
Citation: Paunković, N.; Vojinović, M.
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Abstract: We give a general overview of various flavours of the equivalence principle in classical
and quantum physics, with special emphasis on the so-called weak equivalence principle, and
contrast its validity in mechanics versus field theory. We also discuss its generalisation to a theory of
quantum gravity. Our analysis suggests that only the strong equivalence principle can be considered
fundamental enough to be generalised to a quantum gravity context since all other flavours of
equivalence principle hold only approximately already at the classical level.
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1. Introduction

Quantum mechanics (QM) and general relativity (GR) are the two cornerstones of
modern physics. Yet, merging them together in a quantum theory of gravity (QG) is still
elusive despite the nearly century-long efforts of vast numbers of physicists and mathe-
maticians. While the majority of the attempts were focused on trying to formulate the full
theory of quantised gravity, such as string theory, loop quantum gravity, non-commutative
geometry, and causal set theory, to name a few, a number of recent studies embraced a
rather more modest approach by exploring possible consequences of basic features and
principles of QM and GR, and their status, in a tentative theory of QG. Acknowledging that
the superposition principle, as a defining characteristic of any quantum theory, must be fea-
tured in QG as well, led to a number of papers studying gravity-matter entanglement [1–7],
genuine indefinite causal orders [8–15], quantum reference frames [16–20] and deforma-
tions of Lorentz symmetry [21–25], to name a few major research directions. Exploring
spatial superpositions of masses, and in general gravitational fields, led to the analysis of
the status of various versions of the equivalence principle, and their exact formulations in
the context of QG. In particular, in [26], it was shown that the weak equivalence principle
(WEP) should generically be violated in the presence of a specific type of superpositions of
gravitational fields, describing small quantum fluctuations around a dominant classical
geometry. On the other hand, a number of recent studies propose generalisations of WEP
to QG framework (see for example [16,20,27–31]), arguing that it remains satisfied in such
scenarios, a result seemingly at odds with [26] (for details, see the discussion from Section 5).

The modern formulation of WEP is given in terms of a test particle and it’s trajectory:
it is a theorem within the mathematical formulation of GR stating that the trajectory of a
test particle satisfies the so-called geodesic equation [32–46], while it is violated within the
context of QG, as shown in [26]. In this paper, we present a brief overview of WEP in GR
and a critical analysis of the notions of particle and trajectory in both classical and quantum
mechanics, as well as in the corresponding field theories.Our analysis demonstrates that
WEP, as well as all other flavours of the equivalence principle (EP) aside from the strong
one (SEP), hold only approximately. From this we conclude that neither WEP nor any other
flavour of EP (aside from SEP) can be considered a viable candidate for generalisation to
the quantum gravity framework.
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The paper is organised as follows. In Section 2, we give a brief historical overview of
various flavours of the equivalence principle, with a focus on WEP. In Section 3, we analyse
the notion of a trajectory in classical and quantum mechanics, while in Section 4 we discuss
the notion of a particle in field theory and QG. Finally, in the Conclusion, we briefly review
and discuss our results, and present possible future lines of research.

2. Equivalence Principle in General Relativity

The equivalence principle is one of the most fundamental principles in modern physics.
It is one of the two cornerstone building blocks for GR, the other being the principle of
general relativity. While its importance is well understood in the context of gravity, it
is often underappreciated in the context of other fundamental interactions. In addition,
there have been numerous studies and everlasting debates about whether EP holds also in
quantum physics, if it should be generalised to include quantum phenomena or not, etc.
Finally, EP has been historically formulated in a vast number of different ways, which are
often not mutually equivalent, leading to a lot of confusion about the actual statement of
the principle and its physical content [47–53]. Given the importance of EP, and the amount
of confusion around it, it is important to try and help clarify these issues.

The equivalence principle is best introduced by stating its purpose—in its traditional
sense, the purpose of EP is to prescribe the interaction between gravity and all other fields in
nature, collectively called matter (by “matter” we assume not just fermionic and scalar fields,
but also gauge vector bosons, i.e., nongravitational interaction fields). This is important
to state explicitly since EP is often mistakenly portrayed as a property of gravity alone,
without any reference to matter. In a more general, less traditional, and often not appreci-
ated sense, the purpose of EP is to prescribe the interaction between any gauge field and all
other fields in nature (namely fermionic and scalar matter, as well as other gauge fields,
including gravity), which we will reflect on briefly in the case of electrodynamics below.

Given such a purpose, let us for the moment concentrate on the gravitational ver-
sion of EP, and provide its modern formulation, as it is known and understood today.
The statement of the equivalence principle is the following:

The equations of motion for matter coupled to gravity remain locally identical to the
equations of motion for matter in the absence of gravity.

This kind of statement requires some unpacking and comments.

• When comparing the equations of motion in the presence and in the absence of
gravity, the claim that they remain identical may naively suggest that gravity does not
influence the motion of matter in any way whatsoever. However, on closer inspection,
the statement is that the two sets of equations remain locally identical, emphasising
that the notion of locality is a crucial feature of the EP. While equations of motion are
already local in nature (since they are usually expressed as partial differential equations
of finite order), the actual interaction between matter and gravity enters only when
integrating those equations to find a solution (see Appendix A for a detailed example).

• In order to compare the equations of motion for matter in the presence of gravity
to those in its absence, the equations themselves need to be put in a suitable form
(typically expressed in general curvilinear coordinates, as tensor equations). The state-
ment of EP relies on a theorem that this can always be achieved, first noted by Erich
Kretschmann [54].

• Despite being dominantly a statement about the interaction between matter and grav-
ity, EP also implicitly suggests that the best way to describe the gravitational field is as
a property of the geometry of spacetime, such as its metric [55]. In that setup, EP can
be reformulated as a statement of minimal coupling between gravity and matter, stating
that equations of motion for matter may depend on the spacetime metric and its first
derivatives, but not on its (antisymmetrised) second derivatives, i.e., the spacetime
curvature does not explicitly appear in the equations of motion for matter.
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• The generalisation of EP to other gauge fields is completely straightforward, by re-
placing the role of gravity with some other gauge field, and suitably redefining what
matter is. For example, in electrodynamics, the EP can be formulated as follows:

The equations of motion for matter coupled to the electromagnetic field remain locally
identical to the equations of motion for matter in the absence of the electromagnetic field.

