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Abstract: Primordial black holes, which could have been formed in the very early Universe due to
the collapse of large curvature fluctuations, are currently one of the most attractive and fascinating
research areas in cosmology for their possible theoretical and observational implications. This review
article presents the current results and developments on the conditions for primordial black hole
formation from the collapse of curvature fluctuations in spherical symmetry on a Friedman–Lemaître–
Robertson–Walker background and its numerical simulation. We review the appropriate formalism
for the conditions of primordial black hole formation, and we detail a numerical implementation.
We then focus on different results regarding the threshold and the black hole mass using different
sets of curvature fluctuations. Finally, we present the current state of analytical estimations for the
primordial black hole formation threshold, contrasted with numerical simulations.

Keywords: primordial black holes; early Universe cosmology; numerical general relativity

1. Introduction

One of the great mysteries in science is the composition of dark matter, which accounts
for 27% of the present Universe [1]. Although there are different theories and candidates
that try to explain it [2], still, the answer remains elusive. One of the most promising
possibilities is Primordial Black Holes (PBHs), i.e., Black Holes (BH) generated at earlier
than star formation times and therefore not of stellar origin. For the current observational
status and constraints of PBHs in the form of dark matter, we refer the reader to [3–8].

PBHs were first considered in [9–11]. They could have formed in the very early
Universe due to the gravitational collapse of cosmological perturbations. Under this
scenario, PBHs could have been generated as a consequence of high non-linear peaks in
the primordial distribution of density perturbations, leaving open the possibility that PBHs
could constitute a significant fraction of Dark Matter (DM) [12–38].

PBHs with a size smaller than MPBH < 10−20 M� would have already evaporated
due to Hawking radiation [39]. Therefore, those with higher masses can account for dark
matter. In addition, they may be responsible for seeding supermassive black holes at the
centre of galaxies [40,41], generating large-scale structures through Poisson statistics [42],
or changing the thermal history of the Universe [43].

Although PBHs were theorised a long time ago, it has not been until now that their
popularity has increased exponentially. The current big interest in PBHs (and their golden
age) is due to the first detection of gravitational waves from a black hole merger by the
LIGO/Virgo collaborations [44]. Soon after this remarkable discovery, it was suggested
that the constituents of the black hole merger could have had a primordial origin [19,45].
Later on, several analyses of the data signals suggested that the population of black holes
detected could have a primordial origin [27,46–50] (see also the references therein). On the
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other hand, recent results from the NANOGrav experiment [51] have also been connected
with PBHs [26,52–59].

If formed by the collapse of inflationary perturbations, the abundance of PBHs is
exponentially sensitive to the threshold of the gravitational collapse δc [60] (where δc is
the minimum amplitude of the gravitational potential peak related to the perturbation
undergoing gravitational collapse and leading to a BH). In order to obtain the necessary
precision on δc, a numerical analysis of PBH formation is an obvious way to go.

Numerical simulations of PBH formation started some time ago, the first one being
performed in [61], where the non-linear behaviour of the gravitational collapse was studied.
Later on, in [62,63], δc was computed and a scaling behaviour for the PBH mass was found
whenever the amplitude of the perturbation was close to δc [62–65]. The value of the scaling
exponent found was consistent with the one given in the literature and computed from
a perturbative treatment [66,67] or from numerical simulations [68] in asymptotically flat
spacetime. While the constant of proportionality appearing in the scaling law depends
on the specific shape of the perturbation considered, the scaling exponent is a universal
quantity only dependent on the type of fluid. Earlier simulations of PBHs were mainly
based on the application of a Lagrangian hydrodynamic code based on finite differences
and developed from an earlier work [69], solving Misner–Sharp equations [70], which
describe the motion of a relativistic fluid in a curved spacetime. An inconvenience of this
procedure is the appearance of a coordinate singularity after forming the apparent horizon,
which breaks down the simulation. To resolve that issue, Hernandez–Misner equations [71]
(which are the Misner–Sharp equations in null coordinates) are used to evade the formation
of an apparent horizon and follow the subsequent evolution to determine the value of the
black hole mass. The method is based on [72]. As was shown in [73], the formation of PBHs
from the collapse of initial fluctuations at super-horizon scales does not form shocks (a
discontinuous solution) in comparison with the earlier result of [64], where shock waves
were found, but using initial conditions on sub-horizon scales.

On the other hand, even if a numerical code allows computing the threshold, the
realisation of a numerical simulation can be quite expensive to be actually useful for sta-
tistical applications such as the calculations of PBH abundances. Therefore, an analytical
expression would drastically simplify the problem. There are some analytical estimations
of δc (e.g., [74,75]) that were based on analytical models under certain assumptions. How-
ever, numerical simulations have shown that, even for a fixed equation of state, δc is not
universal [63,64,73,76–80]. The main argument is that δc is dependent on the specific detail
of the initial curvature fluctuation [79], i.e., on the scale dependence or “shape” of the
perturbation, something that these analytical estimations do not take into account.

Some works have tried to characterise the threshold for black hole formation in terms
of the initial density perturbation profile. In [81], the amplitude of the curvature fluctuation
and its second radial derivate at the centre were used to characterise the initial configuration
profiles, showing that the probability of PBH formation is sensitive to them. Later on, in [82],
numerical simulations were used to argue the formation of a PBH from an over-density
peak in an FLRW Universe assuming the perturbation to be initially at super-cosmological
scales, and it only depends on two master parameters: the integral of the initial curvature
perturbation and the edge of the over-density distribution. The paper [79] recently refined
the arguments of [82] by showing that these parameters may be more conveniently given
in terms of the amplitude of the “gravitational potential” at its maximum (r = rm), as
already noticed in [77], and that it mainly depends on the functional form (shape) of the
gravitational potential. More precisely, in [79], the threshold δc was identified with the
peak of the “compaction function” [77] at super-horizon scales. The compaction function
closely resembles the Schwarzschild gravitational potential and is defined as twice the local
excess-mass over the co-moving areal radius.

Following the aim to have a more accurate analytical estimation for the threshold
of PBH formation, recently, in [83], it was argued that the threshold for primordial black
hole formation should be quite insensitive to the physics beyond rm: the threshold is the
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amplitude for which a “black hole” with zero mass would be formed, taking an infinite
time. This is an asymptotically and ideal limit. Therefore, all the over-density beyond rm
will be diffused away while that just in the proximity of rm will block the collapse.

With those arguments, it was shown that during a radiation-dominated epoch (equa-
tion of state p = wρ with w = 1/3), with a very good approximation, there exists a
universal threshold value for the volume-averaged compaction function, which is actually
shape-independent. Taking into account that the volume average is dominated by scales
near the maximum of the compaction function, in [83], it was shown that it is enough to
parametrise the profile dependence of δc by the curvature shape around the compaction
function at its maximum. This result was used to make an analytical approximation for
δc taking into account the shape dependence on the curvature fluctuation, which matches
that found in simulations to within a few percent [83].

From the results in [83], there was the question of whether or not this universality on
the averaged critical compaction function is generic and not only an accident of radiation.
Thus, in [84], the universality question beyond the case of a radiation fluid was addressed.
In [84], the arguments of [83] were generalised to provide a new analytical estimation for
the threshold in terms of the equation of state and the shape profile. This analytical formula
was tested in front of numerical simulations and was found with an accuracy better than
a 6%.

The other half-part of the problem is the determination of the final PBH mass. When
a perturbation collapses, it will firstly form an apparent horizon with an associated mass
MPBH,i. After that, due to the surrounding fluid of the FLRW background, there is an
accretion process up to a final mass MPBH, f when the PBH is formed. As we have indicated,
for fluctuations whose amplitude is near the threshold (the critical regime), a scaling
law was found for the PBH mass in terms of the amplitude of the perturbation [62–65].
Although the importance of this result was pointed out in the context of critical collapse [85],
currently, it is substantially relevant because, as indicated in the current literature [60], the
PBHs with a higher probability of formation are those that are formed in the critical regime.
The probability distribution function is exponentially suppressed beyond the threshold,
and therefore, the scaling law can be directly used for estimations of PBH abundances.

On the other hand, some studies have also considered the maximum size of PBHs at
the formation time and the accretion effect from the surrounding background in the final
mass of the PBH MPBH, f . It was already noticed in [74,86] that the accretion effect for small
PBHs should be small. Specifically, in [86], some analytical expressions were derived for
the upper bound of a PBH formed by the collapse of hydrodynamical perturbations. In [87],
the MPBH, f was computed numerically for different curvature profiles and the accretion
effect was quantified, which could be substantially large for PBHs formed beyond the
critical regime O(10%).

In conclusion, considering the recent developments in the field and future perspectives,
we present this review paper to give the current state-of-the-art regarding the analytical,
numerical, and theoretical results about PBH formation from the collapse of hydrodynami-
cal perturbations on an FLRW background under spherical symmetry, currently the most
common and popular scenario in the literature [39]. We hope that this review paper allows
the scientific community to be introduced to the topic of PBH formation and understand
the main insights.

We want to tell the reader that there are fascinating and valuable review papers on
the PBH topic with a different perspective than the one considered here. For an interesting
historical review of the dark matter candidates, we refer the reader to [2]. Regarding
reviews that focus on gravitational waves applied to PBHs and the different constraints
to account for dark matter, we have [3,14,15,39,88–91]. Another interesting review with
potential applications to PBHs is [92], which is focused on scenarios with deviations from
radiation domination in the early Universe.

This review paper is organised as follows: In Section 2, we present the basics of PBH
formation. In Section 3, we give some basic details about the statistical estimation of
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PBH abundances. In Section 4, we give the necessary ingredients to set up the formalism
of PBH formation, in particular: the differential equations that describe the collapse of
the perturbations, the initial conditions, the definition of the compaction function, and
the threshold criteria. In Section 5, we discuss and comment on the different numerical
techniques employed in the literature, and we focus on a specific method that is publicly
available. In Section 6, we give numerical results regarding the threshold and PBH mass
in terms of the specific profiles using numerical simulations. In Section 7, we discuss in
detail the different developments for the analytical estimation of the threshold. Finally,
in Section 8, we enumerate other scenarios of PBH formation not explicitly considered in
this review.

2. Basics of PBH Formation

As we pointed out in the previous Section 1, PBHs could have been formed in the
very early Universe during radiation domination due to the gravitational collapse of large
curvature perturbations generated during inflation [9,10].

Under this scenario, the collapse or dispersion of those hydrodynamic perturbations
depends on the perturbation’s strength: If its greater than a given threshold, the perturba-
tion will collapse and form a BH after the perturbation re-enters the cosmological horizon.
Otherwise, if it is lower, it will disperse because of pressure gradients preventing the
collapse (a schematic picture can be found in Figure 1). Both things could happen, i.e., the
perturbation could undergo gravitational collapse and subsequently bounce. In this case,
the fluid is dispersed and collapsed continuously, making rarefaction waves (we will see
this in more detail in Section 6). This behaviour is particularly evident when the initial
strength of the perturbation is very close to its threshold value. Therefore, pressure gradi-
ents play a crucial role in the collapse of the perturbation. If pressure gradients are strong
enough, they will prevent gravitational collapse, which implies having a large threshold
compared to the situation when the pressure gradients are small.

FRW background

Gravitational collapsePressure gradients

Figure 1. Schematic picture of the collapse/dispersion of a perturbation on an FLRW background.

A big effort has been made during the past few decades to find the correct PBH
formation criteria. The first estimation of a threshold was given by [9], using a Jeans length
argument and Newtonian gravity. The criterion for the formation of a BH used was that the
size of an over-density at the maximum expansion should be larger than the Jeans length,
but also smaller than the particle horizon. This translates to the requirement that the peak
value of the density contrast at scales smaller than the cosmological horizon must be at
least w (where w is the equation of state of the perfect fluid that fills the FLRW Universe) in
order to collapse.

A simple, intuitive picture of PBH formation and its threshold connected with the Jeans
length argument can be found in [15], and we summarise it here. Consider a cosmological
perturbation at super-horizon scales. The spacetime metric can be written as a closed FLRW
Universe (we will see this in more detail in Section 4) with a radial dependence on K(r),

ds2 = −dt2 + a2(t)
[

dr2

1− K(r)r2 + r2dΩ2
]

. (1)
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where a(t) is the scale factor. If we ignore the radial derivative of K(r), the time–time
component of the Einstein equations is given by,

H2 +
K(r)

a2 =
8π

3
ρ, (2)

which basically corresponds to the FLRW equation, but with a small non-homogeneity
term given by K(r). The previous equation allows defining a density contrast as,

δρ

ρb
=

ρ− ρb
ρb

=
3K

8πρba2 =
K

(aH)2 , (3)

where ρb is the energy density of the background. A region will collapse instead of
expanding when K > 0 if we ignore the radial dependence on K(r). This precisely happens
when 3K/a2 = 8πρ, which corresponds roughly to when the Hubble scale becomes equal
to the length scale of the curved region. In this case, the assumption made with Equation (1)
is no longer valid, but still can be assumed to obtain some threshold estimation.

When δρ(tc)/ρb = 1 is the time when a homogeneous and isotropic Universe would
stop expanding, we therefore assume that this epoch is the time of black hole formation
t = tc, in particular,

δρ

ρb
(tc) =

K
k2c2

s
= 1. (4)

The criterion is that perturbations cannot collapse if they have smaller scales than the Jeans
length, which immediately implies that k2 = a2H2/c2

s , where cs =
√

w is the sound speed
of the fluid (perfect fluid in our case) and k is the wavelength mode associated with the
perturbation. Therefore, the condition that should satisfy the density contrast at the time
when the perturbation re-enters the horizon (H2(tm)a2(tm) = k2) is given by:(

δρ

ρb
(tm)

)
c
=

K
H2(tm)a2(tm)

= c2
s

k2

H2(tm)a2(tm)
= c2

s = w, (5)

which is basically the threshold value estimation obtained in [9].
The second analytical estimation came years later in [75]. The authors considered a

compensated “three-zone” model, i.e., a central over-dense region followed by an under-
dense layer (which compensates the over-density), and finally, the FLRW background,
to estimate the threshold for BH formation. Following an argument about the sound
waves at the maximum expansion of the perturbation, it was found that the threshold
of the over-density (at r = 0) when it renters the horizon must be (3(1 + w)/(5 + 3w)) ·
sin2(π

√
w/(1 + 3w)).

