models often used to describe the distribution of matter in galactic systems.

7. Summary

In this paper we have explored several examples of metrics on end-periodic manifolds,
which are key constructions for the presentation of exotic smooth structure. By necessity,
this approach feels “backwards” relative to the most common approach to the construction
of spacetime models, because the information available about them is quite a bit different.
Rather then particular symmetry conditions, or explicit equations of state, all we have
to work with is the result of Taubes [29], that metrics on end-periodic manifolds can be
constructed by a periodic transformation on building blocks (the Z-transformation). Once a
building block is chosen, the matter model is inferred from the resulting metric, and reality
conditions checked.
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We have illustrated several examples using this approach, which includes the first po-
tentially viable as a physical model. In the case of Exotic Kruskal, the resulting field
equations were restrictively complex, although that case served to illustrate that the
Z-transformation method (at least in the manner in which we are working with it) produces
metrics with embedded conformal surfaces. Using this as a starting point, we generated a
simpler building block which resulted in such a metric, and which we used to solve the
field equations. The result was a well-known model, the singular isothermal sphere, but
with a non-zero stress tensor. We also identified several places where our approach and
results made contact with another recent study [25].

Of course, that matter distribution has been used in astrophysics for years, and
is known to fail to describe most observational examples of dark matter. However, the
association of what is essentially a monopole metric with a non-vacuum solution to the field
equations represents a new connection, forged by considering the underlying spacetime to
be an exotic smooth structure, presented as a end-periodic manifold. Perhaps more to the
point, it is a slight variation on the original conjecture of Carl Brans-here the exotic smooth
structure is not mimicking or generating matter, but rather an exotic smooth structure is
shown to contain a standard matter distribution, previously known to the astronomical
community. It is our hope that the initial work done here can be developed further to
explore the parameter space of exotic smooth structures more completely, perhaps finding
models which could stand on their own as explanations for dark matter that do not require
the addition of exotic interactions or particles, but only exotic mathematics.
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