This statement can also be suitably reformulated as the minimal coupling between
the electromagnetic (EM) field and matter, i.e., coupling matter to the electromagnetic
potential Aµ but not to the corresponding field strength Fµν = ∂µ Aν − ∂ν Aµ. This
is in fact the standard way the EM field is coupled to matter (see Appendix A for
an illustrative example). Even more generally, the gauge field sector of the whole
Standard Model of elementary particles (SM) is built using the minimal coupling pre-
scription, meaning that the suitably generalised version of the EP actually prescribes
the interaction between matter and all fundamental interactions in nature, namely
strong, weak, electromagnetic and gravitational. In this sense, EP is a cornerstone
principle for the whole fundamental physics, as we understand it today.

Of course, much more can be said about the statement of EP, its consequences, and var-
ious other details. However, in this work, our attention will focus on the so-called weak
equivalence principle (WEP), which is a reformulation of EP applied to matter which consists
of mechanical particles. To that end, it is important to understand various flavours and
reformulations of EP that have appeared through history.

As with any deep concept in physics, EP has been expressed historically through
a painstaking cycle of formulating it in a precise way, understanding the formulation,
understanding the drawbacks of that formulation, coming up with a better formulation,
and repeating. In this sense, EP, as quoted above, is a modern product of long and
meticulous refinement over several generations of scientists. Needless to say, each step in
that process made its way into contemporary physics textbooks, leading to a plethora of
different formulations of EP that have accumulated in the literature over the years. This
can bring about a lot of confusion about what EP actually states [47–50] since various
formulations from old and new literature may often be not merely phrased differently,
but in fact substantively inequivalent. To that end, let us comment on several of the
most common historical statements of EP (for a more detailed historical overview and
classification, see [56,57]), and their relationship with the modern version:

• Equality of gravitational and inertial mass. This is one of the oldest variants of EP,
going back to Newton’s law of universal gravitation. The statement claims that the
“gravitational charge” of a body is the same as the body’s resistance to acceleration,
in the sense that the mass appearing on the left-hand side of Newton’s second law
of motion exactly cancels the mass appearing in Newton’s gravitational force law on
the right-hand side. This allows one to relate it to the modern version of EP, in the
sense that a suitably accelerated observer could rewrite Newton’s law of motion as the
equation for a free particle, exploiting the cancellation of the “intertial force” and the
gravitational force on the right-hand side of the equation. Unfortunately, this version
of EP is intrinsically nonrelativistic, and applicable only in the context of Newtonian
gravity since already in GR the source of gravity becomes the full stress-energy tensor
of matter fields, rather than just the total mass. Finally, this principle obviously fails
when applied to photons, as demonstrated by the gravitational bending of light.

• Universality of free fall. Going back all the way to Galileo, this statement claims that the
interaction between matter and gravity does not depend on any intrinsic property of
matter itself, such as its mass, angular momentum, chemical composition, temperature,
or any other property, leading to the idea that gravity couples universally (i.e., in the
same way) to all matter. Formulated from experimental observations by Galileo, its
validity is related to the quality of experiments used to verify it. As we shall see below,
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in a precise enough setting, one can experimentally observe direct coupling between
the angular momentum of a body and spacetime curvature [32–46], invalidating
the statement.

• Local equality between gravity and inertia. Often called Einstein’s equivalence principle,
the statement claims that a local and suitably isolated observer cannot distinguish
between accelerating and being at rest in a uniform gravitational field. While this state-
ment is much closer in spirit to the modern formulation of EP, it obscures the crucial
aspect of the principle — coupling of matter to gravity. Namely, in this formulation,
it is merely implicit that the only way an observer can attempt to distinguish gravity
from inertia is by making local experiments using some form of matter, i.e., studying
the equations of motion of matter in the two situations and trying to distinguish them
by observing whether or not matter behaves differently. Moreover, the statement is
often discussed in the context of mechanics, arguing that any given particle does not
distinguish between gravity and inertia. This has two main pitfalls—first, the reliance
on particles is very misleading (as we will discuss below in much more detail), and sec-
ond, it implicitly suggests that gravity and inertia are the same phenomenon, which is
completely false. Namely, inertia can be understood as a specific form of gravity, but a
general gravitational field cannot be simulated by inertia, since inertia cannot account
for tidal effects of inhomogeneous configurations of gravity.

• Weak equivalence principle. Stating that the equations of motion of particles do not
depend on spacetime curvature, or equivalently, that the motion of a free particle is
always a geodesic trajectory in spacetime, WEP is in fact an application of modern
EP to mechanical point-like particles (i.e., test particles). One can argue that, as far
as the notion of a point-like particle is a well-defined concept in physics, WEP is
a good principle. Nevertheless, as we will discuss below in detail, the notion of a
point-like particle is an idealisation that does not actually have any counterpart in
reality, in either classical or quantum physics. Regarding a realistic particle (with
nonzero size), WEP never holds, due to the explicit effect of gravitational tidal forces
across the particle’s size. In this sense, WEP can be considered at best an approximate
principle, which can be assumed to hold only in situations where particle size can be
approximated to zero.

• Strong equivalence principle. This version of the principle states that the equations of
motion of all fundamental fields in nature do not depend on spacetime curvature
(see [55], Section 16.2, page 387). To the best of our knowledge so far, fields are indeed
the most fundamental building blocks in modern physics (such as SM), while the
strength of the gravitational field is indeed described by spacetime curvature (as in
GR). In this sense, the statement of SEP is actually an instance of EP applied to field
theory, and as such equivalent to the modern statement of EP. So far, all our knowledge
of natural phenomena is consistent with the validity of SEP.

