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Abstract: The Primordial Group hypothesis states that only sufficiently young open clusters (OCs)
can be multiple, and old OCs are essentially isolated. We tested this postulate through four different
studies using a manual search of Gaia EDR3 and extensive literature. First, we revisited the work of
de La Fuente Marcos and de La Fuente Marcos (2009), which states that only ca. 40% of OC pairs are
of primordial origin. However, no plausible binary system among their proposed OC pairs having
at least one member older than 0.1 Gyr was found. Second, we researched the OCs < 0.01 Gyr old
in Tarricq et al. (2021) and found that ca. 71% of them remain in their primordial groups. Third,
a similar study of the oldest OCs (age > 4 Gyr) showed that they are essentially alone. Forth, the
well-known case of the double cluster in Perseus and some other binary systems described in the
literature were also shown to accommodate the title hypothesis. A simplified bimodal model allows
for retrieval of the overall fraction of related OCs (approximately 12–16%) from our results, assuming
that young clusters remain associated at ~0.04 Gyr. The obtained results further support that OCs are
born in groups (Casado 2021).

Keywords: open cluster pairs; open cluster groups; open cluster formation; Gaia; manual search;
Primordial Group hypothesis

1. Introduction

Open clusters (OCs) are born from the gravitational collapse of gas and dust in giant
molecular clouds. There is observational evidence that some are born in groups [1,2].
Galactic OCs are sometimes found in pairs, and the number of these optical pairs is
significantly higher than would be expected if clusters were randomly distributed (e.g., [3]).
Studies of grouping among OCs provide keys to understanding star formation in the
Galactic disk and the subsequent dynamical evolution of OCs.

Until recently, h and χ Persei was the only accepted physical double cluster in
our Galaxy [4], even though some literature describing other OC pairs already existed
(e.g., [5–7]). Conversely, roughly 10% of known OCs in the Large Magellanic Cloud (LMC)
seem to belong to pairs [8]. Within the Galactic disk, the first estimations of the fraction
of these paired clusters by statistical comparison of entirely random distributions of OCs
or pairs of OCs reached a level of 20% [3]. Bica et al. [1] estimated that 25% of embedded
clusters (EC) are formed in pair or triplet systems, although groups with up to nine OCs
were also identified (see [9]). Subramaniam et al. [7] estimated that approximately 8% of
the OCs in the Galaxy appear to be members of binary systems. De La Fuente Marcos [5]
(DFM hereafter) argued that the real fraction was similar to that in the LMC. Among this
population, nearly 40% of them were classified as primordial binary open clusters. How-
ever, only approximately 17% appear to survive for more than 25 Myr [10]. On the other
hand, Soubiran et al. [11] used Gaia data sets and analyzed the 6D space phase volume.
They recognized only five likely binary clusters and a group of five OCs differing by less
than 100 pc in their Galactic position and 5 km/s in velocity from their high-quality sample
of 406 OCs. Nevertheless, in a corrected version of the same work, Soubiran et al. [11] listed
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21 candidate pairs. The exact fraction of related OCs in the Galaxy remains unknown at
present. However, new precision Gaia data will hopefully ascertain it soon, at least for the
solar neighborhood.

The second Gaia Data Release (Gaia DR2) provided precise astrometric data (position,
parallax (plx), and proper motions (PMs)) and (1+2)-band photometry for approximately
1.3 billion stars [12] starting a new era in precision studies of Galactic OCs (among other
subjects). The recent third release of Gaia early data results (Gaia EDR3; [13]) further
improves the accuracy of the measurements for approximately 1.5 billion sources.

Today, virtually all new OCs are found through unsupervised algorithms that detect
overdensities in high-dimensional space from the plethora of data in large stellar databases
and information provided by space missions such as Gaia (e.g., [14,15]). The next step in
validation and characterization is performed using automatic machine learning techniques.
For instance, the approach applied by [15] detected hundreds of new OCs in the Gaia
database. However, this method does not recover a fraction of the OCs from the literature,
partly due to the non-existence of several of these OCs [16]. This fact suggests that their
approach may also be unable to detect a fraction of undiscovered OCs [17]. Two recent
studies identified dozens of previously unknown OCs via manual mining of the Gaia
dataset [9,18]. These surveys were less productive in terms of quantity of new OCs and
could not ensure completeness, either. However, they were more detailed, since the manual
approach allows for going beyond a purely formal search of OCs. Each OC candidate is
examined individually, based on extensive available data.

In one of these studies [9], a comprehensive list of 22 double or multiple OCs com-
prising 80 possible member clusters between the galactic longitudes of 240◦ and 270◦ was
examined, with the help of Gaia EDR3 and the existing literature. We discovered that
almost all the 52 most likely grouping members were OCs younger than 0.1 Gyr. We did
not find any likely groups containing older OCs. These results suggest that most groups,
if not all, are of primordial origin and are not stable for a long time, in line with similar
conclusions obtained from study of the Magellanic Clouds [8,19]. Our results also suggest a
low probability, if any, of pairs formed by tidal capture or resonant trapping, which would
be due to the small likelihood of close encounters of OCs, and the even lower probability of
tidal capture without disruption of at least one of the clusters. Estimations of the fraction of
OCs that form part of groups (from 9.4 to 15%) support the hypothesis that the Galaxy and
the Large Magellanic Cloud are similar in this respect, as well [5]. One of our conclusions
was that OCs are generally born in groups, i.e., in clusters of clusters. The stellar formation
process is depicted as more complex than previously thought. See, for instance, the complex
structures derived in Vela-Puppis [20], and the case of Group C in this paper. Other studies
suggest a similar scenario [21–23]. Groups of young OCs are the likely result of such a
hierarchical and turbulent star formation process.

In the present work, we propose and test a hypothesis dubbed the Primordial Group
hypothesis: i.e., only sufficiently young OCs can be multiple, and old OCs are essentially
single, since the gravitational interaction between OCs in primordial groups is indeed
weak, and the probability of gravitational capture of OCs originating in different molecular
clouds is very low [8]. We tested this hypothesis via four distinct studies. In Section 3,
we review some of the cluster pair candidates proposed by DFM. In Section 4, we look
for companions of the clusters younger than 0.01 Gyr, and in Section 5, the same method
is applied to OCs older than 4 Gyr. In Section 6, we revisit the case of the double cluster
in Perseus and a few other binary cluster candidates from the literature, and Section 7
summarizes some concluding remarks.

In the present study, a pair (or group) of OCs refers to any candidate group of interact-
ing OCs, whether gravitationally bound or not, while the term “binary cluster” is limited
to gravitationally bound OC pairs.
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2. Methodology

First, we conducted a more in-depth study of some of the proposed OC pairs in DFM,
using data from the extensive literature and Gaia EDR3 (see Section 3). The main results
are summarised in Table 1. The methods applied to find and select pairs of OCs have been
detailed previously [9]. However, we recapitulate here the general methodology.

We started with a candidate member of a hypothetical pair (or group) of OCs. For
each of these candidates, we looked for close correlations between coordinates, PMs, and
parallax for all OCs within the studied area (at least 100 pc surrounding each studied OC).
For example, if two OCs were close enough (i.e., at a projected distance of fewer than ten
times the smaller of their radii and less than 100 pc), the rest of their astrometric data were
compared. If there was any overlap in the data, considering uncertainty intervals of 3σ,
both OCs were included in Table 2. The table was refined using the most accurate and
recent parameters for individual OCs from reported studies using Gaia DR2 and Gaia EDR3,
where possible. When the existing data were questionable, incomplete, or inconsistent
between different authors, the OCs were manually re-examined using Gaia EDR3 to obtain
the corresponding parameters. The Gaia EDR3 astrometric solution is accompanied by
new quality indicators, such as the renormalised unit weight error (RUWE). RUWE allows
sources with inaccurate data to be discarded [13]. We routinely discarded sources that had
RUWE > 1.4. Unless otherwise stated, we also discarded sources of Gmag > 18 to limit
parallax and PM errors, which increase exponentially beyond this magnitude threshold.
The member stars of each new or re-examined OC were obtained through an iterative
method detailed previously [18]. In summary, this method refines the approximate allowed
ranges in position, PM and plx, initially obtained by eye, by examining the resulting CMD,
which must include a maximum number of likely member stars but a negligible number
of outliers (stars out of the OC’ evolutionary sequences on its CMD). The error ranges in
Tables 1 and 2 are not the standard uncertainties, but the absolute (maximum) errors that
encompass all the member stars of each OC.

Following the criteria of previous studies, the obtained groups were refined by discard-
ing OCs that were more than 100 pc away from any other member [9,11,24,25], assuming
that all members are at the average distance (d) of the group. This cutoff was an order of
magnitude and an unrestrictive maximum, as other studies have used more restrictive lim-
its (e.g., DFM used 30 pc). Groups with differences in radial velocities (RV) >10 km/s were
also discarded [9,24]. The other requirement for refining the groups was that ∆PM/plx (or
∆PM d) be < 2 yr−1 between each pair of group members, using the units in Tables 1 and 2.
The latter condition implies that the differences in tangential velocities are also less than
10 km/s. Some limiting cases for each group are discussed in the following sections.

A straightforward way to search for OC candidates linked to each studied OC was
to plot a graph of the Gaia sources satisfying the examined OC constraints for the studied
field. In this way, we could obtain plots similar to Figure 1, showing (or not showing) the
associated OCs. These charts were free of most of the noise from unrelated field stars.