Later on, however, it became clear that the threshold depends on the shape of the
curvature perturbation [63,65,82]. Moreover, the threshold also depends on the specific
equation of state of the fluid since pressure gradients play a role in its determination:
the larger is w, the stronger are the pressure gradients, and therefore, the higher is the
threshold.

In [77], a new criterion for PBH formation was introduced. Importantly, it was found
that the peak of the compaction function (the average mass excess on a given volume) was
a good criterion for PBH formation, and it currently has become the standard definition
of the threshold, which we call δc. Prior to this criterion, some other measures for the
threshold “definition” were not empty of some issues. See [79] for a historical perspective
about that.

In [79], simulations were performed for a radiation fluid with a set of curvatures
profiles leading to a range of threshold values given by 0.41 . δc ≤ 2/3 using the criterion
of the compaction function’s peak as the threshold definition. Later on, in [83], the minimum
threshold value was refined, obtaining 0.4 rather than 0.41 in the case of a radiation fluid.
This difference was due to the choice of unphysical profiles in some extreme limit in [79].
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Although δc is a profile-dependent quantity, in [83,84], it was shown that there exists an
(approximately) universal value given by the averaged critical compaction function, which
allows building a sufficiently accurate analytical expression for δc, which only depends on
the type of fluid and the curvature around the peak of the compaction function.

On the other hand, if a perturbation is sufficiently strong, it will collapse and form an
apparent horizon. Later on, it will follow a process of accretion of energy density from the
surrounded FLRW background until reaching a stationary state, when the final mass of the
PBH is achieved. As was shown in [62,63], the final PBH mass follows a critical scaling law
when the amplitude of the perturbation is close to its threshold value (the critical regime),

MBH = KMH(δ− δc)
γ, (6)

with values of γ consistent with the previous numerical computation [85,93] γ ≈ 0.356.
The scaling exponent is universal and only depends on the type of fluid, not on the initial
condition. MH is the mass of the cosmological horizon at the time of horizon crossing
(when the length scale of the perturbations equals the cosmological horizon). The constant
K depends on each initial condition used. As in the case of the threshold, the values of K
are different depending on what the initial conditions are, but with values O(1) [94].

The simulations in [63] were performed for δ− δc & 10−5, which was not sufficient to
test the critical regime up to very small values, i.e., up to machine precision δ− δc ≈ 10−15.
In [73], the scaling law up to machine precision was finally verified, and this was tested
with an explicit example of a Gaussian perturbation.

3. The Abundance of PBHs

This section gives a brief review of the two approaches commonly used in the literature
to perform PBH statistics (formed in a radiation-dominated Universe) and estimate their
abundances. In this review, we do not focus on the statistical estimation of PBH abun-
dances, for which there are extensive works in this direction, with different approaches
and methods. If the reader is interested, we suggest checking these references and the ones
therein [60,95–101,101–114]. However, to show this topic at the basic level, we basically
describe the Press–Schechter [115] and the peak theory [116] procedures. This section aims
to clearly point out the relation between the threshold and PBH mass on the estimation of
PBH abundances, especially why the threshold should be known with enough accuracy to
be useful for statistics.

In both cases, we consider the amplitude of the peak of density contrast in the
comoving slicing at super-horizon scales (usually denoted in the literature as ∆ ≡ δρ
(r = 0, t)/ρb(t) [60,117]), as a statistically distributed variable. The power spectrum associ-
ated with the density contrast is defined as,

P∆(k, t)δD(k, k′) =
1

(2π)3 < ∆(k, t)∆(k′, t) >, (7)

where δD is the Dirac delta and the moments j of P∆ are given by,

σ2
j (t) =

∫ k2dk
2π2 P∆(k, t)k2j. (8)

In the Press–Schechter formalism, we make two assumptions: (i) the density contrast
field ∆ is a Gaussian variable; (ii) perturbations with ∆ > ∆c will collapse and form a
PBH. Therefore, basically, we integrate the probability distribution P(∆) over the range
∆c ≤ ∆ < ∆max, where ∆max is the maximum allowed value. In practice, we integrate up
to ∆max → ∞ since the probability distribution is a rapidly decreasing function above ∆c,
and therefore does not change the result and allows simplifying the computation. It is
important to notice that ∆c 6= δc, since we are comparing the critical density contrast with
the peak of the critical compaction function (as we will see later, it is related to the averaged
density contrast).
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Finally, consider a Gaussian distribution probability distribution,

P(∆) =
1√

2πσ0
e
− ∆2

2σ2
0 ; (9)

the abundance of PBHs can be computed as,

β =
ρPBH

ρtot
= 2

∫ ∞

∆c

MPBH

MH
P(∆)d∆ = 2

∫ ∞

∆c
K(∆− ∆c)

γP(∆)d∆

=
1√
π

2−
1+γ

2 K∆cσ
−1+γ
0 Γ(1 + γ)ΓU

(
1 +

γ

2
,

3
2

,
∆2

c

2σ2
0

)
e
− ∆2

c
2σ2

0 ,
(10)

where ΓU(a, b, c) is the confluent hypergeometric function, 1 and the factor 2 at the begin-
ning of the integral put by hand is introduced to avoid the under-counting that happens
in Press–Schechter theory. It has been assumed that the scaling law is accurate always
even when ∆� ∆c, something not true, as we will show in Section 6. However, since the
probability distribution is exponentially smaller for large ∆, Equation (10) is accurate. In
the case of considering a monochromatic mass spectrum, i.e., all the PBHs formed to have
the same mass (in particular, the horizon mass MH), the abundance is given by 2,

β = K̄ erf
(

∆c√
2σ0

)
. (11)

This can be obtained by simply taking the limit γ→ 0 and K = K̄ in Equation (10).
The procedure in the peak theory approach is a bit different. It makes statistics on

counting the numbers of over-threshold peaks on the over-density; another approach used
the curvature fluctuation ζ peaks instead [102,118].

We summarise the procedure performed in [60] to estimate the abundances through
peak theory.

First of all, we define the variable ν = ∆/σ0, for which in the rare peak assumption,
we have that ν� 1. The number of rare peaks is given by [116],

N (ν) =
1

a(t f )3
1

4π2

(
σ1

3
√

σ0

)3
ν3e−ν2/2θ(ν− νc), (12)

where t f is the time when the PBHs are formed. It is clear that we consider only that peaks
higher than the threshold value νc will contribute to the formation of PBHs. Therefore, the
abundance of PBHs measured at formation with respect to the background energy-density
can be computed as,

β =
∫ ∞

νc

ρPBH(ν)

ρb(t f )
dν =

∫ ∞

νc

MPBH(ν)N (ν)

ρb(t f )
dν. (13)

The scaling law mass, in terms of ν, is given by,

MPBH = KMH

(
σ̃0

a2
mH2

m

)γ

(ν− νc)
γ, (14)

where σ̃0 = σ0a2H2 and tm is the time of horizon crossing. Taking into account that
numerical simulations have shown a f ≈ am ≈ 3 [79], a f is weakly dependent on ν, as
pointed out in [60], and using the saddle point approximation [119] νs ≈ νc + γ/νc, finally,
we obtain,

β ≈
√

2
π
K
(

k∗
am Hm

)3( σ̃0

a2
m H2

m

)γ

ν
1−γ
c γγ+1/2e−ν2

c /2, (15)
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where k∗ = σ1/(
√

3σ0). From Equations (10), (11) and (15), we clearly see the exponential
dependence on the threshold for PBH formation and the linear dependence on the constant
K associated with the scaling law. This is the reason why an accurate determination of the
threshold is essential, since the abundances depend exponentially on it. These two methods
are however only an approximation of the true statistics, which consider the fact that each
statistical realisation of the profiles has a different threshold. This was developed in [95],
so we will not discuss it here as it is beyond the scope of this review paper. However, as
can be seen in [95], one finds again the generic behaviour that β is exponentially sensitive
to the threshold. We also mention that, in principle, a window function has to be used
to estimate PBH abundances correctly. It is necessary to relate the power spectrum in
Fourier space to the probability distribution function in real space by coarse-graining the
cosmological perturbations. The necessity of considering a window function is remarkably
important in the case of having a broad power spectrum (where several wavelength scales
k are involved). Despite that, the choice of the window function is not unique, and the
result depends on the choice used. We refer the reader to [105,111,120] to check the details.

4. Cosmological Setup for PBH Formation

This section reviews the needed ingredients to simulate the formation of PBHs in an
FLRW Universe under spherical symmetry and filled by a perfect fluid. We will see what
differential equations describe the gravitational collapse, the consistent initial conditions for
PBH formation we need to use, and the boundary conditions to supply. Later on, we will
study the formation of the apparent horizon and characterise it in terms of the expansion
of the congruences. Finally, we will describe the process of the accretion of the PBH mass
from the FLRW background and the estimation of the final mass.

4.1. Misner–Sharp Equations

The Misner–Sharp equations [70] describe the motion of a relativistic fluid with spher-
ical symmetry. This corresponds to the Einstein field equations written in the comoving
gauge (the gauge we use in this review paper). To obtain them, first of all, we need to
consider a perfect fluid with the energy-momentum tensor,

Tµν = (p + ρ)uµuν + pgµν, (16)

and with the following spacetime metric in spherical symmetry:

ds2 = −A(r, t)2dt2 + B(r, t)2dr2 + R(r, t)2dΩ2, (17)

where R(r, t) is the areal radius, A(r, t) is the lapse function, and dΩ2 = dθ2 + sin2(θ)dφ2

is the line element of a two-sphere. The components of the four-velocity uµ are given
by ut = 1/A and ui = 0 for i = r, θ, φ, since we are considering comoving coordinates
(comoving gauge). Throughout the review paper, we use units GN = c = 1.

Solving the Einstein field equations for this problem, the following quantities appear:

1
A(r, t)

∂R(r, t)
∂t

≡ DtR ≡ U(r, t),

1
B(r, t)

∂R(r, t)
∂r

≡ DrR ≡ Γ(r, t), (18)

where Dt and Dr are the proper time and distance derivatives, respectively. U is the radial
component of the four-velocity associated with an Eulerian frame (so not comoving), which
measures the radial velocity of the fluid with respect to the origin of the coordinates. The
Misner–Sharp mass M(r, t) is introduced as:

M(R) ≡
∫ R

0
4πR̃2ρ dR̃ , (19)
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which is related with Γ, U and R though the constraint:

Γ =

√
1 + U2 − 2M

R
, (20)

where Γ is called the generalised Lorentz factor, which includes the gravitational potential
energy and kinetic energy per unit mass. This also can be seen in the Newtonian limit,

Γ ∼ 1 +
1
2

v2

c2 −
GM
c2R

. (21)

Finally, the differential equations governing the evolution of a spherically symmetric
collapse of a perfect fluid in general relativity are:

DtU = −
[

Γ
(ρ + p)

Dr p +
M
R2 + 4πRp

]
, (22)

DtR = U, (23)

Dtρ = − (ρ + p)
ΓR2 Dr(UR2), (24)

Dt M = −4πR2Up, (25)

Dr M = 4πΓρR2, (26)

Dr A =
−A

ρ + p
Dr p . (27)

We refer the reader to [70] to see the details of the derivation. The boundary conditions in the
Misner–Sharp equation are R(r = 0, t) = 0, leading to U(r = 0, t) = 0 and M(r = 0, t) = 0.
Then, by spherical symmetry, we have Dr p(r = 0, t) = 0, and also, we consider a perfect
fluid p = wρ.

At r → ∞, we should recover the solution of the FLRW background. However, in a
numerical simulation, we have to handle the discretisation of time and space. Therefore,
the condition Dr p(r = r f , t) = 0 is used (where r f is the outer point of the grid) to match
with the FLRW solution and avoid reflections from density waves. On the other hand,
Equation (26) is called the Hamiltonian constraint, which is commonly used to check the
correct solution of the numerical equations. For the case p = wρ, the lapse equation in
Equation (27) can be solved considering A(r f , t) = 1 to match with the FLRW spacetime,

A(r, t) =
(

ρb(t)
ρ(r, t)

) w
w+1

, (28)

where ρb(t) = ρ0(t0/t)2 is the energy density of the FLRW background and ρ0 = 3H2
0 /8π.

Actually, the Misner–Sharp equations can be written in a more advantageous way to
perform numerical simulations using the definitions of Equation (18),

U̇ = −A
[

w
1 + w

Γ2

ρ

ρ′

R′
+

M
R2 + 4πRwρ

]
, (29)

Ṙ = AU, (30)

ρ̇ = −Aρ(1 + w)

(
2

U
R

+
U′

R′

)
, (31)

Ṁ = −4πAwρUR2, (32)

M′ = 4πρR2R′, (33)

where the dot U̇ represents the time derivate ∂U/∂t and ρ′ the radial derivative ∂ρ/∂r.
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4.2. The Gradient Expansion Approximation, Initial Conditions, and Compaction Function

The gradient expansion method [121] (also called long-wavelength approximation)
was used in [122] to set up consistent initial conditions for PBH formation on an FLRW
background at super-horizon scales. First of all, let us consider a cosmological perturbation
at super-horizon scales, i.e., with a length scale Rm much larger than the Hubble horizon.
We can define a parameter ε to relate the two scales: the Hubble horizon RH and the length
scale of the perturbation Rm,

ε =
RH(t)
Rm(t)

, (34)

where RH = 1/H. It is clear that at super-horizon scales, we will have ε� 1. The gradient
expansion method allows expanding these inhomogeneities in the spatial gradient in terms
of ε. In the limit ε→ 0, the spacetime locally corresponds to the FLRW metric, when the
perturbation is smoothed out at sufficiently large scales Rm.

