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Abstract: This is a very comprehensible review of some key issues in modern cosmology. Simple
mathematical examples and analogies are used, whenever available. The starting point is the well-
known Big Bang cosmology (BBC). We deal with the mathematical singularities appearing in this
theory and discuss some ways to remove them. Next, and before introducing the inflationary
paradigm by means of clear examples, we review the horizon and flatness problems of the old
BBC model. We then consider the current cosmic acceleration and, as a procedure to deal with
both periods of cosmic acceleration in a unified way, we study quintessential inflation. Finally, the
reheating stage of the universe via gravitational particle production, which took place after inflation
ended, is discussed in clear mathematical terms, by involving the so-called α-attractors in the context
of quintessential inflation.
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1. Introduction

A long time ago, humans raised their eyes to the sky and started to try to understand
everything that was around: the whole universe. Its origin and evolution are among the
greatest mysteries in the history of humanity. This quest was the beginning of a new science
named cosmology (from “cosmos,” the Greek word for universe). One of its main purposes
is to study the whole universe chronology, which is related to very primordial questions
for human beings, such as “where do we come from?” and “where are we going?”.

The first models to describe our universe were proposed a long time ago. Among
them is the Cosmic Egg allegory that appeared in India between the 15th and 12th century
B.C., which depicted a cyclic universe expanding and collapsing infinitely many times.
Some centuries later, the Greek philosophers questioned themselves about the fundamental
constituents of everything (the four elements), and then started to build some primitive
models of the cosmos (Anaximander, Anaxagoras, Democritus, Aristotle, Aristarchus),
up to the more elaborate Ptolemaic geocentric universe. It was not until the 14th century
A.C. that the Polish astronomer Nicolaus Copernicus, based in Aristarchus’ model—who
already had the right idea, many centuries before, but had been able to convince neither
his contemporaries nor future generations—proposed a heliocentric universe, later refined
by Johannes Kepler. A milestone was laid when, in 1687, Isaac Newton published his
influential Principia, where the universe was described as static, steady-state, and infinite.

However, it was not until the second decade of the 20th century that modern cos-
mology appeared. This happened thanks to the new tools that allowed astronomers to
obtain, for the first time in history, the positions and velocities of the celestial bodies (and
thus, treat the universe as an ordinary physical system [1–4]), and thanks also to the solid
theoretical basis provided by Albert Einstein’s general theory of relativity (GR). His first
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model, proposed in 1917, was the well-known Einstein’s static model [5] where, for consis-
tency, he introduced his now very famous cosmological constant (CC). In the same year,
Willem de Sitter [6] proposed another static and closed model describing a universe that
was clearly expanding, but it was devoid of any matter or energy, only containing a CC. In
spite of being a solution for Einstein’s equations, it was generally considered as physically
unrealistic. Five years afterwards, in 1922 and 1924, the Russian mathematician Alexander
Friedmann obtained families of solutions of the GR equations depicting expanding and
contracting universes [7,8]. Later, in 1927, the Belgian scholar Georges Lemaître, using the
observational values for speeds and distances graciously provided to him by the reputed
astronomers Vesto Slipher and Edwin Hubble, was the first to propose that the universe
was actually expanding (however, in this model, it had no origin in time, which extended
from minus to plus infinity) [9]. In any case, the value he obtained for the expansion
rate was quite close to the one Hubble would obtain two years later (namely, the famous
Hubble constant).

Once the evolution of the universe was clear, the question about its origin acquired
relevant importance. That the universe had had an origin was proclaimed by Lemaître [10],
a few years after his great discovery of the universe’s expansion. He even dared to propose
a specific model for the beginning of the cosmos, a tremendous explosion of a primeval
atom—an idea soon to be scientifically discredited, but that, owing to its extreme simplicity
and its beautiful name, the Big Bang, has persisted until now in the popular literature.
Later, it was proven that, under very general conditions, the GR equations for the universe
imply that it must have started from a “mathematical” singularity (since all GR solutions
diverge at some finite value of time in the past), what is now termed the Big Bang (BB)
singularity and is at the heart of the so-called Big Bang cosmology (BBC). It is important to
clarify from the very beginning that this singularity—although rigorous and unavoidable in
principle—is only mathematical (as are most, if not all, singularities appearing in physics).
As usually happens, it comes from the simplicity of the theory and appears in a region
where the model is no longer valid, e.g., when one assumes that GR holds at all scales, what
is clearly not true: for it is not valid at small-length scales.

Being more specific, when our patch of universe (the one visible for us) was the size of
an atom or less, as-yet-unknown physical effects, such as quantum effects (produced by a
quantum field [11] or by holonomy corrections, as in LQC [12]) or non-linear curvature ef-
fects in the Hilbert–Einstein action [13,14], did play an important role and could eventually
prevent the singularity from occurring.

Moreover, the Big Bang cosmology model had some shortcomings, notably, the horizon
and flatness problems, which could finally be overcome thanks to Alan Guth’s brilliant idea
of cosmic inflation [15]. This is only an implementation of the old BBC model, where at very
early times, presumably at GUT scales, a very short period of extremely fast accelerated
expansion of the universe is assumed to have ocurred. In fact, the inflationary paradigm,
devised by Guth at the beginning of the 1980’s and improved by Andrei Linde and other
cosmologists [16,17], is still at present considered as the simplest viable theory that describes
the early universe and that is in agreement with the most recent observations. It also has a
good predictive power, because it is able to explain the origin of the present inhomogeneities
in the universe as quantum fluctuations during that epoch [18–22], matching well the latest
observational data from the Planck survey [23].

A further leap forward occurred when, towards the end of the last century and after
very important hints had been accumulated in that direction (see, e.g., [1] for a detailed
explanation), it was realized that the universe’s expansion is actually accelerating [24,25].
Scientists try to explain this acceleration by introducing a new energy component: dark
energy [26]. Its most simple realization is the re-introduction of Einstein’s cosmological
constant, what leads to the so-called Λ cold dark matter model (the current standard
cosmological model) [1–4]. However, to match with the current observational data, the
value of the CC in this model has to be fine-tuned with enormous precision. This is the
reason why some cosmologists introduced the idea of quintessence, where a scalar field
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is responsible for the late-time acceleration, as a new class of dark energy (see [27], for a
review of these models).

In this way, one can think of inflation and quintessence as the two different sides of
a coin, or, after the introduction by Peebles and Vilenkin, in their seminal paper [28] on
the concept of quintessential inflation (QI), as simply a unique kind of force which describes
both inflation and the accelerated expansion. The idea of a unified picture of the universe,
connecting the early and the present accelerated stages, is possible through the introduction
of a single scalar field, also named the inflaton, as in standard inflation, which at early times
produces inflation while at late times provides quintessence.

In addition, the majority of models in QI are so simple that they only depend on two
parameters, which are determined by observational data. Since the dynamical behavior
during inflation is an attractor, the dynamics of the model are obtained with the value of
the scalar field and its derivative—initial conditions—at some moment during this period;
this shows the simplicity of quintessential inflation.

The assumption that the universe had an inflationary phase readily implies that a
reheating mechanism, to match inflation with the hot Big Bang universe, is needed [15].
This is because the particles existing before the beginning of this period are extremely
diluted by the end of inflation, resulting in a very cold universe. The most accepted idea
to reheat the universe in the context of QI is through a phase transition, namely, from
inflation to kination (a phase where almost all the energy density of inflation turns into
a kinetic form [29]), the adiabatic regime being broken, which allows for an abundant
production of particles. This mechanism is not unique, since a number of other alternatives
can be used. Two of them seem to be the most efficient. The first is the gravitational particle
production of massless particles, already studied a long time ago in [30–38], and recently
applied to quintessential inflation in [28,39] for massless particles, and also the reheat-
ing via the gravitational production of heavy massive particles conformally coupled to
gravity [40–44]. The second mechanism is called instant preheating, which was introduced
in [45] and applied for the first time to inflation in [46].

The present review is organized as follows. In Section 2, we discuss the Big Bang
model, and obtain first the fundamental equations in an easy way by using a simplified
version of the Einstein–Hilbert action, together with the first law of thermodynamics.
Once we have these equations, we deal with the Big Bang singularity and with future
singularities, and we review some possible ways to remove them, such as in loop quantum
cosmology and in semi-classical gravity. Section 3 is devoted to the study of the inflationary
paradigm. First of all, the famous horizon and flatness problems are described to then
introduce Alan Guth’s proposal of cosmic inflation, which solves the shortcomings of Big
Bang cosmology. We describe with great detail the slow-roll regime, explaining in a clear
way the conditions to obtain it, and its attractor nature. In Section 4, we consider the current
cosmic acceleration, starting with Einstein’s static model of 1917, where he introduced his
celebrated cosmological constant. This constant is now at the heart of the famous Λ cold
dark matter model, which is presently the standard cosmological model used by many
scientists to depict our universe. The importance of dark matter on a cosmological level, e.g.,
for the formation of large-scale structures in the universe, cannot be underestimated. It can
actually provide a better picture of the current state of the art of the Big Bang cosmological
model (for easy-to-follow references, see [47–49]).

However, in such a model, the cosmological constant has to be very finely tuned,
which is conceptually a serious problem. This is the reason why other forms of dark energy
have been introduced, in order to deal with this issue. One of these proposals is quintessence,
which we review in the context of quintessential inflation: a theory that aims at unifying the
early and the late-time accelerated phases of our universe. The reheating of the universe
is considered in Section 5, where by using the quantum harmonic oscillator model, we
introduce the well-known diagonalization method, with the aim to calculate the energy
density of particles created via gravitational particle production. As an application, we
calculate the reheating temperature in the so-called α-attractor models, which are derived
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rather naturally from fundamental super-gravity theories. Finally, in Section 7, some
relevant historical notes are included, which describe a few crucial moments and important
developments in the history of modern cosmology. A much more detailed account of
these historical issues is provided in the recent book by one of the authors [1], which is a
perfect complement to the present review. Here, a much more specific, technically solid,
and detailed quantitative explanation of the concepts will be given, with all the relevant
formulas and with the help of many comprehensible examples.

Conventions

Throughout the work, natural units are used, h̄ = c = kb = 1, where h̄ is the reduced
Planck constant, c is the velocity of light, and kb is Boltzmann’s constant. In natural units,
one has:

[energy] = [mass] = [temperature] = [length]−1 = [time]−1.

In these units, the reduced Planck mass reads Mpl =
√

1
8πG
∼= 2.44× 1018 GeV, with

G being Newton’s constant.
Planck’s scale:

1. Planck’s lenght: lpl =
(

Gh̄
c3

)1/2
= 1.616× 10−33 cm. Compare with Bohr’s radius:

rB ∼= 5.3× 10−9 cm;
2. Planck’s time: tpl =

lpl
c = 5.391× 10−44 s;

3. Planck’s mass: mpl =
(

h̄c
G

)1/2
= 2.117× 10−5 g. Compare with the proton mass:

m ∼= 1.7× 10−24 g;

4. Planck’s temperature: Tpl =
mplc2

kB
∼= 1.4× 1032 K. The current temperature of our

universe is 2.73 K. The temperature of the solar surface is approximately 6000 K;

5. Planck’s energy density ρpl =
mpl c2

l3
pl

= 4.643× 10114 erg·cm−3. The energy, mass, and

temperature are either given in GeV or in terms of Mpl . For example, the temperature
of the universe one second after the Big Bang is around 10−3 GeV or 10−21Mpl , which,
in IS units, is approximately 108 K.

2. Big Bang Cosmology

Modern cosmology is based on Einstein’s equations (EE) of general relativity (GR),
which relates the geometry of spacetime—a four-dimensional manifold—with the mat-
ter/energy it contains in the following way: “matter tells spacetime how to curve and spacetime
tells test particles how to move”. A test particle moves in spacetime along a geodesic curve.

Being more precise, given a distribution of masses, the unknown variables are the
coefficients of the metric gµν, and the equations of GR are second-order partial differential
equations (PDE) containing some constraints (which are equations of order one or zero).
The most important of them is the Hamiltonian constraint: the total Hamiltonian of the
system (the universe) vanishes. These equations are:

Rµν −
1
2

Rgµν =
8πG

c4 Tµν, µ, ν = 0, 1, 2, 3, (1)

where Rµν = Rα
µαν is the Ricci tensor, R = Rµ

µ is the Ricci scalar (or scalar curvature),
and Tµν is the stress–energy tensor (containing all the information about the masses and
energies of the universe).

Here,

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ, (2)
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is the Riemann curvature tensor, where:

Γρ
µν =

1
2

gµλ
(
∂νgλµ + ∂µgλν − ∂λgµν

)
, (3)

are the Christoffel symbols.
Fortunately, in cosmology, these equations simplify very much. In fact, we just know

about our patch of the universe, that is, the part of the cosmos that is visible to us. (Recall
that, owing to inflation and also to the finite velocity of light, the whole universe is not
visible to us.) The extension of our patch is of the order of 3000 Mpc (1 Megapasec (Mpc)
= 3.26× 106 light years = 3.08× 1019 km), and it is observed to be very homogeneous (we
see the same properties at all places of our patch) and isotropic (it does not matter which
direction our telescope is pointing in, properties also remain the same), on scales larger
than, say, 100 Mpc, but it does exhibit inhomogeneous structures on smaller scales (as, e.g.,
on scales of the Milky Way).

So, working on large scales, we can safely assume a homogeneous and isotropic
universe, which enormously simplifies the corresponding EE: the only variable is now the
cosmic time (spatial coordinates do not appear in the equations due to homogeneity). Thus,
we are left with a set of ordinary differential equations (ODE), instead of the original PDE.
The hypothesis of homogeneity and isotropy are extremely well supported by surveys of
galaxies (e.g., SDSS) and by the recent results of the WMAP and the Planck satellites (for
updated information, the reader can look at [50–52]).

2.1. Hubble’s Law

One of the most important discoveries in human history is the fact that our universe is
expanding. This conclusion was reached through the cosmic Doppler effect: light of distant
celestial objects is red-shifted, i.e., owing to the universe’s expansion, the wavelength of
the light emitted by these objects grows (the waves decompress), so the light we see from
far-away galaxies is displaced towards the red region of the spectrum. On the contrary,
in a hypothetically contracting universe, the wavelength of the emitted light would be
compressed, and we would see a displacement towards the blue region of the spectrum.
This is what actually happened with the very first measurement performed by Vesto Slipher,
in 1912, corresponding to the nearby Andromeda galaxy. It was a blueshift, due to the
fact that, in this case, gravitational attraction is much larger than the effect of the local
expansion of the universe. Moreover, in fact, Andromeda is approaching the Milky Way at
a very high speed: the two galaxies will collide in the future. This is an important lesson
we need to learn: cosmic expansion always competes with the gravitational forces of highly
massive objects, which provide contributions to the total redshift that astronomers have to
disentangle (which, in general, is quite difficult to do). You can see a very nice explanation
of the Doppler effect, in the context of GR, in episode 8 of Carl Sagan’s “Cosmos” series [53].