As can be seen from the above review, various formulations of EP are both mutually
inequivalent and have different domains of applicability. Specifically, only SEP holds
universally, while all other flavours of EP hold only approximately. In the remainder of
the paper, we focus on the study of WEP since recently it gained a lot of attention in the
literature [20,27–29,31], primarily in the context of its generalisation to a “quantum WEP”,
and in the context of a related question of particle motion in a quantum superposition of
different gravitational configurations, the latter being a scenario that naturally arises in
QG. Since WEP is stated in terms of a test particle and its trajectory, in order to try and
generalise it to the scope of QG one should first analyse these two notions in classical and
quantum mechanics and field theory in more detail.

3. The Notion of Trajectory in Classical and Quantum Mechanics

A trajectory of a physical system in three-dimensional space is a set of points that form
a line, usually parameterised by time. More formally, a trajectory is a set {(x(t), y(t), z(t)) ∈
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R3|t ∈ [ti, t f ] ⊂ R∧ ti < t f }, given by three smooth functions x, y, z : R 7→ R. Depending
on the nature of the system, the choice of points that form its trajectory may vary.

In classical mechanics, one often considers an ideal “point-like particle” localised in one
spatial point (x(t), y(t), z(t)) at each moment of time t, in which case the choice of the points
forming the system’s trajectory is obvious. In the case of systems continuously spread
over certain volumes (“rigid bodies”, or “objects”) or composite systems consisting of
several point-like particles or bodies, it is natural to consider their centres of mass as points
that form the trajectory. While this definition is natural, widely accepted, and formally
applicable to any classical mechanical system, there are cases in which the very notion of a
trajectory loses its intuitive, as well as useful, meaning.

Consider for example an electrical dipole, i.e., a system of two point-like particles
with equal masses and opposite electrical charges, separated by the distance `(t). As long
as this distance stays “small” and does not vary significantly with time, the notion of a
trajectory of a dipole, defined as the set of centres of mass of the two particles, does meet
our intuition, and can be useful. Informally, if the trajectories of each of the two particles
are “close” to each other, they can be approximated, and consequently represented, by the
trajectory of the system’s centre of mass. However, if the separate trajectories of the two
particles diverge, one going to the “left”, and another to the “right”, one could hardy talk
of a trajectory of such a composite system, although the set of locations of its centres of
mass is still well defined. In fact, the dipole itself ceases to make physical sense when the
distance between its constituents is large.

Moving to the realm of quantum mechanics, due to the superposition principle, even
the ideal point-like particles do not have a well-defined position, which is further quantified
by the famous Heisenberg uncertainty relations. Thus, the trajectory of point-like particles
(and any system that in a given regime can be approximated to be point-like) is defined as
a set of expectation values of the position operator. Like in the case of composite classical
systems, here as well the definition of a trajectory of a point-like particle is mathematically
always well defined, yet for a very similar reason is applicable only to certain cases. Namely,
in order to give a useful meaning to the above definition of trajectory, the system considered
must be well localised. Consider for example the double-slit experiment, in which the point-
like particle is highly delocalised so that we say that its trajectory is not well defined, even
though the set of the expectation values of the position operator is.

We see that, while in mechanics both the notions of a particle and its trajectory are
rather straightforward and always well defined, the latter make sense only if our system
is well localised in space (see for example [58], where the authors analyse the effects of
wave-packet spreading to the notion of a trajectory).

4. The Notion of a Particle in Field Theory

While in classical mechanics a point-like particle is always well localised, we have
seen that in the quantum case one must introduce an additional constraint in order for it to
be considered localised—the particle should be represented by a wave-packet. The source
for this requirement lies in the fact that quantum particles, although mechanical, are
represented by a wavefunction. Thus, it is only to be expected that when moving to the realm
of the field ontology, the notion of a particle becomes even more involved and technical.

In field theory, the fundamental concept is the field, rather than a particle. The notion
of a particle is considered a derived concept, and in fact in QFT one can distinguish two
vastly different phenomena that are called “particles”.

The first notion of a particle is an elementary excitation of a free field. For example,
the state

|Ψ〉 = â†(~k)|0〉 ,

is called a single particle state of the field, or a plane-wave-particle. It has the following properties:

• It is an eigenstate of the particle number operator for the eigenvalue 1.
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• It has a sharp value of the momentum~k, and corresponds to a completely delocalised
plane wave configuration of the field.

• It has no centre of mass, and no concept of “position” in space since the “position
operator” is not a well-defined concept for the field.

• States of this kind are said to describe elementary particles, understood as asymptotic
free states of past and future infinity, in the context of the S-matrix for scattering
processes. An example of a real scalar particle of this type would be the Higgs particle.
For fields of other types (Dirac fields, vector fields, etc.) examples would be an electron,
a photon, a neutrino, an asymptotically free quark, and so on. Essentially, all particles
tabulated in the Standard Model of elementary particles are of this type.

Note that all the above notions are defined within the scope of free field theory,
and do not carry over to interacting field theory. In other words, free field theory is a
convenient idealisation, which does not really reflect realistic physics. One should therefore
understand the concept of a plane-wave-particle in this sense, merely as a convenient
mathematical approximation. Moreover, the particle number operator is not an invariant
quantity, as demonstrated by the Unruh effect. We should also emphasise that in an
interacting QFT, the proper way to understand the notion of a particle is as a localised
wave-packet, interacting with its virtual particle cloud, which does have a position in space
and whose momentum is defined through its group velocity. In this sense, the particle as a
wave-packet could be better interpreted as a kink, discussed below.

The second notion of the particle in field theory is a bound state of fields, also called a
kink solution. This requires an interacting theory since interactions are necessary to form
bound states. This kind of configuration of fields has the following properties:

• It is not an eigenstate of the particle number operator, and the expectation value of
this operator is typically different from 1.