Consider a general spacetime metric in the 3 + 1 Arnowitt–Deser–Misner (ADM)
formalism [123,124],

ds2 = −α2dt2 + γij(dxi + βidt)(dxj + βjdt); (35)

in general, the spatial part of the metric can be decomposed into:

γij = a2(t)e2ζ(t,xi)γ̃ij (36)

where γij, βi, and α are the spatial metric, shift-vector, and lapse function, respectively. ζ
is usually called the curvature fluctuation. Under the gradient expansion method, it was
shown in [77,125–127] that β = O(ε), α = 1 + O(ε2), and γ̃ij = δij + O(ε2). Therefore, in
spherical symmetry and in the limit ε→ 0, the metric of Equation (35) can be written as,

ds2 = −dt2 + a2(t)e2ζ(r̃)(dr̃2 + r̃2dΩ2). (37)

Notice the time independence of ζ(r̃) since at super-horizon scales, it is shown that ζ̇ = O(ε2).
It is important to point out that although, we consider the comoving gauge, other gauges
are possible. In particular, in [77], the constant mean curvature gauge was used instead.
However, as was shown in [76,126], the differences between the two gauges in ζ are of O(ε2).

Finally, the metric Equation (37) can be also written in other coordinates as an FLRW
metric with a non-constant curvature K(r),

ds2 = −dt2 + a2(t)
[

dr2

1− K(r)r2 + r2dΩ2
]

. (38)

The change of coordinates r, r̃ between the two metrics and the conversion between
K(r), ζ(r̃) are given by the following relations, which were obtained in several works
previously (not necessarily in the context of PBH formation for all of them) [79,81,109,128]:

r = r̃eζ(r̃), (39)
dr
dr̃

= eζ(r̃)[1 + r̃ζ ′(r̃)
]
,

K(r)r2 = −r̃ζ ′(r̃)
[
2 + r̃ζ ′(r̃)

]
,

ζ(r̃) =
∫ r

∞

(
1− 1√

1− K(r̂)r̂2

)
dr̂
r̂

,

r̃ = r exp

[∫ r

∞

(
1√

1− K(r̂)r̂2
− 1

)
dr̂
r̂

]
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Therefore, the cosmological perturbation will be characterised by the curvature perturbation
K(r), ζ(r̃). The Misner–Sharp equations can be solved at leading order in ε� 1 using the
long wavelength approximation as was performed in [122],

A(r, t) = 1 + ε2(t)Ã,

R(r, t) = a(t)r(1 + ε2(t)R̃),

U(r, t) = H(t)R(r, t)(1 + ε2(t)Ũ), (40)

ρ(r, t) = ρb(t)(1 + ε2(t)ρ̃),

M(r, t) =
4π

3
ρb(t)R(r, t)3(1 + ε2(t)M̃),

where for ε→ 0, we recover the (FLRW) solution. The perturbations of the tilde variables
at first order in gradient expansion were computed in [122], which we summarise here:

ρ̃ =
3(1 + w)

5 + 3ω

[
K(r) +

r
3

K′(r)
]
r2

m,

Ũ = − 1
5 + 3ω

K(r)r2
m,

Ã = − w
1 + w

ρ̃, (41)

M̃ = −3(1 + w)Ũ,

R̃ = − w
(1 + 3ω)(1 + w)

ρ̃ +
1

1 + 3ω
Ũ.

The perturbations in the r̃ coordinate with ζ(r̃) are [79],

ρ̃ = −2(1 + w)

5 + 3w
exp [2ζ(r̃m)]

exp [2ζ(r̃)]

[
ζ ′′(r̃) + ζ ′(r̃)

(
2
r̃
+

ζ ′(r̃)
2

)]
r̃2

m, (42)

Ũ =
1

5 + 3w
exp [2ζ(r̃m)]

exp [2ζ(r̃)]
ζ ′(r̃)

[
2
r̃
+ ζ ′(r̃)

]
r̃2

m.

From Equations (41) and (42), an expression for the density contrast at super-horizon
scales in terms of the curvature fluctuations can be obtained [79], given by:

δρ

ρb
(r) =

3(1 + w)

5 + 3w

(
1

aH

)2[
K(r) +

r
3

K′(r)
]
, (43)

δρ

ρb
(r̃) = −3(1 + w)

5 + 3w

(
1

aH

)2
exp [−2ζ(r̃)]

[
ζ ′′(r̃) + ζ ′(r̃)

(
2
r̃
+

ζ ′(r̃)
2

)]
.

The areal radius of the length scale Rm is given by Rm(t) = a(t)rm or also Rm(t) =
a(t)r̃meζ(r̃m) with the r̃ coordinate taking into account Equation (39). As was shown in [129],
where the gradient expansion method beyond first order was applied using an iterative
scheme (see [129] for more terms in the ε expansion in comparison with Equation (40)), the
long-wavelength approximation at first order is accurate enough if a sufficiently small ε
parameter is taken.

When we take ε = 0, we recover the background solution equations: H(t) = H0t0/t,
a(t) = a0(t/t0)

α, and RH(t) = RH(t0)(t/t0) where a0 = a(t0), H0 = H(t0) = α/t0,
and RH(t0) = 1/H0. Moreover, we define α = 2/3(1 + w). We also consider as the
initial condition that rm = ΛRH(t0), where Λ is some number (usually taken as O(10) in
simulations). A time scale given when ε(tm) = 1 is commonly defined in the literature,
which precisely corresponds to the time when the Hubble horizon equals the length scale
of the perturbation (the time of horizon crossing) tm = t0(a0rm/RH(t0))

1/(1−α). Notice
that t0 is the initial time, and it is assumed to be a time where the perturbation is at
super-horizon scales.
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On the other hand, the amplitude of a cosmological perturbation can be measured as
the averaged density contrast within a spherical region:

δ̄(R) =
1
V

∫ R

0
4π

δρ

ρb
R̂2 dR̂, (44)

where δρ = ρ− ρb and V = 4πR3/3.
Related to that, in [77], the compaction function C(r) was defined, which gives a

measure of the mass excess on a given volume. In particular,

C(r, t) =
2[M(r, t)−Mb(r, t)]

R(r, t)
, (45)

where Mb(r, t) is the mass of the FLRW background in the volume V. The compaction
function can also be written in terms of δ̄, as was shown in [76],

C(R) = δ̄(RH)2. (46)

At leading order in ε,

δ̄(r, t) =
(

1
aHrm

)2
δ(r), (47)

where:

δ(r) = f (w)K(r)r2
m, (48)

f (w) = 3(1 + w)/(5 + 3w). (49)

From the above definitions, we finally define the compaction function at super-horizon
scales at leading order of gradient expansion as:

C(r, t) ' C(r) = f (w)K(r)r2 =
r2

r2
m

δ(r), (50)

which yields C(rm) = δ(rm) = δm, i.e., δm = f (w)K(rm)r2
m. The previous equation can be

obtained introducing the initial condition of Equation (40) into Equation (45) and making
an expansion in ε. Notice in Equation (50) the time-independence of the compaction
function at super-horizon scales at leading order in gradient expansion, since the curvature
fluctuations remain frozen at super-horizon scales, as we have mentioned before. The
compaction function at super-horizon scales is an essential magnitude, since it allows
defining the threshold. In particular, we now define the location of the maximum of C(r) as
rm, and its value Cmax = C(rm) is used as a criterion for PBH formation, as was proposed
in [77], while rm (r̃m in the case of using the r̃ coordinate) is considered the length scale of
the perturbation. The threshold for PBH formation will correspond to the peak value of
the critical compaction function, i.e., Cc(rm) = δc. Therefore, we define the “amplitude” of
the perturbation as δm = C(rm). Perturbations with δm > δc will collapse and form a PBH.
In the opposite case, perturbations with δm < δc will disperse on the FLRW background
with no black hole formation. Notice that from Equation (38), we have a bound on the
amplitude value δm at super-horizon scales given by δm,max = f (w), since Kmax(rm)r2

m = 1.
Because of the previous definitions, the value of rm is given by the solution of C ′(r) = 0:

K(rm) +
rm

2
K′(rm) = 0. (51)

The definition of the compaction function at super-horizon scales using the ζ(r̃)
perturbation instead of K(r) leads to a slightly different definition,

C(r̃) = f (w)
[
1−

(
1 + r̃ζ ′(r̃)

)2
]
, (52)
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which yields the following condition for the peak r̃m:

ζ ′(r̃m) + r̃mζ ′′(r̃m) = 0, (53)

and therefore, δm = − f (w)[2 + r̃mζ ′(r̃m)]r̃mζ ′(r̃m). Interestingly, in [79], δ̄(rm, t) =
3δρ(rm, t)/ρb was found at super-horizon scales, which relates the averaged mass excess
with the local density contrast at rm.

In this review paper, we focus on type I PBHs, which are those that fulfil that the areal
radius R is a monotonic function, i.e., R′ > 0. Instead, type II PBHs satisfy R′ < 0 [130].
Type II PBHs are still unexplored in the literature from a numerical point of view or even
with a general analytical treatment.

4.3. Horizon Formation

If an initial perturbation at super-horizon scales has an amplitude δm bigger than its
threshold δc, the perturbation will continue growing and, at some point, a trapped surface
will be formed. This indicates the onset of gravitational collapse.

To identify when trapped surfaces are formed, we have to consider the expansion
Θ± of null geodesics’ congruences k±, orthogonal to a spherical surface Σ. The expansion
Θ± is defined as Θ± ≡ hµν∇µk±ν , where hµν is the spacetime metric induced on Σ. There
are two congruences: we call them inwards k+µ and outwards k−µ , whose components are
k±µ = (A,±B, 0, 0) with k+ · k− = −2.

In the case of flat spacetime, Θ− < 0 and Θ+ > 0, and these surfaces Σ are called
normal surfaces. On the other hand, if Θ± < 0, the surface is called trapped, while if both
are positive Θ± > 0, the surface is anti-trapped. In our case, we have that,

Θ± =
2
R
(U ± Γ). (54)

In spherical symmetry, we can consider that any point (r, t) is a closed surface Σ with
a proper radius R. These points can be classified as normal, trapped, and anti-trapped.
Specifically, the transition from a normal to a trapped surface should satisfy Θ− < 0 and
Θ+ = 0, which corresponds to a marginally trapped surface, usually called the “apparent
horizon”. Taking into account that Θ+Θ− = 4

R2 (U2 − Γ2), the condition for the apparent
horizon is given by U2 = Γ2 ⇒ 2M = R.

In Figure 2, 2M/R and the congruences Θ± for a supercritical (with an amplitude
δm > δc) Gaussian curvature fluctuation can be seen, after the first horizon has been formed.
The same qualitative behaviour can be applied for any perturbation of type I PBHs (with
w 6= 0).

Looking at Figure 2, we can see three points where 2M = R, and therefore three
different surfaces that we can characterise:

• Surface (A–B): In this region, we have a transition between Θ+ > 0 and Θ− < 0 (nor-
mal region) to Θ+ < 0 and Θ− < 0. This horizon, moves inwards of the computational
domain, which eventually will encounter a singularity at r = 0;

• Surface (B–C): In this region, we have a transition between Θ+ < 0 and Θ− < 0 to
Θ+ > 0 and Θ− < 0 (normal region). This horizon, typically called “the apparent
horizon”, moves outwards of the computational domain. Actually, this horizon and the
previous one emerge from a single marginally trapped surface. During the evolution,
the motion of the horizon can be followed to obtain the PBH mass M(r∗, t), where
r∗(t) is the location of the outer horizon in time. At the final stage of the gravitational
collapse for very late times, this horizon will become static, i.e., r∗ = const;

• Surface (C–D): In the last region, we have a transition between Θ+ > 0 and Θ− < 0
(normal region) to Θ+ > 0 and Θ− > 0. This case corresponds to an anti-trapped
surface, which corresponds to the cosmological horizon, moving outwards. We should
mention that this horizon does not correspond to the cosmological horizon RH from the
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FLRW background, since the perturbed medium (deviating from the FLRW solution)
affects the evolution of the cosmological horizon.

For a more formal discussion about horizons, we suggest the reader check [131–140].

Figure 2. (Top-panel): Profile of 2M/R once the trapped surface has been formed. The dashed line
corresponds to 2M/R = 1. (Bottom-panel): Profiles of the two expansions Θ± at the same time t as
the top panel. The vertical orange lines correspond to points where Θ± = 0. The initial fluctuation
considered corresponds to a Gaussian profile.

4.4. PBH Mass and Accretion

Once the apparent horizon has formed, the initial PBH mass, i.e., the mass of the PBH
MPBH,i at the moment of formation of the first apparent horizon tAH , will start to grow to
arrive at a stationary value MPBH, f . This situation is different from the case of dust collapse
w = 0, where the mass would increase forever since no pressure gradients would avoid the
accretion of energy–matter.

The process of accretion of energy–matter from the FLRW background has been stud-
ied in the past [9,11,86,141,142] in different scenarios. To estimate the final mass of the
PBH, one could follow the motion of the apparent horizon until very late times when the
horizon remains static. However, since it could be computationally very expensive, we
can use the Zeldovich–Novikov formula Equation (55) [11], which considers Bondi accre-
tion [11,143,144], and in our case, assume that the energy density right outside the apparent
horizon decreases as in an FLRW Universe. It is essential to indicate that this is not valid at
the time tAH , since it neglects the cosmological expansion of the spacetime [145], but we
can apply from sufficiently late time for t� tAH considering an effective constant accretion
efficiency rate F [143,144], which depends on the non-linear process of the accretion flow
and the equation of state. This approximation was already used numerically in the context
of PBH formation from domain walls in [146] and from curvature fluctuations in [80] with
great success.

In particular, for very late times t� tAH , the mass accretion follows,

dM
dt

= 4πFR2
PBHρb(t) , (55)

where F is commonly numerically found to be of order O(1). In the previous equation, the
cosmological expansion is neglected, and also, it assumes a quasi-stationary flow onto a
PBH. The inaccuracies of these assumptions are absorbed in F. We should also mention
that this formula assumes that PBHs are at rest relative to the FLRW background or have
negligible peculiar velocities, which is a good approximation in our case. We refer the
reader to [142] for a discussion about the scenario with relative velocities.
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Taking into account the condition of the apparent horizon in spherical symmetry
RPBH = 2MPBH, the previous equation is solved analytically as:

MPBH(t) =
1

1
Ma

+ 3
2 F
(

1
t −

1
ta

) , (56)

where Ma is the initial mass when the asymptotic approximation is used at the time ta.
The value of F has been found to weakly depend on the specific shape of the perturbation
and its amplitude, but strongly on the equation of state w. Specifically, F depends on the
high non-linear process of accretion and the counterpart of pressure gradients. F can be
obtained numerically by fitting the evolution of MPBH(t) (at sufficiently late times after the
formation of the apparent horizon, when it is valid). Using that, the PBH mass is estimated
as the asymptotic mass value at t→ ∞, i.e.,

MPBH, f = MPBH(t→ ∞) =

(
1

Ma
− 3F

2ta

)−1
. (57)

The final PBH mass will be dependent on the specific profile of the fluctuation, its
initial amplitude δm, and w. As was already shown in the past, in the critical regime where
δm is very close to the critical value δc, the black hole mass follows a scaling law [63–65],

MPBH, f = KMH(δm − δc)
γ, (58)

where γ ≈ 0.356 in radiation w = 1/3. The values of γ in terms of the equation of state
w were found semi-analytically in [67] and are plotted in Figure 3. These results were
numerically confirmed in [94].

