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Abstract: Environment is one of the primary drivers of galaxy evolution; via multiple mechanisms,
it can control the critical process of transforming galaxies from star forming to quiescent, com-
monly termed “quenching”. Despite its importance, however, we still do not have a clear view of
how environmentally-driven quenching proceeds even in the most extreme environments: galaxy
clusters and their progenitor proto-clusters. Recent advances in infrared capabilities have enabled
transformative progress not only in the identification of these structures but in detailed analyses of
quiescence, obscured star formation, and molecular gas in (proto-)cluster galaxies across cosmic time.
In this review, we will discuss the current state of the literature regarding the quenching of galaxies
in (proto-)clusters from the observational, infrared perspective. Our improved understanding of
environmental galaxy evolution comes from unique observables across the distinct regimes of the
near-, mid-, and far-infrared, crucial in the push to high redshift where massive galaxy growth is
dominated by highly extinct, infrared-bright galaxies.

Keywords: infrared; high redshift; galaxy evolution; galaxy quenching; environment; galaxy clusters;
proto-clusters; star formation; molecular gas

1. Introduction

In the four decades since Dressler [1] presented the morphological properties of
galaxies in local galaxy clusters, a rich literature has emerged on the connection between
galaxy evolution and environment. We have now firmly established that high-density
regions exhibit both a morphology-density relation (e.g., [1–3]) and a star formation rate
(SFR)-density relation (e.g., [4–6]) with local clusters preferentially hosting early-type,
quiescent galaxies (QGs). Star-forming galaxies (SFGs) in z ∼ 0 clusters typically con-
tain low atomic (e.g., [7–10]) and molecular (e.g., [11,12]) gas content. Correspondingly,
as molecular gas is the fuel for forming stars, their star formation (SF) activity is also
lower (see Boselli and Gavazzi [13] for a review). As demonstrated by the Coma Super-
cluster region, these systematic differences occur continuously with increasing galaxy
density, from voids to filaments to groups to clusters, over a wide range in stellar mass
(Figure 1; Cybulski et al. [14], see also [15,16]). From this, we can infer progressively diver-
gent pathways for the evolution of galaxies from star forming to quenched as a function of
environment.

Underscoring the importance of understanding this environmentally-driven galaxy
evolution, a quarter to half of all massive galaxies live in groups or low-mass clusters up to
z ∼ 1.5 (e.g., [17–20]) and recent simulations suggest that galaxies living in proto-clusters
(the early formation stage of galaxy clusters) at z ∼ 10 contributed up to half of the cosmic
star formation rate density (SFRD; [21]). Massive galaxy clusters (log Mhalo/M� & 14) host
a far smaller percentage of the overall massive galaxy population (25% (<5%) at z = 0 (z ∼
1–1.5) for log M?/M� > 9; [20]); however, they provide the best astrophysical laborato-
ries for exploring environmental processes and establishing the boundary conditions of

Universe 2022, 8, 554. https://doi.org/10.3390/universe8110554 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe8110554
https://doi.org/10.3390/universe8110554
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-8909-8782
https://orcid.org/0000-0003-1832-4137
https://doi.org/10.3390/universe8110554
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe8110554?type=check_update&version=3


Universe 2022, 8, 554 2 of 103

environmentally-driven quenching and morphological transformation. Indeed, detailed
observational studies support a complex interplay of multiple quenching mechanisms,
internal and external, driving the evolution of local galaxies over a wide range in galaxy
density (e.g., [22,23], and references therein).

Figure 1. The star-forming fraction across four environments (voids, filaments, groups, and the
cluster) in the Coma Supercluster region. Two stellar mass bins are shown: log M?/M� ≤ 9.5
(blue) and log M?/M� > 9.5 (red). At all masses, the star-forming fraction progressively decreases
with increasing local galaxy density. Note that the star-forming fraction for low-mass galaxies in
underdense void regions is nearly one. Horizontal error bars indicate the standard deviation of each
local density bin (omitted from the lower mass bin for clarity). Figure adapted from Figure 9 in
Cybulski et al. [14].