• It is usually well localised in space, and does not have a sharp value of momentum.
• As long as the kink maintains a stable configuration (i.e., as long as it does not decay),

one can in principle assign to it the concept of size, and as a consequence also the
concepts of centre of mass, position in space, and trajectory. In this sense, a kink can play
the role of a test particle.

• States of this kind are said to describe composite particles. Given an interacting theory
such as the Standard Model, under certain circumstances quarks and gluons form
bound states called a proton and a neutron. Moreover, protons and neutrons further
form bound states called atomic nuclei, which together with electrons and photons
form atoms, molecules, and so on.

For a kink, the notions of centre of mass, position in space and size are described
only as classical concepts, i.e., as expectation values of certain field operators, such as the
stress-energy tensor. Moreover, given the nonzero size of the kink, its centre of mass and
position are not uniquely defined, even classically, since in relativity different observers
would assign different points as the centre of mass.

Given the two notions of particles in QFT, one can describe two different corresponding
notions of WEP. In principle, one first needs to apply SEP in order to couple the matter
fields to gravity, at the fundamental level. Assuming this is completed, the motions of
both the plane-wave-particles and kink particles can be derived from the combined set of
Einstein’s equations and matter field equations, without any appeal to any notion of WEP.
In this sense, once the trajectory of the particle in the background gravitational field has
been determined from the field equations, one can verify as a theorem whether the particle
satisfies WEP or not.

Specifically, in the case of a matter field coupled to general relativity such that it locally
resembles a plane wave, one can apply the WKB approximation to demonstrate that the
wave 4-vector kµ(x), orthogonal to the wavefront at its every point x ∈ R4, will satisfy a
geodesic equation,

kµ(x)∇µkλ(x) = 0 . (1)
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However, given that the plane-wave-particle is completely delocalised in space, the fact
that the wave 4-vector satisfies the geodesic equation could hardly be interpreted as “the
particle following a geodesic trajectory”, and thus obeying WEP. Indeed, identifying the
vector field orthogonal to the wavefront to the notion of “particle’s trajectory” is at best an
abuse of terminology.

Next, in the case of the kink particle coupled to general relativity, one assumes the
configuration of the background gravitational field is such that the particle maintains its
structure and that its size can be completely neglected. One can then apply the procedure
given in [26,32–46] to demonstrate that the 4-vector uµ(τ), tangent to the kink’s world line
(i.e., its trajectory), will satisfy a geodesic equation (τ ∈ R represents kink’s proper time),

uµ(τ)∇µuλ(τ) = 0 . (2)

Thus, one concludes that the kink obeys WEP as a theorem in field theory, without the
necessity to actually postulate it.

Note the crucial difference between Equations (1) and (2)—while the former features
4-dimensional variable x, the latter is given in terms of only 1-dimensional proper time
τ. This reflects the fact that the plane-wave-particle is a highly delocalised object, with no
well-defined position and trajectory, while the kink is a highly localised object, with a
well-defined position and trajectory. As a consequence, WEP can be formulated only for
the kink, and not for the plane-wave particle.

In the case of the kink, it is also important to emphasise that the zero-size approxi-
mation of the kink is crucial. Namely, without this assumption, the particle will feel the
tidal forces of gravity across its size, effectively coupling its angular momentum Jµν(τ) to
the curvature of the background gravitational field [32–46] (see also [59] for a more refined
analysis of tidal effects). This will give rise to an equation of motion for the kink of the form

uµ(τ)∇µuλ(τ) = Rλ
µρσuµ(τ)Jρσ(τ) , (3)

which features explicit coupling to curvature (absent from (2)) and thus fails to obey WEP.
In this sense, for realistic kink solutions WEP is always violated, and can be considered to
hold only as an approximation when the size of the particle can be completely neglected
compared to the radius of curvature of the background gravitational field. If in addition
the kink has negligible total energy, it can be used as a point-like test particle.

In the above discussion, while matter fields are described as quantum, using QFT,
the background gravitational field is considered to be completely classical. It should
therefore not be surprising that WEP may fail to hold if one allows the gravitational field to
be quantum, such as matter fields, and one needs to revisit all steps of the above analysis
from the perspective of QG. In fact, the case of the kink particle has been studied in precisely
this scenario [26], and it has been shown that if the background gravitational field is in a
specific type of quantum superposition of different configurations, the kink will fail to obey
WEP even in the zero size approximation. Simply put, the equation of motion for the kink
will contain extra terms due to the interference effects between superposed configurations
of gravity, giving rise to an effective force that pushes the kink off the geodesic trajectory.
Moreover, of course, similar to the case of classical gravity, the resulting conclusion is a
theorem, which follows from the fundamental field equations of the theory. One of the
assumptions of that theorem is that the field equations allow for kink solutions in the first
place. Namely, it is entirely possible that in quantum gravity particles cannot be localised at
all, as opposed to the classical case where such an approximation can be feasible. If that is
the case, then one cannot even formulate (i.e., generalise from classical theory) the notion of
WEP in a quantum gravity setup. However, one can instead assume that kink solutions do
exist, as was performed in [26], where a particular superposition of gravitational fields was
considered, describing small quantum fluctuations around a dominant classical geometry.
It was then argued that such superpositions are compatible with the approximation of a
well-defined localised particle (see the discussion around Equations (2.2) and (3.15), as well
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as Section 3.4 of that paper). As it turns out, even in such cases the trajectory of the kink
fails to obey WEP. Therefore, the generalisations of WEP and other approximate versions
of EP are not the best candidates for analysing the properties of quantum gravity.

Moreover, the assumption of a well-defined notion of a particle in the QG framework
can also be supported from the point of view of nonrelativistic limit. Namely, in [4,5]
an experiment was proposed in which the effects of QG fluctuations are expected to be
observable, by measuring the motion of nonrelativistic particles. Furthermore, an exten-
sion of this experiment was also suggested [60], which aims to determine the potential
difference between gravitational and inertial masses of those particles in such a setup.
In fact, the relation between the two types of masses in the nonrelativistic limit has also
been previously analysed in [26], predicting their difference due to quantum fluctuations
of geometry. In this sense, the notion of a kink should make sense even in the QG setup,
at least in the nonrelativistic limit.