One of the fundamental principles of modern cosmology is Hubble’s empirical law
(1929) [54], which he obtained by measuring (mainly by using Henrietta Leavitt’s law for
Cepheid variable stars) the distances to spiral nebulae (given in Mpc) and comparing them
with the table of speeds (measured in kms) obtained by Vesto Slipher a few years before
and, by then, published already in Eddington’s aclaimed book. Actually, Hubble’s law had
been obtained by Georges Lemaître two years before, a fact that was recently recognized, at
last [1–4]. As a result, the expansion law is now officially called the Hubble–Lemaître law,
which relates the relative velocities of observers as follows: In an expanding, homogeneous,
and isotropic universe, the velocity of the observer B with respect to A is:

~vAB = H(t)~rAB ⇐⇒ ~̇rAB = H(t)~rAB, (4)

where H(t) > 0 is the so-called Hubble rate and ~rAB is the vector pointing from A
towards B.
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Integrating this equation, one obtains:~rAB(t) = a(t)~rAB(ti), where the dimensionless

function a(t) = e
∫ t

ti
H(s)ds

is the so-called scale factor. What is important is to note that
dAB(ti) = |~rAB(ti)| is the distance, at time ti, between points A and B, and that at time t,
this distance is dAB(t) > dAB(ti) (for t > ti, because H(t) > 0 =⇒ a(t) > 1); thus, the
universe is expanding.

In fact, the distance between two points at different epochs is given by the formula
dAB(t2) =

a(t2)
a(t1)

dAB(t1); that is, the scale factor tells us how the distance between two points
scales with time. For a clear idea of this expansion, we can “imagine”, as the simplest
model, that the universe is an inflating balloon—in more rigorous mathematical terms, the
three-dimensional spherical surface of a four-dimensional ball, with time being the radial
coordinate—and ri is its radius at time ti; then, the radius of the balloon at time t would be
a(t)ri. In addition, one has H(t) = ȧ(t)

a(t) , which means that this quantity is the expansion
rate of the universe, where reliable observational data tell us that its current value, H0, is
approximately 70 km/s

Mpc .

Before closing this point, we have to say that H0 is both the most important cosmo-
logical parameter and also the most difficult to calculate—both because of the difficulty
of measuring cosmological distances reliably, and of disentangling the cosmological con-
tribution from other components of the observed redshift of a very distant celestial object
object. The calculated value of H0 has changed a lot, from the time of the first reported mea-
surements by Lemaître (600) and Hubble (500), down later to a value of 50, the preferred
one some decades ago [55,56]. Even presently, there is a new and quite sharp controversy
among different groups (see, e.g., [57] and references therein) concerning what presently
sets this value between 67 and 74, according to the results reported by different groups
(there is, namely, over a 10% discrepancy, even to this day) [1–4]. This issue has been named
the expansion rate tension. This is a very important issue at present, and we would like to
provide some more information regarding the nature of this tension, which affects mainly
the late-time versus the early time data results. To give a detailed account of this issue lies
beyond the scope of the present paper, but a very well-documented version of it can be
found, e.g., in [58,59].

2.2. The Cosmic Equations

The main ingredient to obtain the dynamical equations of the cosmos at a large scale
is the scalar curvature or Ricci scalar, which, for a spatially flat space-time (later, we will
see that our universe could be spatially closed, flat, or open), is given by R(t) = 6(Ḣ(t) +
2H2(t)). In addition, we assume that, at large scales, galaxies can be taken as particles of
a homogeneous fluid filling the universe, whose energy density is denoted by ρ(t). The
corresponding Lagrangian, in natural units, was given by Hilbert in 1915, immediately
after Einstein had postulated, “a la Newton”, the equations of GR (see the historical note
at the end):

L(t) = V(t)

(
R(t)M2

pl

2
− ρ(t)

)
, (5)

where V(t) ≡ a3(t) is the volume and Mpl is the reduced Planck mass.

The corresponding Hilbert–Einstein action reads S(t) =
∫ t

ti
L(s)ds. Then, since:

L = −
V̇2M2

pl

3V
+ V̈M2

pl − ρV, (6)
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and V̈M2
pl =

d
dt

(
V̇M2

pl

)
is a total derivative, it can be disregarded because it does not have

any influence in the dynamical equations. Thus, we will use the following Lagrangian,
which only contains first-order derivatives with respect to the volume variable:

L̄ = −
V̇2M2

pl

3V
− ρV = −3H2M2

plV − ρV. (7)

Remark 1. At this point, we should recall that, in classical mechanics, given a Lagrangian of the
form L(x, ẋ, t), performing the variation of the action S(t) =

∫ t
ti
L(x(s), ẋ(s), s)ds with respect to

the dynamical variable x, one obtains the so-called Euler–Lagrange equation:

d
dt

(
∂L
∂ẋ

)
=

∂L
∂x

, (8)

whose equivalent formulation is to consider the Hamiltonian, obtained via the Legendre transformation:

H = ẋpx −L, where px ≡
∂L
∂ẋ

. (9)

Then, the Euler–Lagrange equations are equivalent to the Hamiltonian equations:

ẋ = ∂pxH, ṗx = −∂xH. (10)

Coming back to our Lagrangian, the Legendre transformation leads to:

H = V̇pV − L̄, (11)

where the corresponding momentum is pV ≡ ∂L̄
∂V̇ = −

2V̇M2
pl

3V . Then, a simple calculation
shows that the Hamiltonian is given by:

H = −
V̇2Mpl2

3V
+ ρV = −3H2M2

plV + ρV. (12)

As we have already explained, the EE contain some constraints, and one of them states
that the Hamiltonian vanishes. So, we have:

H2 =
ρ

3M2
pl

, (13)

which is the well-known Friedmann equation (FE).

Remark 2. The Friedmann equation could also be obtained using the time Nds = dt, where N is
the so-called lapse function. From this new time, the Lagrangian becomes:

L̄ = −3
H̃2

N
M2

plV − ρVN, (14)

where H̃ = 1
a

da
ds = NH.

Then, the variation with respect to the lapse function yields:

∂L
∂N

= 0 =⇒ H2 =
H̃2

N2 =
ρ

3M2
pl

. (15)
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Once we have obtained the constraint, we need to find the dynamic equation. To
do that, we need the first law of thermodynamics. Assuming an adiabatic evolution of the
universe, i.e., that the universe’s entropy is conserved, one has:

d(ρV) = −PdV, (16)

where ρ is, once again, the energy density of the fluid and P is its pressure. Taking
the derivative with respect to the cosmic time t, it can be expressed as a conservation
equation (CE):

ρ̇ = −3H(ρ + P). (17)

Next, taking the derivative of the FE and using the CE, one obtains the Raychaudhuri
equation (RE):

Ḣ = − 1
2M2

pl
(ρ + P). (18)

Finally, to obtain the dynamics of the universe we need the relation between the
pressure and the energy density, i.e., the equation of state (EoS), which, for the moment, we
assume has the simple form P = P(ρ).

Remark 3. We should note that the Raychaudhuri equation can also be obtained from the Euler–
Lagrange one. In fact, a simple calculation leads to:

d
dt
(∂V̇L̄) = −2ḢM2

pl . (19)

On the other hand,

∂VL̄ = 3H2M2
pl − ∂V(ρV); (20)

thus, using the Friedmann equation and the first law of thermodynamics, one obtains:

∂VL̄ = ρ + P, (21)

which leads to the Raychaudhuri equation.

Summing up, the constituent equations in cosmology are:

H2 =
ρ

3M2
pl

Friedmann equation.

ρ̇ = −3H(ρ + P) conservation equation.

Ḣ = − 1
2M2

pl
(ρ + P) Raychaudhuri equation.

P = P(ρ) equation of state.

Note that the variables are H and ρ, but they are related via the FE. So, in practice,
we have only one unknown variable. Moreover, the CE and the RE are equivalent, which
means that we only need to solve one of them. For example, the CE, which can be written as:

ρ̇ = −
√

3ρ

Mpl
(ρ + P(ρ)), (22)

is only a simple and solvable first-order differential equation.
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Next, we define the EoS parameter as we f f =
P
ρ , which, using the constituent equations,

can be written as follows:

we f f = −1− 2Ḣ
3H2 . (23)

Then, from the EoS parameter, the acceleration equation could be written as follows:

ä
a
= Ḣ + H2 = −H2

2
(1 + 3we f f ), (24)

and thus, one can conclude that the universe is decelerating for we f f > −1/3, and that it is
accelerating for we f f < −1/3. In addition, from the Raychaudhuri equation, for we f f > −1,
the Hubble parameter decreases, and for we f f < −1 (phantom fluid), it increases.

Finally, from the first law of thermodynamics, one can easily show that for we f f =

w = constant, the energy density scales as ρ ∝ a−3(w+1).

2.3. Singularities

We consider the following linear EoS P = wρ, where w > −1 (non-phantom fluid)
is a constant EoS parameter (w = 0 for a dust fluid and w = 1/3 for radiation). The
combination of the FE and the RE leads to:

Ḣ = −3
2
(1 + w)H2, (25)

whose solution is given by:

H(t) =
H0

3
2 (1 + w)H0(t− t0) + 1

=
2

3(1 + w)(t− ts)
, (26)

where t0 is the present time, H0 is the current value of the Hubble rate, and ts = t0 −
2

3(1+w)H0
is the time when the singularity appears. Inserting this expression in the FE, one

obtains:

ρ(t) =
4M2

pl

3(1 + w)2(t− ts)2 . (27)

So, we see that the solutions H(t) and ρ(t) diverge at time ts < t0. This is the so-called
Big Bang (BB) singularity (see the historical note at the end to understand where that name
comes from), where the scale factor:

a(ts) = lim
t→ts

a(t0)e−
∫ t0

t H(s)ds = 0; (28)

that is, the “radius” of the universe vanishes at the BB singularity.
On the other hand, the age of our universe is given approximately by:

t0 − ts =
2

3(1 + w)H0
∼= 14 billion years, (29)

where the value of the Hubble rate that we have used currently is H0 ∼= 70 km/s
Mpc and

w ∼ 0.
Here, it is important to remark that there are other kind of mathematical singularities.

In fact, when the EoS is non-linear, as in P = −ρ + Aρα, one can encounter these different
future singularities [60]:

1. Type I (Big Rip): For t→ ts, a→ ∞, ρ→ ∞, and |P| → ∞;
2. Type II (Sudden): For t→ ts, a→ as, ρ→ ρs, and |P| → ∞;



Universe 2022, 8, 166 10 of 48

3. Type III (Big Freeze): For t→ ts, a→ as, ρ→ ∞, and |P| → ∞;
4. Type IV (Generalized Sudden): For t→ ts, a→ as, ρ→ 0, |P| → 0, and higher-order

derivatives of H diverge.

2.3.1. Big Rip Singularity

This singularity is the future equivalent to the Big Bang one, and it is obtained, for
instance, when one deals with a phantom fluid with a linear EoS (w < −1). The solution is
given by (26), but now ts > t0; that is, the singularity appears at late times.

2.3.2. Sudden Singularity

In [61], Barrow proposed a new kind of finite-time future singularity appearing in an
expanding FLRW universe. The singularity may also show up without violating the strong
energy conditions ρ > 0 and 3P + ρ > 0. This singularity was named the sudden singularity.

To deal with these kind of singularities, we consider a nonlinear EoS P = −ρ− f (ρ).
In this case, the conservation equation becomes ρ̇ = 3H f (ρ), and using the Friedmann
equation, one obtains:

ρ̇ =
√

3
ρ1/2

Mpl
f (ρ). (30)

Choosing, as in [62], f (ρ) =
AMpl√

3
ρν+ 1

2 , where A and α are two parameters, one obtains
the first-order differential equation:

ρ̇ = Aρν+1, (31)

whose solution is:

ρ(t) =
{

(ρ−ν
0 − νA(t− t0))

−1/ν ν 6= 0
ρ0eA(t−t0) ν = 0,

(32)

where ρ0 is the current value of the energy density.
Now, we consider the case ν < −1/2. The Hubble rate is given by:

H(t) =
1√

3Mpl

(
ρ−ν

0 − νA(t− t0)
)−1/2ν, (33)

which, introducing the time ts = t0 +
ρ−ν

0
νA , can be written as:

H(t) =
1√

3Mpl
(νA(ts − t))−1/2ν, (34)

and thus, the scale factor is given by:

ln
(

a(t)
as

)
= − 2

3Mpl A(2ν− 1)
(νA(ts − t))(2ν−1)/2ν. (35)

Then, for a non-phantom fluid, namely, for A < 0 (the effective EoS parameter is

we f f ≡ P
ρ = −1− AMpl√

3
ρν− 1

2 > −1), we see that ts > t0, and since ρ(ts) vanishes, we find
that the pressure P diverges at the instant ts, yielding a future Sudden singularity.

2.3.3. Big Freeze Singularity

For the same EoS as in the previous subsection, here, we consider the case ν > 1/2
and A > 0, that is, a phantom fluid, which implies that ts > t0. From (35), we see that
a(t) → as when t → ts, and from (33), we deduce that both the energy density and the
pressure diverge at that instant, which leads to a Big Freeze singularity.
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2.3.4. Generalized Sudden Singularity

We continue with the same EoS, but with−1/2 < ν < 0 and A < 0 (non-phantom fluid).
In this situation, ts > t0 and, once again, the scale factor converges to as when t→ ts;

now, however, the energy density and the pressure go to zero as the cosmic time approaches
ts. In addition, looking at the Hubble rate obtained in Formula (33), we easily conclude
that when − 1

2ν is not a natural number, then some high-order derivative of the Hubble
parameter will diverge at t = ts, thus obtaining a Generalized Sudden singularity.

To end this section, note that the case 0 < ν < 1/2 and A < 0 (non-phantom fluid)
corresponds to a Big Bang singularity and, for 0 < ν < 1/2 and A > 0 (phantom fluid), one
recieves a Big Rip singularity. In addition, when ν = 0 and A > 0, one obtains the so-called
Little Rip [63,64], where w < −1 and asymptotically converges to −1. In fact, in this case,
the energy density is given by ρ(t) = ρ0eA(t−t0), which diverges when t→ ∞. So,

w =
P
ρ
= −1−

AMpl√
3ρ
→ −1. (36)

Finally, it remains the case ν = 1/2 and A > 0, where the Hubble rate is given by:

H =
2√

3Mpl A(ts − t)
, (37)

and thus, the scale factor is given by:

ln
(

a(t)
a0

)
= − 2√

3Mpl A
ln
(

ts − t
ts − t0

)
, (38)

which means that the scale factor diverges when t → ts, and thus, we obtain a Big Rip
singularity.

2.4. Removing Singularities

It is very important to realize that the singular solutions we have found are just
mathematical solutions of the EE. We know that GR is a viable theory that has been
proven to match the observational data at low energy densities, but we still do not know
what the valid physical laws are at very high energies. Recall that, at Planck scales,
ρpl ∼ M4

pl ∼ 10114 erg/cm3 and lpl ∼ M−1
pl ∼ 10−33 cm.