The data in the pre-Gaia literature are significantly less precise than those in Gaia,
especially when considering PMs (generally excluded from the analysis) and ages [26].
Nevertheless, most of the reported data regarding d, RV, and even age of well-studied OCs
have some value. Therefore, they are used in the individual discussion of candidate pairs
to compare and confirm Gaia data or when no Gaia studies were found, as is the case for
some of the reexamined OCs.
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Figure 1. Chart of selected Gaia EDR3 sources defining group C. NGC 6604 is circled in red to dif-
ferentiate it from the rest of UBC 344, outlined by a black ellipse. Constraints: plx 0.37 to 0.57 mas; 
µα −0.1 to −0.9 mas yr−1; µδ −1.7 to −2.5 mas yr−1; Gmag < 18. 
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pairs are probably primordial. On the other hand, the statistics in Casado [9] suggest that 
the vast majority of candidate pairs and groups found are probably primordial. To test 
the Primordial Group hypothesis, in this section, we reexamined DFM’s candidate pairs 
with at least one member older than 0.1 Gyr. If we found some binary systems that had at 
least one member > 0.1 Gyr, as suggested by DFM, the proposed hypothesis would be 
falsified. 

The candidate pairs in DFM were only selected via their position and distance, which 
had to be compatible with a projected distance between them of less than 30 pc. We per-
formed a deeper study using data from the extensive literature and Gaia EDR3. The main 
results are summarized in Table 1. 

DFM considered OC data from two catalogs: the WEBDA Open Cluster Database [27] 
and the New Catalogue of Optically Visible Open Clusters and Candidates (NCOVOCC; 

Figure 1. Chart of selected Gaia EDR3 sources defining group C. NGC 6604 is circled in red to
differentiate it from the rest of UBC 344, outlined by a black ellipse. Constraints: plx 0.37 to 0.57 mas;
µα −0.1 to −0.9 mas yr−1; µδ −1.7 to −2.5 mas yr−1; Gmag < 18.

3. Analysis of Candidate OC Pairs from DFM

DFM proposed numerous pairs of Galactic OCs and stated that only ~40% of cluster
pairs are probably primordial. On the other hand, the statistics in Casado [9] suggest that
the vast majority of candidate pairs and groups found are probably primordial. To test the
Primordial Group hypothesis, in this section, we reexamined DFM’s candidate pairs with
at least one member older than 0.1 Gyr. If we found some binary systems that had at least
one member > 0.1 Gyr, as suggested by DFM, the proposed hypothesis would be falsified.

The candidate pairs in DFM were only selected via their position and distance, which
had to be compatible with a projected distance between them of less than 30 pc. We
performed a deeper study using data from the extensive literature and Gaia EDR3. The
main results are summarized in Table 1.

DFM considered OC data from two catalogs: the WEBDA Open Cluster Database [27]
and the New Catalogue of Optically Visible Open Clusters and Candidates (NCOV-
OCC; [28]). In the following subsections, we discuss our findings with respect to each
candidate pair comprising any member older than 0.1 Gyr.
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3.1. WEBDA Catalog

Pair #1—ASCC100/ASCC101
DFM classified Pair #1 as a hyperbolic encounter, i.e., not a true binary system. More-

over, according to DFM, Pair #1 could be controversial: the member objects might not be
real OCs. Although ASCC100 was not found through the algorithm of Cantat-Gaudin
et al. [14], our manual study of ASCC 100 and the existing literature confirmed the exis-
tence of both OCs, although not their binary nature. Positions, parallaxes, and RVs are
compatible, but PMs are disparate (Table 1). The difference in the mean parallaxes can be
ascribed to a global offset of Gaia DR2 parallaxes, which are 0.029 mas too small on the
whole [29]. Reported RVs for ASCC 100 range from −22.9 km/s [30] to −25.9 km/s [28],
while for ASCC 101, RVs range from −15 km/s [31] to −32 km/s [24]. However, these
similar RVs seem to merely reflect the general motion of stars in that particular region of the
Galaxy. ASCC 100 is a relatively young OC, with all reported ages in the narrow interval
from 0.089 Gyr [32] to 0.102 Gyr [33]. However, ASCC 101 is a mature OC, whose reported
age ranges from 0.33 Gyr [33] to 0.49 Gyr [34]. Although not determinative, the different
ages also suggest a chance encounter in the space of these otherwise unrelated OCs. The
ensemble of results is consistent with the hyperbolic character of this pair. Note that, in
hyperbolic encounters, the 3D positions should be close, but the 3D kinematics and ages
should not.

Incidentally, Soubiran et al. [11] found ASCC101 as a possible binary with NGC 7058,
but ASCC 101 and NGC 7058 are 185 pc apart according to these authors, making this pair
highly unlikely. Moreover, the corrected version of this paper [11] does not include this
pair in the final list of candidates.

Pair #5—ASCC 90/NGC6405

The Gaia DR2 mean parallaxes of ASCC 90 and NGC 6405 differ markedly, by approx-
imately 27%, and the photometric distances are ~22% apart (Table 1). From the celestial
coordinates and the distances (the more conservative approach), we inferred that both OCs
are more than 100 pc apart, and the proximity condition would be not fulfilled. PMs in
declination are only marginally compatible. The RV of ASCC 90 is in the interval 6.7 to
10.7 km/s, from seven member stars measured by Gaia DR2 [31]. However, NGC 6405 has
at least six consistent RVs from −7.0 km/s [33] to −9.8 km/s [35]. Thus, the difference be-
tween mean RVs is ca. 17 km/s, significantly higher than the accepted threshold of 10 km/s.
Unsurprisingly, their galactic orbital parameters do not fit. For instance, the eccentricity is
more than one order of magnitude higher for ASCC 90 than for NGC 6405 [31]. All in all,
the physical link of this candidate pair of OCs appears to be very doubtful.

Pair #7—Loden 1171/Loden 1194

Although there is a slight overdensity of stars near the position of Loden 1171, we
were unable to find any evidence of this OC in Gaia EDR3. Moreover, the reported µα in
the literature vary widely from −1.0 ± 3.7 [36] to −13.5 ± 0.3 [37]. There are also diverse
reports regarding heliocentric distance, from 500 pc [38] to 789 pc [39], as well as angular
diameter, from 9 arcmin [40] to 17.4 arcmin [39]. Neither parallax nor RV has been reported.
Thus, it may well be a mere asterism, in which case pair #7 would be illusory.
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Table 1. Selected possible open cluster groups (Gr) from DFM and candidate member properties
revisited in this study (Section 3). Column headings: 1. Group number; 2. OC name; 3. Galactic
longitude; 4. Galactic latitude; 5. Parallax; 6. Photometric distance; 7. PM in right ascension; 8. PM
in declination; 9. OC radius; 10. Number of member stars; 11. Age; 12. Radial velocity. The suffix
b in some of the groups refers to groups from the NCOVOCC catalog [28], as explained in the
text. Abbreviations: a radius containing 50% of members; e reexamined using Gaia EDR3 due to
insufficient, imprecise or inconsistent reports; g see text.

1 2 3 4 5 6 7 8 9 10 11 12 13

Gr OC l b plx d µα µδ R N Age RV References
and Notes

Name degree degree mas kpc mas yr−1 mas yr−1 arcmin stars Gyr km/s

1 ASCC 101
[KPR2005]101 68.03 11.61 2.49 0.41 0.93 1.29 22.3 a 69 0.49–0.33 g −15–

−32 g [34]

1 ASCC 100
[KPR2005]100 64.4 12.67 2.9 ± 0.4 2.2 ± 0.3 −3.1 ± 0.3 25 24

0.089-
0.102

g
−22.9–
−25.9

g This work e

5 ASCC 90
[KPR2005]90 354.22 −1.95 1.71 0.56 −1.63 −2.68 23.3 a 58 0.81-

0.65 g 8 [34]
[31]

5 NGC 6405 356.58 −0.76 2.17 0.46 −1.31 −5.84 16.5 a 573 0.034 −9 g [34]

8 ASCC 34
[KPR2005]34 209.67 7.02 - 0.48–0.55 g −2.1 −0.4 12 22 0.34 - [41]

8
9 Loden 46 282.56 2.25 0.88 1.1 −11.4 4.6 20 a 44 0.10–

1.07
g

24–
27 g [14]

9 NGC 3228 280.76 4.49 2.04 0.50 −14.9 −0.7 30.7
a 117 0.03 −22 g [34]

10 NGC 6469 6.56 1.97 0.59 1.7 0.6 0.8 3.7 a 48 0.07 −7.3
[34]
[31]

10
12

Ruprecht
139 6.43 −0.18 0.29 ± 0.06 0.59 0.0 ± 0.2 −1.4 ±0.2 7 65

0.004–
1.12

g 68 ± 3 This work e

[39]
12 Bochum 14 6.38 −0.50 0.32 ± 0.06 0.54–0.97 g 0.3 ± 0.3 −1.2 ±0.2 2 44 0.001–0.037 - This work e

21 NGC 2447 240.05
240.04

0.15
0.15 0.97 1.0

1.0
−3.8
−3.6

3.9
5.1 12 a 731 0.58

0.58 22 [24]
[34]

21 NGC 2448 240.76
240.85

−0.26
−0.43 0.88 1.0

1.1
−3.8
−3.4

4.7
2.9 16 a 121 0.02

0.10 24 [24]
[34]

22 Biurakan 2 72.75 1.36 0.54 1.7 −3.2 −6.8 8.3 a 47 0.009
−20–
−25 g [34]

22 Ruprecht
172 73.11 1.01 0.26 3.6 −2.0 −3.7 2.5 a 82 1.05 14–15 g [34]

23 NGC 6242 345.45 2.46 0.76 1.24
1.21

1.1 −0.8 6.2 a 471 0.078
0.083

2 [34]
[31]