For the case of the plane-wave-particle travelling through the superposed background
of two gravitational field configurations, the analysis of the equation of motion for the
wave-vector field kµ(x), in the sense of [26,32–46], has not been performed so far (to the
best of our knowledge). However, in principle, one can expect a similar interference term to
appear in the WKB analysis, and give rise to a non-geodesic equation for the wave 4-vector
as well. In this sense, it is to be expected that generically even the wavefronts of such
plane-wave-particles would fail to obey WEP.

5. Conclusions and Discussion

In this paper, we give an overview of the equivalence principle and its various flavours
formulated historically, with a special emphasis on the weak equivalence principle. We
performed a critical analysis of the notions of particle and trajectory in various frameworks
of physics, showing that the notion of a point-like particle and its trajectory are not always
well defined. This in turn suggests that WEP might not be the best starting point for
generalisation to QG, as we argue in more detail below.

As discussed in Section 4, in [26] it was shown that if superpositions of states of
gravity and matter are allowed, WEP can be violated. It is important to note that the cases
considered in [26] feature a specific type of superposition of three groups of states: the first
consists of a single so-called dominant state—a classical state whose expectation values of
the metric and the stress-energy tensors satisfy Einstein field equations; the second consists
of states similar to the dominant one, with arbitrary coefficients; and the third consists of
states quasi-orthogonal to the dominant one, but with negligible coefficients. Only then
one may talk of a (well-localised) trajectory of the test particle in the overall superposed
state and consequently about the straightforward generalisation of the classical WEP to
the realm of QG. Considering that for the dominant state, being classical, the trajectory of
the test particle follows the corresponding geodesic, we see that in the superposed state its
trajectory would deviate from the geodesic of the dominant state, thus violating WEP. Note that,
as discussed in Section 4, this deviation, in addition to classically weighted trajectories of
the individual branches, also features purely quantum (i.e., off-diagonal) interference terms.

On the other hand, a number of recent studies propose generalisations of WEP to
QG framework, arguing that it remains satisfied in such scenarios, a result seemingly at
odds with [26]. For example, in [29–31], the authors consider superpositions of an arbitrary
number of classical quasi-orthogonal states with arbitrary coefficients, arguing that since
WEP is valid in each classical branch, it is valid in its superposition as well. If taken as a
definition of what it means that a certain principle is satisfied in a superposition of different
quantum states, then the above statement is manifestly true. As such, being a definition,
it tells little about physics—it merely rephrases one statement (“principle A is separately
satisfied in all branches of a superposition”) with another, simpler (“principle A is satisfied
in a superposition”). Namely, note that in [29,30], such a generalised version of EP plays no
functional role in the analyses conducted in those papers. What does play a functional role
is the statement of one version of classical EP (specifically, local equality between gravity
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and inertia) applied to each particular state in a superposition. All physically relevant (and
otherwise interesting) conclusions of the two papers could be equally obtained without
ever talking about the generalised EP. In addition, in [31] EP itself is not even the main
focus of the paper, and its generalisation is just introduced in analogy to the analysis of
the conservation laws, which is itself an interesting topic. On the other hand, in the case of
weakly superposed gravitational fields, such as in proposed experiments [4,5], the violation
of the equality of inertial and gravitational masses is to be expected [26,60]. Moreover,
following the spirit of the above definition, one could be misled to conclude that the notions
of the particle’s position and trajectory are always well-defined, as long as they are defined
in each (quasi-classical) branch of the superposition.

An alternative approach to the generalisation of EP to the quantum domain was
proposed in [16,20,27,28]. In those works, the authors discuss the coupling of a spatially
delocalised wave-particle to gravity, with the aim of generalising such a scenario to QG.
To that end, they prove a theorem which essentially states that for such a delocalised
wave-particle, even when it is entangled with the gravitational field, one can always find a
quantum reference frame transformation, such that in the vicinity of a given spacetime point
one has a locally inertial coordinate system. The theorem employs the novel techniques
of quantum reference frames (QRF) to generalise to the quantum domain the well-known
result from differential geometry, that in the infinitesimal neighbourhood of any spacetime
point one can always choose a locally inertial coordinate system.

The authors then employ the theorem to generalise one flavour of EP to the quantum
domain. Specifically, even if the wave-particle is entangled with the gravitational field, one
can use the appropriate QRF transformation to switch to a locally inertial coordinate sys-
tem, and then in that system “all the (nongravitational) laws of physics must take on their
familiar non-relativistic form”. Here, to the best of our understanding, the phrase “non-
gravitational laws of physics” refers to the equations of motion for a quantum-mechanical
wave-particle, while “non-relativistic form” means that these equations of motion take the
same form as in special-relativistic context.

Our understanding is that the above wave-particle generalisation of EP lies somewhere
“in between” mechanics and field theory, i.e., it is in a sense stronger than WEP, which
discusses particles, but weaker than SEP, which discusses full-blown matter fields. Since
it refers to wave-particles rather than kinks, our analysis of WEP and its reliance on the
particle trajectory does not apply to this version of EP.

The methodology in [16,20,27,28] is that one should try to generalise even approximate
flavours of EP, as a stopgap result in a bigger research programme, in the hope that they
may still shed some light on QG. This is of course a legitimate methodology, and from
that point of view these kinds of generalisations of EP to the quantum domain represent
interesting results. Nevertheless, we also believe it would be preferable to formulate a
generalisation of SEP, and in a way which does not appeal to reference frames at all, since
that would be closer to the essence of the statement of EP, as discussed in Section 2.

