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Abstract: We discuss gravitational physics in the Jordan and Einstein frames of f (R) gravity coupled
to the Standard Model. We elucidate the way in which the observed gravitational coupling arises in
the Einstein frame for generic f (R). We point out that the effect of “running units” in the Einstein
frame is related to the fact that the explicit and implicit quantum parameters of the Standard Model,
such as the Higgs vacuum expectation value and the parameter ΛQCD, are modified by the conformal
transformation of the metric and matter fields and become scalaron-dependent. Considering the
scalaron of f (R) gravity describing dark matter, we show that the effect of running units in this case
is extremely weak, making two frames practically equivalent.

Keyword: modified gravity

1. Introduction

Modification of the general relativity theory by considering the Lagrangian in the
form of a nonlinear function f (R) of the scalar curvature R is, perhaps, the simplest one
and has long been the subject of numerous studies and applications (see [1–3] for reviews).
Compared to the general relativity theory, such f (R) gravity contains one extra degree
of freedom, which can be used for modelling a wide variety of phenomena, from the
inflationary regime in the early universe [4] to dark matter at later epochs [5–11].

The extra degree of freedom is most conveniently identified in the so-called Einstein
frame of fields, where it becomes a separate scalar field, called the scalaron, while the
remaining gravitational degrees of freedom are described by the general-relativistic action.
The existence of different conformal frames has long ago raised the issue of their physical
equivalence [12]. After some debates, this question, in principle, appears to have been
resolved (see [13]). The conformal frames are physically equivalent and describe the same
observable phenomena if one carefully takes into account conformal transformation of all
masses. Thus, in the Einstein frame, one then deals with so-called “running units”, with all
physical masses becoming scalaron-dependent in a universal way.

Although the relation between the conformal frames has been understood in general, it
is, perhaps, worth giving it a closer look in the concrete theory of fundamental interactions
we are working with. This is the main subject of the present paper, in which we consider
the Standard Model minimally coupled to f (R) theory of gravity. In addition, working in
the Einstein frame, we are going to estimate potential observable effects of f (R) gravity in
a late-time universe in which the oscillating scalaron plays the role of dark matter [6,11].

The Lagrangian of the Standard Model explicitly contains only one dimensionful
parameter (in the units h̄ = c = 1), the vacuum expectation value η0 of the Higgs field.
However, according to our current understanding, this Lagrangian is to be regarded as
an asymptotic local limit of the renormalisation-group flow. The physics that this theory
describes at finite energy scales is characterised also by physical constants arising from
the phenomenon known as dimensional transmutation. Most important of these is the
parameter ΛQCD, which enters the law of renormalisation of the coupling constant of
strong interactions. Simplifying things by disregarding other gauge groups, we may take
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that ΛQCD and η0 determine the masses of all observable particles: hadrons, leptons, and
gauge bosons.

We will see that the scalaron in the Einstein frame couples to the Higgs field, in
particular, through the scalaron-dependence of the new vacuum expectation value η̃(φ).
In this sense, the Einstein frame becomes the frame with transformed, or running mass
units (in the terminology of [12,13]) for all bare masses of elementary particles, which arise
due to the Higgs mechanism. As regards the masses of bound states such as hadrons,
they depend in a non-trivial way also on the implicit dimensionful quantum parameters
such as ΛQCD. This opens up two possibilities of interpreting the theory in the Einstein
frame: as a theory with running implicit parameters (which then becomes the frame with
running mass units), equivalent to the theory in the original Jordan frame, or as a theory
with fixed implicit parameters. Although the two interpretations, in general, differ in their
observable predictions, they become equivalent in situations with a completely stabilised
or weakly excited scalaron. The last situation arises in a late-time universe in which the
excited scalaron plays the role of dark matter [6,11], and we will show that the difference
between these interpretations is practically negligible in this case.

2. Gravitational Constant in the Einstein Frame

In this section, we review the well-known transition from the Jordan frame to the
Einstein frame in the gravity sector. Our attention will be focused on the origin of the
gravitational constant (Planck mass) in this frame.