23 Trumpler 24 344.63 1.59 0.59 −0.27 −1.3 327 0.008 −35 [42]

27 Basel 8 203.85 −0.16 0.63 1.5 −0.1 −2.4 19 a 14 0.05–
0.13 g 11 [34]

[24]

27 NGC 2251 203.61 0.11 0.66 1.5
1.5 0.7 −3.8 7.4 a 109 0.28

0.28 26 [34]
[31]

33 Ruprecht
151 233.08 3.24 0.87 1.13

1.09
−4.3 3.2 6.8 a 41 0.45

0.49 26 [34]
[31]

33 NGC 2428 233.09 2.70 0.71 1.32
1.29

−3.3 2.5 8.8 a 163 0.72
0.74 53 [34]

[31]

9b Loden 46 282.56 2.25 0.88 1.1 −11.4 4.6 20 a 44 0.10–
1.07

g - [14]

9b ASCC 59
[KPR2005]59

283.83
283.82

−0.76
−0.52

0.30 ± 0.03
- 0.51

−5.1 ± 0.2
−4.8

3.6 ± 0.2
3.2

18
20

64
219 0.29 −4

-
This work e

[41]

23b Pismis 19 314.71 −0.31 0.26 3.5 −5.5 −3.2 2.1 a 430 0.63–1.12
g −29.6

[34]
[31]

23b Trumpler 22 314.66 −0.59 0.39 2.4
2.4 −5.1 −2.7 6.2 a 140

0.024–
0.31 g

−38–
−43 g

[34]
[31]

26b NGC 2421 236.28 0.06 0.343
2.68
2.58

−3.1 3.1 5.8 a 406 0.07–
0.09 g 89 [34]

[31]

26b Czernik 31 236.27 0.27 0.295
3.4
3.2 −1.9 3.0 2.3 a 71 0.02–

0.18 g 103 [34]
[31]

Pair #8—ASCC 34/Loden 46

There is no evidence of ASCC 34 in Gaia EDR3, despite the presence of a small
clump of stars resembling a cluster core near its alleged center (at galactic coordinates
209.679 + 7.030), which is only a chance alignment according to Gaia data. However, let us
consider that ASCC 34 is a real OC, assuming that the existing literature is correct. From
the data reported in DFM, the difference in µα between both OCs of this candidate pair
would be 11.75 mas/yr. At DFM’s assumed distance for this OC pair (540 pc), this would
imply a differential tangential rate of more than 30 km/s, which would be too high for a
binary system of OCs [24]. Moreover, the reported distances of ASCC 34 are 550 pc [38] and
477 pc [41]; therefore its average distance would be less than half the distance derived from
Gaia data for Loden 46 (Table 1). Most importantly, the difference in galactic longitude of
both objects (~73◦) indicates that this pair was a selection error in DFM. For these given
reasons, this candidate pair can be ruled out.

Pair #9—Loden 46/NGC 3228

Candidate pair #9 is formed by NGC 3228 and, again, by Loden 46, i.e., DFM consid-
ered a possible triple system. In this case, the existence of both OCs is undeniable, and their
positions are close enough. The PMs are also (marginally) compatible. However, Loden
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46’s age is very poorly constrained, ranging from 0.10 Gyr [41] to 1.07 Gyr [38]. Since both
estimations were produced by the same group of authors, we adopted the most recent
determination as most accurate. However, in that case, Loden 46 would be a young OC,
and thus this pair of OCs would be outside the scope of the present analysis. In any case,
the reported RV for NGC 3228 (−22.4 km/s; [28,41]) is incompatible with the RV for Loden
46, which ranges from 24.3 km/s [31] to 26.7 km/s [43]. Their Gaia derived distances and
parallaxes are also incongruent: NGC 3228 is much closer to the Sun than Loden 46, which
rules out the actual existence of the alleged binary cluster and the triple system.

Pair #10—Ruprecht 39/NGC 6469

Again, most parameters of this candidate pair are disparate, including parallaxes,
distances, µδ, ages and RVs (Table 1). The median reported heliocentric distance of Ruprecht
139, 0.59 kpc [39], close to the distance given in DFM (0.55 kpc), is congruent with neither
the Gaia EDR3 parallax obtained in the present study nor the reported distance to NGC
6469. The presence of nebulosity around Ruprecht 139 is at odds with its older reported
age (1.1 Gyr; [41]). Although this age is routinely quoted in the literature, the Kharchenko
et al. [41] catalogue is not very suitable as a source of ages for young OCs. The reason is
because the listed parameters (except PMs) were based on near-IR photometry (2MASS),
and the corresponding CMDs have low age sensitivity in this age interval. A much younger
age was obtained recently (0.004 Gyr; [25]). If Ruprecht 139 is a young OC after all, the
inclusion of Pairs #10 and #12 in the present analysis would be pointless. Whatever the case,
one of the plausible star members of Ruprecht 139 (Gaia EDR3 source 4069123828085540992)
has RV = 68 km/s, which is incompatible with the reported RV of NGC 6469 (Table 1). All
in all, the physical link of this pair is rather unlikely.

Incidentally, during study of this region using Gaia EDR3, three other OCs were iden-
tified that appear to be close to Ruprecht 139 and share compatible astrometric parameters,
namely LP 1625, LP 1208, and LP 1209 [25], and could therefore be associated. However,
the study of this possible group of OCs is outside the scope of the present report.

Pair #11—Johansson 1/Alesi 8

These OCs were recently identified, via Gaia DR2, with the associations of stars Theia
353 and 335, respectively [23]. Theia 353 is a string of stars of mean parallax 1.27 mas,
while Theia 335 has parallax 1.48 mas. The difference between the parallaxes is at least
16%, and corresponds to a distance between both objects of more than 110 pc, which would
exclude their present physical link. In addition, some of the astrometric parameters are
not well-matched. For example, the Y positions in the heliocentric XYZ reference frame
are −371 pc and −561 pc for Theia 335 and 353, respectively. Therefore, the existence of a
binary cluster formed by these members is doubtful, despite both ages being very similar
(and very close to the limit age for the present study): 102 and 106 Myr for Theia 335 and
353, respectively. However, the possibility that this pair could be a primordial one that
has relaxed to the point that it does not meet the criteria that match younger open clusters
cannot be excluded at present.

Pair #12—Bochum 14/Ruprecht 139

The physical link between Bochum 14 and Ruprecht 139 seems likely at first sight
since they are apparently close, and their parameters are at least marginally compatible
(Table 1). The reported distances to Bochum 14 vary from 0.54 kpc [39] to 0.97 kpc [44].
This range is compatible with the reported distance of Ruprecht 139 but contrasts with
the Gaia EDR3 parallaxes of both OCs, which lead to derived distances of at least 3 kpc.
Bochum 14 is a young cluster embedded in its parent molecular cloud, even if there is no
consensus regarding its exact age, since reported values span from 1 Myr [45] to 39 Myr [25].
There is no consensus at all regarding the age of Ruprecht 139 (see pair #10). All in all, the
gravitational capture of this pair is dubious, since the gravitational link of both OCs and
the old age of Ruprecht 139 require confirmation. If Ruprecht 139 is young enough, this
pair could be a primordial one.
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Pair #13—Loden 565/ASCC 68

This alleged double cluster would be formed by Loden 565 and ASCC 68 (also known
as [KPR2005] 68). A detailed study based on Gaia DR2 [46] concluded that Loden 565 is
most likely a random stellar fluctuation. Thus, there is no case for any pair of OCs involving
Loden 565. Incidentally, six out of sixteen OCs in the cited study were found to be mere
stellar fluctuations, calling for a thorough review of assumed OCs in the pre-Gaia literature.
Such work has recently been undertaken by refuting 38 “well-known” OCs [16].

Pair #14—VdBH91/Ruprecht 89

Perren et al. [46] also concluded that VdBH 91 is a random stellar fluctuation and
not a real OC. Therefore, this candidate pair is a misconception, although the previously
reported PMs and distances of both members seemed well-matched.

Pair #15—ASCC 4/NGC 189

This candidate pair is formed by ASCC 4 (or [KPR2005] 4) and NGC 189. The literature
on ASCC 4 indicates that it should be detected in Gaia data since its reported distances
range from 0.55 kpc [32,41] to 0.75 kpc [38]. However, we did not find any Gaia-based
study that includes it, nor did we find any trace of its existence through manual mining of
Gaia EDR3. In addition, the PMs from the literature are assorted, and the reported RV is
comparable with its associated error [24]. Our preliminary conclusion is that this cluster of
stars is a chance alignment. If confirmed, no group containing ASCC 4 could exist.

Pair #16—NGC 1746/NGC 1758

After reexamining NGC 1746 using Gaia DR2 data, Cantat-Gaudin and Anders [16]
concluded that this alleged OC is a mere asterism. However, NGC 1750 is an apparently
close OC that could be linked to NGC 1758. Moreover, at times all three objects have
been considered one single object, catalogued as NGC 1746 (e.g., [41]). Thus, we have
reconsidered the possibility of a pair of NGC 1750 and NGC 1758. Nevertheless, the
reported RVs of −7.5 and 11 km/s, respectively [31], make their link unlikely. The rest of
the astrometric Gaia measurements confirm the disparity of both OCs [34]. Hence, this
candidate pair is, once more, not an actual binary system.