To conclude, our analysis suggests that, instead of trying to generalise various ap-
proximate formulations of EP, one should rather talk of operationally verifiable statements
regarding the (in)equality of gravitational and inertial masses, possible deviation from the
geodesic motion of test particles, the universality of free fall, etc., and study other principles
and their possible generalisations to QG, such as SEP (see Section 4.2 in [26]), background
independence, quantum nonlocality, and so on.
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Appendix A

Here, we provide a detailed example of the two applications of the EP. First, we discuss
the gravitational EP and apply it to a real scalar field, giving all mathematical details and
discussing various related aspects such as locality, symmetry localisation, and so on. Then,
we turn to the application of the gauge field generalisation of EP, using electrodynamics
as an example. We describe how one can couple matter to an EM field, mimicking the
previous gravitational example, and emphasize the analogy between the gravitational and
EM case at each step. Note also that the non-Abelian gauge fields can be studied in exactly
the same way. Finally, we discuss the case of test particles, and the violation of the WEP in
both gravitational and electromagnetic cases.

Throughout this section, we assume that the Minkowski metric ηµν has signature
(−,+,+,+).

Appendix A.1. The Gravitational Case

Let us begin with an example of a real scalar field in Minkowski spacetime, and apply
the equivalence principle by coupling it to gravity. The equation of motion in this case is
the ordinary Klein–Gordon equation,(

ηµν∂µ∂ν −m2
)

φ(x) = 0 . (A1)

As it stands, it describes the free scalar field in Minkowski spacetime, in an inertial
coordinate system. In order to couple it to gravity (in the framework of GR), we first rewrite
this equation into an arbitrary curvilinear coordinate system, as(

g̃µν∇̃µ∇̃ν −m2
)

φ(x̃) = 0 . (A2)

Here the covariant derivative ∇̃µ is defined in terms of the Levi-Civita connection,

Γ̃λ
µν =

1
2

g̃λσ
(
∂µ g̃νσ + ∂ν g̃µσ − ∂σ g̃µν

)
, (A3)

which is in turn defined in terms of the curvilinear Minkowski metric g̃µν. Note that the tilde
symbol denotes the fact that this metric has been obtained by a coordinate transformation
x̃µ = x̃µ(x) from the Minkowski metric in an inertial coordinate system, ηµν,

g̃µν =
∂xρ

∂x̃µ

∂xσ

∂x̃ν
ηρσ , (A4)
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and, therefore, if one were to evaluate the Riemann curvature tensor using g̃µν and Γ̃λ
µν,

according to the equation

Rλ
ρµν = ∂µ Γ̃λ

ρν − ∂ν Γ̃λ
ρµ + Γ̃λ

σµ Γ̃σ
ρν − Γ̃λ

σν Γ̃σ
ρµ , (A5)

one would obtain that Rλ
µνρ = 0 at every point in spacetime since transforming into a

different coordinate system cannot induce the curvature of spacetime.
Now one can apply EP (in this example specifically SEP) in order to couple the scalar

field to gravity. The statement of SEP is that, in the presence of a gravitational field (i.e.,
in curved spacetime), the equation of motion for the scalar field should locally retain
the same form as in the absence of the gravitational field (i.e., in flat spacetime). Since
Equation (A2) depends only on the field at a given spacetime point and its first and
second derivatives at the same point, the equation is in fact local—it is defined within an
infinitesimal neighbourhood of a single point. Given this, EP states that the corresponding
equation of motion in the presence of gravity should have precisely the same form:(

gµν∇µ∇ν −m2
)

φ(x) = 0 . (A6)

The absence of the tilde now denotes the fact that the covariant derivative ∇µ is
defined in terms of a generic Levi-Civita connection Γλ

µν which is in turn defined in
terms of a generic metric gµν, which does not necessarily satisfy (A4). In other words, EP
postulates that the Equation (A6) now holds even in curved spacetime since for a generic
metric and connection, the Riemann curvature tensor need not be equal to zero everywhere.
The interaction between the scalar field and gravity, as postulated by EP and implemented
in Equation (A6), is also known in the literature as the minimal coupling prescription [61].

In order to convince oneself that the preparation step of transforming (A1) to (A2)
is trivial in the sense that it does not introduce any substantial modification of (A1),
one can additionally demonstrate that (A6) is in fact locally equivalent to (A1) as well.
Namely, according to a theorem in differential geometry (see for example the end of
Chapter 85 in [62]), at any specific spacetime point x0 one can choose the locally inertial
coordinate system, in which the generic metric gµν, the corresponding connection Γλ

µν and
consequently also the covariant derivative ∇µ take their usual Minkowski values,

gµν(x0) = ηµν , Γλ
µν(x0) = 0 , ∇µ

∣∣∣
x=x0

= ∂µ , (A7)

so that in the infinitesimal neighbourhood of the point x0 Equation (A6) obtains the form
precisely equal to (A1).

However, note that when integrating (A6), one must take into account that spacetime is
curved since integration is a nonlocal operation, and the locally inertial coordinate system
cannot eliminate spacetime curvature. Therefore, the solutions of (A6) will in general be
different from solutions of (A1), indicating the physical interaction of the scalar field with
gravity, despite the fact that the form of the equation of motion is identical in both cases.