Adopting the metric signature (−,+,+,+), we write the gravitational action in
the form:

Sg =
∫

d4x
√
−g f (R) . (1)

Note that the function f (R) of the scalar curvature has mass dimension four in the
unit system h̄ = c = 1. In general relativity, we have:

fGR(R) =
M2

P
3

(R− 2Λ) , (2)

where MP =
√

3/16πG ≈ 3× 1018 GeV is a conveniently normalised Planck mass (the
reason for our choice of this normalisation will become clear below). It is customary to
explicitly introduce the factor M2

P/3 in f (R). This can be done without loss of generality,
but we will not do this here for better clarity. The point is that any other constant of the
same dimension can be factored out here, while our aim is to trace the origin of the physical
Planck mass in the Einstein frame.

Proceeding to the Einstein frame, as a first step, one writes action (1) in the form

Sg =
∫

d4x
√
−g
[
ΩR− h(Ω)

]
, (3)

where Ω is a new field with mass dimension two, and h(Ω) is the Legendre transform of
f (R). It is defined by the following equations:

f ′(R) = Ω ⇒ R = R(Ω) , (4)

h(Ω) =
[
ΩR− f (R)

]
R=R(Ω)

. (5)

The inverse transform allows one to calculate f (R) given h(Ω); it is obtained by
variation of (3) with respect to Ω:

h′(Ω) = R ⇒ Ω = Ω(R) , (6)

f (R) =
[
ΩR− h(Ω)

]
Ω=Ω(R) . (7)
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These transformations may involve subtleties as to which solution is to be chosen in (4)
and (6). Solutions of these equations are unique for convex functions, e.g., if f ′′(R) > 0
everywhere in the domain of validity. In what follows, we will assume Ω to be positive;
therefore, in view of (4), we also require1 f ′(R) > 0.

Our next step is to transform action (3) so that its linear term in R takes the Einstein
form. For this purpose, we perform a conformal transformation of the metric:

gµν =
M2

3Ω
g̃µν . (8)

Here, we explicitly introduced an arbitrary mass parameter M, compensating for the
dimension of Ω so that the conformal transformation parameter is dimensionless (leaving
the dimension of the metric intact). With this transformation, we have:

√
−g ΩR =

M2

3
√
−g

3Ω
M2 R =

M2

3

√
−g̃
[

R̃− 3
2

(
∇̃ ln Ω

)2
+ 3 �̃ ln Ω

]
, (9)

in which all objects related to the new metric g̃µν are denoted by tildes. The last term is the
total derivative and can be dropped. The transformed action (3) then becomes:

Sg =
∫

d4x
√
−g̃
[

M2

3
R̃− M2

2

(
∇̃ ln Ω

)2
−W(Ω)

]
, (10)

where

W(Ω) =
M4

9
h(Ω)

Ω2 . (11)

We have obtained an Einstein theory of gravity with a minimally coupled scalar field
and with a Planck mass M. The theory is stable only if the potential W(Ω) has a minimum
at Ω = Ω0. In view of system (4)–(7), this condition is equivalent to the existence of R0,
such that:

R0 f ′(R0) = 2 f (R0) ,
1

f ′′(R0)
−

R2
0

2 f (R0)
> 0 . (12)

Then, Ω0 = f ′(R0). From these relations, it is clear that the values of Ω0 and R0 are
independent of M introduced in (8). This is also evident from the fact that the parameter
M enters only as an overall scaling in potential (11).

We then introduce a scalar field (scalaron) φ with a canonical kinetic term and with a
minimum of potential at φ = 0 by setting:2

Ω = Ω(φ) = Ω0eφ/M . (13)

Action (10), eventually, becomes:

Sg =
∫

d4x
√
−g̃
[

M2

3
R̃− 1

2

(
∇̃φ
)2
−V(φ)

]
, (14)

where the scalaron potential V(φ) is calculated by using (5), (11) and (13):

V(φ) ≡W(Ω(φ)) =
M4

9

[
R
Ω
− f (R)

Ω2

]
R=R(Ω)
Ω=Ω(φ)

. (15)

We note that the mass parameter M has appeared as the Planck mass in action (14),
and as an overall scaling in potential (15).3 However, this parameter was introduced in (8)
quite arbitrarily. This might appear paradoxical, as if f (R) gravity does not predict a
specific value for the gravitational constant in the Einstein frame. This paradox is resolved
by examining the matter part of the action, which is done in the following section.
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3. Coupling of Gravity to Matter