Pair #17—Basel 5/NGC 6425

Diverse distances, PMs and ages are reported for Basel 5, but the parallax and RV
of this object are unknown. It is located in a very crowded field of the Milky Way. Our
reexamination with Gaia EDR3 obtained no evidence of this OC (several halo stars probably
related to NGC 6451 were recovered, instead). Similarly, Cantat-Gaudin and Anders [16]
considered Basel 5 a mere asterism caused by extinction patterns. Therefore, any alleged
pair containing it would not exist.

Pair #20—Ruprecht 91/ESO 128-16

This candidate pair was classified as a hyperbolic encounter by DFM because of their
disparate kinematics. Therefore, it is not a linked system. Moreover, ESO 128-16 could be a
spurious overdensity of stars, since we did not find any trace of it through manual mining
of Gaia EDR3, although it was included in the catalog of Hao et al. [42] (see, however,
comment on pair #16b).

Pair #21—NGC 2447/NGC 2448

DFM and Conrad et al. [24] proposed this binary OC. Despite some similar parameters,
their different PMs suggest that both OCs may not be a physical system (Table 1). For
instance, µδ are 5.1 and 2.9 mas/yr, respectively [34]. The combined Gaia data for PM
and parallax led to a difference in tangential velocity up to 12 km/s, beyond the limit
adopted for linked OCs. The difference between the parallaxes, higher than 10%, also
seems to be significant. In fact, from the most recently reported Galactocentric coordi-
nates [31], both OCs would be 114 pc apart, again exceeding the 100 pc permissive limit.
Accordingly, their orbital parameters significantly differ. For example, the orbital peri-
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centers are 9.781 ± 0.035 kpc and 9.145 ± 0.181 kpc [31]. Overall, pair #21 appears to be,
at least, dubious.

There is no consensus regarding the age of NGC 2447. For instance, Liu and Pang [25]
report 1.15 Gyr, while others obtain 0.58 Gyr [24,34]. In any case, this OC seems much older
than NGC 2448 (Table 1).

Pair #22—Biurakan 2/Ruprecht 172

All reported RVs of Biurakan 2 range from −19.7 km/s [36] to −24.9 [47], with a
consensus value of −22 km/s [24,33,35,41]. This RV is at odds with the reported RVs of
Ruprecht 172: 14.1 km/s [31] and 15.4 km/s [11]. In addition, Gaia-derived parallaxes,
distances, PMs and ages are incongruent for this candidate pair (Table 1). Although the
disparity in ages is irrelevant in the present scrutiny, the mismatch of the rest of the
parameters strongly indicates that these OCs form an optical pair since Ruprecht 172 is
much farther away than Biurakan 2.

Pair #23—NGC 6242/Trumpler 24

This candidate pair was classified as a hyperbolic encounter by DFM, and their incon-
gruent PMs and RVs support this view (Table 1). However, Gaia’s mean parallaxes indicate
that Trumpler 24 is much further away than NGC 6242. In any case, this pair cannot be a
binary system.

On the other hand, Trumpler 24, a young and scattered embedded cluster, seems to be
associated with NGC 6231 [48] and ESO 332-8 [43], two young OCs in the same star-forming
complex.

Pair #25—ASCC 6/Stock 4

Although this candidate pair is included in the present review because, according to
DFM, both OCs would be older than 100 Myr, the most recent reports disagree concerning
their ages. For ASCC 6 ([KPR2005] 6), the two most recent determinations, based on Gaia
data, agree upon an age of ca. 0.04 Gyr [34,49]. For Stock 4, the Gaia derived ages are ca.
0.07 Gyr [31,34]. Thus, this pair may well be a primordial system of very young OCs.

Pair #27—Basel 8/NGC 2251

The reported ages of Basel 8 span from 0.048 Gyr (e.g., [24]) to 0.13 Gyr [35]. Whatever
the case, NGC 2251 seems to be older (Table 1), which motivates the inclusion of pair #27 in
this review. Although the celestial positions and distances for Basel 8 and NGC 2251 are
well-matched, their PMs are not (Table 1). From the PMs and parallaxes, a difference in
tangential velocity of 12 km/s, higher than the agreed threshold, is obtained. The divergent
RVs also cast doubt on the physical link of this pair of OCs.

Pair #31—Loden 165/Carraro 1

A reexamination of the star field of Loden 165 with the Gaia EDR3 catalogue did
not show any trace of this OC, or at least no OC compatible with the literature data
regarding Loden 165 (some star members of VdBH 99 and NGC 3293 were found instead).
Accordingly, there is no consensus regarding the reported distances, PMs and ages of this
star cluster. Moreover, there are no data concerning its parallax or RV. Thus, we suggest
that Loden 165 is merely an asterism, and there is no pair of OCs including it.

Surprisingly enough, one of the reported distances and one of the reported ages of
Loden 165 and its alleged companion Carraro 1 exactly coincide. Both OCs would be at
1900 pc from us, and their log (age in yr) would be 9.48 (3.02 Gyr). The source of these
particular data in both cases was attributed to the WEBDA catalogue. This catalogue
provides the bibliographic reference of the data for Loden 165 [50]. However, it does
not include any data details or bibliographic sources corresponding to the listed age and
distance of Carraro 1. Perhaps these coincident data may be due to a mistake encouraged
by the close position of both objects, and these coincidences may have led to the erroneous
assumption that both OCs form a double system.
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Pair #33—Ruprecht 151/NGC 2428

The astrometric Gaia data for Ruprecht 151 and NGC 2428 do not coincide. Both
parallaxes and photometric distances indicate that Ruprecht 151 is ca. 200 pc closer to us
than NGC 2428 (Table 1). PMs and RVs confirm the mismatch. As a result, the orbital
parameters are also significantly different [31]. Therefore, this is merely an optical pair.

3.2. NCOVOCC Catalog

The numbers of candidate pairs based on this catalogue data are denoted #1b, #2b,
and so on to differentiate them from the candidate pairs from the WEBDA database.

Pairs #2b, #6b, #8b, #10b, #11b, #12b, #15b, #17b, #21b and #25b coincide with WEBDA
pairs #1, #5, #9, #11, #15, #17, #21, #22, #27 and #31, respectively, which were previously
discussed in Section 3.1.

Pair #9b—Loden 46/ASCC 59

We found, again, many disparities between both alleged members. The previously
reported data regarding ASCC 59 were incomplete and somewhat inconsistent. Thus,
we decided to reexamine it using Gaia EDR3 (Table 1). However, the new parallax is at
odds with the previously reported distances for ASCC 59. Most importantly, the Gaia
data regarding Loden 46 (see pairs #8 and #9) did not match any of the data for ASCC 59.
Therefore, candidate pair #9b can also be surely discarded.

Pair #16b—ESO 132-14/NGC 5281

Despite the existence of a dense clump of a few stars at the center of ESO 132-14 that
resembles an OC core, our manual inspection of Gaia EDR3 showed no trace of such an
OC and revealed that the apparent core is a chance alignment of stars. However, Gaia
should detect that cluster, since it was reported to be only 1.1 kpc away [28,32,44]. On the
other hand, the catalogue of Hao et al. [42] reports a mean parallax of 0.39 mas, at odds
with that distance for ESO 132-14. Parenthetically, this all-inclusive catalogue (3794 entries)
encompasses numerous asterisms (e.g., NGC 1663, NGC 1746, Ruprecht 46, Ruprecht 155,
Collinder 471, Basel 5, Loden 1 [16]) and duplicated OCs with different listed parameters
(e.g., Alessi 44, Andrews-Lindsay 5, Arp-Madore 2, Havlen Moffat 1, VdBH 121), especially
those in the ESO series (e.g., ESO 021-06, ESO 313-03, ESO 313-11, ESO 332-13, ESO 334-02,
ESO 368-11, ESO 368-14, ESO 392-13, ESO 397-01, ESO 429-02). In addition, the previous
literature regarding ESO 132-14 shows assorted PMs (e.g., [36,41]) and neither RV nor
mean parallax measurements. Given all this conflicting evidence, we consider this OC and
associated candidate pair unlikely to be physical.

Pair #23b—Pismis 19/Trumpler 22

The age of Trumpler 22 is poorly constrained. Pre-Gaia studies report ages up to
0.31 Gyr (e.g., [41]), but most recent works report ages close to 0.03 Gyr [31,34,49]. In any
case, these values do not overlap with the reported ages of Pismis 19, a redder and older
cluster with ages that range from 0.63 Gyr [51] to 1.12 Gyr [44]. Such an age disparity
prompted the inclusion of this candidate pair in the present study.

Even if positions and PMs are compatible, distances and parallaxes are not. Pre-
Gaia catalogs assigned Trumpler 22 photometric distances as low as 1.5 kpc (e.g., [28]).
However, Gaia DR2-based studies agree on a photometric distance of 2.4 kpc (Table 1),
which harmonizes with the measured parallax, allowing for the mentioned global offset of
Gaia DR2 parallaxes [29]. In any case, all reported distances are significantly smaller than
the distance (and corresponding parallax) of Pismis 19 (Table 1).

The reported RVs are not enlightening in this case. For Trumpler 22, RVs span from
−38 km/s [28,35] to −43 km/s [11,31], which are only marginally compatible with the
reported RV for Pismis 19 (Table 1). The ensemble of data suggests that this pair is a
chance alignment, mainly because Trumpler 22 is more than one kpc closer to the Sun than
Pismis 19.

On the other hand, the younger OC Trumpler 22 has been physically connected to
NGC 5617 [52]. According to this study, the two close OCs share similar ages (~70 Myr),
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average RVs (−38.5 ± 2.0 km/s), and mean metallicities (−0.18 ± 0.02 dex), forming a
primordial binary cluster.