Another thing that should be emphasised is that EP itself is not a mathematical
theorem, but rather a principle with physical content, since it can be either satisfied or
violated. Specifically, we could have prescribed a different coupling of the scalar field to
gravity, such that in curved spacetime its equation of motion takes for example the form(

gµν∇µ∇ν −m2 + R2 + K2
)

φ(x) = 0 , (A8)

where R ≡ Rµν
µν and K ≡ RµνρσRµνρσ are the curvature scalar and Kretschmann invariant,

respectively. This equation is not equivalent to (A2) and there is no coordinate system
in which it can take the form (A1) since R and K are invariants. In this sense, (A8) is an
example of a scalar field coupled to gravity such that EP is violated. This type of interaction
between matter and gravity is also known in the literature as non-minimal coupling [61].
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Finally, we should note that the transformation from (A1) to (A2) amounts to what
is also known in the literature as symmetry localisation [61]. In particular, one can verify
that (A1) remains invariant with respect to the group R4 of global translations,

xµ → x̃µ = xµ + ζµ , (ζ ∈ R4) , (A9)

while (A2) remains invariant with respect to the group Di f f (R4) of spacetime diffeomor-
phisms, obtained by localisation of the translational symmetry group,

xµ → x̃µ = xµ + ζµ(x) ≡ x̃µ(x) , (A10)

which represent general curvilinear coordinate transformations, used in (A4). One can
explicitly verify that all three Equations (A2), (A6) and (A8) remain invariant with respect
to local translations (A10) while describing no coupling to gravity, coupling to gravity that
satisfies EP, and coupling to gravity that violates EP, respectively. In this sense, contrary to
a common misconception (often stated in the literature) that symmetry localisation gives
rise to interactions, one can say that the process of symmetry localisation does not introduce
nor prescribe interactions in any way whatsoever. In particular, a direct counterexample is
the Equation (A4), which manifestly does obey local translational symmetry, while it does
not give rise to any interaction whatsoever (see below for the analogous counterexample in
electrodynamics).

Appendix A.2. The Electromagnetic Case

Let us begin with an example of a Dirac field in Minkowski spacetime, and apply the
generalised equivalence principle by coupling it to the EM field. The equation of motion in
this case is the ordinary Dirac equation,(

iγµ∂µ −m
)
ψ(x) = 0 , (A11)

where γµ are standard Dirac gamma matrices, satisfying the anticommutator identity of the
Clifford algebra {γµ, γν} = −2ηµν. As it stands, Equation (A11) describes the free Dirac
field, not coupled to an EM field in any way. Note that it is invariant with respect to global
U(1) transformations, defined as

ψ→ ψ′ = e−iλψ , e−iλ ∈ U(1) , λ ∈ R . (A12)

In order to couple it to standard Maxwell electrodynamics, we first rewrite this equa-
tion into a form which is invariant with respect to local U(1) transformations,

ψ→ ψ′ = e−iλ(x)ψ , ∂µ → D̃µ = ∂µ + i∂µλ(x) , (A13)

so that the equation takes the form(
iγµD̃µ −m

)
ψ(x) = 0 , (A14)

Note that here, D̃ denotes the covariant derivative with respect to the “pure gauge”
connection

Ãµ ≡ ∂µλ(x) , (A15)

where λ(x) denotes the arbitrary gauge function. Moreover, note that (A11) is analogous
to (A1), (A14) is analogous to (A2), while the global and local U(1) gauge transforma-
tions (A12) and (A13) are EM analogues of the global and local spacetime translations (A9)
and (A10) from the gravitational case. Finally, note that if one were to evaluate the electro-
magnetic Faraday field strength tensor using Ãµ from (A15), according to the equation

Fµν = ∂µ Ãν − ∂ν Ãµ , (A16)
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one would obtain that Fµν = 0 at every point in spacetime since the potential that is a pure
gauge cannot induce an EM field. Here (A16) is analogous to (A5).

Once the Dirac equation in the form (A14) is in hand, one can apply the electromagnetic
generalisation of EP in order to couple the Dirac field to an EM field. The statement of EP,
in this case, is that in the presence of an EM field, the equation of motion for the Dirac field
should locally retain the same form as in the absence of the EM field. Since Equation (A14)
depends only on the field at a given spacetime point and its first derivatives at the same
point, it is therefore defined within an infinitesimal neighbourhood of a single point—in
other words, it is local. Given this, electromagnetic EP states that the corresponding
equation of motion in the presence of EM field should have precisely the same form (the
analogue of (A6)): (

iγµDµ −m
)
ψ(x) = 0 . (A17)

The absence of the tilde now denotes the fact that the covariant derivative
Dµ ≡ ∂µ + iAµ is defined in terms of a generic U(1) connection Aµ which does not
necessarily satisfy (A15), but does obey the usual gauge transformation rule,

Aµ → A′µ = Aµ + ∂µλ(x) . (A18)

In other words, electromagnetic EP postulates that the Equation (A17) holds even in
the presence of an EM field since for a generic connection Aµ the Faraday tensor may not
be equal to zero everywhere. The interaction between the Dirac field and the EM field as
postulated by the electromagnetic EP and implemented in Equation (A17) is again known
in the literature as the minimal coupling prescription [61,63].

If one wishes to convince oneself that the preparation step of transforming (A11) to (A14)
is trivial in the sense that it does not introduce any substantial modification of (A11), one
can additionally demonstrate that (A17) is in fact locally equivalent to (A11). To do this,
at any specific spacetime point x0 one can choose the following U(1) gauge,

λ(x) = −Aµ(x0)xµ , (A19)

so that, according to (A18)

A′µ(x) = Aµ(x)− ∂µ(Aν(x0)xν) ⇒ A′µ(x0) = 0 , Dµ

∣∣∣
x=x0

= ∂µ . (A20)

This choice of gauge is the EM analogue of the choice of a locally inertial coordinate
system (A7). Substituting this into the primed version of (A17) and evaluating the whole
equation at x = x0, it reduces precisely to the form (A11) in the infinitesimal neighbourhood
at that point, despite the presence of nonzero EM field.

Again note that when integrating (A17), one must take into account that the EM
field is nonzero since integration is a nonlocal operation, and the choice of gauge (A19)
eliminates the EM potential from (A17) only at the point x0, while the Faraday tensor is
gauge invariant. Therefore, the solutions of (A17) will in general be different from solutions
of (A11), indicating the physical interaction of the Dirac field with EM field, despite the
fact that the form of the equation of motion for the Dirac field is identical in both cases.