We should take this into account, and also the very clear fact that the EE—as it happens
with Newton’s ones—are of no use to describe small scales. At the nuclear and even the
atomic scales, it is already accepted by the physics community that we need to quantize
gravity in order to depict our universe at very early times, at least up to Planck scales—
beyond that scale, no physical theory has been proven right, up to now. However, for
the moment, nobody knows how to obtain a quantum theory of gravity; it might even be
simply impossible. Maybe gravity is a force of a very different nature, as compared with
the electromagnetic and the nuclear forces. It could even be non-fundamental, but rather a
kind of emergent phenomena not to be described with gauging and quantization.

In short, adhering to Einstein’s viewpoint, we should not worry too much about these
mathematical singularities, since nature, and true physical descriptions of it, are always
free of them.

In spite of all these problems, some scientific communities attempt to obtain physical
(or, if you want, metaphysical, until they can be validated with actual experiments) laws
that are valid at high energy densities in several different ways:

1. Introducing quantum effects (more precisely, holonomy corrections), which could be
disregarded at low energy densities, as in loop quantum cosmology (LQC). These
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quantum effects produce a modification of the FE (the holonomy-corrected FE), which
becomes [65–68]:

H2 =
ρ

3M2
pl

(
1− ρ

ρc

)
, (39)

where ρc ∼= 0.4ρpl is the so-called critical density.
Note that now, the modified FE depicts an ellipse in the plane (H, ρ) (recall that, in
GR, the FE depicts a parabola), which is a bounded curve, so the energy density is
always finite. In fact, it is always bounded by the critical one. As a consequence, the
singularities such as the BB or the Type I and III do not exist in LQC. About the BB
singularity, people say that, in LQC, the Big Bang is replaced by a Big Bounce (the
universe bounces from the contracting to the expanding phase).
In addition, for low energy densities ρ� ρc, the FE in GR (the usual one) is recovered.
Thus, singularities of Type II and IV also exist in LQC. Finally, for a non-phantom
fluid, the movement throughout the ellipse is clockwise; that is, the universe starts in
the contracting phase, with an infinite size, and bounces to enter the expanding one.

2. Introducing non-linear effects in the Ricci scalar. We have already seen that, in GR,

the Hilbert–Einstein Lagrangian is L = V
(

RM2
pl

2 − ρ

)
. Then, the idea is that at high

energy densities the Ricci scalar is replaced by a more general function R → F(R),
which satisfies F(R)→ R when R→ 0, in order to recover GR at low energy densities
(recall that R = 6(Ḣ + 2H2)∼ρ/M2

pl) [13,69–71].
To obtain the Hamiltonian of the system, one has to use the so-called Ostrograski con-
struction, because the Lagrangian contains second derivatives of V. The Hamiltonian
constrain leads to the following modified FE in F(R) gravity:

−6F′′(R)ṘH + F′(R)(R− 6H2)− F(R) +
2ρ

M2
pl

= 0. (40)

This is a second-order differential equation with respect to the Hubble rate, which,
together with the CE and the EoS, give the dynamics of the universe. However,
contrary to the constituent equations in GR, one needs to perform numeric calculations
in order to solve the equations in F(R) gravity. The most famous model is R2 gravity
(sometimes known as the Starobinsky model) given by F(R) = R + αR2, which was
extensively studied in the Russian literature.

3. One can also introduce quantum effects produced by massless fields conformally
coupled with gravity, obtaining the so-called semiclassical gravity. If one considers
some massless fields conformally coupled with gravity, the vacuum stress tensor
acquires an anomalous trace, given by [72]:

Tvac = α∂µ∂µR− β

2
G, (41)

where R is, once again, the Ricci scalar, and G = −2(RµνRµν − 1
3 R2) is the Gauss–

Bonnet invariant. In terms of the Hubble parameter, one has:

Tvac = 6α

(
d3H
dt3 + 12H2Ḣ + 7HḦ + 4Ḣ2

)
− 12β(H4 + H2Ḣ). (42)

The coefficients α and β are fixed by the regularization process. For instance, using
adiabatic regularization, one obtains [11]:

α = 1
2880π2 (N0 + 6N1/2 + 12N1) > 0,

β = −1
2880π2 (N0 +

11
2 N1/2 + 62N1) < 0,

(43)
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while point splitting yields [72]:

α = 1
2880π2 (N0 + 3N1/2 − 18N1),

β = −1
2880π2 (N0 +

11
2 N1/2 + 62N1),

(44)

where N0 is the number of scalar fields, N1/2 is that of four-component neutrinos, and
N1 is the number of electromagnetic fields.
Here, it is important to note, as pointed out in [73], that the coefficient α is arbitrary,
although it is influenced by the regularization method and also by the fields present
in the universe, but β is independent of the regularization scheme and it is always
negative.
Now, we are interested in the value of the vacuum energy density, namely, ρvac. Since
the trace is given by Tvac = ρvac − 3Pvac, inserting this expression in the conservation
equation ρ̇vac + 3H(ρvac + Pvac) = 0, one obtains:

ρ̇vac + 4Hρvac − HTvac = 0, (45)

a first-order linear differential equation, which can be integrated by using the method
of variation of constants, leading to:

ρvac = 6α

(
3H2Ḣ + HḦ − 1

2
Ḣ2
)
− 3βH4 + Ca−4, (46)

where C is an integration constant, which vanishes for flat space-time. This can be
understood as follows: for a static space-time, ρvac reduces to Ca−4, and the flat
space-time reduces to Minkowski, for which ρvac = 0, and thus, C = 0. Therefore, in
semi-classical gravity, the Friedmann equation becomes:

H2 =
ρ + ρvac

3M2
pl

. (47)

Here, we will consider the empty flat case, which corresponds to ρ = 0 and C = 0.

There, since β < 0, one has a de Sitter solution H+ =
√
− 1

3β . In addition, the
Friedmann equation is, in the empty case:

3M2
pl H

2 = 6α

(
3H2Ḣ + HḦ − 1

2
Ḣ2
)
− 3βH4, (48)

and, for H = 0, becomes:

Ḧ =
Ḣ2

2H
, (49)

whose solution is given by H(t) = at2; this shows that, for this model, the branches
H > 0 and H < 0 decouple, i.e., the universe cannot transition from the expanding to
the contracting phase, and vice versa.
Next, performing the change of variable p =

√
H (we are here considering that the

universe expands), the semi-classical Friedmann equation becomes [74]:

d
dt

(
ṗ2/2 + V(p)

)
= −p2 ṗ2, (50)

where:

V(p) = − p2

24α

(
1 + βp4

)
. (51)
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The corresponding dynamical system can be written as:{
ṗ = y
ẏ = −3p2y−V′(p),

(52)

which can be viewed simply as the dynamics, with friction, of a particle under the
action of a potential.
There are two different situations (we use the notation p+ =

√
H+):

(a) Case α > 0, β < 0. Here, the system has two fixed points: (0, 0) is an unstable
critical point, and (p+, 0) is stable (it is the minimum of the potential). Solutions
are only singular at early times. At late times, they oscillate and shrink around
a stable point, that is, (p+, 0) is a global attractor. In addition, there is a solution
that ends at (0, 0), and only one nonsingular solution that starts at (0, 0) (with
zero energy) and ends at (p+, 0);

(b) Case α < 0, β < 0. This is the famous Starobinsky model [75]. The system
has two critical points: (0, 0) is a stable critical point, and (p+, 0) is a saddle
point (it is the maximum of the potential). There are solutions that do not
cross the axis p = p+; these solutions are singular at early and late times: they
correspond to the trajectories that cannot pass the top of the potential. There
are other solutions that cross the axis p = p+ twice; they are also singular at
early and late times. These trajectories pass the top of the potential, bounce
at p = 0, and pass once again the top of the potential. There are solutions
that cross the axis p = p+ once. These solutions are singular at early times;
however, at late times, the solutions spiral and shrink to the origin. These
solutions pass the top of the potential once, and then bounce some number
of times about p = 0, shrinking to p = 0. Finally, there are only two unstable
non-singular solutions: one goes from (p+, 0) to (0, 0), and the other is the
de Sitter solution (p+, 0). What seems a little bit strange is that the title of
Starobinsky’s paper [75] is “A new type of isotropic cosmological models
without singularity”. In fact, as we have just shown, in that model, there is
only one non-singular solution, but it is unstable, and thus, non-physical.

2.5. Chronology of the Universe

To explain the different phases of the universe, first of all, we need to recall some basic
elements of thermodynamics. For a relativistic fluid (made of light particles with velocities
comparable to the speed of light) in thermal equilibrium at temperature T, we know that:

1. The energy density is given by ρ = π2

30 g∗T4, where g∗ is the number of degrees of
freedom, which for the modes in the standard model are 28 + 7

8 × 90 = 106.75;
2. For a relativistic fluid, pressure is related to energy via the linear relation P = ρ/3⇐⇒

we f f = 1/3;

3. The number density of particles is n = ζ(3)
π2 g∗T3, where ζ is the Riemann zeta function;

4. The entropy density is s = ρ+P
T = 2π2

45 g∗T3.

The total entropy is S ≡ sa3, so for an adiabatic process, i.e., when the total entropy is
conserved, one has:

Ta = constant =⇒ T
a
a0

= constant =⇒ T
z + 1

= constant, (53)

where a0 is the present value of the scale factor and z is the cosmic redshift.
Since the current temperature of our universe is T0 ∼= 2.73 K ∼= 2.3 × 10−13 GeV,

one has:

T/GeV
z + 1

= 2.3× 10−13. (54)
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We also need the relation between the temperature of the universe and its age. For
this, we use the the value of the Hubble rate for a radiation-dominated universe H(t) = 1

2t .
From the FE and the Stefan–Boltzmann law, in natural units, we have:

1
4t2 =

π2

90
g∗

T4

M2
pl

=⇒ T =

√
Mpl

2π

(
90
g∗

)1/4 1√
t
. (55)

Next, denoting by tsec the age of the universe in seconds, we have

tsec × 1s ∼= 2tsec × 1043tpl
∼= 4tsec × 1042M−1

pl .

Inserting this relation in (55), one obtains the following expression for the temperature
of the universe (in MeV) in terms of its age (in seconds):

TMeV =
O(1)√

tsec
. (56)

From there, in the BB model the chronology of our universe can be described as follows:

1. Planck scale. Tpl∼Mpl
∼= 2.4× 1021 MeV, which means that the Planck scale is reached

at tpl ∼ 10−43 seconds after the BB. It is very important to remark that no reliable
physical theory can be invoked before this time. This is a crucial, insurmountable
constraint that any serious physicist knows well, but that, too often, is kept hidden
under the carpet (nobody seems to be interested in proclaiming the shortcomings
of present-day fundamental physics). The corresponding redshift has a value of
zpl ∼ 1031;

2. Grand unification theory (GUT) scale. It enters when the temperature goes down
to TGUT ∼ 1016 GeV, i.e., for tGUT ∼ 10−36 s or zGUT ∼ 1029. The three forces of the
standard model (electromagnetic, weak, and strong), which constituted a unique force
until then, start to become separated forces below this temperature;

3. Electroweak epoch. It occurs at TEW ∼ 1015–109 GeV, i.e., when tEW < 10−32 s or
zEW < 1022. The strong interaction clearly decouples from the electroweak one;

4. Radiation-dominated era. It is set up when Trad ∼ 1 eV, i.e, trad ∼ 1012 s or zrad ∼ 4000.
The energy density of nearly massless relativistic particles dominates. From then
on, the weak and electromagnetic forces become separated so that, finally, during
this period, all the different forces decouple and become distinct. Electromagnetic
radiation dominates the energy content of the universe at this epoch;

5. Matter domination era. It occurs for Tmatt < 1 eV. The energy density of matter
dominates, at last. Clusters of galaxies and stars start to be formed during this period
due to the omnipresent gravitational force that now overcomes radiation pressure;

6. Recombination. This period starts when the temperature goes down to around 3000 K,
the redshift being zrec ∼ 1100. This happens some 300,000 years after the BB. At this
epoch, nearly all free electrons and protons recombine and form neutral hydrogen.
Photons decouple from matter and can travel freely, for the first time, throughout the
whole universe. They originate what is observed today as cosmic microwave back-
ground (CMB) radiation (in that sense, the cosmic background radiation is infrared
(and some red) black-body radiation emitted when the universe was at a tempera-
ture of some 3000 K, redshifted by a factor of 1100 from the visible spectrum to the
microwave spectrum);

7. Dark energy era. It starts when the falling temperature reaches TDE ∼ 10−3 eV (corre-
spondingly, zDE ∼ 4), that is, around 3 billion years ago, and lasts up to present time,
extending into the future. The universe is dominated by an unknown sort of energy,
called dark energy, and under its influence, it starts to accelerate (the so-called current
cosmic acceleration or late-time acceleration).
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A final but important observation is that, as we will discuss in the next section, the
classic BB model, in spite of being able to describe the first stages of the universe’s evolution,
had some very serious shortcomings, which could only be overcome by introducing, at a
very early time—most likely at GUT scales—a new, very brief stage named cosmic inflation,
where the volume of our universe inflated by more than 65 e-folds in an incredibly short
period of time.

3. Inflation

BB cosmology had some serious troubles, the most famous of them being the horizon
problem, pointed out for the first time by Wolfgang Rindler, and the flatness issue, clearly
described by Robert Dicke.

3.1. The Problems of BB Cosmology

1. The horizon problem: Imagine two observers, A and B, in a circumference of variable
radius a(t) and separated by an angle dθ. The time it takes for a light signal emitted
from A to reach B is dt. Then, as in natural units the speed of light is 1, we have
a(t) dθ

dt = 1; the distance travelled by a signal of light emitted at time ti and arriving at

time t f is d(ti, t f ) = a(t f )
∫ t f

ti
dt

a(t) . This is what happens in an expanding universe. Let
t0 be the present time, and we take t = 0 as the singularity, i.e., when the BB occurs.
Thus, the distance travelled by a signal emitted at time t = 0 and received now is

d0 = a0

∫ t0

0

dt
a(t)

.