Figure 3. Values of γ(w) plotted from the data of Table 1 in [67].

In Equation (58), the constantK depends on the specific shape of the profile considered
and MH ≡ 1/2H(tm) is the Hubble mass, which is calculated at the time tm. Specifically,
MH in terms of the initial values of the perturbation can be written as:

MH =
3(1 + w)

4
t0(a0Λ)

3(1+w)
1+3w , (59)

which will depend on the initial length scale rm and the equation of state w (we can consider
gauge values a0 = 1 and t0 = 1). In the case of using the r̃ coordinate, we just need to replace
Λ→ Λeζ(ΛRH(t0)) in Equation (59). The scaling law starts to deviate at (δm − δc) & 2× 10−2

(for w = 1/3), as was indicated in [94]. It was shown explicitly in [80] that for large δm beyond
the critical case, the scaling law seems to deviate by order O(10%) (at least for w = 1/3), but
it can be smaller or larger depending on the profile considered. The deviation from the critical
regime is expected to be also found for other w’s, but the quantification still is missing in
the literature. As pointed out in [147], it is important to consider the scaling law behaviour
Equation (58) for the predictions of the PBH mass spectra.
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5. Numerical Techniques

Most of the times, Partial Differential Equations (PDEs) cannot be solved analytically,
and numerical methods are needed. This is especially common in general relativity and
is the case we have here. Currently, several methods and tools can be employed in nu-
merical relativity [148–156]. In the case of PBH formation, there is the extra difficulty that
the gravitational collapse happens on an FLRW background, so not on asymptotically
flat spacetime.

Different authors have employed different numerical procedures to simulate PBH
formation from the collapse of curvature fluctuations under spherical symmetry, as we
mentioned in Section 1. From a historical perspective, several works have used the stan-
dard and very well-known finite differences approach to solve Hernandez–Misner–Sharp
equations in the comoving gauge [62,63,65,78,79,82,94,122,157]. Alternatively, simulations
were also performed at earlier times using a different gauge, in particular the mean cur-
vature gauge [77]. The numerical results of both procedures with different gauges were
verified to be consistent with each other in [76] at leading order in gradient expansion.
A new numerical method came up recently using pseudospectral methods [80] to solve
Misner–Sharp equations together with the use of an excision technique to obtain the final
mass of the black hole.

In this review, we describe the pseudospectral collocation technique used in [80]. The
basics of the numerical code are available here [158] (currently, the only one in the literature
publicly available), and therefore, the reader can reproduce or extend some of the results
presented in this review.

5.1. Pseudospectral Methods

Pseudospectral methods have been extensively used in computer science for solving
complex physics phenomena [159–161]. The application to the field of numerical relativity
has been also very popular to study different problems, from astrophysics to more oriented
toward high energy physics [162–165,165–176].

In what follows, we outline how to use the basics of the pseudospectral technique
applied to our problem, which allows solving partially algebraically the differential equa-
tions describing the gravitational collapse. See also [177,178] for much more details and
mathematical foundations. In particular, we use the Chebyshev collocation method (but
there are also other formulations).

Let us consider a function f (x) and fit it with Ncheb Chebyshev polynomials (any other
orthonormal function could be used as well). The function f (x) can be composed by a sum
of Chebyshev polynomials as,

fNcheb(x) =
Ncheb

∑
k=0

ckTk(x), (60)

where Tk(x) are the Chebyshev polynomials of order k. The coefficients ck with k =
0, 1, . . . , Ncheb are then obtained by solving fNcheb(xk) = f (xk) where xk = cos(kπ/Ncheb).
The points xk, which satisfy T′k(xk) = 0, are called Chebyshev collocation points.

Therefore,

fNcheb(x) =
Ncheb

∑
k=0

Lk(x) f (xk), (61)

Lk(x) =
(−1)k+1(1− x2)T′Ncheb

(x)

c̄k N2
cheb(x− xk)

, (62)

where c̄k = 2 if k = 0, N and c̄k = 1 in the other cases. The functions Lk are the Lagrange
interpolation polynomials.
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The derivate of p-order of the function will be given by,

f (p)
Ncheb

(xi) =
Ncheb

∑
k=0

L(p)
k (xi) fNcheb(xk). (63)

We define the Chebyshev differentiation matrix as D(p) = {L(p)
k (xi)}. The components of

the matrix are given by:

D(1)
i,j =

c̄i
c̄j

(−1)i+j

(xi − xj)
, (i 6= j), i, j = 1, . . . , Ncheb − 1, (64)

D(1)
i,i = − xi

2(1− x2
i )

, i = 1, . . . , Ncheb − 1, (65)

D(1)
0,0 = −D(1)

Ncheb,Ncheb
=

2N2
cheb + 1

6
. (66)

To improve round-off errors in the numerical computations [178], the following identity of
the diagonal components of the matrix D is used:

D(1)
i,i = −

Ncheb

∑
j=0,j 6=i

D(1)
i,j . (67)

In spectral methods, the error decays exponentially with Ncheb. This represents a
significant improvement in comparison with finite differences, where the error decays
algebraically as 1/Nv, where v > 0 and N is the number of points of the grid. The
exponential convergence in spectral methods is obtained thanks to the fact that the derivate
at a given point is computed taking into account all the other points of the grid, instead of
finite differences, which only consider the neighbours.

The radial domain Ω in our case corresponds to Ω = [rmin, rmax] where rmax =
NH RH(t0) and rmin = 0. NH is the number of initial cosmological horizons where we put
the final point of the grid, for which it usually is enough to take NH ∼ 102. The domain of
the Chebyshev polynomials is [−1, 1]; therefore, we need to make a mapping between the
physical domain and the spectral one. Different options are possible, but a linear mapping
is commonly used:

x̃k =
rmax + rmin

2
+

rmax − rmin

2
xk. (68)

x̃k are the new Chebyshev points rescaled to our physical domain Ω. Furthermore, the
Chebyshev matrix can be rescaled using the chain rule:

D̃ =
2

rmax − rmin
D. (69)

The imposition of boundary conditions in spectral methods is straightforward. In the case
of the Dirichlet boundary condition at xk, such that f (x = xk) = uD,bc, we just need to
satisfy fNcheb(x = xk) = uD,bc. In the case of the Neumann boundary condition such that
f (1)(x = xk) = uN,bc, we should satisfy that (D · fNcheb)(x = xk) = uN,bc. The numerical
stability will depend on the values chosen for dt and Ncheb. We do not have complete
“freedom” to choose those values. If the number of points of the grid is increased, it will
require a reduction of the time step dt, in order to avoid instabilities during the evolution.
The Courant–Friedrichs–Lax (CFL) condition for hyperbolic PDEs already indicates that
the maximum allowed time step should fulfil dt ∝ 1/N2.

There are situations where pressure gradients are substantially large during the nu-
merical evolution. This, for instance, can happen when the curvature fluctuation has very
sharp profiles or when w becomes large. In this situation, it is necessary to increase the
numerical accuracy of the simulation. One possibility is to increase the number of points of
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the grid Ncheb, but of course, this would imply reducing the time step dt to ensure stability.
The other one (which is actually better and more clever) is to use a composite Chebyshev
grid: split the full domain into several Chebyshev grids depending on the density of points
needed in specific regions of the domain. In particular, the full domain Ω is split into M
subdomains as Ωl = [rl , rl+1] with l = 0, 1 . . . , M. A mapping between the spectral and
physical domain for each is required. We choose a linear mapping again as,

x̃k,l =
rl+1 + rl

2
+

rl+1 − rl
2

xk,l , (70)

where x̃k,l are the new Chebyshev points re-scaled to the subdomain Ωl . The Chebyshev
differentiation matrix is re-scaled again using the chain rule:

D̃l =
2

rl+1 − rl
Dl . (71)

The numerical evolution is performed independently in each subdomain, i.e., the spatial
derivative is computed using the Chebyshev differentiation matrix D̃l associated with each
subdomain, and the time integration is performed applying the Runge–Kutta 4 method on
each subdomain.

To evolve across the different subdomains Ωl , it is necessary to impose boundary
conditions. The approach followed is the one of [179], which is based on performing an
analysis of the characteristics of the field variables. The prescription is that the incom-
ing fields’ derivative is replaced by the time derivative of the outgoing fields from the
neighbouring domain at the boundaries. It was checked in [84] that all the fields of the
Misner–Sharp equations are incoming except for the density field. Therefore, the boundary
conditions that must be applied between each subdomain are:

Ṁ(t, rl+1,i) = Ṁ(t, rl, f ), (72)

U̇(t, rl+1,i) = U̇(t, rl, f ),

Ṙ(t, rl+1,i) = Ṙ(t, rl, f ),

ρ̇(t, rl, f ) = ρ̇(t, rl+1,i) .

where rl, f and rl+1,i mean the last grid point in the subdomain Ωl and the first grid point in
the subdomain Ωl+1, respectively. A diagram of the imposition of the boundary conditions
between the subdomains can be found in Figure 4.

V V V V

U U U U
r=0 r=rf

Figure 4. Sketch of the application of the boundary conditions between the different subdomain grids.
Through an analysis of the characteristics, the flow of the field variables u and v can be identified (in
our case u and v would correspond to ρ, M, R, U), and we apply the prescription of Equation (72).

The use of multigrids in spectral methods has a similar idea to the use of an Adaptive
Mesh Refinement (AMR) in finite differences, to increase the resolution of the grid in some
regions. Actually, the use of AMR was essential in [94] to verify the scaling law behaviour
for the PBH mass in the critical regime. The procedure of the AMR is based on splitting the
cell grids on a particular desired region and making subsequent subdivisions of the cells.
A summarised and basic procedure is the following: (1) During the evolution, individual
grid cells are tagged for refinement using some criteria (high-density regions have to be
highly resolved, for instance). (2) All tagged cells are then refined, which means that a finer
grid (inside each initial cell) is overlaid on the big one. (3) Finally, after refinement has been
performed, individual grid patches on a single fixed level of refinement are evolved in time
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using the time-discretisation scheme, implemented from the differential equations of the
problem. If the level of refinement implemented in a cell is greater than what is needed, the
refinement of the cell can be reduced. The disadvantage as in spectral methods is that the
stability of the method is modified, and a smaller time step will be required. Therefore, the
AMR (and in general, any non-uniform grid procedure) allows resolving problems that are
intractable due to the high amount of resolution needed for some regions of the domain.

A known weak point of spectral methods is when they have to handle discontinuous
solutions, in particular with the presence of shocks, since the derivative at each point is
computed globally, and therefore, the discontinuity is quickly propagated to the other parts
of the grids. In this situation, it is better to use a finite differences approach, although
usually, a modification of the numerical implementation is still needed to be able to capture
shocks, such as the introduction of artificial viscosity.

However, as mentioned in Section 1, in our case, shocks are not formed in the simula-
tions, since we should consider initial conditions at super-horizon scales [94].

5.2. Numerical Procedure

In all the simulations, we fixed the value of w, t0 = 1 and a0 = 1. From that, we
automatically obtained H0 = α, RH(t0) = 1/H0, and recall that α = 2/3(1 + w). For the
initial length scale of the perpetuation, rm = 10RH(t0) (Λ = 10) is usually considered,
which is sufficient to ensure the long wavelength approximation, as was indicated in [79].

First, we focus on describing the procedure to obtain the threshold δc, and we leave
the method to obtain the final mass MPBH, f for the following subsection. To obtain the
threshold, a bisection method was used, which compares different regimes of δm until
finding the range in which the formation of the apparent horizon appears. The threshold δc
corresponds to the midpoint of this range.

An example of a successful procedure is the following:

• Create the different grid points x̃k,l for the different subdomains Ωl with a given
number of points Ncheb,l, and compute the different Chebyshev differentiation matrices
Dl . Introduce also the initial time step dt0, which usually dt0 ≤ 10−3 is enough to
ensure stability;

• Specify a lower and an upper limit in δm of the bisection. The maximum value
δm,max = f (w) can be chosen for the upper limit, and for the lower bound, δm,min ≈ w
(which corresponds to the threshold estimation using a Jeans length criteria). To
reduce the computational time, a closer domain to δc can be chosen if such a domain
is known;

• A value δm is taken once the bisection starts. From that, the curvature profiles K(r) or
ζ(r̃) can be built, and the location of the compaction function peak rm can be found, r̃m,
using Equations (51) and (53) respectively. Subsequently, compute the perturbations
of the hydrodynamical variables following Equations (40) and (41);

• Integrate Equations (29) and (32) at each time step dt using the fourth-order Runge–
Kutta method, imposing at each internal time step the boundary conditions at r = 0
and r = r f . Include the internal boundary conditions between the different Chebyshev
grids Equation (72);

• To distinguish numerically the formation of an apparent horizon or not, we used the
peak value of the compaction function in time. When the peak approaches Cmax ≈ 1,
this implies the formation of the apparent horizon 3. In this case, the value of δm
chosen would imply the formation of a black hole, i.e., δm,yes, and therefore, a lower
value δm closer to δc must be found modifying the bound of the bisection in such way
that δc ∈ [δc,min, δm,yes]. In the opposite case, when Cmax decreases continuously for
some time, this will imply the dispersion of the perturbation, and the bisection bound
should be modified as δc ∈ [δm,no, δc,max];

• The previous steps are iterated until the difference between δm,yes and δm,no is lower
than the desired resolution, i.e., δm,yes − δm,no . δ(δc). From that, the threshold value
is defined as δc = (δm,yes + δm,no)/2± δ(δc). When δm approaches the critical value, in
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some cases, the grid resolution initially set up is not enough to follow the evolution; if
so, then δm is shifted according to δ(δc) to avoid being close to δc. Another alternative
would be the dynamical inclusion of more subgrids in the desired region where
gradients start to be large.