As regards the matter action in the Jordan frame, we take it to be that of the Standard
Model minimally coupled to gravity. Proceeding to the Einstein frame via (8) affects
this action as well. Note, however, that most of the Standard Model action is classically
conformally invariant (with proper conformal transformation of the matter fields), and,
therefore, will retain its original form after transformation (8). The only part that breaks
conformal invariance is the Higgs sector, with the action:

SH = −
∫

d4x
√
−g

gµν
(

DµΦ
)†DνΦ + λ

(
Φ†Φ−

η2
0

2

)2
 . (16)

Here, Dµ is the gauge covariant derivative involving the SU(2) and U(1) electroweak
gauge fields and acting on the Higgs doublet Φ, and η0 is the symmetry-breaking parameter
in the Jordan frame. After the conformal transformation (8), (13) is accompanied by the
transformation of the Higgs scalar field:

Φ =

√
3Ω
M

Φ̃ , (17)

and this action becomes:4

SH = −
∫

d4x
√
−g̃ g̃µν

[(
DµΦ̃

)†
DνΦ̃ +

1
2M
∇̃µ

(
Φ̃†Φ̃

)
∇̃νφ +

1
4M2 Φ̃†Φ̃ ∇̃µφ∇̃νφ

]

−λ
∫

d4x
√
−g̃

(
Φ̃†Φ̃− βe−φ/M η2

0
2

)2

, (18)

where

β =
M2

3Ω0
> 0 (19)

is a dimensionless constant. We observe the appearance of non-renormalisable interactions
of the scalaron φ with the Higgs field in (18), which, however, are all suppressed by inverse
powers of the Planck mass M.

From (18), one observes that the Higgs vacuum expectation value in the Einstein
frame is:

η̃(φ) =
√

β e−φ/2Mη0 . (20)

It is this parameter that will determine the bare masses of all fermions and gauge
bosons in the model, which are all proportional to it. Now, in the scalaron vacuum φ = 0,
the ratio of η̃0 = η̃(0) =

√
βη0 to the Planck mass M in (14) is:

η̃0

M
=

η0√
3 Ω0

. (21)

This ratio is independent of the chosen scale M in (8), and is uniquely determined
by the original Jordan-frame actions (1) and (16). Only this ratio makes sense and is
physically measurable. This explains the freedom of choosing M arbitrarily in (8). As-
signing the observed value η̃0 ≈ 246 GeV, we should then equate M to the Planck mass
MP =

√
3/16πG ≈ 3× 1018 GeV.

The same reasoning applies to the issue of cosmological constant in the Einstein
frame. We observe that its purely gravitational contribution Λ̃ in this frame is given by the
minimum of the scalaron potential (15):

Λ̃ =
M2

24
R2

0
f (R0)

, (22)



Universe 2022, 8, 69 5 of 10

where we have used equation (12). We see that the observed ratio Λ̃/M2 is also independent
of the chosen scale M in (8). The mass hierarchy problem of modern cosmology can be
expressed as:

Λ̃
M2 �

η̃2
0

M2 � 1 ⇒
R2

0
f (R0)

�
R0η2

0
f (R0)

� 1 , (23)

where, we remember, R0 is a solution of (12). The last set of inequalities are written in terms
of the action in the original Jordan frame.

This analysis would be the whole story for a world described by classical fields.
However, the fields in the Standard Model Lagrangian are quantum, and their quantum
dynamics are non-trivial.

The Lagrangian of the Standard Model in the Jordan frame contains only one explicit
dimensionful parameter, the vacuum expectation value η0 of the Higgs field. However,
according to modern understanding, this Lagrangian is to be regarded as the relevant part
of the low-energy (or large-scale) action of some renormalisation-group flow (see, e.g., [18]).
The physics that this theory describes at finite energy scales is also characterised by implicit
dimensionful parameters arising in what is known as dimensional transmutation. Such is
the QCD parameter ΛQCD that enters the law of renormalisation-group flow of the coupling
constant of strong interactions and determines the masses of hadrons (see, e.g., [19,20]).
Simplifying the situation by disregarding other gauge interactions, we may take that two
dimensionful parameters, ΛQCD and η0, control the masses of all particles and bound states,
including hadrons, in the Jordan frame. With this simplification, we will have, for the ith
particle mass:

mi = ΛQCD fi

(
η0

ΛQCD

)
, (24)

where fi(x) are some dimensionless functions.
This consideration opens up two possibilities of interpreting the theory in the Ein-

stein frame.