This is the present horizon size (the size of our patch of universe). We cannot see
beyond that distance, i.e., we cannot see galaxies which are further away than the
present horizon size.
To simplify, we will assume that the universe is matter-dominated, that is, H(t) =
2
3t =⇒ a(t) = a0

(
t
t0

)2/3
, and thus, d0 ∼ t0 ∼ H−1

0 . We know that our universe is now
very homogeneous, so at Planck scales it had to be extremely homogeneous, but at
that time the size of our universe was dpl =

apl
H0a0

. (Recall that, due to the Hubble law,

in an expanding universe, dAB(t2) =
a(t2)
a(t1)

dAB(t1).)
This quantity has to be compared with the size of the causal regions (the distance
that light travels from the Big Bang to the Planck era), which is dc ∼ tpl ∼ H−1

pl . We
calculate the ratio:

dpl

dc
∼

Hplapl

H0a0
=

ȧpl

ȧ0
=

HplT0

H0Tpl
∼ T0

H0
, (57)

where we have used the adiabatic evolution of the universe, aT = constant, and that,
in natural units, Hpl ∼ Tpl ∼ Mpl .
Using that, now, H0 ∼ 6× 10−61Mpl and T0 ∼ 5× 10−31Mpl , we obtain

dpl

dc
∼ 1030,

which means that, at Planck scales, there are 1090 disconnected regions. Then, as-
suming that inhomogeneities cannot be dissolved by ordinary expansion, how is it
possible that our present universe be so homogeneous, and that the cosmic microwave
background (CMB) radiation has practically the same temperature in all directions?
This seems impossible, if it comes from a patch, which at Planck scales, contains so
many regions that have never been in causal contact (they have never exchanged
information). This is the well-known horizon problem.
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An equivalent way to see this problem goes as follows: As we have already explained,
the decoupling, or the last scattering, is thought to have occurred at recombination,
i.e., about 300,000 years after the Big Bang, or at a redshift of about zrec ≈ 1100. We can
determine both the size of our universe and the physical size of the particle horizon
that had existed at this time.
The size of our universe coincides approximately with the size of the last scattering
surface, which, currently, is approximately H−1

0 , so that, at recombination, the diame-
ter of the last scattering surface was drec =

arec
a0 H0

. At that time, the size of a causally
connected region is dc ∼ H−1

rec . Then, we have:

drec

dc
∼ Hrecarec

H0a0
=

Hrec

H0(1 + zrec)
. (58)

Next, taking into account that the energy density of matter scales as ρm,rec = ρm,0
(1 + zrec)3, and further, that at recombination the universe is matter-dominated,

i.e., Hrec =
√

ρm,rec
3M2

pl
, and that at present time ρm,0 = 3Ωm,0M2

pl H
2
0 , with Ωm,0 ∼= 0.3,

one obtains:

drec

dc
∼
√

Ωm,0(1 + zrec) ∼ 18. (59)

As a consequence, in the last scattering surface, there are regions which are causally
disconnected; however, it turns out that the CMB has practically the same temperature
in all directions.
To simplify, the horizon size is of the order 1/H0 ∼ 14 billion lightyears, which
coincides with the age of the universe 1/H0 ∼ 14 billion years ago. So, imagine a
region that is at a distance of 10 billion lightyears from us, and another region, in the
opposite direction, that is at the same distance from us. The question is, how it is
possible that both regions, which are about 20 billion lightyears apart, emitted light at
the same temperature?
This is an apparent “paradox” in a static or decelerating universe, but as we will see
in the next section, the paradox is overcome when one assumes a short superluminal
expansion phase at early times.

2. The flatness problem: Up to now, we have only considered the dynamical equation
for flat space, but, in fact, space could have positive or negative curvature. When one
considers the general case, the FE becomes:

H2 =
ρ

3M2
pl
− κ

a2 , (60)

with κ = −1, 0, 1 (open, flat, and closed cases, respectively).
This equation can be written as follows:

Ω− 1 =
κ

a2H2 ,

where Ω ≡ ρ

3H2 M2
pl

is the ratio of the energy density to the critical one.

Evaluating at the Planck time and at the present time, one obtains:

|Ω− 1|pl

|Ω− 1|0
=

H2
0 a2

0
H2

pla
2
pl

=
ȧ2

0
ȧ2

pl
=

H2
0 T2

pl

H2
plT

2
0
∼

H2
0

T2
0
∼ 10−60, (61)

where we have used the adiabatic evolution of the universe.
Thus, in order to have |Ω− 1|0 ∼= 0.01 (the present observational data), the value
of Ω− 1 at early times has to be fine-tuned to values amazingly close to zero, but



Universe 2022, 8, 166 18 of 48

without letting it be exactly zero—this is the flatness problem, which sometimes is
also dubbed the fine-tuning problem.
To better understand this fine tuning: our very existence depends on the fantastically
close balance between the actual density and the critical density in the early universe.
If, for instance, the deviation of Λ from one at the time of nucleosynthesis had been
one part in 30 thousand, instead of one part in 30 trillion, the universe would have
collapsed in a Big Crunch after only a few years. In that case, galaxies, stars, and
planets would not have had time to form, and cosmologists would never have existed.

3.2. Inflation: The Basic Idea

The solution of the horizon, flatness, and the other problems accumulated by Big Bang
cosmology over several decades, was obtained by Alan Guth in 1981, in his seminal paper:
“The Inflationary universe: A Possible Solution to the Horizon and Flatness Problems” (PRD23,
pg. 347–356).

The key point to solve these problems is to consider the ratio
ȧpl
ȧ0

(this quantity appears
explicitly in the horizon and flatness problems). If gravity is attractive, then this ratio
is necessarily larger than one, because gravity decelerates the expansion. Therefore, the
conclusion

ȧpl
ȧ0
� 1 can be avoided only if we assume that, during some period in the

cosmic expansion, gravity acted as a “repulsive” force, thus accelerating expansion. In this
case, we can have

ȧpl
ȧ0

< 1, and the creation of our patch of universe from a single causally
connected domain may become possible.

More precisely, let ab and ae be, respectively, the values of the scale factor at the
beginning and at the end of the accelerated expansion period, which is named inflation.
Since H = ȧ

a , integrating this equation, we have ae = abeN , where N =
∫ te

tb
H(t)dt is the

number of e-folds that inflation lasts for. Assuming that, at the beginning of inflation, which
occurred at almost the very beginning of the universe, there was a small patch of it causally
connected (light had enough time to travel from one to any other point in that domain),
then inflation blows up this region to a very large one, preserving the homogeneity as intact
while expanding enormously our patch of the universe.

In order that this patch encompasses our whole universe, as we observe it now, we
will see that it is necessary that the number N of e-folds the patch increases by has to be
higher than 65. During inflation, the volume grows e3N times; (by this proportion, the
volume of an atom would turn into that of an orange.)

Going a bit further, to compute the number of e-folds needed and the time for which
inflation should last, we will assume that inflation starts and ends at the GUT scale, i.e,
when HGUT ∼ 1014 GeV and TGUT ∼ 1016 GeV. The size of our universe at the beginning of
inflation is dGUT = ab

H0a0
, and a causally connected region has size db ∼ H−1

GUT . Then,

dGUT
db
∼ HGUTT0

H0TGUT
∼ 10−2 T0

H0
∼ 1028.

Since, at the end of inflation, the size of a causally connected region is de =
ae
ab

db = eNdb,
we will have

dGUT
de
∼ e−N1028 ≤ 1.

Thus,
eN ≥ 1028 =⇒ N ≥28 ln(10) ∼ 65,

as already advanced.
In the same way, for the flatness problem, one has:

|Ω− 1|0 ∼ 1056|Ω− 1|GUT ; (62)
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however, assuming an inflationary period at GUT scales, one has:

|Ω− 1|e ∼ e−2N |Ω− 1|b. (63)

So, supposing that, prior to inflation, the universe was actually fairly strongly |Ω−
1|b ∼ 1, one has:

|Ω− 1|0 ∼ 1056e−2N |Ω− 1|e, (64)

and thus, for N ≥ 65, the flatness problem is solved.
On the other hand, since, during inflation, H is nearly constant (as we will see in

the next subsection), we have (approximately) N ∼ HGUT(te − tb). Then, for N ∼ 102, one
obtains:

te − tb ∼ 10−12GeV−1 ∼ 106M−1
pl ∼ 10−38s.

The following important remark is in order. By the end of inflation, the size of the
universe has grown extraordinarily, which means that the pre-existing particles are now
very diluted, and thus, the universe becomes extremely cold and has a very low entropy.
As a consequence, in order to match it with the initial stage of the hot BB model, a reheating
mechanism is needed. This mechanism is a very non-adiabatic process, in which an enormous
amount of particles (practically the whole matter content of the universe, or primordial
quark–gluon plasma) is created via quantum effects; after its thermalization, the universe
also becomes reheated, and eventually matches with the starting conditions of the hot BB
universe.

3.3. A Simple Way to Produce Inflation

We consider a universe filled out with a homogeneous scalar field, namely, φ(t), whose
potential is V(φ). To start, we assume a static universe, and thus, the dynamical equation
of a field can be readily obtained from the first law of thermodynamics:

d(ρa3) = −Pd(a3). (65)

Since we are assuming a static universe, d(a3) = 0, and taking into account that the

energy density is equal to the sum of its kinetic plus its potential part, i.e., ρ = φ̇2

2 + V(φ),
the first law becomes:

d(ρ) = 0 =⇒ φ̈ + Vφ(φ) = 0, (66)

which is the same equation as the one for a particle under the action of a potential that can
be obtained from the Lagrangian:

L =

(
φ̇2

2
−V(φ)

)
a3, (67)

by using the Euler–Lagrange equations.
We now consider an expanding universe, where, from the Lagrangian (67), we obtain

the dynamical equation:

φ̈ + 3Hφ̇ + Vφ(φ) = 0, (68)

which could also be derived from the first law of thermodynamics (65):

(
φ̈ + Vφ(φ)

)
φ̇a3 + 3H

(
φ̇2

2
+ V(φ)

)
a3 = −3HPa3. (69)



Universe 2022, 8, 166 20 of 48

Comparing this expression with the dynamical Equation (68), we conclude that the
pressure when the universe is filled by a scalar field is:

P =
φ̇2

2
−V(φ). (70)

Coming back to the dynamics, we have an autonomous second-order differential
equation:

φ̈ + 3Hφ̇ + Vφ(φ) = 0, (71)

where H = 1√
3Mpl

√
φ̇2

2 + V(φ), for which, unfortunately, it is impossible to find analytic

solutions, as in the case of a fluid. In fact, the system can only be solved numerically.
Recall, now, the equation for the acceleration ä

a = Ḣ + H2 = −H2

2 (1 + 3we f f ), where

we f f = P/ρ = −1− 2Ḣ
3H2 , and thus, the condition for an accelerated expansion is ρ+ 3P < 0

or we f f < −1/3. In a similar way, in terms of the Hubble rate and its derivative, we also see

that the condition for acceleration is − Ḣ
H2 < 1, and that acceleration ends when − Ḣ

H2 = 1.
Therefore, a necessary condition to have accelerated expansion is φ̇2 < V(φ), because:

ρ + 3P < 0 =⇒ φ̇2 < V(φ). (72)

Here, it is important to realize that the condition P ∼= −ρ, and thus Ḣ � H2, is enough
to have acceleration. Since the condition P ∼= −ρ is equivalent to φ̇2 � V(φ), the successful
realization of inflation requires keeping φ̇2 small, as compared with V(φ) (the kinetic
energy must be small compared with the potential one), during a sufficiently long time
interval—more precisely, for at least 65 e-folds, but this will actually depend on the shape
of the potential. In practice, one needs a very, very flat potential.

Then, with this condition, the FE becomes H2 ∼= V(φ)

3M2
pl

. We also assume, during

inflation, the condition φ̈� 3Hφ̇, and thus, the CE becomes 3Hφ̇ + Vφ(φ) ∼= 0. Note that,
for a flat potential, one has Vφ(φ) ∼= 0 =⇒ φ̇ ∼= 0, and the resulting Hubble rate is nearly
constant during this period, implying a nearly exponential growth of the volume of the
universe during this epoch. This is exactly what we need to solve both the horizon and the
flatness problems.

When both conditions,

φ̇2 � V(φ) and φ̈� 3Hφ̇, (73)

are fulfilled, we say that the universe is in the slow-roll regime, which is mathematically an
attractor (see, for instance, Section 3.7 of [6]), and the dynamical equations become:

H2 ∼=
V(φ)

3M2
pl

and 3Hφ̇ + Vφ(φ) ∼= 0. (74)

As an exercise, we now show that a necessary condition to have a slow-roll regime is
that the slow-roll parameters satisfy:

ε ≡
M2

pl

2

(
Vφ

V

)2
� 1 and η ≡ M2

pl

∣∣∣∣Vφφ

V

∣∣∣∣� 1. (75)

In fact, from (74), one has:

Vφ

3H
∼= −φ̇ =⇒

V2
φ

9H2
∼= φ̇2 � V =⇒

M2
pl

2

V2
φ

V2 �
3
2
∼ 1 =⇒ ε� 1, (76)
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where we have used, during the slow-roll regime, H2 ∼= V
3M2

pl
. Finally, to obtain the

condition η � 1, we start by taking the temporal derivative of the slow-roll equation
3Hφ̇ + Vφ(φ) ∼= 0 to obtain:

Vφφ

V
∼= −

3Ḣ
V
− 3Hφ̈

Vφ̇
=⇒ M2

pl

∣∣∣∣Vφφ

V

∣∣∣∣� 3|Ḣ|M2
pl

V
+ 3, (77)

where we have used the slow-roll condition φ̈� 3Hφ̇ and the Friedmann equation in the

slow-roll regime. In addition, from the Raychaudhuri equation, Ḣ = − φ̇2

2M2
pl

, we obtain:

M2
pl

∣∣∣∣Vφφ

V

∣∣∣∣� 3φ̇2

2V
+ 3� 9

2
∼ 1 =⇒ η � 1, (78)

where we have it that, during the slow-roll regime, the kinetic energy is smaller than the
potential one, i.e., φ̇2 � V.

At this point, we want to understand a bit better the meaning of the slow-roll condi-
tions. The first condition, φ̇2 � V(φ), is clear enough for producing acceleration because
it implies we f f

∼= −1. To understand the other one, φ̈� 3Hφ̇, we consider a harmonic
oscillator with friction:

ẍ + γẋ + ω2x = 0, with γ > 0, (79)

which corresponds to the movement of a particle under the influence of the potential
V(x) = ω2x2/2.

The general solution is given by:

x(t) = C+eλ+t + C−eλ−t, (80)

where

λ± =
−γ±

√
γ2 − 4ω2

2
. (81)

Observe that the friction term γẋ damps the velocity of the particle. In addition, for a
very flat potential, i.e., ω2 � γ2, one obtains:

λ+
∼= −ω2/γ and λ− ∼= −γ. (82)

So, at late time, the solution becomes x(t) ∼= C+e−ω2t/γ, which means that the solution
of the following equation (the slow-roll solution):

γẋ + ω2x = 0, (83)

which is given by e−ω2t/γ, is an attractor.
Having now better grasped the slow-roll conditions, we introduce another pair of

slow-roll parameters, namely:

ε̄ ≡ − Ḣ
H2 , η̄ ≡ 2ε̄−

˙̄ε
2Hε̄

. (84)

It is not difficult to see that, using the Friedmann and the Raychaudhuri equations,
the condition ε̄� 1 implies φ̇2 � V(φ) (first slow-roll condition). In fact,

−Ḣ � H2 =⇒ φ̇2

2
� φ̇2 + 2V

6
=⇒ φ̇2 � V(φ), (85)

where we have used the Friedmann and the Raychaudhuri equations.
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On the other hand, the condition η̄ � 1, together with ε̄� 1, implies ˙̄ε� 2Hε̄. Next,
we make use of:

˙̄ε = − Ḧ
H2 + 2Hε̄2, (86)

in order to obtain:

− Ḧ
H2 � 2H(ε̄− ε̄2) ∼ 2Hε̄, because ε̄2 � ε̄. (87)

Using the definition of ε̄, the last condition is equivalent to:

−Ḧ � −2HḢ, (88)

and taking into account the RE, Ḣ = − φ̇2

2M2
pl
=⇒ Ḧ = − φ̈φ̇

M2
pl

, we obtain:

φ̈� Hφ̇ ∼ 3Hφ̇ (second slow-roll condition). (89)

In this way, we have proved that sufficient conditions to have the slow-roll regime are
ε̄� 1 and η̄ � 1.