During the time evolution, a conformal time step dt = dt0(t/t0)
α is used, which

substantially improves the performance of the simulation. The two-norm of the Hamil-
tonian constraint Equation (26) is computed at each time step. It is expected that the
constraint should remain constant from t = t0 if the Einstein equations are correctly solved.
In particular,

H = Dr M− 4πΓρR2, (73)

|| H ||2 ≡∑
l

1
Ncheb,l

√√√√∑
k

∣∣∣M′k,l/R′k,l

4πρk,l R2
k,l
− 1
∣∣∣2, (74)

where the label l refers to the sum of the different Chebyshev grids and k to the different
points of the grid.

5.3. Numerical Estimation of the Final PBH Mass

To obtain the final mass of the PBH MPBH, f , we used an excision technique, and we
describe it with detail in this section. Saying that, other alternatives in the literature have
used null coordinates with the Hernandez–Misner equations [63,71,73] to obtain the final
mass. We refer the reader to these references, but the primary approach followed can be
summarised as follows: (i) The simulation was set up with some initial data using the
Misner–Sharp equations. (ii) Starting the evolution, an outgoing null radial ray is sent from
the centre to the outer point of the grid, and the values of the field variables are stored once
the ray crosses each grid point. (iii) The Misner–Hernandez equations are evolved using
the initial conditions obtained in the previous step, which are basically the values stored.

Let us focus now on excision. The main idea of an excision technique is based on the
fact that nothing inside the event horizon can affect the physics outside. Therefore, the aim
is to dynamically remove the segment of the computational domain inside the apparent
horizon, to avoid large gradients appearing and breaking down the simulation.

There are different procedures to implement excision, but the one we used here is the
following: We define two parameters, ∆r and dr (we always consider ∆r > dr), where ∆r
is the distance separation between the apparent horizon and the excision surface that we
establish after each redefinition of the excision surface, and dr is the maximum allowed
displacement of the apparent horizon before we create a new excision boundary. At
each time step, we locate the position of the apparent horizon, taking into account that
2M(r∗, t)/R(r∗, t) = 1, where r∗(t) is the location of the apparent horizon in time. Since
we were handling a discretised grid, we used a cubic spline interpolation to find the correct
value of r∗(t) (the difference of taking a quadratic spline interpolation is O(0.01%) for the
PBH mass values).

In particular, the method used is the following:
For a supercritical perturbation, when the peak of the compaction function Cmax ≈ 1.2

(the final result is not affected by the exact value that we take, as long as we consider
Cmax ≈ O(1)), part of the computation domain is removed, creating an excision surface
close to the location of the apparent horizon, whose separation from the excision boundary
is basically given by ∆r. Once having done this, we created a dense, but small Chebyshev
grid starting from the excised boundary. Another single Chebyshev grid can cover the
other domain since large gradients are only developed near the excision surface.

We evolved in time the Chebyshev grids in the usual form independently, and we
tracked the apparent horizon motion at each dt. Once the apparent horizon had been
moved a distance greater than dr, we created a new excision surface separated a distance
∆r from the apparent horizon. During the evolution, we needed to continuously reduce the
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values ∆r,dr, since the velocity of the apparent horizon decreases in time. This is especially
important for very small δm − δc. We decided to reduce ∆r,dr when the Hamiltonian
constraint starts to be continually violated. In particular, it was found that considering
∆r ≈ 2dr ≈ O(10−2) worked nicely for our purposes.

There is no physical boundary condition to apply at the excision surface. Still, it was
found that freezing (leave it constant) the gradient of ρ (i.e., ρ′) at the excision surface, after
each redefinition of the excision boundary, allowed increasing the stability of the method
without changing the numerical results.

6. Numerical Results

In this section, we review some numerical results using the numerical procedure
pointed out in the previous section. First of all, we introduce a set of curvature profiles that
allows us to span all different possible thresholds for PBH formation. Later on, we will
see the dynamical evolution of the collapse for three different cases in terms of the initial
amplitude δm and with a specific profile chosen. Finally, we show the results regarding the
final PBH mass in terms of the different profiles, as well as the effect of the accretion from
the FLRW background.

The numerical results were obtained using the procedure of Section 5 with a computer,
i-7 core, 16 GB of RAM, and without parallelisation procedures. As an example of the
efficiency, in the case of w = 1/3 and with a Gaussian profile, to obtain the threshold δc with
a resolution δm − δc ≈ 10−3, the running time was ∼3–5 min using the bisection method
in Section 5.2. To estimate the final mass MPBH, f , we needed to run the excision method
in Section 5.3 for ∼3 h for the largest PBHs. These values can differ when changing the
profiles or the equation of state w. The typical size of the grid chosen was two or three grids
with ∼100 points in each grid. However, more points could be needed for sharp initial
profiles. With these configurations, the maximum resolution obtained for the threshold in
the case of a Gaussian profile was δm − δc ≈ 10−5 (in the case of w = 1/3). With sharper
profiles or larger w, this resolution slightly reduced.

6.1. Curvature Fluctuations

The seed of the generation of the curvature fluctuation is the power spectrum, namely
P(k), where k is the wavelength. We briefly review the procedure assuming the Gaussian
statistics of [116] applied to our purposes. We considered that the amplitudes of the
curvature perturbations are statistically Gaussian distributed accordingly to the specific
inflationary model considered, and therefore, under this assumption, the rare over-densities
leading to PBH formation are, with a very good approximation, spherically symmetric [116].

From the power spectrum Pζ(k), we can relate it to the curvature fluctuation ζ
Equation (37) as,

< ζkζk′ >= (2π)3 2π3Pζ(k)
k3 δ3

D(k + k′), (75)

where ζk is the Fourier mode k of the field ζ,

ζ(~x) =
∫ d~k

(2π)3 ei~k·~xζ(~k). (76)

Notice that in linear theory and at super-horizon scales, the density contrast δρ/ρb(r̃) is
related to ζ(r̃) as,

δρ

ρb
(r̃) ≈ −2(1 + w)

5 + 3w
1

a2H2∇
2ζ(r̃), (77)

and therefore: (
δρ

ρb

)
k
≈ −2(1 + w)

5 + 3w
k2

a2H2 ζk. (78)
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From that, we can build the normalised two-point correlation function by,

ψ(r̃) =
1
σ2

0

∫
W(k)Pζ(k) sinc(kr̃)

dk
k

, (79)

where W(k) is the window function, and the variance of the field ζ is given by,

< ζ2 >= σ2
0 =

∫ dk
k

W(k)Pζ(k). (80)

Therefore, the curvature fluctuation ζ(r) assuming peak theory can be built as,

ζ(r̃) = µψ(r̃) =
µ

σ0

∫
W(k)Pζ(k) sinc(kr̃)

dk
k

, (81)

where µ is the peak value of ζ.
In conclusion, using Equation (81), we can relate the power spectrum to our curvature

fluctuation ζ(r̃) and, from that, set up the initial conditions following Equations (41) and (42),
or alternatively also build K(r) using the transformations of Equation (39). Although it
goes beyond the scope of the review, we should mention that one could also consider the
effect of the inclusion of non-Gaussianities in Equation (81), which can have important
consequences for the PBH abundance estimation. There are vast and extensive works that
consider its impact on the thresholds and PBH abundances [103,107,108,180–195], including
some of them that have used numerical simulations following the basics shown in this
review [196,197].

Saying that, it is much more practical to already span a set of curvature profiles instead
of considering different power spectrums when we are interested in studying the physical
process of PBH formation. The reason is that setting up directly the curvature fluctuation
allows us to modulate different shapes and therefore obtain all possible thresholds and
estimate their effects on the PBH mass. In any case, some typical power spectrum templates
can be found in [60,180].

In the literature, exponential families of profiles have been commonly used to modulate
K(r) [77,79,81,82]. Another possibility is a polynomial family [84]. Both can be written in a
convenient way as:

Kpol(r) =
δm

f (w)r2
m

1 + 1/q

1 + 1
q

(
r

rm

)2(q+1)
, (82)

Kexp(r) =
δm

f (w)r2
m

(
r

rm

)2λ

e
(1+λ)2

q

(
1−( r

rm )
2q

1+λ

)
. (83)

The profiles of Equations (82) and (83) correspond to polynomial and exponential (for
λ = 0) non-centrally peaked (for λ 6= 0) profiles, respectively. Notice that the profiles
depend on the ratio r/rm. The profiles are written in a convenient way with the amplitude
δm, in such away that when computing C(r) using Equation (50), this automatically gives
C(rm) = δm when evaluating r = rm.

On the other hand, the parameter q is a dimensionless parameter, which relates the
shape around the peak of the compaction function, which is defined as,

q = −C
′′(rm)r2

m
4C(rm)

. (84)

In terms of the r̃ coordinate, the transformation in Equation (39) can be used, as was done
in [198], to obtain,

q = − C ′′(r̃m)r̃2
m

4C(r̃m)
[
1− 3

2C(r̃m)
] . (85)
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Interestingly, in [83], it was found numerically that profiles with the same q have the same
threshold δc upon a deviation of O(3–4%) in the case 1/3 ≤ w ≤ 1 (and O(1–2%) in the
particular case of a radiation-dominated Universe), but we will discuss this in more detail
in Section 7, since this result will be used to obtain analytical estimations on δc. The benefit
of Equation (82) in comparison with Equation (83) is that at r → 0, this fulfils the regularity
conditions, whereas Equation (83) does not for some small values of q. Actually, the profile
Equation (82) can be considered as a basis profile, since it allows spanning all possible
threshold values, as we will see in more detail in Section 6.3. The profiles of C(r) for the
polynomial profile can be found in Figure 5. When q � 1, the peak of the compaction
function is sharp, while when q� 1, the peak is broad (which would be a homogeneous
sphere). The opposite behaviour can be found for the density contrast (bottom panel of
Figure 5). In this case, for small q, the density contrast profile is sharper, whereas for large
q, the shape becomes broad up to rm (a homogeneous sphere).

Figure 5. (Left-panel): Profiles of C(r) of Equation (82) for several values of q. The values δm are
normalised to δm = 1. (Right-panel): Density contrast δρ/ρb for the same profiles as the top panel.
The profiles are normalised to the peak δρ(r = 0)/ρb. The negative peak value for q = 30 around
r = rm goes up to ∼−4.

A profile with two modulating peaks in C was also considered in [87] with the aim to
compare the other profiles. It is similar to the one considered in [78], where double-PBH
formation was studied. This kind of profile would represent a perturbed region superposed
on another one at much larger scales, as discussed in [78]. The compaction function profile
is given by,

Ctt(r) = Cb(r, δ1, q1, rm1) + θ(r− rj)Cb(r− rj, δ2, q2, rm2), (86)

where Cb is equal to:

Cb(r, δj, qj, rmj) = δj

(
r

rmj

)2
1 + 1/qj

1 + 1
qj

(
r

rmj

)2(qj+1)
; (87)

the value of the second peak of C can be modulated as,

Ctt(peak,2) =
(1 + q1)(rj + rm2)

2δ1

q1r2
m1 + (rj + rm2)2(rj + rm2/rm1)2q1

+ δ2. (88)

Different profiles of the three families are plotted in Figure 6. In particular, we plot the
profiles of Equations (82), (83), and (86), and from them, we also plot the corresponding
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compaction function from Equation (50), as well as the density contrast Equation (41). The
conversion from K(r) to ζ(r̃) can be made using Equation (39).

Figure 6. Plots for the profiles with Equations (82), (83), and (86) for C(r) (top-left), δρ(r)/ρb
(top-right), ζ(r) (bottom-left), and K (bottom-right) as a function of r/rm for δm ∼ δc. The dot-
ted black line corresponds to q = 0 and the dashed black line to q→ ∞. The values taken for Ctt(r)
are δ1 = δc(q1), q2 = 3, rm1 = rm2 = 1, rj = 2rm1, Ctt(peak,2) = 0.3, with the corresponding δ2 obtained
from Equation (88) using the previous parameters, q1 = 5 (violet) and q1 = 1 (orange).

6.2. Non-Linear Behaviour of the Gravitational Collapse

In this subsection, we show the behaviour of the gravitational collapse of the curvature
fluctuations for three different regimes. As an example, a Gaussian profile given by
Equation (83) with q = 1 (λ = 0) and for different values of δm and w = 1/3 is considered.
However, the same qualitative behaviour can be found for other profiles and other w 6= 0.
In particular, three different regimes can be considered: subcritical (δm < δc), supercritical
(δm > δc) with | δm − δc |� O(10−3) in both previous cases, and critical | δm − δc |6
O(10−3). In Figure 7 (supercritical), Figure 8 (subcritical), and Figure 9 (critical), we see the
evolution of the variables ρ, Γ, U, and C.

In the case of a supercritical evolution, which is the case of Figure 7, we can observe
that the compaction function grows during the evolution. The gravitational collapse
increases the energy density on the central regions, and therefore, the mass excess grows.
The formation of the two horizons is also obvious, as discussed in Section 4.3. The outer
horizon moves outwards, and the inner one moves inwards, faster than the outwards one.
The simulation breaks down when the inner horizon approaches r = 0. This is when the
excision technique has to be applied to remove the singularity.

In Figure 8 (the subcritical case), the compaction function decreases continuously as
the perturbation is diluted away due to the superiority of the pressure gradients against
gravity. In general, for late times, the peak Cmax is pushed outwards due to the pressure
gradients. This behaviour can also be seen with the peak value of ρ/ρb. In the supercritical
case, the peak value is continuously increasing. In contrast, in the subcritical case, the peak
value starts to decrease at some moment (which means the perturbation starts to disperse).
In addition, from Figures 7–9, it can be observed that Γ is not constant during the evolution.
As expected, the gradient expansion approximation fails for sufficiently late times t� t0.