Pair #26b—NGC 2421/Czernik 31

NGC 2421 is a well-known OC, but its age was poorly constrained before Gaia. How-
ever, four of the five Gaia-based studies converge on ages ranging from 0.066 Gyr [34] to
0.091 Gyr [31]. The age of Czernik 31 was also poorly constrained: reports range from
0.021 Gyr (e.g., [49]) to 0.18 Gyr [41]. The latter tentative age (see comment on pair #10),
adopted in DFM, motivates the inclusion of this pair in the present work. Inspection of the
data summarized in Table 1 suggests that this is an optical pair. Most of the parameters are
incompatible. In particular, both the photometric distances and the mean Gaia parallaxes
indicate that NGC 2421 is significantly closer than Czernik 31. The reported RVs and µα

also do not match.
None of the revised candidate pairs was retrieved in the more recent and constrain-

ing study of Conrad et al. [24], except for the questionable case of NGC 2447 and NGC
2448. Moreover, Conrad et al. [24] warned that possibly many of the previously proposed
groupings in the literature were not recovered in their survey because they are not real.

In sum, we did not find any likely binary clusters from the DFM study with any of
their members older than 100 Myr. Some of the pairs are optical pairs, others are hyperbolic
encounters, and a few pairs may be primordial pairs with flawed ages. A significant
number of the clusters studied in this sample are most likely false OCs, namely Loden 1171,
ASCC 34, Loden 565, VdBH 91, ASCC 4, NGC 1746, Basel 5, Loden 165, ESO 128-16 and
ESO 132-14. The higher frequency of Loden objects suggests that that series of OCs might
contain more flawed OCs than average. The preliminary conclusion of this section is that
our working hypothesis has passed this trial and that most double or multiple OCs are
primordial groups.

4. Groupings Surrounding Very Young OCs

The Primordial Group hypothesis suggests that very young OCs (age < 0.01 Gyr) may
still be associated with their siblings, i.e., those clusters born recently from the same giant
molecular cloud, although not necessarily so. We used the updated catalogue of Tarricq
et al. [31] to investigate this possibility. This comprehensive catalogue lists well-studied
OCs with both age and 3D kinematics. We studied the field of those OCs to look for
associated siblings using the methodology described in Section 2.

SAI 25

Since there are inconsistent reports (even from Gaia data) concerning this faint, poorly
populated OC, we contributed parameters based on Gaia EDR3 (Table 2). The reported
distances range from 1.1 kpc [35] to 2.7 kpc [34]. Only the larger values are (marginally)
compatible with Gaia parallaxes. Moreover, there is a very wide span of reported ages
for SAI 25: from 0.002 Gyr [31,34] to 1.5 Gyr (e.g., [28,41,42]). Note that only if SAI 25
were indeed young would it be justified to include it in the present section. The broad and
ill-defined CMD [34] has a short main sequence spanning only four magnitudes, suggesting
that it is not so young. Whatever the actual age is, no associated OC was found in a radius
of 100 pc surrounding SAI 25.

NGC 6823 (Group A)

NGC 6823 is so young that it is still associated with the HII region LBN 059.38-00.15.
Reported ages range from 2 Myr [31] to 10 Myr [41]. It also seems to be associated with
Roslund 2 (Table 2), whose reported ages range from 6 Myr [32,39,41] to 12 Myr [31].
Accordingly, most of the characteristics of both OCs are well-matched. Unfortunately,
published RVs do not allow for confirmation of this possibility, mainly because of the wide
disparity in Roslund 2’s RVs, ranging from −5 km/s (e.g., [41]) to 127 km/s [11,31]. Notice,
however, that RVs of NGC 6823 range from 11 km/s to 30 km/s, so that both intervals are
compatible. All in all, this pair is considered a likely double cluster candidate.

Hogg 15 (Group B)
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Hogg 15 is perhaps associated with the EC La Serena 39 [40]. We reexamined this last
cluster with Gaia EDR3, but the results were insufficient for a complete characterization
due to the few star members and the high number of associated errors (Table 2). RV and
age are unknown, but since it is an EC, it should be very young. In the case of Hogg 15, the
reported ages range from 2 Myr [31,34] to 20 Myr [44]. In any case, only the astrometric
and PM data are compatible. All in all, this candidate pair is considered dubious.

The small OC [MCM2005b]32, which was also classified as an EC [40] and is associated
with a mid-IR extended emission [53], may belong to the same group. We studied it using
Gaia EDR3 since very few data regarding this cluster have been reported (Table 2). The
RV from the associated gas line velocity is barely compatible with the RV of Hogg 15
(Table 2). Although the distance between this cluster and Hogg 15 appears to be 0.13 kpc,
the Gaia EDR3 results are well-matched with those of Hogg 15. Its membership is therefore
uncertain. It is noteworthy at this point that if two clusters born together are in the process
of separation, sooner or later, they will go beyond the 0.1 kpc limit, which is therefore
arbitrary [9]. In other words, the separation of sibling OCs may well increase with time as
the systems become more and more dynamically relaxed.

Lynga 6

No close OC to Lynga 6 was found when considering both its 3D position and 3D
kinematics.

Table 2. Selected possible open cluster groups (Gr) and candidate member properties studied in
this work (Sections 4 and 5). Column headings: 1. Group label; 2. OC name; 3. Galactic longitude;
4. Galactic latitude; 5. Parallax; 6. Photometric distance; 7. PM in right ascension; 8. PM in declination;
9. OC radius; 10. Number of member stars; 11. Age; 12. Radial velocity. Abbreviations: a radius
containing 50% of members; c maximum cluster member’s distance to average position; e reexamined
using Gaia EDR3 due to insufficient, imprecise or inconsistent reports; f too few stars for complete
characterization; g see text; p protocluster or embedded cluster; (?) unlikely group.

1 2 3 4 5 6 7 8 9 10 11 12 13

Gr OC l b plx d µα µδ R N Age RV References and
Notes

Name degree degree mas kpc mas yr−1 mas yr−1 arcmin stars Gyr km/s

- SAI 25 139.70 −1.33 0.30 ± 0.11 1.1–
2.7 g 0.2 ± 0.2 −0.75 ± 0.3 2.5 ± 0.5 19 f 1.5–

0.002
g

-
−66

This work e

[31]

A NGC 6823 59.42 −0.14 0.45 2.3
2.2 −1.7 −5.3 4.4 a 140

0.002–
0.010

g
11–

30 g
[34]
[31]

A Roslund 2 60.21 −0.18 0.46 2.1
2.0 −1.7 −5.1 9.6 a 97

0.006–
0.012

g 127 [34]
[31]

B Hogg 15 302.05 −0.24 0.27 3.0
2.9 −6.0 −0.5 3.8 a 72

0.020–
0.002

g −23
Cantat-Gaudin+

2020
[31]

B La Serena 39 301.10 −0.17 0.30 ± 0.08 −5.9 ± 0.3 −0.4 ± 0.2 3.0 ± 0.5 16 f - This work e

B [MCM2005
b]32 300.135 −0.085 0.26 ± 0.07 −6.1 ± 0.2 −0.3 ± 0.2 1.0 ± 0.5 15 f -

−39
This work e

[44]

C UBC 344 18.35 1.82 0.47 1.92
1.84

−0.3 −2.2 9.7 a 314 0.003
0.003

42 [34]
[31]

C NGC 6604 18.24 1.69 0.45 1.89 −0.45 −2.3 1.0–
17 g 88

0.003-
0.008

g
−5–

136 g [43]

C [BDS2003]9 18.67 1.97 0.49 ± 0.10 −0.5 ± 0.3 −2.0 ±0.3 1.5 ± 0.5 16 f - This work e,p

C Casado 67 18.78 1.83 0.47 ± 0.08 2.2 −0.45 ± 0.2 −2.05 ±0.3 2.5 ± 0.5 27 0.01 - This work p

D NGC 6383 355.67 0.06 0.87 1.12
1.09

2.6 −1.7 4.9 a 245 0.004
0.004

2 [34]
[31]

D Casado 68 354.54 0.20 0.87 ± 0.10 1.2 2.55 ± 0.4 −1.8 ± 0.4 13 ± 1 52 0.01 4 This work p

E NGC 1893 173.58 −1.63 0.27 3.22
3.15

−0.2 −1.4 5.1 a 123 0.004
0.004

−4 [34]
[31]

E Casado 69 173.16 −1.30 0.30 ± 0.09 −0.3 ± 0.3 −1.6 ± 0.4 3.5 ± 0.5 17 f - This work p

F NGC 6193 336.69 −1.58 0.81 1.26
1.23

1.3 −4.1 9.4 a 428 0.005
0.005 −76

[34]
[31]

F Casado 70 336.35 −1.20 0.84 ± 0.09 1.1 1.3 ± 0.5 −4.3 ± 0.4 7 ± 1 63 0.01 - This work p

G NGC 3572 290.74 0.17 0.38 2.46
2.35

−6.3 1.9 4.4 a 75 0.005
0.005

1 [34]
[31]

G Hogg 10 290.78 0.15 0.37 1.8–
2.5 g −6.2 1.9 1–

8 44 0.006
1–

−7 g [42]

G LP 1531 291.02 0.044 0.385 −6.2 1.8 6.7 c 57 0.004 - [25]

H FSR 0198 72.18 2.61 0.49 2.18
2.04

−3.6 −6.6 7.6 a 82 0.005
0.005

12 [34]
[31]
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Table 2. Cont.