Finally we show that during the slow-roll regime one has ε̄ ∼= ε and η̄ ∼= η. Effectively,
during slow-roll, we have:

ε̄ ∼=
3φ̇2

2V
∼=

V2
φ

6H2V
∼= ε. (90)

On the other hand, a simple calculation leads to:

η̄ = ε̄− Ḧ
2HḢ

∼= ε− Ḧ
2HḢ

. (91)

Next, we have:

Ḧ
2HḢ

∼= −
1

2HḢ

(
−

Vφφφ̇2

3HM2
pl
+

Vφ Ḣφ̇

3H2M2
pl

)
∼= −

Vφφ

3H
−

Vφφ̇

6H2M2
pl

∼= −η + ε, (92)

where we have used both slow-roll equations.
Thus, in practice, the slow-roll regime is equivalent to ε� 1 and η � 1.

3.4. On the Number of E-Folds

We will now obtain the minimum number of necessary e-folds during the slow-roll
regime. Since H = d ln a

dt , from the CE, we have:

H =
d ln a

dt
= φ̇

d ln a
dφ

= −
Vφ

3H
d ln a

dφ
⇐⇒ 3H2 = −Vφ

d ln a
dφ

,

and now, using the FE, one obtains:

d ln a
dφ

=
1√

2εMpl
, (93)

whose solution is:

ae = abexp

(
1

Mpl

∣∣∣∣∫ φe

φb

dφ√
2ε

∣∣∣∣
)

=⇒ N =
1

Mpl

∣∣∣∣∫ φe

φb

dφ√
2ε

∣∣∣∣. (94)
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In addition, since in the slow-roll regime one has ε ∼= − Ḣ
H2 , from the acceleration

equation ȧ
a = Ḣ + H2, one can conclude that inflation ends when ε = 1.

As an example, we consider the quadratic potential V(φ) = 1
2 m2φ2, where a simple

calculation leads to:

ε = η =
2M2

pl

φ2 ; (95)

therefore, the slow-roll regime is satisfied when φ >
√

2Mpl , and inflation ends at φe =
√

2Mpl .
On the other hand,

N =
1

Mpl

∫ φb

φe

φ

2Mpl
dφ =

1
4M2

pl
(φ2

b − 2M2
pl),

which means that, to obtain more than 65 e-folds, the beginning of inflation has to occur at
φb >

√
262Mpl .

To finish this section, it is also important to calculate the last number of e-folds, that is,
the number of them from the horizon-crossing time to the end of inflation.

The horizon crossing refers to the moment when the “pivot scale”, namely, k∗ in
comoving coordinates, leaves the Hubble horizon; that is, when k∗ = a∗H∗ ⇐⇒ 1

H∗ =
a∗
k∗

,
where the value of the Hubble rate at this moment is called the scale of inflation.

The physical value of the “pivot scale” at present time is usually chosen as (see, for
instance, [23]) kphys(t0) =

k∗
a0

= 0.05 Mpc−1 ∼= 10−58Mpl ∼ 102H0, where we use the value
H0 ∼= 6× 10−61Mpl .

To calculate the e-folds from the horizon-crossing moment to the end of inflation, we
start with the relation aEND = eN∗ a∗ = eN∗ k∗

H∗ , which can be written as follows:

k∗
a0H0

= e−N∗ H∗aEND
a0H0

=⇒ k∗
a0H0

= e−N∗ H∗
H0

aEND
arad

arad
amatt

amatt

a0
, (96)

where rad (resp. matt) denotes the beginning of radiation (resp. of matter domination, i.e,
at the matter–radiation equality).

To simplify, we will assume that, from the end of inflation to the beginning of kination,
the EoS parameter w is constant. Then, we have:(

aEND
arad

)3(1+w)

=
ρrad

ρEND
,

(
arad
amatt

)4
=

ρmatt

ρrad
. (97)

Therefore:

N∗ = −5.52 + ln
(

H∗
H0

)
+

1
4

ln
(

ρmatt

ρrad

)
+

1
3(1 + w)

ln
(

ρrad
ρEND

)
+ ln

(
amatt

a0

)
. (98)

To perform the calculations, we consider a power-law potential of the form V(φ) =

V0

(
φ

Mpl

)2n
. Using the virial theorem, one can show that, after the end of inflation, when

the inflaton oscillates, the effective EoS parameter is given by w = n−1
n+1 .

Now, we need the spectral index of scalar perturbations, defined by ns = 1− 6ε∗+ 2η∗,
and also the ratio of tensor to scalar perturbations r = 16ε∗, where, once again, the star
denotes that the quantities are evaluated at horizon crossing. As a simple exercise, it can be
shown that, for our power-law potential, the slow-roll parameter ε∗ and the spectral index
are related by:

ε∗ =
n(1− ns)

2(n + 1)
. (99)
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From the slow-roll parameter ε, one can calculate the value of the energy density at
the end of inflation; imposing that inflation ends when ε = 1, we obtain:

ε = 2n2
(Mpl

φ

)2

=⇒ φEND =
√

2nMpl =⇒ V(φEND) = 2nn2nV0, (100)

taking into account that inflation ends when:

we f f = −
1
3
=⇒ φ̇2

END = V(φEND) =⇒ ρEND =
3
2

V(φEND) = 3× 2n−1n2nV0. (101)

We also need the power spectrum of scalar perturbations, defined as:

Pζ =
H2
∗

8π2M2
plε∗
∼ 2× 10−9 ⇐⇒ H2

∗ = 16π2 × 10−9ε∗M2
pl , (102)

which is essential to calculate the value of V0. Indeed, the square of the scale of inflation is
given by:

H2
∗ =

V(φ∗)

3M2
pl

=
V0

3M2
pl

(
2
ε∗

)n
n2n, (103)

where we have used that, at horizon crossing, φ∗ =
√

2
ε∗

nMpl . Inserting the value of the
square of the scale of inflation into the formula of the power spectrum, we finally obtain:

V0 =
96π2

n2n × 10−9
( ε∗

2

)n+1
M4

pl =⇒ ρEND = 72π2 × 10−9εn+1
∗ M4

pl . (104)

Next, we use the Stefan–Boltzmann law at the beginning of radiation and at the
matter–radiation equality:

ρrad =
π2

30
gradT4

rh, ρmatt =
π2

15
gmattT4

matt, (105)

where grad = 106.75 is the number of effective degrees of freedom for the standard model,
gmatt = 3.36 is the number of the effective degrees of freedom at matter–radiation equality,
Trh is the reheating temperature (the temperature of the universe at the beginning of the
radiation era), and Tmatt is the temperature of the universe at matter–radiation equality.
(Note that, at matter–radiation equality, the energy density of radiation is the same as that
for matter; for this reason, the factor 1/15 appears in the energy density at that moment).

Finally, we need use the adiabatic evolution of the universe after the matter–radiation
equality, a0T0 = amattTmatt. Inserting all these quantities in (98), one obtains:

N∗ ∼= −15− 5
1 + w

+

(
1
2
− n + 1

3(1 + w)

)
ln ε∗ + ln

(T0Mpl

TrhH0

)
+

4
3(1 + w)

ln

(
Trh
Mpl

)
, (106)

and using H0 ∼ 6× 10−61Mpl and T0 ∼= 2.73 K ∼ 10−31Mpl , the number of e-folds finally
becomes:

N∗ ∼= 52− 5
1 + w

+

(
1
2
− n + 1

3(1 + w)

)
ln ε∗ +

(
1− 4

3(1 + w)

)
ln
(Mpl

Trh

)
. (107)
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To finish, inserting the value of w = n−1
n+1 , ε∗ =

n(1−ns)
2(n+1) , and taking the central value of

the spectral index ns ∼= 0.96, one obtains the last number of e-folds as a function of n:

N∗(n) ∼= 52 +
n2 − 6n− 4

2n
− n2 − n + 1

6n
ln
(

n
2(n + 1)

)
+

n− 2
3n

ln
(Mpl

Trh

)
. (108)

So, for a quadratic potential, the number of e-folds as a function of the reheating

temperature is N∗(1) ∼= 48− 2
3 ln
(Mpl

Trh

)
and, for a quartic potential, one has N∗(2) ∼= 49,

which does not depend on the reheating temperature, because for a quartic potential, when
the inflaton starts to oscillate, w = 1/3, that is, the universe enters the radiation phase.

3.5. Different Reheating Mechanisms

1. In the case that the potential has a deep well, at the end of inflation, the infla-
ton field starts to oscillate in this deep well, and releases its energy by creating
particles [43,44,76]. This happens in standard inflation, but after the discovery of the
current cosmic acceleration, other models containing monotonic potentials appeared,
and thus, since the inflaton field cannot oscillate in this case, other mechanisms to
reheat the universe were proposed.

2. When the potential is a monotonous function, particles could be created via the so-
called instant preheating developed by Felder, Kofman, and Linde [46]. In that case,
a quantum scalar field with a very light bare mass is coupled with the inflaton, the
adiabatic regime breaks after the end of inflation, and particles with an effective
very heavy mass are copiously created. The energy density of these particles could
never dominate the one of the background, because in that case, another undesirable
inflationary period would appear; this is the reason why these particles have to decay
in lighter ones well before they can dominate. Once the decay is finished, the universe
becomes reheated, at a temperature close to 109 GeV, thus matching with the hot
BB model.

3. For a monotonous potential, containing an abrupt phase transition from the end of
inflation to a regime where all the energy density is kinetic (named kination phase [29]
or deflationary phase in [39]), superheavy particles [40,41,77,78] and also lighter
ones [30–38,42,79,80] can be created via gravitational particle production. The problem
of reheating via the production of light particles is that undesirable polarization effects
could appear, which would disturb the evolution of the inflaton field during the slow-
roll period (see, for a detailed explanation, [46]). On the contrary, these polarization
effects, during inflation, can be neglected when one considers the production of super-
heavy particles, which have to decay in lighter ones, to obtain, after thermalization, a
hot radiation-dominated universe.

4. The curvaton mechanism. In addition to the inflaton, there is another massive field,
named the curvaton, which becomes sterile during inflation. At the end of this period,
this curvaton field, whose potential has a deep well, starts to oscillate, decaying into
lighter particles [81–85].

To finish this section, we should add that the reheating parameters (especially the
reheating equation of state parameter) are not sufficiently well constrained. Among other
contributions, some possible ways to constrain the reheating EoS parameter have recently
been proposed, involving magnetogenesis or primordial gravitational waves. The reheating
era has been argued to have a considerable effect on the primordial magnetic field as well as
on primordial GWs, which in turn help to extract some viable constraints on the reheating
parameters. This has been carried out for two different reheating mechanisms. In the case
of GWs, it has also been shown that a late reheating phase helps to improve the fit of the
NANOGrav observational data [86–89].
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4. The Current Cosmic Acceleration
4.1. The Cosmological Constant

The cosmological constant, Λ, was introduced by Albert Einstein (1917) in order to
obtain a static model for our universe (at that time, because of very reasonable physical
considerations, everybody believed that the universe was static; see all details in, e.g., [1–4]).
The introduction of Λ modifies the FE as follows:

H2 =
ρ

3M2
pl
− κ

a2 +
Λ
3

. (109)

From this equation, we see at once that the introduction of Λ is equivalent to the
addition fo a new component to the energy content of the universe, with an energy density
ρΛ = ΛM2

pl , and, from the CE, with pressure PΛ = −ρΛ. Thus, a cosmological constant
with a positive sign acts against gravitation: (wΛ = PΛ/ρΛ = −1).

Einstein also considered the RE:

Ḣ = −ρ + P
2M2

pl
+

κ

a2 . (110)

Then, for a matter-dominated universe, P = 0, a static solution, H = Ḣ = 0, as the
one Einstein was looking for, must satisfy:

ρ

3M2
pl
− κ

a2 +
Λ
3

= 0 and
ρ

2M2
pl

=
κ

a2 . (111)

From these equations, we see that a static universe has to be closed, i.e., κ = 1. In
Einstein’s static model, the energy density and the radius of the universe are given by:

ρ = 2ΛM2
pl and a = Λ−1/2, (112)

respectively.
Unfortunately, from the acceleration equation ä

a = − ρ

6M2
pl
+ Λ

3 , one can show that

Einstein’s static model is unstable; that is, with a simple sneeze, his universe collapses.
This was the real problem of that model, not actually the fact that it did not describe the
expansion of the universe. The case is that Einstein did not realize this problem, which was
later noted by Lemaître and by Eddington, among others.

To further show the instability, we combine the acceleration and Friedmann equations
to obtain:

ä = − ȧ2

2a
− 1

2a
+

Λa
2

, (113)

which, as a dynamical system, can be written as:{
ȧ = b
ḃ = − b2

2a −
1
2a +

Λa
2 ,

(114)

where b = ȧ. It is clear that the Einstein solution corresponds to the fixed point a = Λ−1/2

and b = 0.
To study the stability of this fixed point, one can linearize the system around it, thus

obtaining the matrix: (
0 1
Λ 0

)
, (115)
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which has a negative determinant equal to −Λ; this means that the fixed point is a saddle
point, and is, thus, unstable.

Presently, however, the introduction of the CC by Einstein is no longer seen as a
horrible mistake but, quite the contrary, to have had extremely positive consequences.
Namely, now that we know that the universe expansion accelerates, the CC could be a
most natural candidate for dark energy, explaining the current cosmic acceleration within
the standard cosmological model without any extra addition. To this end, we consider a
flat universe filled by matter and with the CC. Since ρ scales as a−3 and ρΛ is constant, the

constituent equations have the fixed point ρ = 0, H =
√

Λ
3 . This is de Sitter’s solution,

which naturally appears at late times, and since Ḣ = 0, i.e., we f f = −1, this means that it
truly depicts an accelerating universe.

At present, 70% of the energy density of the universe is dark and the ordinary mat-
ter/energy amount only represents some 30% of the total. Now, by using the CC, we
have H2

0
∼= Λ

3 . Since H0 ∼ 6× 10−61Mpl , we obtain a very small value for the CC, namely,
Λ ∼ 10−120M2

pl . Involving quantum considerations, this number appears to be extremely
small when we compare it with the expected contributions to the CC coming from the
unavoidable quantum vacuum fluctuations of the different fields present in the universe.
In order to describe our present universe, using the CC as a source of dark energy, we
have to fine-tune Λ extremely well, down to some hundreds of orders of magnitude (what
has been sometimes called the highest discrepancy between theory and observations ever
encountered in physics).

4.2. Quintessential Inflation

The main idea in quintessential inflation goes as follows. The inflaton field could
actually be responsible not only for the very early, but also for the late-time acceleration of
the universe. To obtain a successful reheating stage, an abrupt phase transition must occur
from the end of inflation to the beginning of kination (the epoch when the energy density
of the field was (almost) exclusively kinetic, i.e., we f f = 1). There, the adiabatic evolution is
broken in order to create enough superheavy particles, whose energy density (〈ρ〉 ∼ a−3)
will eventually dominate the one of the inflaton field (ρϕ ∼ a−6) after decaying into lighter
particles, in order to match with the hot BB conditions and conveniently enter into the
radiation phase in a smooth way (the kination phase ends or the radiation era starts when
ρϕ ∼ 〈ρ〉). Then, the universe slowly cools down and particles become non-relativistic, thus
entering in the matter domination era.