Universe 2022, 8, 66 25 of 50

Figure 7. Dynamics of different magnitudes in the case of a supercritical fluctuation (Gaussian profile)
at given times t. In particular, δm = 0.51 and δc = 0.49774± 2× 10−5.

Figure 8. Dynamics of different magnitudes in the case of a subcritical fluctuation with δm = 0.49
(Gaussian profile) at given times t. In particular, δm = 0.49 and δc = 0.49774± 2× 10−5.

In Figure 7 (supercritical case), we observe that U/Γ decreases quickly in time, and a
negative velocity mainly dominates the profile before rm for late times, which indicates the
collapse of the fluid. Instead, in Figure 8 (subcritical case), only a small negative value U/Γ
is reached for early times, and beyond that, the values are positive, which indicates that the
perturbation is dispersing, avoiding the gravitational collapse.

The most relevant behaviour is found in the critical regime, in Figure 9. Here, the fluid
is divided into two parts, one going outwards (positive U) and one inwards (negative U),
which generates an under-dense region. This under-dense region re-attracts the fluid with
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the net effect of a compression and rarefaction process, which increases its velocity in time.
In this situation, the gradients become very large, and eventually, the simulation breaks
down if a sufficient resolution has not been set up for the simulation.

It is interesting to mention that in the presence of secondary peaks in C(r) (not only
one isolated one), with an amplitude roughly equal to or less than the first one, it was
verified numerically in [197] that those secondary peaks decrease and disperse on the
FLRW background, even in the case of supercritical perturbations. A different situation
could happen when a secondary peak is sufficiently high. In such a case, the secondary
peak could also collapse even if the first peak is not greater than the threshold value to
collapse itself.

Figure 9. Dynamics of different magnitudes in the case of a perturbation close to the critical threshold
δm ≈ δc (Gaussian profile) at given times t. In particular, δm = 0.49775 and δc = 0.49774± 2× 10−5.

In Figure 10 is shown the correctness of the numerical evolution using the Hamiltonian
constraint of Equation (74) at each step. It corresponds to different evolutions of the
gravitational collapse, both subcritical and supercritical. In the figure, it can be seen that
the constraint starts to be violated for late times for (δm − δc) ≈ O(10−5), which gives a
bound on the maximal resolution for δc (in this particular example)

The convergence with the use of spectral methods can be found in Figure 11. It is clear
that the convergence is exponential taking into account the fits performed (see the caption
of the figure). In particular, the use of a multidomain grid improves the performance and
accuracy of the simulations substantially, as is shown in the right panel of Figure 11, where
the spectral accuracy is obtained with fewer points (in comparison with the left panel).
Making the first grid Ω1 from r = 0 up to r = 2rm allows capturing the region where large
gradients are developed. Then, for the second grid, Ω2 goes from r = 2rm up to r = r f , and
only a few points are needed.

An interesting behaviour is found for tAH when w is changed, as noticed in [84].
Although the pressure gradients work against the gravitational collapse, since they are also
a form of gravitational energy, it will mostly be favoured when the collapse is active [84].
Consequently, this implies a shorter time of formation for larger w, as can be observed in
Figure 12.
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Figure 10. (Left-panel): Hamiltonian constraint for the numerical iterations of the bisection procedure
in the case of a profile given by a Gaussian fluctuation for the supercritical case with Equation (83)
and q = 1, λ = 0. (Right-panel): The same as the left panel, but for subcritical fluctuations. The
initial Hamiltonian constraint is subtracted for each evolution of δm in both cases.

Figure 11. Spectral convergence for different profiles. Red points correspond to the profile of
Equation (83) with q = 1, blue points to q = 5, and green points to q = 10 (λ = 0 in all cases). The
black solid line is the exponential fit ∼ e−αNcheb . (Left-panel): Case with a single grid Ncheb and
α ≈ 0.23, 0.032, 0.022 respectively for the previous cases. (Right-panel): Case with two grids N1 and
N2 = 50, with the second grid starting at r = 2rm, and α ≈ 0.59, 0.12, 0.06, with the same profiles of
the left panel. The simulation corresponds to δm = 0.5 and t = tH for w = 1/3.

Figure 12. Time that it takes the fluctuation to form the apparent horizon tAH in terms of w. The
fluctuation chosen corresponds to Equation (82) with q = 1 and δm = δc + 10−2.

6.3. Thresholds for PBH Formation

As we have mentioned, the threshold for PBH formation depends on the shape
of the curvature fluctuation. Following the numerical procedure in Section 5.2, all the
possible thresholds for PBH formation can be obtained using the basis polynomial profile
of Equation (82). The results are shown in Figure 13 for different profiles. In the particular
case of a radiation fluid, it was found in [79,83] that the range of all possible thresholds is
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δc ∈ [0.4, 2/3]. The minimum threshold δc,min = 0.4 corresponds to the limit case of q→ 0
(broad profile in C). Instead, the maximum threshold δc,max = 2/3 corresponds to q→ ∞
(peaked profile in C). Increasing q, the pressure gradients are larger, and therefore, the
threshold value is higher.

Remarkably, the relative deviation between the thresholds for the different profiles in
the left panel of Figure 13 with the same q is within 2%. This was found for the first time
in [83], and it was shown that different profiles with the same q (shape around the peak of
the compaction function) have the same thresholds within a small deviation.

Figure 13. (Left-panel): Threshold values δc in terms of q for the case of w = 1/3. Green points
correspond to Equation (82), red points to Equation (83) with λ = 0, and blue to Equation (83) with
λ = 1. (Right-panel): Threshold values δc in terms of q for different values of w corresponding to the
polynomial profile of Equation (82).

In [84], simulations of PBH formation in the case of a perfect fluid with w ∈ (0, 1] were
performed. The functional behaviour of δc in terms of q for different w’s is roughly similar,
as is shown in the left panel of Figure 13 (the case with fixed w = 1/3), but quantitatively,
the values are different. It is clear that increasing w, the gradients will be larger, and
therefore, the threshold increases. The limits q→ 0 and q→ ∞ for the general case in terms
of w are both amenable to further analysis:

• The case q→ 0 corresponds to a C that becomes approximately constant over a wide
range of scales. Simulations, in this case, become difficult due to the presence of
conical singularities [84]. To solve this issue, in [84], a modified profile of Equation (82)
was used to subtract the mass excess beyond r � rm and fulfil that at the boundaries,
the FLRW background is recovered. In Figure 14 are shown the numerical values of
δc(q → 0) in terms of w, which show a strong dependence on w. As expected, for
w→ 0, the threshold δc → 0;

• The case of large q → ∞ corresponds to the case of a sharply peaked profile for the
compaction function. For this kind of profile, the pressure gradients acting against
the gravitational collapse are maximal, and hence, the compaction function should
be maximal as well. Analytically, this is shown by Equation (50) that C(rm) < f (w)
(at super-horizon scales). As was proven numerically in [79], δc,max → f (w) in the
case of radiation w = 1/3. The intuition is that the saturation should persist to larger
values of w because larger values of w also imply larger pressures that fight against
the collapse. Therefore, for w ≥ 1/3, the compaction function of a peaked profile must
also saturate the bound f (w). This was verified numerically in [80]. This behaviour
is no longer true for w < 1/3, something obvious in the case of dust w = 0, since
f (0) = 0.6, but δc(w = 0) = 0 always for any profile. This is shown in the left panel of
Figure 14. It should be taken into account that beyond q > 40, the simulations do not
obtain the threshold with enough resolution. This is the reason why the numerical
value of the threshold for w = 1/3 does not exactly coincide with f (1/3). One expects
that in the asymptotic limit, the threshold for q → ∞ should match with f (1/3), as
was pointed out in [79] with the same argument.
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Figure 14. (Left-panel): Threshold δc in terms of w for q→ 0. (Right-panel): Threshold δc in terms of
w for q→ ∞; in particular, we are able to perform simulation up to q = 40. The red line corresponds
to the analytical case f (w), where the black dots correspond to the numerical simulations in the
region where δc(q → ∞) 6= f (w), as shown in [84]. The blue dashed line corresponds to f (w) on
that region.

It is interesting also to notice the difference between considering K(r) and ζ(r̃) for
the threshold and PBH mass. As we have seen in Section 4, there is a non-linear relation
between ζ and C, which leads to some differences between the thresholds obtained for both
profiles. Consider for instance a Gaussian profile in both cases, i.e., K(r) = A e−(r/rm)2

and
ζ(r) = µ e−(r/rm)2

. Due to the non-linear relation between C and ζ at super-horizon scales,
the δm,ζ (for this example, let us call it δm,K and δm,ζ for both profiles) depends non-linearly
on µ as,

δm,K = f (w)Ar2
me−1,

δm,ζ = 4 f (w)(e− µ)µe−2. (89)

Due to this, the qζ value in the case of the fluctuation ζ is dependent also on its amplitude
µ and w,

qζ =
e2(e− 2µ)

(e− µ)(e2 − 6 f (w)µ + 6 f (w)µ2)
, (90)

when for the K(r) in this example, it is just q = 1. A plot of the thresholds δc for both
profiles can be found in Figure 15 for different w’s. Although both profiles are Gaussian,
they have a different δc due to the non-linear relation with ζ(r̃). The threshold for ζ(r̃) is
higher than K(r) since the shape around the compaction function is sharper, which means
a larger q, as can be observed in the bottom panel of the subplot in Figure 15. It also has an
implication for the PBH mass, as we will see in the next subsection.

Figure 15. Thresholds δc in terms of w for two profiles. Red dots correspond to the Gaussian profile
with K(r) and blue dots to ζ(r̃) instead. The (top-subplot) is the critical amplitude µc of the profile in
ζ(r̃). The (bottom-subplot) is the value q of the critical profile ζ(r̃) for each w.
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A Gaussian family of profiles with ζ(r̃) = µe−(r/rm)2p
was considered in [106] for the

estimation of PBH abundances taking into account the non-linearity of ζ(r̃) for w = 1/3.
There, a range of thresholds was found, 0.442 < δc < 0.656 for 0.34 . p . 2.

6.4. PBH Masses

Once the apparent horizon is formed, an excision technique following Section 5.3
can be applied to remove the singularity. An example of the evolution of the PBH mass
MPBH(t) for the profile of Equation (83) with q = 1, λ = 0, and different amplitudes δm
can be found in Figure 16. The initial time of the curves corresponds to the initial mass of
the PBH MPBH,i at the time of formation of the apparent horizon tAH . As can be seen in
Figure 16, when the amplitudes δm increase, the PBH mass will be higher.

Figure 16. Evolution of the mass of the PBH for w = 1/3 after the formation of the apparent horizon
for the profile of Equation (83) with q = 1 and λ = 0. The colour lines correspond to different
values of initial amplitudes δm. The dashed line corresponds to the analytical fit using Equation (56).
Threshold value δc = 0.49774± 2× 10−5.

The amount of time needed until reaching the stationary regime where the PBH mass
remains constant could be substantial and therefore computationally expensive. As we
have mentioned, to avoid that, Equation (56) can be used to estimate the final mass of the
PBH after the accretion process accurately.

In order to find the domain in time where the approximation of Equation (56) is valid,
in [80], the ratio of the increment in time of the black hole mass with respect to the Hubble
scale Ψ = Ṁ/HM was computed, which is predicted to be Ψ < 1 when the evolution of
the PBH mass satisfies this regime. During the application of the excision technique, the
Hamiltonian constraint is computed using Equation (74) to check the correctness of the
numerical evolution. In the simulations in [80,87], the constraint was fulfilled until very
late times, as shown in Figure 17. Nevertheless, it seems that the evolution of the mass is
not affected substantially by the violation of the constraint. Interestingly, in the bottom
panel of Figure 17, a crossing for different evolutions of Ψ at a given time t∗ is observed.
In Figure 18 is shown the evolution of MPBH(t) in time for different values of q and two
different profiles. It is clear that the larger is q, the smaller is the final PBH mass MPBH, f ,
since the pressure gradients are stronger and prevent accretion from the FLRW background.
Notice the differences of MPBH(t) between the two profiles considered in the figure. Even
with the same q, the values for the mass are different since the full shape of the profile will
contribute to the final mass.

To obtain the parameters ta, Ma, and F, a non-linear fit using the function of Equa-
tion (56) with the data MPBH(t) coming from the simulations can be performed. The range
of values to make the fit are those that fulfil Ψ . 0.1. The values of F that were obtained
in the literature [80] making the non-linear fit were in the range F ∈ [3.2, 3.8] (for the case
of w = 1/3) in terms of the different profiles and amplitudes δm. Some indicative results
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regarding the accuracy of the fits performed are: σmax ≈ 10−2 (variance) sd(Ma) = 10−4.2,
sd(ta) = 10−4.1, and sd(F) = 10−3.6, where sd is the standard deviation of the parameters.
This is consistent with what was already stated in [11,143,144]: the numerical coefficient F
must be O(1). In particular, in the case of the collapse of the domain walls, F ≈ 3.8 was
found for large black holes [146].

Figure 17. (Top-panel): Time evolution of the Hamiltonian constraint for different amplitude values
δm during the excision procedure. (Bottom-panel): Numerical evolution of Ψ in time. The crossing
point is around t/tm ≈ 37.5. The profile used is the same as in Figure 16. The excision starts at very
early times, at t ≈ 10tm.

Figure 18. (Top-panel): Evolution of MPBH(t) for the profiles q = 1.5, q = 3, and q = 10. The dashed
line corresponds to Equation (83) with λ = 0 and the solid line to Equation (82). (Bottom-panel):
Time evolution of the Hamiltonian constraint. In all cases, δm − δc = 5× 10−3.

Interestingly, in [87], the effect of the accretion (from the FLRW background) to
the growth of the PBH until reaching the stationary regime was quantified, namely
MPBH, f /MPBH,i, for the case w = 1/3. As was pointed out, the accretion should not
be important for small PBHs, i.e., with δm near δc. However, the situation differs for rela-
tively large PBHs. This can be precisely seen in Figure 19. The accretion can be significantly
important for large δm.