1 2 3 4 5 6 7 8 9 10 11 12 13

Gr OC l b plx d µα µδ R N Age RV References and
Notes

Name degree degree mas kpc mas yr−1 mas yr−1 arcmin stars Gyr km/s

H Teutsch 8 71.86 2.42 0.49 1.98 −3.5 −6.7 0.4 a 28 0.004 - [34]

I NGC 2362 238.18 −5.55 0.74 1.34
1.30

−2.8 3.0 3.1 a 144 0.006
0.006 29

[34]
[31]

I Camargo
997 237.50 −4.89 0.80 ± 0.13 −2.8 ± 0.3 3.0 ± 0.3 8.5 ± 0.5 49 30 This work e,p

J UBC 438 195.70 0.03 0.21 3.6
3.3 0.2 −0.4 5.8 a 24 0.004

0.006
39 [34]

[31]
J Casado 71 195.29 0.45 0.21 ± 0.06 0.3 ± 0.2 −0.5 ± 0.2 3.0 ± 0.5 14 f - This work

H1 NGC 6871 72.66 2.01 0.51 1.72
1.66

−3.13 −6.44 22 a 430 0.005
0.006

15 [34]
[31]

H1 Teutsch 8 71.86 2.42 0.49 1.98 −3.49 −6.70 0.4 a 28 0.004 - [34]

K IC 1805 134.73 0.945 0.45 1.96
1.87

−0.7 −0.67 6.7 a 106 0.008
0.007

−44 [34]
[31]

K Berkeley 65 135.84 0.26 0.44 2.28 −0.7 −0.34 1.5 a 37 0.097 - [34]

K Camargo
755 134.81 1.32 0.45 ± 0.11 −0.7 ± 0.3 −0.3 ± 0.2 5 ± 1 44 - This work e,p

L VdBH 205 344.63 1.63 0.57 1.60
1.54

−0.2 −1.1 5.8 a 55 0.006
0.007

−2 [34]
[31]

L ESO 332−08 344.39 1.79 0.53 1.69 −0.3 −1.3 201 0.008 - [43]
L [DBS2003]114 345.32 1.46 0.56 ± 0.10 −0.2 ± 0.4 −1.4 ± 0.3 1.5 ± 0.5 19 f - This work e,p

M (?) Berkeley 36 227.50 −0.56 0.206
4.36
4.13

−1.73 0.86 2.8 a 150 6.8
6.8 63 [34]

[31]
M (?) Casado 72 227.25 −0.82 0.26 ± 0.06 3.8 −1.55 ± 0.2 0.85 ± 0.2 5 ± 0.5 19 0.02 - This work

N (?) Kronberger
81 95.27 2.07 0.23 -

4.1 −2.61 −3.32 2.7 a 28 f -
5.6 −85 [34]

[31]

N (?) Teutsch 17 95.31 1.06 0.253
0.267

2.9 −2.88
−2.88

−3.21
−3.22 11.6

c
213
58

0.012–
0.083

- [43]
[25]

- NGC 2383 235.27 −2.46 0.28 3.5 −1.6 1.9 2.2 a 242 0.26 55–
72 g [34]

O NGC 2384 235.39 −2.39 0.38 ± 0.09 2.0–
3.2 g −2.3 ± 0.3 3.1 ± 0.3 4.0 ± 0.5 36

0.006–
0.021

g
46–

53 g This work e

O Casado 73 234.69 −2.19 0.33 ± 0.06 3.1 −2.2 ± 0.2 3.1 ± 0.3 3.5 ± 0.5 23 0.08 - This work

UBC 344 (Group C)
According to data from Cantat-Gaudin et al. [34], UBC 344 is a big (up to 40 arcmin)

and elongated cluster (Figure 1), containing a few cores in a nebular area. From the plot
of its member stars, it became clear that one of the cores corresponds to NGC 6604, but
it is unclear if NGC 6604 is part of UBC 344 or if they are two associated OCs. Note,
however, that some of the UBC clusters recently discovered by [15] were already known
OCs [54]. The apparent diameter reported for NGC 6604 in the pre-Gaia literature ranges
from 2.0 arcmin [45] to 9.0 arcmin [40]. However, Liu and Pang [25] estimated the diameter
to be 34 arcmin from Gaia DR2, similar to the size of UBC 344. The centers of both objects are
ca. 10 arcmin apart. Most reported ages of NGC 6604 range from 3 Myr [55] to 8 Myr [41],
and there is a broad consensus at approximately 6 Myr (e.g., [28,33,43,56–58]. Therefore,
both clusters are very young (Table 2). The rest of the relevant parameters are also well-
matched (Table 2), except for the RV of NGC 6604, which is very poorly constrained: from
−5 km/s [28] to 136 km/s [42]. All in all, there is likely a relationship between both objects.
The general appearance resembles a rich OC in the process of disintegration (Figure 1).

Two additional OCs were identified as possible members of Group C: [BDS 2003] 9, a
cluster still embedded in the parent nebula Gum 85, and the new OC Casado 67, found in
this survey (Figure 1 and Table 2). This last object, embedded in the same giant molecular
cloud, is in an area containing numerous young stellar object candidates, which suggests
that it is also very young. Accordingly, its estimated age determined from isochrone fitting
(Figure 2) is 0.01 Gyr, compatible with the ages of other members of Group C. The derived
photometric distance is 2.2 kpc, in good agreement with the mean Gaia EDR3 parallax. The
estimated extinction of this new OC is AV = 4.5 mag. A small clump of ca. ten stars at
galactic coordinates 18.18, 2.02 also seems to belong to the same star-forming complex.
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Figure 2. CMD of the most likely members of the new OC Casado 67 and the best fitting isochrone.
Constraints are defined in Table 2.

NGC 6383 (Group D)

This candidate pair, formed by NGC 6383 and a newly identified sparse OC (Casado
68), appears associated with a giant molecular cloud that presumably is the nest where
both were born not many Myr ago (Table 2).

NGC 6383 is a well-studied OC, which presents some substructure at its galactic north,
suggesting partial disaggregation. Its reported RVs range from −1.2 km/s [24] to 7.7 [59],
constituting the mean value in Table 2. The cited RV range fits the RVs of two of the member
stars of Casado 68 (Gaia EDR3 sources 4054489126483224704 and 4054444287024098048),
which are 4.2 km/s and 4.6 km/s, respectively. The photometric distance of Casado 68 is
1.2 kpc (Figure 3), compatible with the distance of NGC 6383 and with the mean parallaxes
of both OCs. The extinction of the new OC is AV = 1.1 mag. The rest of their parameters in
Table 2 are also well-matched. This agreement suggests the membership of both OCs in the
same primordial group.
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FSR 0826

No OC linked to FSR 0826 was found when considering both its 3D position and 3D
kinematics.

NGC 1893 (Group E)

NGC 1893, still embedded in its parent molecular cloud, might be associated with
the as yet unknown OC Casado 69. This new cluster is still embedded in HII region IRAS
05197 + 3355, suggesting it is also young. The 6D astrometric parameters of both OC are
well-matched, except for the RV, which is unknown for the star members of Casado 69.
However, a reported RV of −4.4 km/s for IRAS 05197 + 3355 [60] fits perfectly with the
mean RV for NGC 1893 (Table 2), which supports the case for a genuine pair. In this regard,
all reported RVs of NGC 1893 range from −2.2 km/s [24] to −9.2 km/s [41].

NGC 6193 (Group F)

NGC 6193 could be associated with the new OC Casado 70, apparently embedded
in the same molecular cloud and partially covered by the dark nebula DOBASHI 6513.
As shown in Table 2, all astrometric parameters match well, except for the RV, which is
unknown for the likely stellar members of Casado 70. The photometric distance of the
new OC is compatible with its mean parallax and with the distance to NGC 6193. The
estimated extinction of Casado 70 is AV = 1.4 mag. Both OCs appear to be young and
have a common origin, as their combined CMD fits quite well considering the presence of
associated nebulosity (Figure 4). Moreover, estimation of the age of Casado 70 via isochrone
fitting confirms that preliminary assumption (Table 2).
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NGC 3572 (Group G)

This OC, adjacent to the parent molecular cloud [RC2004] G290.6 + 0.2–18.1, seems
associated with the close OC Hogg 10. Moreover, some of the stars in Hogg 10 could belong
to NGC 3572, according to data in Cantat-Gaudin et al. [34]. As summarized in Table 2,
all Gaia derived parameters are consistent for both OCs. Reported distances to Hogg 10
range from 1.8 kpc [35] to 2.5 kpc [61]. This range encompasses the distance of NGC 3572
(Table 2). RVs of −7 km/s [41] and 1 km/s [28] were reported for Hogg 10, which are also
compatible with that of NGC 3572 (Table 2). Last but not least, most reported ages are close
to 6 Myr [28,35,41,42,56,62], i.e., close to the age of NGC 3572. Thus, this pair fulfills all
requirements of a primordial system.

Another candidate group member is the recently discovered cluster LP 1531 [25],
which we confirmed as a genuine OC using Gaia EDR3. All relevant parameters in Table 2
are well-matched with the other Group G members, although we did not find any member
star of LP 1531 with a measured RV.

FSR 0198 (Group H)

This OC appears to form a double system with Teutsch 8. All relevant parameters are
well-matched within the observational error (Table 2). However, no RV was retrieved for
Teutsch 8. This group could involve a third member: NGC 6871 (see below).

Pismis 27

Pismis 27 might be associated with the possible EC [KPS2012] MWSC 0759 [41], but
such a relationship is uncertain, as is the definitive classification of [KPS2012] MWSC 0759.

UBC 568

No evidence of an OC associated with UBC 568 was found when considering position,
parallax and PMs.