Finally, “close” to present time, the remaining energy density of the inflaton field starts
to dominate once again, as a new form of dark energy, termed quintessence, which is able to
reproduce the current cosmic acceleration, dominates again the energy balance, but now
in a much more equilibrated way. The questions: ”why this is so?” and ”why does this
happen precisely now?” are very important ones, and the present standard cosmological
model has been unable to answer them up to now.

Remark 4. The unification of the early and late-time acceleration of our universe could also be
obtained in other theories, such as modified gravity [90], in F(R) gravity [91], or in F(R, T)
gravity [92], where, here, T denotes the trace of the stress tensor.

An important observation is also that, owing to the kination regime, the number of
“last” e-folds is larger than in the case of standard inflation: in most of the models, it ranges,
more or less, between 60 and 70. Effectively, in [93], for a model of QI, the number of e-folds
is given by:

N + ln N ∼= 55− 1
3

ln

(
Treh
Mpl

)
, (116)
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and, taking into account that the scale of nucleosynthesis is 1 MeV [94] and in order to
avoid the late-time decay of gravitational relic products such as moduli fields or gravitinos,
which could jeopardize the success of nucleosynthesis, one needs temperatures lower
than 109 GeV [95,96]. So, we will assume that 1 MeV ≤ Treh ≤ 109 GeV, which leads to
constraining the number of e-folds to 58 . N . 67.

The first model of quintessential inflation (QI) was introduced by Peebles and Vilenkin in
their seminal paper entitled ”Quintessential Inflation” [28] (see [97] for a review and [98–107]
for other quintessential inflation models, such as exponential models, as in [102], where,
to match with the current observational data, the authors assume that the inflaton field is
non-minimally coupled with massive neutrinos), and it is defined by the potential:

V(ϕ) =

{
λ
(

ϕ4 + M4) for ϕ ≤ 0
λ M8

ϕ4+M4 for ϕ ≥ 0. (117)

Here, λ is a dimensionless parameter and M� Mpl is a very small mass, as compared
with the reduced Planck mass. An abrupt phase transition takes place at ϕ = 0, where the
fourth derivative of V is discontinuous.

The first part of the potential, the quartic potential, is the one responsible for inflation,
while the quintessence tail, the inverse power-law potential, is responsible for the current
cosmic acceleration.

As we will see, λ ∼= 9× 10−11 is obtained from the power spectrum of scalar pertur-
bations and M ∼ 200 TeV has to be calculated numerically, using the observational data
Ωϕ,0 ≡

ρϕ,0

3H2
0 M2

pl

∼= 0.7.

It is, here, important to recall that the following quantities, which we have already
defined, can be actually measured:

1. The power spectrum of scalar perturbations:

Pζ =
H2
∗

8π2M2
plε∗
∼ 2× 10−9, (118)

where the star means that the quantities are evaluated at the horizon crossing;
2. The spectral index, ns ∼= 1− 6ε∗ + 2η∗. Its central value is ns ∼= 0.9649;
3. The ratio of tensor to scalar perturbations, r = 16ε∗. Observational data lead to the

constraint r ≤ 0.1.

As an example, for a quartic potential V(φ) = λϕ4, the inflationary piece of the PV
model, leads to the relation:

ns = 1− 3
16

r. (119)

However, recent observational data yield ns = 0.9649± 0.0042, at 1σ confidence level,
and r ≤ 0.1. This means that the Peebles–Vilenkin model is not compatible with the current
observational data at 2σ C.L., because from the model one obtains the bound: r ≥ 0.1424.

4.3. Improved Versions of QI

An improved version of QI is the Higgs inflation + inverse power-law, which is given
by the potential:

V(ϕ) =


λM4

pl

(
1− e

√
2
3

ϕ
Mpl

)2

+ λM4 for ϕ ≤ 0

λ M8

ϕ4+M4 for ϕ ≥ 0.

(120)
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For this potential, it is easy to show that one obtains the relation:

r = 3(1− ns)
2, (121)

which perfectly fits in the joint contour at 2σ C.L., because in that case, we have r ≤ 0.006.
Now, we calculate the values of the two parameters of the model. Note first that the

scale of inflation, i.e., the value of the Hubble parameter at the horizon crossing, is H2
∗ ∼=

λ
3 M2

pl . Then, with the power spectrum for scalar perturbations Pζ = H2
∗

8π2 M2
pl ε∗
∼ 2× 10−9,

the formula r = 3(1− ns)2, the relation r = 16ε∗, and the central value of the spectral index,
ns ∼= 0.96, one can show that λ ∼= 9× 10−11.

Finally, from the observational data Ωϕ,0 = V(ϕ0)

3H2
0 M2

pl

∼= 0.7, with ϕ0 ∼= 30Mpl (we will

see later that this is approximately the value of the scalar field at present time), one obtains
that M ∼ 105 GeV.

It is important to remark that both the Peebles–Vilenkin model and also this improved
version should be viewed simply as phenomenological models, as first steps to understand
QI. More physically grounded models are the following.

4.3.1. Lorentzian Quintessential Inflation

Based on the Lorentzian (or Cauchy, for mathematicians) distribution, one considers
the following ansatz:

ε(N) =
ξ

π

Γ/2
N2 + Γ2/4

, (122)

where ε is the slow-roll parameter, N is the number of e-folds, and ξ and Γ are the amplitude
and width of the Lorentzian distribution, respectively.

From the previous ansatz, one obtains the potential: [108–110]

V(ϕ) = λM4
pl exp

[
−2γ

π
arctan

(
sinh

(
γϕ/Mpl

))]
, (123)

where λ is a dimensionless parameter and γ is defined by

γ ≡
√

π

Γξ
.

The model depends on these two parameters, and in order to match it with current
observational data, one has to impose them to take the values λ ∼ 10−69 and γ ∼= 122. This
leads, then, to a successful inflation model that, at late times, yields an eternal acceleration
with effective EoS parameter equal to −1. It is, thus, indistinguishable from the simple CC
in this regime.

4.3.2. α-Attractors in Quintessential Inflation

In that case, the corresponding potential, combined with a standard exponential
potential, is obtained from a Lagrangian motivated by super-gravity and corresponding to
a non-trivial Kähler manifold.

The Lagrangian provided by super-gravity theories is [111]:

L =
1
2

φ̇2

(1− φ2

6α )
2

M2
pl − λM4

ple
−κφ, (124)
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where φ is a dimensionless scalar field, and κ and λ are positive dimensionless constants.
In order that the kinetic term acquires the canonical form, i.e., 1

2 ϕ̇2, one can redefine the
scalar field as follows:

φ =
√

6α tanh

(
ϕ√

6αMpl

)
, (125)

thus obtaining the following potential [112,113]:

V(ϕ) = λM4
ple
−n tanh

(
ϕ√

6αMpl

)
, (126)

which is depicted in Figure 1, where we have introduced the notation n ≡ κ
√

6α; by
taking α ∼ 10−2, chosen to match with observational data, we obtain the current cosmic
acceleration when n ∼ 102 and λ ∼ 10−66.

-0.15 -0.10 -0.05 0.05

φ

MPl

1.×10
-15

2.×10
-15

3.×10
-15

4.×10
-15

V (φ)

M
Pl

4

Figure 1. The α-attractor potential. In Lorentzian QI, the corresponding potential has a similar shape.

Finally, for α-attractors, the spectral index and the tensor/scalar ratio, as a function of
the number of e-folds, have the following simple form:

ns ∼= 1− 2
N

, r ∼=
12α

N2 , (127)

which, for the usual number of e-folds in quintessential inflation (65 ≤ N ≤ 75), matches
correctly with the observational data ns = 0.9649 ± 0.0042 and r ≤ 0.1 at 1-σ confi-
dence level.

In fact, for N = 65, the value of the ratio of tensor to scalar perturbations is very small,
around r ∼= 10−3α, and smaller for N > 65.

4.4. Evolution of the Dynamical System

To understand the evolution of the universe in QI, we deal with the model (120).
First, we calculate the energy density at the end of inflation. Since inflation ends when
ε ∼= − Ḣ

H2 = 1 =⇒ we f f = −1/3, one has ρEND = 3
2 V(ϕEND).
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On the other hand, since ε =
M2

pl
2

(
Vϕ

V

)2
, at the end of inflation, one has ϕEND =

1
2

√
3
2 ln(3/4)Mpl .
Note that the kination regime starts, approximately, for ϕkin = 0 > ϕEND, when the

potential is negligible. Assuming, as usual, that there is no energy drop between the end of
inflation and the beginning of kination, we obtain ϕ̇kin =

√
3V(ϕEND). Then, the initial

conditions at the beginning of kination are:(
ϕkin = 0, ϕ̇kin =

√
3λ

4
(2−

√
3)M2

pl

)
=⇒ Hkin =

√
λ

2
√

2
(2−

√
3)Mpl , (128)

and thus, Hkin
∼= 10−6Mpl .

During kination, the effective EoS parameter is given by we f f = 1, because all energy
density is kinetic. So, during this period, the Hubble rate evolves as H(t) = 1

3t . Then, since
the value of the potential is very small as compared with the kinetic energy, one can safely
disregard it in the FE, thus obtaining:

ϕ̇2

2
=

M2
pl

3t2 =⇒ ϕ̇(t) =

√
2
3

Mpl

t
=⇒ ϕ(t) =

√
2
3

Mpl ln
(

t
tkin

)
. (129)

Therefore, we end up with:(
ϕ(t) =

√
2
3

Mpl ln
(

Hkin
H(t)

)
, ϕ̇(t) =

√
6H(t)Mpl

)
. (130)

Now, for simplicity, we shall assume that the created particles during the phase
transition from the end of inflation to the beginning of kination decay in lighter ones before
the end of kination occurs, and that they thermalize almost instantaneously. Under these
circumstances, the universe becomes reheated at the end of the kination phase (the energy
density of the inflaton is the same as the one of the created particles), just when the energy
density of the created particles starts to dominate. As a consequence, at reheating time,
we have: (

ϕrh =

√
2
3

Mpl ln
(

Hkin
Hrh

)
, ϕ̇rh =

√
6Hrh Mpl

)
. (131)

Using that H2
rh
∼= 2ρrh

3M2
pl

, where ρrh = π2

30 g∗T4
rh is the energy density of radiation (Stefan–

Boltzmann’s law), one can write the value of the inflaton field and its derivative as a
function of the reheating temperature.

Next, during radiation domination we f f = 1/3, we have H(t) = 1
2t . Taking into

account that, in the radiation epoch, the potential energy may be disregarded too (since it
is negligible as compared with the kinetic one), the CE becomes:

ϕ̈ +
1
2t

ϕ̇ = 0. (132)

Integrating, now, this equation, one can see that, during the radiation-dominated
epoch, one has:

ϕ(t) = ϕrh + 2ϕ̇rhtrh

(
1−

√
trh
t

)
= ϕrh +

ϕ̇rh
Hrh

(
1−

√
H(t)
Hrh

)
and ϕ̇(t) = ϕ̇rh

(
H(t)
Hrh

)3/2

.
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Therefore, at the matter–radiation equality, we will have the following initial conditions:(
ϕeq = ϕrh +

ϕ̇rh
Hrh

(
1−

√
Heq

Hrh

)
, ϕ̇eq = ϕ̇rh

(
Heq

Hrh

)3/2
)

.

At matter–radiation equality, we have H2
eq
∼= 2ρeq

3M2
pl

, where ρeq = π2

30 geqT4
eq, and the

number of degrees of freedom is geq = 3.36.
Now, it is important to know the corresponding initial conditions. From the central

values, as obtained by the Planck collaboration, for the cosmological redshift at matter–
radiation equality zeq ≡ a0

aeq
− 1 = 3365, and from the present value of the ratio of the matter

energy density to the critical one Ωm,0 ≡
ρm,0

3H2
0 M2

pl
= 0.308, one can deduce that the present

value of the matter energy density is ρm,0 = 3H2
0 M2

plΩm,0 = 3.26× 10−121M4
pl , and at the

matter–radiation equality one should have ρm,eq = ρr,eq = ρm,0(1 + zeq)3 = 4.4× 10−1 eV4,
and thus, from the Stefan–Boltzmann law, Teq ∼ 3× 10−28Mpl .

Since H0 ∼ 6× 10−61Mpl, choosing a viable temperature, as, for example, Trh = 109 GeV,
one has:

ϕeq = ϕrh +
√

6Mpl and
ϕ̇eq

H0Mpl
∼= 0. (133)

That is,

ϕeq =

√
2
3

Mpl ln

(
3
√

5λ(2−
√

3)M2
pl

2πT2
rh

)
+
√

6Mpl , (134)

and inserting the values of λ and Trh, one finally obtains:

ϕeq ∼= 27.29Mpl and
ϕ̇eq

H0Mpl
∼= 0. (135)

The Dynamical System

In order to obtain the dynamical system for this model, we introduce the following
dimensionless variables:

x =
ϕ

Mpl
, y =

ϕ̇

H0Mpl
. (136)

Using the variable N as time, N = ln
(

a
a0

)
, and from the CE ϕ̈ + 3H ϕ̇ + Vϕ = 0, one

can build the following non-autonomous dynamical system:{
x′ = y

H̄ ,
y′ = −3y− V̄x

H̄ ,
(137)

where the prime means are derivative, with respect to N, H̄ = H
H0

, and V̄ = V
H2

0 M2
pl

.

Moreover, the FE now reads:

H̄(N) =
1√
3

√
y2

2
+ V̄(x) + ρ̄rad(N) + ρ̄matt(N) , (138)
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where we have introduced the following dimensionless energy densities, ρ̄r =
ρrad

H2
0 M2

pl
and

ρ̄m = ρmatt
H2

0 M2
pl

, with:

ρmatt(N) = ρmatt,eqe3(Neq−N) and ρrad(N) = ρrad,eqe4(Neq−N), (139)

being the corresponding matter and radiation energy densities.
Integrating the dynamical system numerically, with initial conditions xeq = 27 and

yeq = 0 obtained in (135) and imposing the condition H̄(0) = 1, which only holds for
M ∼= 105 GeV (the value we have previouly obtained), we acquire the result obtained in

Figure 2, where ΩB =
H2

0 ρ̄B
3H2 , being B = r, m, ϕ, is the ratio of the energy density to the

critical one. We see that, at the present time N = 0, dark energy dominates, and that for
this model, it will continue dominating forever.

Figure 2. Evolution of {ρ̄B(N)}B=r,m,ϕ and {ΩB(N)}B=r,m,ϕ.

Finally, from Figure 3, one can see the evolution of the effective EoS parameter we f f =

−1− 2Ḣ
3H2 . Integration starts at the beginning of the matter–radiation equality. We see

that, at present time, we f f < −1/3, so our universe accelerates. In fact, at late times, we f f
evolves towards −1, which means that the universe will always be in a state of accelerated
expansion in the future.
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Figure 3. Evolution of we f f .