Sharp profiles, corresponding to large q, have larger pressure gradients, and therefore,
the ratio MPBH, f /MPBH,i is smaller, even for large δm, since the gradients prevent the
accretion. For low MPBH, f , the ratio MPBH, f /MPBH,i should be small, as expected [9,86].
When MPBH, f ' MH , i.e., for PBHs with a higher probability to form, MPBH, f ' 3MH was
obtained. In comparison, a similar result was also found in the case of the collapse of a
massless scalar field [141] and in [146,199] from BHs formed from the collapse of domain
walls or vacuum bubbles, with a factor MPBH, f /MPBH,i ≤ 2.
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Figure 19. Accretion effect on the final PBH mass measured as the ratio MPBH, f /MPBH,i in terms of
δm − δc(q) for different profiles with w = 1/3. Stars correspond to Equation (83) with λ = 0, circles to
Equation (82), and triangles to Equation (86). The ratio MPBH, f /MPBH,i for PBHs with MPBH, f ' MH

is shown in the subplot.

An example of the values of PBH mass for other values of w can be found in Figure 20,
where the ratio MPBH, f /MH is shown using the Gaussian profile Equation (83) with q = 1
(λ = 0) for those PBHs MPBH, f ≈ MH . The PBH mass MPBH, f is very sensitive to w, as
expected. When w increases, the gradients are larger, preventing the accretion and the
increase of the PBH mass. The ratio MPBH, f /MH is larger for smaller w at the same δm − δc,
since the accretion is substantially higher when the pressure gradients are decreased, as can
be seen in the bottom panel of Figure 20. In this case, the values of F differ substantially
from w = 1/3. In particular, for the set of values w ∈ [0.2, 1/3, 0.5, 0.7], this corresponds to
F ≈ [7.2, 3.8, 2.0, 1.37], respectively, which already clearly indicates the substantial accretion
for small w. Moreover, the time needed to reach the asymptotic regime of Equation (56) is
much higher the smaller w is. For example, in the case of δm − δc = 10−2 for w = 0.2 and
w = 0.5, a time of order t/t0 v 104 and t/t0 v 103 was needed, respectively, to reach the
asymptotic regime.

Figure 20. (Top-panel) : Values of the final PBH mass in terms of MH for some values of w as a
function of δm − δc. (Bottom-panel): Accretion effect on the final PBH mass for some values of w as a
function of δm − δc. In both cases, the profile of Equation (83) was used with q = 1 and λ = 0.

On the other hand, in [86], some analytical approximations were made regarding the
maximum size of the PBHs formed from hydrodynamical perturbations at the time of the
formation of the apparent horizon tAH ; in particular, it was found that:
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(
RPBH,i

RH,i

)
max

=

(
2

1 + 3w

)3[ 3(1 + w)

2(1 +
√

w

] 3(1+w)
1+3w

w3/2. (91)

This analytical result (derived for 0 < w ≤ 1) was verified numerically in the case of a
radiation fluid in [87], where an extensive study on the values MPBH,i, RPBH,i, and tAH was
also performed for different profiles and amplitudes δm.

To compute the value of the constant K in front, the scaling law Equation (58) is
needed to estimate the final mass of the black hole MPBH, f using perturbations with an
amplitude near the critical regime, i.e., δm → δc. A range of 10−3 . δm − δc . 10−2 is
sufficient to estimate it, since the gravitational collapse of the fluctuations happens in the
critical regime. Beyond that, the scaling law deviates. In particular, for a radiation fluid,
the value γ = 0.357 [66,68] can be taken directly to obtain K from a given δm − δc (for other
values of w, check Figure 3 and the caption).

In Figure 21 are shown the values of K for the profiles of Equations (82), (83), and (86)
as an example ofK in terms of the profile. The value of the PBH mass MPBH, f (and therefore,
also K) is affected by the shape of the profile beyond the peak of C since the accretion
process depends on the full shape of the fluctuation, in comparison with the threshold δc, as
was pointed out in Section 6.2, which mainly depends on the shape around the compaction
function peak.

Figure 21. Dependence of K as a function q for the profiles in Equation (82) (red), Equation (83) with
λ = 0 (black), Equation (83) with λ = 1 (blue), and Equation (86) (green). The parameters used for
the profile Ctt(r) are q2 = 3, rj = 2rm1, Ctt(peak,2) = 0.3, and δ2, obtained from Equation (88) using the
previous values with and q1 = q.

In the case of the profile Equation (82), K tends to ≈ 3.5 for large values of q. The
values of K tend to increase as q decreases, as shown Figure 21. Numerically, in [87], it was
not possible to obtain the final mass MPBH, f for profiles q . 0.5, due to conic singularities,
as was already found in [84].

On the other hand, in Figure 22, an explicit example of MPBH, f can be seen for a
Gaussian profile (in both K(r) and ζ(r)) in terms of MH for large values of δm beyond the
critical regime δm & 10−2 with w = 1/3. As can be observed in the subplot of Figure 22, the
scaling law deviates for the highest allowed values of δm to O(15–20%) for both cases. For
these particular cases, the maximum allowed mass of the PBH formed is MPBH, f ≈ 3.7MH
and MPBH, f ≈ 2.3MH , respectively. It is expected in principle that this deviation from the
scaling regime will not significantly modify the estimation of the PBH abundance, due
to the unusualness of such perturbations since those PBHs with a higher probability to
form have MPBH, f ≈ MH . It is important to also notice that the masses generated with the
profile ζ(r̃) are lower than those with K(r), since although they are both Gaussian, they
have q > 1 and q = 1, respectively, and sharper profiles have less mass due to stronger
pressure gradients, as we see in Figure 18.
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Figure 22. Values of MPBH, f /MH in terms of (δm − δc) for two Gaussian profiles in K(r) and ζ(r̃).
Dark points correspond to the numerical values for the profile in K(r). The solid red line corresponds
to the scaling law behaviour with γ = 0.357, δc = 0.49774 for K = 6.03 (pointed out in [94]) and the
blue solid line with the numerical value obtained in the review with K = 5.91. The absolute value of
the relative deviation d with respect to the numerical values and the ones coming from the scaling
law are shown in the subplot. The orange vertical line is the value δmax = 2/3. On the other hand,
the green dots correspond to the case of the Gaussian profile in ζ. The solid green line is the scaling
law with γ = 0.357, δc = 0.55257, and K = 3.98 (in [106], for this profile, K ' 4.0 was given). The
vertical magenta line corresponds to the case δmax = 2/3 for this profile. In both cases, w = 1/3.

7. Analytical Estimation for the Threshold of PBH Formation

In this section, we review in detail the current analytical estimations used in the
literature for the threshold of PBH formation from curvature fluctuations with an equation
of state w. The first analytical estimation came from [74], where using a Jeans length
approximation, it was shown that,

δCarr = w . (92)

Although this approximation is simple, it fulfils some properties: (i) at w = 0 (dust),
any curvature fluctuation should collapse, i.e., δc(w = 0) = 0; (ii) when w increases,
the pressure gradients are larger, so the threshold should be higher. This approximation
was obtained assuming the argument that the size of an over-density (that leads to PBH
formation), at the maximum expansion, should be smaller than the particle horizon and
larger than the Jean radius (Jeans criterion). In particular,

RJ . Rmax . RPH, (93)

where RPH v
√

3/8πρmax, RJ v csRPH. See also Section 2 for a simple derivation.
Later on, in [75], the previous estimation of [74] was improved by using a sophisticated

and interesting model (a three-zone model) of the collapse of a homogeneous over-dense
sphere surrounded by a thin under-dense shell. We suggest the reader check [75] for
more details on the model and the assumptions made. The threshold estimation that they
obtained was,

δHYK =
3(1 + w)

5 + 3w
sin2

( π
√

w
1 + 3w

)
. (94)

It was also provided with an upper bound δ+HYK and a lower bound δ−HYK on δc, to take into
account the different ways of applying the relativistic Jeans criterion for this model.

δ+HYK =
3(1 + w)

5 + 3w
sin
(

2π
√

w
1 + 2

√
w + 3w

)
. (95)

δ−HYK =
3(1 + w)

5 + 3w
sin
(

π
√

w
1 +
√

w + 3w

)
. (96)
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These previous estimations (in particular, Equation (94)) have been extensively used in
the literature, but as has already been noticed [74,75], these estimations are not profile
dependent and therefore do not take into account the specific shape of the curvature
fluctuation.

7.1. Shape-Dependent Analytical Estimation of the Threshold for Radiation Fluid

In [83], it was proven that, to a very good approximation, the threshold for the
w = 1/3 case only depends on the curvature of the compaction function at its maximum,
under the assumption of a central over-dense peak in the density distribution. It was
used to build an analytical formula for the threshold with a dependence on the profile
considered. The formula was accurate enough and only deviated 2% in comparison with
the numerical simulations.

The two main ingredients of the procedure used in [83] were: (i) parametrise the
shape around the compaction function peak with a dimensionless parameter q; (ii) use the
average of the critical compaction function. As was shown in [83] and as we have already
mentioned, to a very good approximation, the threshold only depends on,

q ≡ − r2
m C ′′(rm)

4 C(rm)
, (97)

which is a dimensionless measure of the curvature of C(r) at its maximum. This means that
different profiles, but with the same q value, will have the same threshold upon a small
deviation of <2%.

The next point is to define a “basis” (or fiducial set of curvature profiles) such that,
by varying q, this set covers the whole range of interesting thresholds and shapes with
q ∈ (0, ∞) while also being regular at r = 0 and having ρ′(r = 0, t) = 0. In [83], this basis
was given in terms of the exponential functions Equation (83) (with λ = 0). Although
it strictly does not satisfy regular conditions for q → 0 at r = 0, this limit was tested
numerically with the polynomial basis of Equation (82).

Taking this into account, the averaged critical compaction function integrated from
r = 0 up to the peak r = rm is defined as,

C̄c ≡
3

r3
m

∫ rm

0
Cc(r)r2dr . (98)

Introducing the profile considered into Equation (98), we can solve the integral analytically
to obtain:

C̄c =
3
2

e
1
q q−1+ 5

2q

[
Γ
(

5
2q

)
− Γ

(
5
2q

,
1
q

)]
δc, (99)

where Γ(x) 4 is the gamma function, Γ(x, y) 5 is the incomplete gamma function, and we
have used Cc(rm) ≡ δc. In the case of a radiation fluid, when q → ∞, it was confirmed
numerically that δc(q→ ∞) = f (w = 1/3) = 2/3 [79]. Taking into account this analytical
limit into Equation (99), we obtain:

C̄c(q→ ∞) =
3
5

δc(q→ ∞) =
2
5

. (100)

The assumption made in [83] was to consider that C̄c is a profile-independent quantity,
and therefore, C̄c = 2/5 for any value of q. The assumption was tested extensively and
numerically for different profiles and was found to be consistent with numerical simulations
up to a small deviation of O(2%) in δc. Inverting Equation (99) in δc with C̄c = 2/5, we
finally obtain the analytical threshold formula δc in terms of the specific profile q, in the
case of a radiation fluid,
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δc(q) =
4
15

e−
1
q

q1− 5
2q

Γ
(

5
2q

)
− Γ

(
5
2q , 1

q

) . (101)

This remarkable result in [83] was the first analytical estimation shown in the literature
for the threshold of PBH formation, taking into account the shape of the fluctuation,
with enough accuracy to be used for estimations of PBH abundances [95]. A plot of
Equation (101) in terms of q can be found in Figure 23. Interestingly, a study of the
thresholds for different power spectrums (leading to perturbations in ζ with the coordinate
r̃) was performed in [198] using Equation (101), with the corresponding q value obtained
from Equation (85) and connecting with the density contrast of Equation (43).

Figure 23. Plot of δc(q) for w = 1/3. The solid black line corresponds to the analytical estimation of
Equation (101). Red points correspond to the numerical thresholds of Equation (82) with w = 1/3.

7.2. Generalisation of the Analytical Threshold beyond the Radiation Fluid

Later on, the procedure used in [83] was generalised considering PBH formation within
a perfect fluid with w ∈ (0, 1] on an FLRW background, and it was found that the threshold
averaged compaction function within a concentric sphere of radius rm(1− α(w)) ≤ r ≤ rm
is, to a very good approximation, again universal in the case 1/3 ≤ w ≤ 1, where α(w) is the
location where we should start to integrate the compaction function, and it should depend
on w. This was used to provide a new and improved analytical formula for the threshold
that only depends on the normalised second derivative of the compaction function at its
maximum and the equation of state w. This formula was proven to be accurate at order
6% compared to numerical simulations and reproducing the same result for the case of
radiation w = 1/3. It was also again found that the δc for different profiles with the same q
are equal within a deviation less than 4%.

In [83], the basis profiles used were given in terms of the exponential functions; despite
that, since the boundary conditions at r = 0 are violated for q < 1/2, the basis profile of
Equation (82) was used instead. This set of profiles satisfies the appropriate boundary and
regularity conditions.

The critical compaction function, averaged within a spherical shell extending from
radius [1− α(w)] rm to rm (the peak), is defined to be:

C̄c(w, profile) ≡ 3
r3

mV[α(w)]

∫ rm

rm [1−α(w)]
Cc(r)r2dr , (102)

where V[α(w)] = α(w) [3 + (α(w) − 3)α(w)] and Cc(r) = C(r)
∣∣∣
C(rm)=δc

. Inserting

Equation (82) into Equation (102) yields:

C̄c(w, basis) = δc(w, q) g(q, w)
[
−F1(q) + (1− α)3−2qF2(q, α)

]
, (103)
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with:

g(q, w) =
3(1 + q)

α(2q− 3)[3 + α(α− 3)]
, (104)

F1(q) = 2F1

[
1, 1− 5

2(1 + q)
, 2− 5

2(1 + q)
,−q

]
, (105)

and:

F2(q, w) = 2F1

[
1, 1− 5

2(1 + q)
, 2− 5

2(1 + q)
,−q(1− α)−2(1+q)

]
, (106)

where 2F1 is the hypergeometric function6.
The key point is that as was shown numerically in [84], the dependence of the averaged

critical compaction function on the profile shape is weak enough to be ignored, and
therefore universal. Then,

C̄c(w, profile) ' C̄c(w) . (107)

Therefore, the analytic expression for the critical threshold value reads as:

δc(w, q) =
C̄c(w)

g(q, w)

1[
−F1(q) + (1− α)3−2qF2(q, α)

] . (108)

The functions α(w) and C̄c(w) were found using two different procedures: (I) a nu-
merical double fit minimisation using the numerical results of the thresholds for different
profiles and (II) making a single numerical fit minimisation already using the analytical
result that δc(q→ ∞) for w ≥ 1/3. Both procedures gave equivalent results. Therefore, the
assumption of C̄c(w) being universal was found good enough and verified numerically
for w & 1/3. This result verified the previous one obtained for a radiation fluid w = 1/3
in [83], where α = 1 and C̄c = 4. In particular, using the procedure (I), it was found,

C̄c(w) = a + b Arctan(c wd) (109)

α(w) = e + f Arctan(g wh), (110)

with a = −0.140381, b = 0.79538, c = 1.23593, d = 0.357491, e = 2.00804, f = −1.10936,
g = 10.2801, and h = 1.113. Instead, using (II),

C̄c(w) = i + j Arctan(p wl), (111)

α(w) = m + t Arctan(r ws), (112)

with i = −0.140381, j = 0.79538, p = 1.23593, l = 0.357491, m = 2.00804, t = −1.10936,
r = 10.2801, and s = 1.113.