3.1. Einstein Frame with Running Implicit Parameters

In the matter Lagrangian density, we can proceed to the Einstein frame by the con-
formal transformation (8) of the metric, scaling the Higgs field and the fermionic fields
ψ accordingly:

L = L
(

βe−φ/M g̃µν, β−1/2eφ/2MΦ̃, β−3/4e3φ/4Mψ̃
)
≡ L̃

(
g̃µν, Φ̃, ψ̃, φ

)
. (25)

Here, by virtue of an almost perfect conformal invariance of the action, the last
expression differs from the Lagrangian density L

(
g̃µν, Φ̃, ψ̃

)
only in the Higgs part (18).

However, the scalaron-dependent scaling of quantum fields, together with (8), lead us to a
quantum theory with accordingly scaled, implicit quantum dimensionful parameters. In
particular, the QCD parameter in the Einstein frame is locally scaled as:

Λ̃QCD(φ) =
M√
3Ω

ΛQCD =
√

β e−φ/2MΛQCD , (26)

similarly to the scaling (20) of the parameter η0 in (18). Replacing ΛQCD and η0 in (24) with
their scaled values Λ̃QCD(φ) and η̃(φ) in the Einstein frame, we observe that all masses are
scaled in the same way:

m̃i =
√

β e−φ/2Mmi . (27)

Their ratios to the Planck mass M at the scalaron vacuum φ = 0 are, again, independent
of our choice of M in (8).

Scaling (27) describes the situation of an Einstein frame with running units, an option
first discussed in [12] and further elucidated in [13]. Here, the scalaron, in addition to
the interaction with the Higgs field through the explicit mass parameter η̃(φ) in (18),
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also interacts with matter implicitly via (26) and, therefore, (27). One can arrive at the
same picture by considering the matter Lagrangian density in the Einstein frame with
transformed metric field only, i.e.,

L = L
(

βe−φ/M g̃µν, Φ, ψ
)

, (28)

and treating ΛQCD and related quantum condensates of the ψ fields as quantities coinciding
with their values in the Jordan frame. In this case, one obtains the usual relation between
the stress–energy tensors in two frames:

T̃µν = βe−φ/MTµν . (29)

An expression for the mass of a static localised object is:

mi =
∫

Σ
TµνnµξνdµΣ , (30)

where the integral is taken over a hypersurface Σ, with nµ being the vector field of unit
normal to this hypersurface; ξµ is the timelike killing vector field such that ξµξµ = −1
at spatial infinity, and dµΣ is the volume measure determined by the induced metric on
Σ. Using the conformal transformation laws of these quantities, we again arrive at the
transformation law (27) for the mass.

The two (Jordan and Einstein) frames in this interpretation are equivalent; it is a matter
of convenience in regards to which frame one chooses to work with, as long as one keeps
track of scaling (26) and (27). In particular, all objects (massive as well as massless) move
along the geodesics of the Jordan-frame metric gµν = βe−φ/M g̃µν, which is the “observable”
metric in all respects [12,13].5

3.2. Einstein Frame with Fixed Implicit Parameters

Treating the fields in the Lagrangian L̃
(

g̃µν, Φ̃, ψ̃, φ
)

of (25) as given, and “forgetting”
about their Jordan-frame origin, one can specify their quantum theory by a φ-independent
implicit quantum parameter ΛQCD in the Einstein frame. This will create a situation quite
different from that of Section 3.1, since now, the bare masses of quarks, leptons, and
gauge fields will depend on the scalaron, as before, through the Higgs expectation-value
parameter (20), while the hadron masses will be given by:

m̃i = ΛQCD fi

(
η̃(φ)

ΛQCD

)
, (31)

depending on the scalaron in a way that is more complicated than (27). We see that, in our
framework and strictly speaking, there is no conformal frame with completely fixed units.
Particle masses in this frame depend on the scalaron field in a different manner.

For the scalaron in the vacuum, this difference between frames will not be revealed,
but it will exist in situations where the scalaron is dynamically excited. One such situation
is considered in Section 4.