5. The Reheating Mechanism

To understand the reheating mechanism via particle production, we shall need, first of
all, some basic notions of quantum mechanics. To “warm up”, the best example to study is
the quantum harmonic oscillator.

5.1. The Harmonic Oscillator

We consider the equation of a one-dimensional harmonic oscillator:

ẍ + ω2x = 0, (140)

whose Hamiltonian is given by:

H =
1
2
(p2 + ω2x2), (141)

where p = ẋ denotes the corresponding momentum.
The dynamical Equation (140) can be written as a Hamiltonian system:{

ẋ = ∂pH = {x,H}
ṗ = −∂xH = {p,H}, (142)

where we have introduced the Poisson bracket {A, B} ≡ ∂x A∂pB− ∂p A∂xB.
Next, we consider its quantum version. For this, following the correspondence princi-

ple, we need to replace the dynamical variables by the operators x → x̂ and p→ p̂, and the
Poisson bracket has to be replaced by a commutator, namely:

{A, B} → −i[Â, B̂] ≡ −i(ÂB̂− B̂Â). (143)

Thus, taking into account now that the canonically conjugate variables satisfy
{x, p} = 1, one obtains its quantum analogue [x̂, p̂] = i, and using the Heisenberg picture,
where the operators are time-dependent, the quantum version of the Hamilton equa-
tions read: { ˙̂x = −i[x̂, Ĥ]

˙̂p = −i[ p̂, Ĥ].
(144)
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On the other hand, in the Schrödinger picture, which is actually equivalent to the
Heisenberg one, the operators do not depend on time; thus, time dependence falls off the
wave function. In fact, taking the most usual representation:

x̂ = x, p̂ = −i∂x, and Ê = i∂t, (145)

the quantum version of the classical equation E = H (the energy being equal to the
Hamiltonian) reads:

i∂tΦ(t, x) =
1
2

(
−∂xxΦ(t, x) + ω2x2Φ(t, x)

)
, (146)

which is the well-known Schrödinger equation for the harmonic oscillator.
The eigenvalues of the quantum Hamiltonian are not difficult to obtain. In fact, the

ground state is reached by looking for an eigenfuction of the form e−ax2
. Inserting it in the

equation λΦ = ĤΦ, one obtains:

Φ0(x) =
1

(ω2π)1/4 e−
ω
2 x2

with λ0 =
ω

2
, (147)

where we have normalized the ground state.
To obtain the other eigenvalues, we diagonalize the Hamiltonian by introducing the

so-called creation and annihilation operators:

â† =
1√
2ω

(ωx̂− i p̂) and â =
1√
2ω

(ωx̂ + i p̂). (148)

Taking into account the commutation relation between canonically conjugate variables,
it is not difficult to show that the creation and annihilation operators satisfy the relation
[â, â†] = 1. Then, the expression of the Hamiltonian, as a function of both operators, is:

Ĥ =
ω

2
(ââ† + â† â) = ω

(
â† â +

1
2

)
, (149)

where we have used the commutation relations.
Finally, with the creation operator â†, we build the whole set of eigenstates:

Φn =
1√
n!
(â†)nΦ0, (150)

whose corresponding eigenvalues are λn = ω
(

n + 1
2

)
.

Now, coming back to the Heisenberg picture, the dynamical equations for the creation
and annihilation operators read:

˙̂a = −i[â, Ĥ] = −iâ and ˙̂a† = −i[â†, Ĥ] = iâ†, (151)

and their solution is:

â(t) = e−iω(t−ti) â(ti) and â†(t) = eiω(t−ti) â†(ti). (152)

Thus, one obtains:

x̂(t) = χ(t)â(ti) + χ∗(t)â†(ti) and p̂(t) = χ̇(t)â(ti) + χ̇∗(t)â†(ti), (153)

where χ(t) = 1√
2ω

e−iω(t−ti) is the positive frequency mode.
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Finally, from the commutation relation [x̂(t), p̂(t)] = 1, one can check that the Wron-
skian of χ(t) and its conjugate read:

W [χ, χ∗] ≡ χχ̇∗ − χ̇χ∗ = i, (154)

which may seem obvious for the mode χ(t) = 1√
2ω

e−iω(t−ti), but when we deal with a
time-dependent frequency, this relation will be essential.

A final remark is in order: the ground state always satisfies â(t)Φ0 = 0, because the
creation and annihilation operators evolve as (152), i.e., positive and negative frequencies
do not mix. However, as we will see in the next section, for a time-dependent frequency,
mixing does happen, and it is a basic ingredient that induces particle production.

5.2. The Harmonic Oscillator with a Time Dependent Frequency

As in the constant case, the quantum Hamiltonian is given by:

Ĥ =
1
2
( p̂2 + ω2(t)x̂2), (155)

and the quantum equation for x̂ in the Heisenberg picture is, again:

¨̂x + ω2(t)x̂ = 0. (156)

Next, we write:

x̂(t) = χ(t)â(ti) + χ∗(t)â†(ti) and p̂(t) = χ̇(t)â(ti) + χ̇∗(t)â†(ti), (157)

where the positive frequency modes satisfy the Klein–Gordon equation χ̈ + ω2(t)χ = 0,
and also the Wronskian condition χχ̇∗ − χ̇χ∗ = i. Unfortunately, these modes do not have
the simple expression χ(t) = 1√

2ω
e−iω(t−ti), as in the case of constant frequency.

In any case, we will assume that, at early times, the adiabatic condition ω̇
ω2 � 1 is

fulfilled, which, as we will see, does always happen during inflation. In this epoch, one can
consider a positive frequency mode of the form:

χ(t) =
1√

2ω(t)
e−i

∫ t
ti

ω(s)ds
, (158)

and which satisfies:

χ̇ =

(
−iω− ω̇

2ω

)
χ ∼= −iωχ, and χ̈ =

(
− iω̇

2
−ω2

)
χ ∼= −ω2χ. (159)

Thus, during the adiabatic regime, the mode χ is very close to the solution that satisfies
the initial conditions:

χ(ti) =
1√

2ω(ti)
and χ̇(ti) = −i

√
ω(ti)

2
. (160)

Next, working in the Heisenberg picture, we consider the groundstate at time ti, i.e.,
Φ0(ti), which satisfies â(ti)Φ0(ti) = 0—e.g., the positive frequency mode satisfying the
initial conditions (160)–and we calculate the average, at any time, of the energy with respect
the ground state:

Φ∗0(ti)Ĥ(t)Φ0(ti) =
1
2

(
|χ̇|2 + ω2(t)|χ|2

)
. (161)

At time ti, it coincides with its minimum ω(ti)/2.
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Finally, we use the diagonalization method to look for modes of the form:

χ(t) = α(t)
1√

2ω(t)
e−i

∫ t
ti

ω(s)ds
+ β(t)

1√
2ω(t)

ei
∫ t

ti
ω(s)ds

. (162)

Here, α(t) and β(t) are the so-called time-dependent Bogoliubov coefficients.
Imposing that the mode satisfies the condition:

χ̇(t) = −iω(t)

α(t)
e−i

∫ t
ti

ω(s)ds√
2ω(t)

− β(t)
ei
∫ t

ti
ω(s)ds√

2ω(t)

, (163)

due to the Wronskian property χχ̇∗ − χ̇χ∗ = i, they have to satisfy |α(t)|2 − |β(t)|2 = 1.
In addition, in order that the mode is a solution of the Klein–Gordon equation, these
coefficients need satisfy the system of equations: α̇(t) = ω̇(t)

2ω(t) e2i
∫ t

ti
ω(s)ds

β(t)

β̇(t) = ω̇(t)
2ω(t) e−2i

∫ t
ti

ω(s)ds
α(t).

(164)

Inserting this expression into (161), one obtains the following “vacuum average”:

Φ∗0(ti)Ĥ(t)Φ0(ti) =
1
2

(
|χ̇|2 + ω2(t)|χ|2

)
= ω(t)|β(t)|2 + ω(t)

2
. (165)

This is an example of the well-known diagonalization method, which is used in
cosmology to calculate the average energy density of the produced particles.

Generally, one subtracts the term ω(t)/2, which corresponds to the minimum energy,
thus obtaining:

〈Ĥ(t)〉 ≡ Φ∗0(ti)Ĥ(t)Φ0(ti)−
ω(t)

2
= ω(t)|β(t)|2. (166)

5.3. Gravitational Particle Production of a Massive Quantum Field Conformally Coupled
to Gravity

Here, we consider a massive scalar field φ conformally coupled to gravity. Its La-
grangian density is given by [114]:

L =
1
2
(∂µφ∂µφ−m2

χφ2 − R
6

φ2), (167)

where mχ denotes the mass and whose corresponding Klein–Gordon equation, obtained
from the Euler–Lagrange equation, reads:(

−∇µ∇µ + m2
χ +

R
6

)
φ = 0, (168)

and, after the change of variables φ = χ/a (a denotes, once again, the scalar factor), it
acquires the more usual form:

χ′′ − ∆χ + m2
χa2χ = 0, (169)

where the tilde denotes the derivative with respect to conformal time, dτ = dt
a(t) .

We now work in Fourier space, where the quantum version reads:

χ̂(τ, x) =
1

(2π)3/2

∫ (
âk(ti)eik.xχk(τ) + â†

k(ti)e−ik.xχ∗k (τ)
)

d3k, (170)
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and the modes χk satisfy the equation of a harmonic oscillator:

χ′′k + ω2
k(τ)χk = 0, (171)

with the time-dependent frequency given by ωk(τ) =
√

k2 + a2(τ)m2
χ.

The corresponding average energy density is [115]:

〈ρ(τ)〉 = 1
4π2a2(τ)

∫
k2(|χ′k|

2 + ω2
k(τ)|χk|2 −ωk(τ))dk, (172)

where, as for a single oscillator, we have subtracted the minimum vacuum energy density,
i.e., the so-called zero-point oscillations of the quantum vacuum: 1

(2π)3a4(τ)

∫
d3k 1

2 ωk(τ).
At this point, it is useful once more to apply the diagonalization method, to acquire

the simple form for the energy density:

〈ρ(τ)〉 = 1
2π2a4(τ)

∫ ∞

0
k2ωk(τ)|βk(τ)|2dk, (173)

where the time-dependent Bogoliubov coefficients, αk and βk, satisfy the system (164) for
each value of k.

It is important to notice that |βk(τ)|2 encodes the vacuum polarization effects (the
creation and annihilation of pairs of opposite charge) and also the production of particles,
which only happens, however, when the adiabatic evolution breaks down. Actually, in
quintessential inflation, the adiabatic regime is broken during the abrupt phase transition
between the end of inflation and the beginning of the kination stage and, only at the
very beginning of kination is the adiabatic regime recovered. So, the polarization effects
disappear and the β-Bogoliubov coefficients stabilize at a constant value, which only
encodes the production of real particles.

Now, the way to calculate (numerically) |βk(τ)|2 goes as follows: first of all, we need
to integrate numerically the conservation equation for the inflaton field, namely,

ϕ̈ + 3H ϕ̇ + Vϕ = 0, (174)

where H = 1√
3Mpl

√
ϕ̇2

2 + V(ϕ), with initial conditions at some moment during the slow-

roll regime. Recall that, at that instant, the system is in the slow-roll phase and, since this
regime is an attractor, one only needs to take initial conditions in the basin of attraction of
the slow-roll solution. Thus, we take initial conditions at horizon crossing, i.e., when the

pivot scales leaves the Hubble radius ϕ∗ and ϕ̇∗ = −
Vϕ(ϕ∗)

3H∗ .
Once we have obtained the evolution of the background, and, in particular, the

evolution of the Hubble rate, we compute the evolution of the scale factor. This is given by:

a(t) = e
∫ t

t∗ H(s)ds, (175)

where we have chosen, at the horizon crossing, a∗ = 1. Once we have the evolution of this
scale factor, we just need to numerically integrate the system (164).

A final remark is in order. When particles are produced, the Friedmann equation is
modified as follows:

H2 =
1

3M2
pl
(ρϕ + 〈ρ〉), (176)

where ρϕ denotes the energy density of the inflaton field and 〈ρ〉 denotes the one of the
produced particles.
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5.4. Reheating in the Case of α-Attractors

Dealing with α-attractors (see the potential (31)), one can show that superheavy
particles, with masses around mχ ∼ 1015 GeV, are gravitationally produced during the
abrupt phase transition from the end of inflation to the beginning of kination. Note that
such heavy masses are needed so that the polarization effects do not affect the dynamics
of the inflaton field during inflation, because it is usually assumed that inflation starts at
GUT scales with HGUT ∼ 1014 GeV, and it is well known that polarization effects can be
neglected when H � mχ.

Therefore, the produced χ-particles have energy densities of the order (see for in-
stance [116]):

〈ρ(τ)〉 ∼
m4

χ

6π2 e−καmχ/H∗
(

akin
a(τ)

)3
, (177)

where κ is a dimensionless number of order 1 (more precisely, for α = 10−3, numerically,
one obtains κ ∼= 12.13; for α = 10−2, the calculation yields κ ∼= 3.45; for α = 10−1, one
obtains κ ∼= 1.1; and, finally, for α = 1, one gets κ ∼= 0.3), and H∗ ∼ 1013 GeV is the escale of
inflation, i.e., the value of the Hubble parameter at horizon crossing.

What is actually important is that these superheavy particles all decay into lighter ones
to form a relativistic plasma which will eventually dominate the evolution of the universe
and, thus, conveniently match the hot Big Bang model. Then, two different situations
may arise:

1. The decay takes place before the end of the kination phase (recall that kination ends
when ρϕ ∼ 〈ρ〉);

2. The decay occurs after the end of kination.

Let Γ be the decay rate; then, the decay is finished when Γ ∼ H, because H ∼ 1/t,
the number of χ-particles, decays as e−Γt, and the decay is practically finished when
e−Γt ∼= 1/2.

5.4.1. Decay Happens before the End of Kination

In this case, we have the following two constraints:

1. The decay occurs after the beginning of kination, i.e., Γ ≤ Hkin ∼ 6× 10−7Mpl . This
value has been obtained numerically in the case of α-attractors, and it agrees with the
fact that kination starts immediately after the end of inflation, which, in the majority
of models, ends at the scale HEND ∼ 10−7 GeV;

2. The decay precedes the end of kination, i.e., 〈ρdec〉 ≤ ρϕ,dec. Taking into account
that the energy density of the background, i.e., the one of the inflaton field, and the
one of the relativistic plasma, when the decay is finished, that is, when Γ ∼ Hdec =

Hkin

(
akin
adec

)3
, will be:

ρϕ,dec = 3Γ2M2
pl and 〈ρdec〉 = 〈ρkin〉

(
akin
adec

)3
∼=

m4
χ

6π2 e−καmχ/H Γ
Hkin

, (178)

one can see that these two constraints bound the decay rate, as follows:

1
18π2 e−καmχ/Hin f

m4
χ

Hkin M2
pl
≤ Γ ≤ Hkin. (179)
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Using, once again, Stefan–Boltzmann’s law ρrh = π2grh
30 T4

rh, with grh
∼= 106.75 (the

degrees of freedom for the standard model), the reheating temperature is given by:

Treh =

(
30

π2greh

)1/4
〈ρreh〉

1
4 =

(
30

π2greh

)1/4
〈ρdec〉

1
4

√
〈ρdec〉
ρϕ,dec

∼=
√

3π

(
30

π2greh

)1/4
× e−

3
4 καmχ/Hin f

(
6Hkin

Γ

)1/4 m3
χ

M2
pl Hkin

Mpl , (180)

where we have it that reheating happens when 〈ρreh〉 ∼ ρϕ,reh, and recalling that the evolu-
tion of both energy densities is given by:

〈ρreh〉 = 〈ρdec〉
(

adec
arh

)4
and ρϕ,reh = ρϕ,dec

(
adec
arh

)6
, (181)

which means that
(

adec
arh

)2
= 〈ρdec〉

ρϕ,dec
, and thus:

〈ρreh〉 =
〈ρdec〉3

ρ2
ϕ,dec

. (182)

Finally, taking now into account the bound (179), we obtain that, for α ∼ 10−2, the
reheating temperature ranges between 107 GeV and 109 GeV. It is interesting to compare
this enormously high reheating temperature with the solar surface temperature, which is
around 6000 K ∼ 8× 10−11 GeV (although it is a couple of orders of magnitude higher in
its interior).