NGC 7067

This NGC cluster has a second core of ca. ten stars at galactic coordinates 91.24, −1.72,
which could either be a result of the fragmentation of a primordial OC or the outcome of a
second OC born from the same parent molecular cloud. The apparent distance between
both centers is ca. 5 arcmin, which corresponds to a projected distance of at least 10 pc,
considering the mean parallax of NGC 7067 (0.15 mas; [34]). This mean parallax is used
since the reported distances are very different. No other associated candidates were found
within a radius of 100 pc, considering all the astrometric Gaia data.

NGC 2362 (Group I)

NGC 2362 seems to be associated with the EC Camargo 997, which is characterized
here for the first time using Gaia EDR3. The mean parallax of Camargo 997 is less precise
than usual due to the interference of nebulosity. However, all astrometric parameters are
well-matched within the observational error (Table 2). Camargo 997 appears to still be
partially embedded in the reflection nebulae Ced 96a and [RK68] 70, suggesting it is also
a very young cluster. Both CMDs are well-matched. A conceivable star member of this
cluster (Gaia EDR3 5617723283645039616) has an RV of 30 km/s, although it is 13 arcmin
apart from its apparent center. This RV can be accommodated within the reported RVs
of NGC 2362: from 25 km/s [33] to 36 km/s [28]. The data ensemble suggests that both
clusters probably form a primordial system.

UBC 438 (Group J)

UBC 438, an elongated OC recently discovered by Cantat-Gaudin et al. [34], seems
to be associated with the new OC Casado 71. All known astrometric data are compatible
(Table 2). Although some of the reported distances for UBC 438 may seem small considering
the reported mean parallaxes, an updated estimation of 4.1 kpc [43] alleviates this minor
discrepancy, possibly due to the high relative error of parallax. From the data ensemble,
the link between both OCs looks plausible, but the actual existence of Group J requires
confirmation.



Universe 2022, 8, 113 17 of 24

NGC 6871 (Group H1)

This Group could be related to Group H (see below). NGC 6871 is a large, rich OC
with some substructure and at least two cores. Liu and Pang [25] proposed NGC 6871
and Gulliver 17 as candidate members of an OC group. However, most Gaia astrometric
parameters of both OCs, particularly the PMs, are discordant. On the other hand, NGC
6871 might be associated with Teutsch 8, even though distances and PMs are not identical
(Table 2). For NGC 6871, the reported photometric distances range from 1.51 kpc [61] to
1.84 kpc [14], while for Teutsch 8, distances reported in the literature span from 1.60 kpc [28]
to 1.98 kpc [34]. Given their similar parallaxes, both OCs are likely to be at a compatible
distance according to the ensemble of data (~1.9 kpc). There is a consensus regarding the
mean PMs derived from Gaia data, which seem coherent for both OCs. Quantitatively,
∆PM/plx (and ∆PM d) are ~0.9, which implies an acceptable difference in tangential
velocities (<5 km/s).

If NGC 6871 were related to Teutsch 8, it would also be associated with FSR 0198 (see
Group H). The similar RVs of NGC 6871 and FSR 0198 from Gaia DR2 (Table 2) increase the
likelihood of a triple Group. However, there is no consensus in the literature regarding the
RV of NGC 6871. The ages of the three candidate members are again compatible with a
unique (and recent) origin. Altogether, the case for a triple primordial group seems likely.

IC 1805 (Group K)

Astrometric Gaia data strongly suggest that IC 1805, a cluster embedded in its parent
molecular cloud, is associated with Berkeley 65, even if a slight difference in µδ is observed
in Table 2. However, the photometric distances seem different at first sight. Nonetheless,
most reported values of Berkeley 95 range from 1.9 kpc [63] to 2.28 kpc [34], while for IC
1805, photometric distances range from 1.7 kpc [41] to 2.34 kpc [28]. Thus, considering the
consistent Gaia parallaxes, both clusters could be at a distance of ~2.1 kpc. The ages of
both OCs seem somewhat different (Table 2), but there is no consensus regarding the age of
Berkeley 65: This OC could be only 6 Myr old [25,62,64].

The candidate cluster Camargo 755, partially embedded in nebula BRC 7, might also
be a component of the same group. We studied the field with Gaia EDR3 and confirmed the
existence of a physical cluster, whose astrometric mean parameters almost perfectly fit with
those of Berkeley 65 (Table 2). The fact that Camargo 755 is an EC suggests that it is also
very young. It is, therefore, a good candidate member for Group K. The EC MDF 10 [40],
in giant HII region IC 1795, might be another member of the group, but this possibility
requires confirmation.

VdBH 205 (Group L)

The parameters of VdBH 205 are similar to those of ESO 332-08 (Table 2), which
suggests that both clusters were born recently from the same molecular cloud where they
are still embedded. The parallax of ESO 332-08 seems somewhat smaller, but a new value
of 0.59 mas [42], based on Gaia EDR3, seems to solve this discrepancy and is roughly
consistent with a global distance of ~1.7 kpc. Congruently, most reported values for VdBH
205 range from 1.54 kpc [31] to 2.16 kpc [28]. The ages of both clusters are also similar.
Thus, although no RV was retrieved for ESO 332-08, our preliminary conclusion is that
both objects are probable members of Group L. Unexpectedly, the OC UBC 323 [34] seems
to encompass some member stars of both OCs.

The Infrared star cluster [DBS2003] 114 [44], likewise embedded in the HII region
[CH87] 345.308 + 1.471, is also a firm candidate to be a member of the same group. The
reported gas line velocity (−15 km/s) seems at odds with the RV of VdBH 205 in Table 2, but
a compatible RV of −7 km/s was frequently reported [24,28,41].The additional parameters
retrieved using Gaia EDR3 are well-matched with their siblings (Table 2).

UBC 19

No linked OC was found in a field 20 degrees wide surrounding this nearby cluster.
In sum, we found that 12 out of 20 studied young OCs (<0.01 Gyr old) have at least

one primordial companion. Three candidate Groups are dubious, and no companion was
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found for five of the young clusters. Therefore, the total number of Groups ranges between
12 and 15 out of a total sample of 19 young OCs (SAI 25 was not taken into account as it is
not likely to be young). The resulting statistic suggests that the probability of the sample
of young OCs having linked siblings is 71 ± 8%. This ratio amounts to ca. six times the
average fraction of linked clusters versus the total OC population in the Galaxy and the
Magellanic Clouds, which is estimated at approximately 12% ([9] and references therein).

5. Groupings Surrounding Old OCs

Conversely, 18 out of the 20 oldest OCs listed in Tarricq et al. [31] prove to be single
OCs. All of them are believed to be older than 4 Gyr. These are Berkeley 17, NGC 188,
NGC 6791, Collinder 261, NGC 1193, Berkeley 39, Trumpler 19, Berkeley 32 (an apparent
link to Czernik 27 has been discarded), Berkeley 20, FSR 1521, Melotte 66, FSR 1407, NGC
2243, Haffner 5, Trumpler 5, ESO 092-05, King 11, and Berkeley 18. There are, however, two
possible exceptions to this general rule:

Berkeley 36 (Group M)

Berkeley 36 might be associated with the new OC Casado 72. However, this affiliation
requires confirmation since both parallaxes are only marginally compatible, even correcting
for the general offset of Gaia DR2 parallaxes [29]. The parallaxes, if correct, would imply
that Berkeley 36 is ca. 400 pc farther away than Casado 72, and both OCs would form merely
an optical pair. The estimation of the photometric distance of the new OC, consistent with
its mean parallax, endorses that assumption (Table 2). On the other hand, the difference in
mean PMs between both objects (0.18 mas/yr) would correspond, at an assumed distance
of 4 kpc, to a difference of 3.4 km/s in tangential velocity. Unfortunately, there is no known
RV for the new OC. The CMDs of both OCs do not match, and accordingly, their ages are
completely different (Table 2). Thus, Group M, if confirmed, would not be primordial.
Nevertheless, from the ensemble of results, the physical existence of this double cluster
appears very doubtful at present. The interstellar extinction of Casado 72 is AV = 1.6 mag.

Kronberger 81 (Group N)

Kronberger 81 may form a double system with Teutsch 17. The ensemble of astrometric
results seems to fit reasonably well. However, the photometric distances and ages are not
alike. There is no consensus regarding the distance of Kronberger 81. Values span from
2.5 kpc [35] to 7.6 kpc [63]. However, the mean value in Table 2 seems to be a reasonable
compromise, since it also agrees with the reported parallax. The photometric distance of
Teutsch 17 (Table 2) appears to be too small for the corresponding parallax, but no other
distance was retrieved. If both OCs were roughly at the same distance from the Sun, such
as ~4 kpc, the distance between them would be >70 pc. The reported ages of Teutsch 17
(Table 2) are discordant, but both values are much lower than the age of Kronberger 81.
Nonetheless, Kronberger 81 could also be 0.4 Gyr old [28,41]. Unfortunately, no RV has
been retrieved for Teutsch 17. All in all, the physical link of this candidate pair is uncertain.

Considering all these cases, the probability of any old cluster being part of a binary
system appears to be <10% and, most likely, is close to 0.