As in the case of gravity, we should emphasise that the electromagnetic EP is not a
mathematical theorem, but rather a principle with physical content, since it can be either
satisfied of violated. Specifically, we could have prescribed a different coupling of the Dirac
field to electrodynamics, such that in the presence of an EM field its equation of motion
takes for example the form (analogue of (A8))(

iγµDµ −m + I1 + I2
)
ψ(x) = 0 , (A21)

where I1 ≡ FµνFµν and I2 ≡ εµνρσFµνFρσ are the two fundamental invariants of the Faraday
tensor. This equation is not equivalent to (A14), and there exists no local U(1) gauge in
which it could take the form (A11), since I1 and I2 are invariants. In this sense, (A21) is
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an example of a Dirac field coupled to the EM field such that the electromagnetic EP is
violated. This is also known in the literature as non-minimal coupling [61,63].

Finally, we should also note that the transformation from (A11) to (A14) amounts
to what is also known in the literature as symmetry localisation [61,63]. Specifically, one
can explicitly verify that all three Equations (A14), (A17) and (A21) remain invariant with
respect to local U(1) gauge transformations, while describing no coupling to an EM field,
coupling to an EM field that satisfies the electromagnetic EP, and coupling to an EM field
that violates electromagnetic EP, respectively. In this sense, one can again say that the
process of symmetry localisation does not introduce nor prescribe interactions in any way
whatsoever. In the case of electrodynamics and other gauge theories, this is quite often
misrepresented in literature—the step of symmetry localisation is silently joined together
with the step of applying the electromagnetic version of EP; thus, in the end, giving rise
to an interacting theory, and the resulting presence of the interaction is then mistakenly
attributed to the localisation of symmetry, rather than to the application of EP. Similar to
the gravitational case above, the equation of motion (A14) is an explicit counterexample to
such an attribution, since it does have local U(1) symmetry, but does not have any interaction
with an EM field.

Appendix A.3. The Test Particle Case

The last topic we should address is the context in which the statement of electromag-
netic EP is compatible with the existence of the Lorentz force law, acting on charged test
particles. Namely, one often distinguishes the motion of a test particle in a gravitational
field from a motion of a test particle in an EM field, by comparing the geodesic Equation (2)

uµ(τ)∇µuλ(τ) = 0 , (A22)

where uµ is the 4-velocity of the test particle, with the Lorentz force equation

uµ(τ)∇µuλ(τ) =
q
m

Fλρ uρ(τ) , (A23)

where q/m is the charge-to-mass ratio of a test particle moving in an external EM field,
described by the Faraday tensor Fµν. A typical conclusion one draws from this comparison
is that the interaction with the EM field gives rise to a “real force”, while the interaction
with the gravitational field does not.

However, it is highly misleading to compare (A22) to (A23) in the first place. Namely,
as we have discussed in detail in Section 4, in field theory the notion of a particle can be
defined only approximately, and this applies equally for electrodynamics as well as for
gravity. Specifically, given the example discussed above, of a Dirac field coupled to an
EM field via Equation (A17), we have seen that in the infinitesimal neighbourhood of a
given point x0 one can completely gauge away any presence of the coupling to EM field
from (A17). In this sense, the notion of a test particle that satisfies (A23) cannot be identified
with an idealised point-particle, that has exactly zero size. Instead, the realistic test particle
is a wave-packet configuration of a Dirac field (a kink), and as such has a small but nonzero
size. As it evolves, the different parts of the wave-packet are subject to interaction with the
EM potential Aµ at different points of spacetime, giving rise to an effective non-minimal
coupling with the Faraday tensor Fµν. This is completely analogous to the case of a test
particle with small but nonzero size interacting with spacetime curvature due to tidal
forces—both effects are equally nonlocal since both kinks have nonzero size. On the other
hand, a test particle that satisfies (A22) represents an idealised point-particle (a leading
order approximation in the multipole expansion of the matter field), i.e., a kink which thus
has precisely zero size.

In this sense, the Lorentz force Equation (A23) rather ought to be compared with the
Papapetrou Equation (3),

uµ(τ)∇µuλ(τ) = Rλ
µρσ uµ(τ)Jρσ(τ) . (A24)
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Indeed, one can see quite a reasonable analogy between (A23) and (A24). There are
of course small technical differences due to the precise nature of the coupling to various
moments of the kink, but nevertheless, the two equations are strikingly similar. Given this,
while one can still draw the conclusion that the interaction of a kink with the EM field gives
rise to a “real force”, one can draw precisely the same conclusion for the interaction of a kink
with the gravitational field. There is no distinction between gravity and the other gauge
interactions at this level—all four interactions in nature (strong, weak, electromagnetic
and gravitational) are equally “real”. In addition, all four interactions satisfy EP at the
fundamental field theory level (i.e., in the sense of strong generalised EP), while at the level
of mechanics, a corresponding weak generalised EP is manifestly violated in all four cases.
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17, 102001. [CrossRef]
10. Vilasini, V. An Introduction to Causality in Quantum Theory (and Beyond). Master’s Thesis, ETH, Zürich, Switzerland, 2017.
11. Oreshkov, O. Time-delocalized quantum subsystems and operations: On the existence of processes with indefinite causal

structure in quantum mechanics. Quantum 2019, 3, 206. [CrossRef]
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20. de la Hamette, A.C.; Kabel, V.; Castro-Ruiz, E.; Brukner, Č. Falling through masses in superposition: Quantum reference frames

for indefinite metrics. arXiv 2021, arXiv:2112.11473.
21. Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [CrossRef]
22. Kostelecký, V.A.; Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 2011, 83, 11–31.
23. Amelino-Camelia, G. Particle-dependent deformations of Lorentz symmetry. Symmetry 2012, 4, 344–378. [CrossRef]
24. Amelino-Camelia, G.; Palmisano, M.; Ronco, M.; D’Amico, G. Mixing coproducts for theories with particle-dependent relativistic

properties. Int. J. Mod. Phys. D 2020, 29, 2050017. [CrossRef]
25. Torri, M.D.C.; Antonelli, V.; Miramonti, L. Homogeneously Modified Special relativity (HMSR). Eur. Phys. J. C 2019, 79, 808.
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