5.4.2. Decay after the End of Kination

In this situation, we have the constraint Γ ≤ Hend, where Hend denotes the end of
kination. Taking this into account, one obtains:

H2
end =

2ρϕ,end

3M2
pl

(183)

and

ρϕ,end = ρϕ,kin

(
akin
aend

)6
=
〈ρkin〉2
ρϕ,kin

, (184)

where we have that kination ends when 〈ρend〉 ∼ ρϕ,end, what means that (akin/aend)
3 =

〈ρkin〉
ρϕ,kin

, because the energy density of the inflaton decays as a−6, but the one of matter decays

as a−3. So, the condition Γ ≤ Hend leads to the bound:

Γ ≤
√

2
18π2 e−καmχ/Hin f

m4
χ

Hkin M2
pl

. (185)

Assuming, as usual, that thermalization is nearly instantaneous, reheating occurs
when the decay is finished, i.e., when Γ ∼ H, and thus, 〈ρdec〉 ∼ 3Γ2M2

pl , which leads to the
following reheating temperature:

Treh =

(
30

π2greh

)1/4
〈ρdec〉1/4 =

(
90

π2greh

)1/4√
ΓMpl ; (186)
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using the previous bound, one obtains that, when the decay of the superheavy particles
occurs after the end of the kination phase, the reheating temperature belongs in the range
1 MeV ≤ Trh ≤ 108 GeV.

6. Historical Notes

1. On 20 November 1915, Hilbert gave a talk at the Royal Society of Sciences in Göttingen,
which was later published in the Transactions of the Society, in March 1916. There,
Hilbert presented the covariant equations for GR. On the other hand, Einstein’s
presentation, for the first time, of his equations for GR took place in the Prussian
Academy of Sciences in Berlin on 25 November 1915, five days after Hilbert’s.
So, at first glance, it would seem that it was Hilbert who first obtained these equations.
This was indeed the viewpoint of some scientists contemporary to Einstein and
Hilbert, among them Felix Klein, Wolfgang Pauli, and Herman Weyl. In fact, for years
there was an ongoing controversy about whether it was Albert Einstein or David
Hilbert who had first obtained the GR equations.
However, a new document appeared later in Hilbert’s archive at the University
of Göttingen: the printing proofs of the first version of Hilbert’s paper, published
in March of 1916. These proofs were sent to Hilbert two weeks after his talk (on
6 December 1915), and there, one can check that Hilbert did not present the equations
of GR in his talk of November 1915. Quite on the contrary, in these proofs, Hilbert
refers explicitly to Einstein’s talk of 25 November, published on 2 December 1915.
What really happened is that Hilbert included the GR equations in his publication,
which he obtained in an alternative way, but only after reading Einstein’s paper,
having made sure to check that the results coincided.
More to the point, Einstein wrote to Hilbert: "I had no difficulty finding the general
covariance equations of GR. This is easy with the help of the Riemann tensor. What is really
difficult is to recognize that these equations constitute a generalization, and even more, a
simple and natural generalization of Newton’s laws".
What is also clear is that Hilbert discussed GR in a superficial way only, concentrating
on the mathematical structure of the equations and on their Lagrangian formulation,
but probably without understanding in depth their physical meaning, quite the
opposite of Einstein’s approach to this issue.

2. Astronomers who made most important contributions to understand the expansion of
our universe were Vesto Slipher, Henrietta Leavitt, and Edwin Hubble. However, the
first person who clearly realized that the universe is expanding was a Belgian priest,
mathematician, and physicist named Georges Lemaître, who published his results
in 1927. We should note that, in those years, everybody believed that the universe
was static, and for very strong physical reasons. Indeed, as any ordinary physical
system that had more than enough time to evolve (an infinite amount of time, in
theory, since the universe was considered to have always existed), it should have
necessarily reached the stationary state. It could not be otherwise. However, Lemaître
proved reality to be quite the contrary. On the basis of Einstein’s GR and by matching
the theory with the astronomical observations of Slipher and Hubble, in a masterful
way, he proved that the universe was expanding; later, he observed that it was not
eternal, that it had an origin.
For many decades (even now, it is still so declared in most places) people believed that
the astronomer Edwin Hubble was the person who first discovered the expansion of
the universe. Only recently, without denying at all Hubble’s important contributions,
have historians put things in the right place. A very detailed account of this thrilling
story can be found in a book recently published by one of the authors [1].

3. In his calculations, using his table of distances (obtained in part with the help of
Leavitt’s law), and Slipher’s table of velocities (obtained as optical Doppler shifts),

Hubble obtained a rather large value for the expansion rate, of H0 ∼= 500 km/s
Mpc , which

is off the presently accepted value by almost one order of magnitude. The reason is that
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it is extremely difficult to measure cosmological distances. On the contrary, obtaining
velocities by means of the Doppler shifts is somehow easier. However, here there
is also the problem of appropriately disentangling the recession redshift from other
contributions to the observed Doppler shift, coming from the gravitational influence
of other massive celestial objects. Even today, there is still a sharp controversy about
the right value of H0 (see, e.g., [57] and references therein). Results from astronomical
observations by different groups, each one reporting uncertainties of just 1 or 2%,
differ by some 5 to 10%, an unpleasant situation that is termed the “Hubble parameter
tension” [58,59].

4. In 1922, Alexander Friedmann was the first to discover full families of solutions of the
EEs, which he rightly interpreted as corresponding to expanding and to contracting
universes. In 1922 and 1924, Friedman published two seminal papers in the prestigious
German journal Zeitschrift für Physik [7], of which Einstein was an editor. In those
papers, Friedmann showed that there were solutions to Einstein’s equations where
the universe evolved in an expanding or contracting way. Recall (see above) that, in
this epoch, everybody believed that our universe was static. However, Friedmann
explicitly declared, in 1924, that, based on some of his solutions, our universe very
well might be expanding.
Einstein was the ”referee” (this figure did not actually have the same meaning and
function at that time) of Friedmann’s first paper and, after having studied it, he wrote
a letter to the journal saying that Friedmann’s calculations should not be published
since they contained an error. When Friedmann (indirectly) learned of this opinion, he
sent all the details of his calculation to Einstein, asking him to check them for himself.
After some discussions (described in detail in, e.g., [1–4]), Einstein finally recognized
that Friedmann made no mistake, and hurried to publish another letter recognizing
his own error and saying that Friedmann’s paper should be published. Unfortunately,
in those days, it took a long time to see an article published after it was finished, and
Friedmann died in 1925 before the publication of Einsteins’ retraction.

5. During a break at the very famous Solvay meeting of 1927 in Brussels, Einstein said,
literally, to Lemaître (as was reported later by the last): “Vos calculs sont corrects, mais
votre physique est abominable”. He was referring to Lemaître’s paper of the same
year (1927) [9], which he had handed to Einstein during a previous conversation. In
the paper (in French), Lemaître had obtained, for the first time ever, the Hubble law,
and moreover, he had interpreted it in the right way, as being a proof of the expansion
of the universe, of the very fabric of the cosmos (an interpretation that Hubble never
admitted, in his whole life). Einstein himself did not accept the expansion of the
cosmos until 1932, when he was finally convinced by Richard Tolmann and Willem
de Sitter [1–4].

6. In 1956, George Gamow wrote, in Scientific American, that Einstein had told him, long
ago, that the idea of the cosmic repulsion associated with the cosmological constant
had been “the greatest blunder of his life” (“Die grösste Eselei meines Lebens”, in
German). For years to come, this was the only testimony of such a claim, leading
many to question it because of Gamow’s well-known imaginative character. Recently,
however, it has been discovered by historians of physics ([117] and references therein)
that Einstein made a similar statement on at least two more occasions. Indeed, John
Wheeler wrote in his book, Exploring Black Holes: Introduction to General Relativity,
that he had personally been present when Einstein said the above words to Gamow,
outside the hall of the Institute for Advanced Studies in Princeton. Moreover, Ralph
Alpher also testified once that he had heard Einstein make such a claim.
In addition, it is a proven fact that Einstein never wanted to use the CC again, not even
when someone suggested that it might be interesting to put it back, so as to better
adjust the age of the universe to the results of observations of the oldest galaxies,
which seemed, at one point (erroneously), to clearly exceed the age of the universe.
As Einstein explained in a footnote in the appendix to the second edition of his book
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The Meaning of Relativity [118]: “If Hubble’s expansion had been discovered at the time
of the creation of the general theory of relativity, the cosmological constant would
never had been added. It now seems much less justified to add a term like this in the
field equations, since its introduction loses the only justification it originally had”.
Finally, an important consideration, which very few mention, is the following [1]: in
taking this position, Einstein was even more radical than Friedmann and Lemaître
(the defendants of the expanding universe), since those always included the CC term
in their models for the universe; even if such a term was not necessary at all in their
equations, contrary to the case of Einstein’s static model, where it was crucial (for
an expanding universe solution, such an additional term plays a secondary role). In
any case, if there was no reason for its presence, it should not be put there, under any
circumstance; this is what Einstein said (please see [1] for additional details).

7. Fred Hoyle, an English nuclear physicist and astronomer who formulated the theory
of stellar nucleosynthesis (and, with it, the remarkable fact that we are all stardust),
was one of the authors of the steady-state theory of the universe, an attempt to maintain
a static model for the cosmos that is able to account for Hubble’s empirical law of
expansion [1–4]. Hoyle did not buy Lemaître’s conclusion that the universe had
an origin, much less his hypothesis of the primeval atom that latter exploded; he, as a
serious nuclear physicist, understood it as lacking any physical rigor. On BBC Radio’s
Third Programme broadcast on 28 March 1949, Hoyle explained to the audience
that, when comparing Lemaître’s model (by then improved by Gamow) with his
steady-state theory (where a smooth creation of matter had to take place in order
to compensate for Hubble’s expansion and keep the matter density of the universe
constant), in Lemaître’s model a sudden creation of all the matter in the universe
had to occur at the very beginning of it. For this to happen, an unbelievably huge
expansion (a Big Bang) of the fabric of space was absolutely necessary. However, of
course, such a phenomenon was fully impossible, and therefore, he pronounced these
famous words in a very disdainful tone (see a much more detailed explanation in [1]).
Hoyle anticipated the idea of cosmic inflation very clearly, albeit as an impossible
thought, exactly thirty years before Alan Guth, on an inspired night, could formulate
it precisely.
However, even if Hoyle had spoken these two words, Big Bang, in a disrespectful
manner—trying, on purpose, to mock Lemaître’s model (which had, by then, substan-
tially been improved by George Gamow)—from this moment on, everybody, starting
with Gamow himself (a very peculiar character, as is well known) began to use this
term to refer to the origin of the universe.

8. The cosmological horizon problem (aka the homogeneity problem) is a fine-tuning
issue that affects classical Big Bang models of the universe. It arises due to the
impossibility of explaining the homogeneity reported by astronomical surveys of very
distant regions of space—which are causally disconnected in these Big Bang models—
unless one invokes a mechanism that sets the same initial conditions everywhere with
very high accuracy. This problem was first pointed out by Wolfgang Rindler in 1956.
The most commonly accepted solution is cosmic inflation, as we have discussed here,
but an explanation in terms of a variable speed of light has been proposed, too.

9. The flatness problem is another important issue that appeared in the old, classical
Big Bang model of the universe. It was first mentioned by Robert Dicke in 1969, in
the Jane Lectures he gave for the American Philosophical Society that year. The total
normalized energy density of our present universe has been measured to be very
close to 1, with very small uncertainty, which points towards a very flat universe.
Any departure from the conditions leading to this value in the past would had
been magnified enormously over cosmic time. This leads to the conclusion that
one would need an unbelievably accurate fine-tuning in the initial conditions of
the universe, with an energy density that should have been incredibly closer to the
critical value at the very beginning of the universe. As we have seen, cosmic inflation
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provides the solution to this problem by making the universe extremely flat, to the
needed precision.

7. Conclusions

Our main aim in this review was to explain important issues in modern cosmology in a
simple and comprehensible way. To start, from Hubble’s law and by using a “homogeneous”
version of the Einstein–Hilbert action, together with the first law of thermodynamics, we
have easily derived the constituent equations of cosmology. Then, we dealt with their
mathematical singularities, namely, the famous Big Bang singularity and some possible
future singularities, such as the Big Rip and others, providing different ways to remove
them and eventually obtain physically sound results.

Next, we have explained a number of shortcomings that had appeared in the old Big
Bang cosmology, such as the horizon and the flatness problems, whose solutions were
given in terms of the inflationary paradigm introduced by Alan Guth. We have reviewed
inflation in detail and in very understandable terms. We have focused on the slow-roll
regime, explicitly showing its attractor behavior and its precise relation to the slow-roll
parameters. We have also calculated, step by step, the number of e-folds the universe must
necessarily expand by, in order to overcome all these problems.

Later, we focused on the study of the current cosmic acceleration via the introduction
of different sorts of dark energy. Specifically, we first considered the most simple model,
which uses the cosmological constant. Here we have shown, as a warm up exercise, that
the original approach by Einstein—namely, his static model of the universe—was unstable
(in fact, we show in detail that it corresponds to a saddle point of the model, viewed as
a dynamical system). Then, we have considered a quintessence field, which can also be
used to unify both periods of inflation, under the form of a most popular theory, named
quintessential inflation, which we have discussed in some detail.

We have also analyzed the universe’s reheating mechanism, which is a very important
and necessary stage after inflation ends, by analyzing, again, a basic system: the quantum
harmonic oscillator with a time-dependent frequency. Within this simple example, we
have introduced the standard diagonalization method, based on the calculation of the
time-dependent Bogoliubov coefficients. As an application, we have derived the bounds of
the reheating temperature for the model of an α-attractor in the context of quintessential in-
flation.

To finish, in a closing section, we have added a few short notes, which provide updated
descriptions of a number of important historical events. A much more detailed account of
them is given in [1], which is a perfect complement to the present, more technical, albeit
still very pedagogical, review.
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