The theoretical models indicate that binary cluster lifetimes range from a few Myr
to ca. 0.04 Gyr (e.g., [65]). Congruently, Grasha et al. [66] found that in the galaxy NGC
628, the clustering of star clusters decreases very rapidly with cluster age for OCs older
than 0.04 Gyr. Therefore, we considered a simplified bimodal model where young OCs
(<0.04 Gyr) have the above-derived probability of 71 ± 8% of forming part of a group and
older OCs have a very low likelihood (~0) of being part of a group. When we applied
this model to the total sample of clusters from Tarricq et al. [31] that have an estimated
age (1315 clusters), counting the young clusters (229) separately, the result was an overall
probability of (229/1315) 71 ± 8% = 12.4 ± 2% that any cluster is linked to another cluster.
This value is remarkably close to the abovementioned average fraction of linked clusters in
the Galaxy [9]. If we apply the same model to another updated catalogue [42], the result
obtained is similar (16 ± 2%). In both cases, the quoted error estimates (2%) are scaled from
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the original probability (71 ± 8%) and rounded up. Therefore, a reasonable overall fraction
of associated OCs is obtained by assuming that OCs younger than 0.04 Gyr are still most
likely associated with their primordial relatives, while older OCs are most likely isolated as
their siblings have been separated or disintegrated by tidal forces in the Galaxy and close
encounters with giant molecular clouds [65]. Since the obtained figures are similar for the
Galaxy and the Magellanic Clouds, we suggest that this mechanism could be general in
disc galaxies where OCs are formed. Our findings agree, at least qualitatively, with those
of [1] for ECs in the Galaxy (mentioned in the Introduction) and with the pioneering work
of Larsen [67], who studied young OCs in nearby spiral galaxies. Larsen found that many
of the youngest objects are in very crowded regions, and approximately 1/3– 1

2 of them are
double or multiple sources.

6. The Double Cluster in Perseus and Other Reported Binary Cluster Candidates

As stated in the introduction, the classical double cluster formed by h and χ Persei
(NGC 869 and NGC 884) was the only confirmed physical pair known in our Galaxy until
recently. We reviewed their characteristics to see if they would also be considered an actual
binary cluster according to our selection criteria. Based on the angular distance between
both OC centres (27 arcmin), and assuming that they are at the same heliocentric distance
(2.2 kpc; [34]), an estimated distance between them of ca. 20 pc can be inferred, well within
the 100 pc limit that we used as a selection criterion. The median reported RV for NGC 869
(h Persei) is −42.8 km/s [28], and for NGC 884 (χ Persei) is −43 km/s [11,28,35], which
are practically coincident. The Gaia DR2 mean parallaxes are 0.399 mas and 0.398 mas,
respectively [34]. Thus, ∆plx/plx is less than 1%. Using PMs from Cantat-Gaudin et al. [34],
∆PM/plx (and ∆PM d) is ≤0.2 yr−1. Consequently, the resulting orbital elements of both
OCs are companionable within a 1σ deviation interval [31]. Therefore, it is clear that the
binary system formed by NGC 869 and NGC 884 fulfills all our adopted criteria for a
well-behaved binary system, but . . . what about the age?

According to the Primordial Group hypothesis, this physical pair should be of primor-
dial origin, i.e., formed by young clusters of comparable age. For NGC 869, the extensive
literature quotes ages from 3 Myr [55] to 19 Myr [41]. However, there is a broad consen-
sus of a mean age of 12 Myr (e.g., [28,33,35,56,62,68]. NGC 884 has practically the same
span of reported ages: from 3 Myr [64] to 18 Myr [34], but many reports converge near
13 Myr [28,33,35,57,58,68,69]. Therefore, both OCs are indeed young and have almost the
same age within the observational error margins, as expected from the Primordial Group
hypothesis.

Some other candidate binary clusters having at least one member older than 0.1 Gyr
have been reported in the literature. We reexamine a few of them:

NGC 2383/NGC 2384
This pair was proposed as a probable binary cluster by [7]. Kopchev et al. [70]

concluded that these two OCs were not born in the same molecular cloud, given their
significant age difference.

Whatever the case, both NGC clusters do not appear to be physically associated, given
their disparate characteristics (except for their close position in the sky). As detailed in
Table 2, Gaia parallaxes and photometric distances agree that NGC 2383 is significantly
farther away than NGC 2384. The ranges of reported RVs for both OCs do not overlap,
confirming that they are not associated: RVs of NGC 2363 span from 55 km/s [71] to
72 km/s [31,43], while RVs of NGC 2364 range from 46 km/s (e.g., [24]) to 53 km/s [28,72].
Therefore, the diverse ages of this optical pair are not surprising, even though a minimum
age of 15 Myr has also been reported for NGC 2383 [56].

NGC 2384 is quite elongated [40] and has an extended halo (at least 40 arcmin) beyond
its reported radius towards the north. Incidentally, this halo (encompassing NGC 2384) has
been identified as the new OC UBC 224 [34]. Most reported ages range from 0.006 Gyr [55]
to 0.021 Myr [43], i.e., it is a young OC by any standards. Unexpectedly, a new OC with
compatible parameters was found while studying the star field around NGC 2384. This
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cluster, Casado 73, seems somewhat older (0.08 Gyr), but it is also a young OC. The
mean parallaxes of NGC 2384 and Casado 73 are somewhat discrepant (Table 2), but Gaia
parallaxes of 0.33 mas [43] and 0.35 mas [42] for NGC 2384 alleviate this discrepancy. These
parallaxes are compatible with the photometric distance of Casado 73 (3.1 kpc), which in
turn is harmonious with its Gaia EDR3 parallax. Moreover, that distance is within the
range of most reported photometric distances for NGC 2384: from 2.1 kpc (e.g., [35]) to
3.2 kpc (e.g., [61]). Furthermore, their CMDs show a coincident main sequence suggesting
similar distance, age, and metallicity (Figure 5). The estimated extinction of this new
OC is AV = 0.51 mag. The data ensemble indicates that this is a plausible primordial pair
(Group O), even though no RVs were found for the member stars of Casado 73. Regardless,
this primordial pair candidate requires confirmation.
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FSR 1767/Ruprecht 127

De la Fuente Marcos et al. [73] proposed this pair of star clusters to be the result of the
capture of Ruprecht 127 by the candidate globular cluster FSR 1767 (2MASS-GC04) [74].
Although FSR 1767 has been described as an OC using Gaia EDR3 [42], no other Gaia studies
related to it were retrieved (see comment on pair #16b), and we did not find any trace of such
a cluster in Gaia data. Previous literature only reported a single intermediate age (0.473 Gyr),
although frequently repeated (e.g., [28,32,41,42], and two discordant photometric distances:
1948 pc (e.g., [28,32,41] and 3.6 kpc [63]. The number of reported member stars also varies
greatly: from 17 (e.g., [28]) to 984 [75]. All these conflicting results make very doubtful
the physical existence of such an OC, in which case no binary cluster containing FSR 1767
would exist.

Last but not least, all the likely binary clusters lately proposed by Soubiran et al. [11]
using Gaia data, namely ASCC 16/ASCC21, Collinder 140/NGC 2451B, IC 2602/Platais
8, RSG7/RSG 8, and Collinder 394/NGC 6716, appear to be young (≤0.1 Gyr) and have
ages compatible with a common origin. Their group of five members containing ASCC
16, ASCC 19, ASCC 21, Gulliver 6, and NGC 2232 also follows the same rules and, thus,
appears to form a primordial group.
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7. Concluding Remarks

In this work, we formulated and tested the Primordial Group hypothesis, which states
that OCs are born in primordial groups that disperse through the galactic disc in a relatively
short time (≤0.1 Gyr). We tested that hypothesis through manual mining of Gaia EDR3
and careful review of the extensive literature concerning OCs.

The review of candidate pairs in DFM with at least one of their members older than
0.1 Gyr allowed us to conclude that practically all of them can be discarded as actual binary
clusters. Some of the pairs are optical pairs, others are hyperbolic encounters, and a few
pairs may be primordial pairs with flawed ages. A significant number of the clusters
studied in this sample are most likely false OCs: Loden 1171, ASCC 34, Loden 565, VdBH
91, ASCC 4, NGC 1746, Basel 5, Loden 165, ESO 128-16 and ESO 132-14.

We revisited the twenty youngest OCs (<0.01 Gyr) listed by Tarricq et al. [31], looking
for associated clusters closer than 100 pc and sharing PMs and RVs. The resulting statistics
suggest that the probability that young OCs have related siblings is 71 ± 8%. On the other
hand, the probability that older OCs (>4 Gyr) from the same catalogue are not alone seems
very low, if not zero. A reasonable overall fraction of associated OCs (12–16%) can be
obtained from a simplified bimodal model, which assumes that OCs younger than 0.04 Gyr
are still most likely associated with their primordial relatives, while older OCs are most
likely isolated. However, these proportions are only approximate due to the incompleteness
of the sample.

Seven new OCs were identified during this research (namely, Casado 67–73). This
unexpected result reveals that the search for associated clusters around very young stellar
clusters is an effective method for discovering new OCs, as is the search for new OCs
around a given grouping [9].

The classical double cluster in Perseus fulfills all our selection criteria for a binary
system. Both members are indeed young (<0.02 Gyr) and are of practically the same age, as
expected from the tested hypothesis. Some other reported binary cluster candidates with
putative members greater than 0.1 Gyr were reasonably discarded. On the other hand, the
likely OC groups from Soubiran et al. [11] are young and compatible with the Primordial
Group hypothesis.

Three of the revised OCs (UBC 224, UBC 323 and UBC 344; [15]) were found to
encompass a significant number of member stars of other well-known OCs.

The present results indicate that the vast majority of real double/multiple OCs in the
Galaxy, if not all, are of primordial origin and are not stable for a long time, in line with
similar conclusions obtained from study of the Magellanic Clouds [8,19]. Thus, the pairs of
OCs in these groups are generally not true binary systems since they are not gravitationally
bound. The Primordial Group hypothesis has successfully passed these four tests and,
therefore, deserves further scrutiny as a feasible working model.
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