3.3. Conformal Anomaly

The quantum loop corrections to the classical action lead to the effect that the extra
degree of freedom present in f (R) gravity couples to matter also due to the conformal
anomaly. This is most easily seen in the Einstein frame, in which couplings between
the scalaron and gauge fields with strength tensor Fµν, for small values of |φ|/M, are
proportional to [6,8]:

αg
φ

M
tr FµνFµν , (32)

where αg = e2
g/4π, and eg is the relevant gauge-coupling parameter.
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4. Light Scalaron as Dark Matter

Since the original value of M can be fixed arbitrarily (as was shown Section 3), we fix
it in what follows so that β = 1 (this constant is defined in (19)).

The φ-dependence of the particle masses, such as (27) or (31), might be potentially
interesting in the case of a classically evolving scalaron. This may lead to important
phenomena in the early universe, where the scalaron can be highly excited. For example, if
the scalaron plays the role of an inflaton, when proceeding to the Einstein frame, it may be
necessary to take into account the dependence (27) of the masses of fundamental particles
on the scalaron field during inflation. The same dependence is responsible for particle
creation during preheating in such an inflationary theory [14,23].

In this paper, however, we will focus on the situation that arises in a late-time universe
in which the oscillating scalaron plays the role of dark matter [6,11]. In this case, the scalaron
oscillations might lead to potentially observable effects. Such effects are determined by the
small ratio:6

|φ|
M
'
√

2ρs

M2
M
m
' 10−33

(
ρs

ρs

)1/2

(1 + z)3/2 eV
m

, (33)

where z is the cosmological redshift, ρs is the local scalaron energy density, ρs is its spatial
average in the universe, and m is the scalaron mass. The effects are very small because the
scalaron mass in the interpretation of the Einstein frame with running units is bounded
from below by non-observation [25,26] of the additional Yukawa forces [27] between non-
relativistic masses (see also [6,28]):

m ≥ 2.7× 10−3 eV at 95% C.L. (34)

As regards the Einstein frame with constant implicit parameter ΛQCD, the φ-dependence
in (31) will have additional smallness because the contribution of the bare quark masses to
the masses of hadrons constitute only a tiny fraction of the total mass [19].

Let us examine this in more detail for the late-time universe. The effect is most promi-
nent in the interpretation of the Einstein frame with running units, where the observable
metric will be that of the Jordan frame. Then, in the Einstein frame, all masses scale with
the scalaron as (27). This produces second-order effects in the small gravitational potential
because of the smallness of the ratio (33). However, in the observable metric, this gives
an effect of the first order because of the scaling gµν = e−φ/M g̃µν. This will not affect null
geodesics apart from additional redshift, but will produce an effective Newtonian potential,

ϕeff = ϕ− φ

2M
, (35)

for non-relativistic matter. Here, ϕ is the Newtonian potential in the Einstein-frame metric
g̃µν, which is determined by the distribution of the usual matter and dark matter in the
form of scalaron. In the Newtonian approximation to gravity, which is of relevance here, it
is described by the Poisson equation ∇2 ϕ = 3ρ/4M2, where ρ is the total energy density
of matter, including the scalaron field.

The scalaron field φ of mass m is oscillating in time with the following period:

t =
2π

m
≈ 4.1× 10−15

(
eV
m

)
s . (36)

Therefore, the last term in the effective Newtonian potential (35) is rapidly oscillating in
time with space-dependent amplitude. Since one is interested in the motion of astrophysical
bodies on time scales much longer than (36), one should perform time averaging of their
dynamics in such a rapidly oscillating potential. The solution to this classical problem is
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well known (see §30 in [29]). The average long-term effective potential acting on test bodies
is given by:

ϕeff = ϕ +
(∇φ)2

8m2M2 = ϕ +
(∇φ0)

2

16m2M2 , (37)

where overline denotes averaging over a period of oscillations of φ, and φ0 is the space-
dependent amplitude of its oscillations. Since the scalaron energy density ρs = 1

2 m2φ2
0,

we have:

ϕeff = ϕ +
(∇ρs)