7.3. A Comparison between Analytical Estimates

In [84], the analytical estimation obtained with Equation (108) was compared with
the previous ones in the literature, i.e., Equations (92) and (94). In Figure 24 is shown
the comparison. The solid lines in Figure 24 show these approximations; the symbols
with error bars show δc(w) from the numerical simulations of the profiles of Equation (82)
with q = 0.015, q = 0.1, q = 1, and q = 30. The dotted and dashed curves, which
significantly better describe the result of the numerical simulations, show the result of
inserting Equations (109) and (110) or Equations (111) and (112), into Equation (108). In
both cases, Equation (108) (as well as the simulations) exceeds even the upper bound
claimed by [75] at even lower w as q increases, which are Equations (95) and (96).

As can be observed, the discrepancy of the estimation Equations (92) and (94) for the
case of small w is as large as 50% for the case q = 0.1. This is the limit that was considered
successful and optimal for the approximations on which Equation (94) is based. This
deviation is even bigger than the one found earlier because Equation (94) was compared
with a Gaussian profile (Equation (83) with q = 1 and λ = 0). Actually, in the case
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w < 0.15, the solid black curve in Figure 24 give a satisfactory description of the simulations
with q = 1. However, the top-hat profile with q → 0 (top-hat for the profile in the
compaction function), which was the one used in the analytic estimations of [75], is quite
better approximated by q � 1. For q = 0.1, the formula Equation (94) does not describe
the simulations particularly well, and the discrepancy at w < 1/3 is even worse when
q = 0.015 is taken. It was claimed in [84] that this disagreement seems to suggest that the
supposed agreement shown in Figure 3 of [75] is a result of numerical coincidences, with
no physics implications.

Figure 24. Dependence of threshold δc on w when the initial profile is given by Equation (83) with
q = 30, q = 1, q = 0.1, q = 0.015, and λ = 0 in all the cases (q = 0 would be a homogeneous sphere in
the compaction function). The solid lines with dots and error bars show the results of the numerical
simulations. The green and blue curves show the minimal and maximal bounds of δc from [75],
in particular Equations (95) and (96), respectively. The magenta line shows the approximation for
δCarr of Equation (92). The black curve shows δHYK from Equation (94). The other curves show the
approximation (Equation (108)) in which δc depends both on w and q. Finally, the dotted curves use
Equations (111) and (112) in Equation (108), whereas the dashed curves use Equations (109) and (110)
in Equation (108).

Finally, the polynomial basis profile of Equation (82) fulfils the regularity conditions
for q→ 0, as we have pointed out before, something not fulfilled with the exponential basis
Equation (83) (with λ = 0). Precisely, this led in previous literature [79] to inferring that the
minimum threshold for PBH formation (in the case of a radiation fluid) must coincide with
the estimation of [75], i.e., δc,min(w = 1/3) = δHYK(w = 1/3) ≈ 0.41. In [79], the profile
leading to the minimum numerical threshold of PBH formation was given by Equation (83)
with q = 0.1 and λ = 0, since as was indicated there, the profiles were too sharp to take
even smaller values of q and produce a numerical simulation. This actually looks related to
the fact that the exponential profile Equation (83) does not satisfy the regularity conditions
at r → 0 for q < 1/2. Instead, in the case of using the polynomial profile Equation (82),
it allows performing simulations even with smaller values in q, up to q = 0.01, as done
in [83]. Therefore, this led to the conclusion in [83] that, for a radiation fluid, the correct
range of values for the threshold is 0.4 ≤ δc ≤ 2/3, and therefore, the minimum value was
lower than δHYK. Indeed, the generalisation of δc in w already indicates that the minimum
threshold should not correspond necessarily to the one of δHYK.

8. Other Scenarios of PBH Formation

In this review paper, we mainly focused on the study of PBH formation from the
spherical collapse of primordial density perturbations, which is currently the case most
studied in the literature and with more results and applications [39]. Despite that, many
other mechanisms and scenarios could have led to black holes formed in the very early
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Universe [12]. In this last section, we try to briefly enumerate other scenarios beyond the
ones considered in this review.

The case w = 0 is very special as the threshold of PBH formation, for an infinitely
long matter-dominated era; it is zero if non-spherical effects are not considered. However,
as was pointed out in [200], the dust phase could induce an angular momentum on the
collapsing perturbation, therefore effectively increasing the threshold value for the black
hole formation, making it non-vanishing. Thus, the study of abundances, where the
Universe is matter-dominated for a finite time, differs greatly from the case of radiation.
Some works have considered this scenario with scalar field types [201–206], specifically
taking into account the oscillatory behaviour of the scalar field during the reheating.
Recently, in [207], simulations were performed in full GR using scalar fields to modulate the
perturbation and the expanding dust background of the Universe, showing that the PBH
mass grows beyond the self-similar limit MPBH ∝ H−1, at least initially. The dust collapse
has also been studied in a more oriented perfect fluid scenario [208]. The PBH formation has
also been considered in the context of the Lemaître–Tolman–Bondi (LTB) model [209,210].
In [211], the effect of inhomogeneity on PBH formation in the matter-dominated era and its
consequences on the PBH production were studied. On the other hand, in [200,212], the
non-spherical effects and spins for PBH formation in the case of a dust-dominated Universe
were studied, showing this could have a significant effect.

A non-spherical effect, in principle, could dramatically change the threshold value and
PBH mass [213]. Some analytical estimations taking into account an ellipsoidal collapse
were performed in the past, showing that the effect could be important [209,214]. However,
in [215], for the first time in the literature, the first numerical simulation in 3 + 1 spacetime
(beyond spherical symmetry) for PBH formation from the collapse of curvature fluctuations
was performed, with a small (perturbative) non-sphericity initial condition (with a radiation
fluid). The main conclusion was that the effect of ellipticity on the threshold for PBH for-
mation is negligible in the standard scenario of PBH formation in the radiation-dominated
Universe. This situation could dramatically change if an equation of state different from
radiation is considered, as indicated in [215]. In particular, for a matter-dominated Universe,
the effect of any non-sphericity could be important [200,208,212]. Another possibility is the
inclusion of angular momentum to analyse the spin generation to PBHs; some analytical
estimations have been performed [216], but still, numerical simulations to test those argu-
ments are necessary. Recently, PBH formation with an anisotropic perfect fluid has also
been considered analytically [217].

The usual scenario of the collapse of cosmological density perturbations considers
a constant equation of state w (mainly w = 1/3 in the literature). However, the Uni-
verse has a thermal history where the equation of state is not necessarily constant, i.e.,
w(t). A particular (and very popular) example applied to the PBH scenario is the QCD
epoch [218–221]. During the QCD phase transition, the equation of state w could have
been softened. Looking at the result of the simulations in Figure 24, it is already clear that
the threshold δc will be reduced, and therefore, this makes the formation probability of
PBHs exponentially more likely. Several works have addressed this scenario with pro-
gressive refinements [218,222–227], specifically with the new calculations regarding lattice
QCD [228,229]. However, numerical simulations are still needed to fully verify the effect
on how much the threshold, PBH mass, and mass function modifying the equation of state
in time could change.

A bit more different mechanism of PBH formation comes from the collapse of Q-
balls and oscillons, which are features of supersymmetric extensions of the standard
model [230]. Specific realisations of those ideas have been made through theory-motivated
scalar field potentials, e.g., the axion–monodromy potential [231]. The mechanism for
PBH formation of all these cases is naively similar: small number densities of defects
lead to large fluctuations relative to the background density. These fluctuations become
gravitationally bound and collapse to form black holes once the relic density has come to
dominate. Finally, the relics decay due to some instabilities. Precisely, it has been argued
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that some solitonic type solutions such as Q-balls and oscillons could produce a significant
fraction of dark matter in the form of PBHs [232–236], without relying on any spectrum of
density perturbations. Some recent numerical works on oscillons and Q-balls have obtained
results in this direction [237–239].

On the other hand, scalar force instability can lead to the growth of structures and the
formation of halos of interacting particles (even in a radiation-dominated Universe) [240–244].
Actually, in [243], it was theorised that these structures could have collapsed and formed
PBHs, but later on, it was realised that they should remain as virialised dark matter [244].
Precisely, in [245], it was shown that the radiative cooling due to the scalar radiation
allows those halos to collapse into black holes. This was shown with a simple model with
fermions interacting via the Yukawa interaction. The general relativistic formulation of
the interaction between a Fermi gas and a scalar field in cosmology was carefully studied
recently in detail in [246].

All these mechanisms could induce small or large spins to the PBHs in terms of their
formation evolution and the process of radiative cooling, as was pointed out in [213].
Another proposal is the one in [247], where the dilution of heavy quarks produced during
inflation, which become confined by QCD flux tubes after horizon re-entry, could have led
to PBH production.

Another mechanism is through the collapse of domain walls. Domain walls are
topological defects that may form when a discrete symmetry is spontaneously broken in
the very early Universe [248,249]. Several works have addressed this scenario and have
shown the possibility of forming PBHs, with astrophysical consequences [146,250–253].
Another possibility comes from the collapse of cosmic strings [254–256], which are 1 + 1
topological defects that are predicted beyond the Standard Model and could have led to
the production of PBHs [257–263].

Similarly, it was also shown that vacuum bubbles could lead to a successful channel for
PBH production or also be involved in related mechanisms [199,264–271]. They could have
been formed during the inflationary epoch through a nucleation process. After inflation
and depending on their size, these bubbles could collapse or even collide, forming black
holes [146,181,197,272–274].

Other results have also been pointed out in the context of modified gravity, in particular
in [275], where the PBH production in G-inflation was studied, as well as in [276], where
this was studied with the inclusion of a Gauss–Bonnet term. In [277], the effects on the
threshold in Eddington-inspired Born–Infeld gravity were considered.

Finally, a new mechanism appeared in [278], where PBHs could have been formed
from the collapse of primordial CDM isocurvature fluctuations. Related to that, a new
work has numerically shown the formation of PBHs [279] from isocurvature fluctuations
generated by a massless scalar field.

9. Conclusions

In this review, we focused on explaining in detail the process of PBH formation from
the collapse of curvature fluctuations under spherical symmetry on an FLRW background
and its numerical implementation through a particular numerical technique. Specifically,
we saw that numerical simulations are essential to capture the correct and full-non-linear
behaviour of the collapse and formation of PBHs. This leads to a better and accurate
determination of the threshold of PBH formation and their masses compared to analytical
estimations, something essential for the precise analysis of PBH abundances. In this review,
we saw a simple and efficient numerical procedure based on pseudospectral methods that
allows us to fully solve the non-linear gravitational collapse of those perturbations and
obtain the needed values of the threshold and PBH mass in the range of practical interest.

Two aspects in the literature have been remarkably important for the development of
the field: (I) the results found from numerical simulations about the critical scaling regime
for the PBH mass and (II) the analytical estimations for the threshold of PBH formation.
Both allow us to estimate the abundances of PBHs and constrain them. In particular, we
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saw that the threshold and PBH mass are both dependent on the specific shape of the
curvature fluctuation considered, and it is crucial to take this into account for the precise
analysis of PBH abundances instead of using a constant threshold or PBH mass value.
Moreover, we saw that the gravitational collapse is highly dependent on the equation of
state of the fluid w. The larger w is, the smaller is the mass of the PBHs and the accretion
from the FLRW background, but the higher the threshold is.

It is interesting to mention that the compaction function, firstly used in [77] years
ago, has become currently essential, not only for the definition of the threshold of PBH
formation, but also to obtain an analytical estimation of it, using its average.

There is still much effort to be made in other directions and different scenarios of
PBH formation to consider, as the ones already pointed out in Section 8. Future theoretical
developments and the implementation of numerical simulations to test and check those
scenarios could lead to new possibilities for PBHs to account for dark matter and update
the abundance estimations. In particular, it would be interesting to compare the results
already pointed out in this review in other scenarios.

We hope that in the next few years, several scientific results in this and other directions
will help to fully understand and constrain the PBH scenario and its consequences in our
Universe, especially taking into account future gravitational wave observations.
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PBHs Primordial Black Holes
DM Dark Matter
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AMR Adaptive Mesh Refinement
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Notes
1 The confluent hypergeometric function is defined as ΓU(a, b, z) = 1

Γ(a)

∫ ∞
0 e−ztta−1(1 + t)b−a−1dt.

2 The erf function is defined as erf(x) = 2√
π

∫ z
0 e−t2

dt.
3 Technically, the condition of the formation of the apparent horizon is given when 2M(r, t)/R(r, t) = 1. However, for computa-

tionally efficiency, ot is easier to check whatever C ≈ 1, since C = 2M(r, t)/R(r, t)− 2Mb(r, t)/R(r, t), which avoids finding the
cosmological horizon.
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4 The gamma function Γ(x) is defined as Γ(x) =
∫ ∞

0 tz−1e−tdt.
5 The incomplete gamma function is defined as Γ(x, y) =

∫ ∞
y tx−1e−tdt.

6 The hypergeometric function is defined as 2F1(a, b, c, z) = ∑∞
k=0

(a)k(b)k
(c)k

zk

k! .
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