2

32m4M2ρs
= ϕ +

(
∇∇2 ϕs

)2

24m4∇2 ϕs
, (38)

where we have used the Poisson equation ρs =
4
3 M2∇2 ϕs for the scalaron contribution ϕs

to the total gravitational potential ϕ.
The scalaron energy density, and the gravitational potential ϕs, hence, varies on the

spatial scale of the de Broglie wavelength (see [30] for a review on such wave dark matter):

λdB '
2π

mv
= 124

(
10−3 eV

m

) (
10−3

v

)
cm , (39)

where v is the velocity dispersion in a virialised dark-matter halo (in units of the speed of
light). For the last term in (38), this gives an estimate:(

∇∇2 ϕs

)2

24m4∇2 ϕs
∼ |ϕs|

24m4λ4
dB
∼ 10−4v4|ϕs| . (40)

Here, we have replaced all spatial gradients by the characteristic inverse length λ−1
dB .

For typical velocity dispersions v ∼ 10−2−10−3, this is many orders of magnitude smaller
than |ϕs|. The de Broglie wavelength scale (39) and time scale tdB = λdB/v themselves
are rather small for masses m & 10−3 eV allowable in this theory. The direct effects of the
scalaron oscillations are, thus, quite negligible, and the Jordan and Einstein conformal
frames are practically indistinguishable in this case.

Couplings (32) due to the conformal anomaly lead to the scalaron decay into pho-
tons, with lifetime τ ∼ M2/α2m3 ∼ 1036 (eV/m)3 yr, exceeding the age of the universe
(1.4× 1010 yr) for m � 108 eV. (Here, α is the fine-structure constant.) For the scalaron
masses of order m ∼ 10−3 eV, as in the scenario of [11], such a light scalaron dark matter
appears to be quite “sterile” and hard to detect by means other than gravitationally. The
smallness of the specific gravitational manifestations in the scenario under consideration
would make it very difficult to establish that we are dealing with f (R) gravity. Perhaps,
this could be done only by detecting a specific Yukawa contribution to gravitational forces
at submillimetre spatial scales [25–28].

5. Discussion

A generic gravity theory with action (1) has a stable point if there exists a solution
to (12). In this case, it is conformally transformed by (8) to a general-relativistic theory (14)
with a minimally coupled scalar field with potential (15) that has minimum at φ = 0. The
gravitational coupling at this stage is introduced arbitrarily in (8). However, its physical
value in the Einstein frame is uniquely determined by the function f (R), together with
the matter action in the Jordan frame. This was demonstrated in Section 3, where we
considered the action of the Standard Model minimally coupled to gravity in the Jordan
frame.

We reviewed and further elucidated two possible interpretations of this model in the
Einstein frame, namely, as the frame with either running or constant implicit quantum
parameters. The Standard Model contains at least one such implicit parameter ΛQCD, which
transforms under conformal transformation of the metric. The difference between these
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two interpretations, however, is practically insignificant in situations where the scalaron
field is weakly excited. We verified this for the case of cosmology in which a light scalaron
plays the role of dark matter. In such a scenario, the fact that we are dealing with f (R)
gravity could be observationally verified, perhaps, only by detecting a specific Yukawa
contribution to gravitational forces at submillimetre spatial scales [25–28].
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Notes
1 This requirement ensures that the effective gravitational coupling is positive in the Jordan frame, see [1–3] for reviews.
2 If W(Ω) does not have a minimum, we still can write (13) by choosing Ω0 arbitrarily. In this case, however, the theory will not

have a stable point.
3 The appearance of a simple expression φ/M (without numerical factor) in the exponent (13) and in all subsequent exponents of

this type is the reason why we have chosen the particular normalisation constant in (8) and in (2).
4 A similar result of the conformal transformation of fields was under consideration, e.g., in [14–16]. In passing, we note that

conformal transformation, in our theory, where the Higgs scalar field is minimally coupled to gravity, looks much simpler
compared to the case of its non-minimal coupling, as is the case, e.g., in the model of Higgs inflation [17].

5 In the context of scalar-tensor theories, such an equivalence between frames on the tree level was recently demonstrated in [16].
On the one-loop level, on-shell equivalence between conformal frames was demonstrated previously in [21,22].

6 For the solar neighbourhood, the dark-matter density is ρdm ' 10−2 M�/pc3 [24], which gives
(
ρs/ρs

)1/2 ' 500.
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