The relationship between z ∼ 0 galaxies and environment has been extensively studied
and reviewed (e.g., [4,12,13,24,25]) and the availability of new datasets continues to push
the state of the art in the local Universe. The infrared-to-submillimeter regime alone
has produced a wealth of observations over low-redshift cluster galaxies, including: the
Herschel Virgo Cluster Survey (HeViCS; [26]); the Virgo Environment Traced in CO survey
(VERTICO; [27,28]); the ALMA Fornax Cluster Survey (AlFoCS; [29]); the GAs Stripping
Phenomena in galaxies survey (GASP; [30,31]); and references therein. In parallel, we have
established that this relationship evolves with cosmic time—for example, the fraction of
optically blue galaxies increases with increasing redshift (the Butcher-Oemler Effect; [32])—
and on through to the epoch dominated by proto-clusters (z & 2; see Overzier [33] for a
review). The subsequent emerging picture contains many complexities, but can be broken
roughly into three epochs. From z ∼ 0 → 1, galaxy populations in massive clusters
remain largely quenched, comparable to their local counterparts (e.g., [34,35]), though
with evidence for a diversity in evolutionary pathways from galaxy-to-galaxy. The epoch
z = 1–2 sees the end of ubiquitous quiescence, with some clusters showing a breakdown or
reversal in the local SFR-density relation. To establish the largely quenched populations
by z ∼ 1, environmentally-driven rapid quenching has to ramp up in these systems
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during this epoch [34,36]. The last epoch at z & 2 is largely populated by proto-clusters,
highly-extended (10–30′) structures in the process of collapse, which host substantial
star formation.

Infrared observations (1 µm–3 mm) are increasingly playing a critical role in our
understanding of (proto-)cluster evolution due to the remarkable rise in observational
capabilities, starting with IRAS in the 1980s through the recent successful launch of the James
Webb Space Telescope (JWST; [37]) in 2021. Four decades of space-based IR missions (e.g.,
IRAS, ISO, Spitzer , WISE, Herschel, AKARI, Planck1 have provided a range of sensitivities,
resolutions, and mapping speeds with low background levels and at wavelengths that
are not achievable on earth due to low atmospheric transmission. From the ground,
bolometer arrays (e.g., SCUBA, SCUBA-2, AzTEC, LABOCA)2 on single-dish observatories
(e.g., JCMT, LMT, SPT, ACT)3 have delivered low-resolution surveys over large areas, while
interferometric facilities (e.g., NOEMA, PdBI, ALMA, JVLA)4 have enabled unparalleled
sensitivity and resolution for detailed targeted studies. The extragalactic discovery space
opened by these facilities includes the characterization of significant, sometimes dominant,
populations of moderate to extremely dust-obscured galaxies. For an expanded discussion
of infrared facilities, see Casey et al. [57], Farrah et al. [58].

In this review, we present an overview of our current understanding of galaxy popula-
tions in (proto-)clusters from the infrared perspective, followed by pressing open questions
and the future outlook. Other relevant reviews in this Special Issue include “The Role
of AGN in Luminous Infrared Galaxies from the Multiwavelength Perspective”, U [59];
“Infrared Spectral Energy Distribution and Variability of Active Galactic Nuclei: Clues to
the Structure of Circumnuclear Material”, Lyu and Rieke [60]; “The Past and Future of Mid-
Infrared Studies of AGN”, Sajina et al. [61]; “Dust-obscured star formation: observational
constraints from the last decade”, Zavala & Casey 2022, in prep.; “ALPINE: A Large Survey
to Understand Teenage Galaxies”, Faisst et al. [62].

1.1. Overview of Environment and Environmental Processes
1.1.1. Defining Environment

The definition of environment is not homogeneous across the literature (see Muldrew
et al. [63]). One common approach is to focus on the “global” environment via large scale
structures like galaxy clusters (or groups), while another is to define the “local” environment
in terms of the local galaxy density field (using a technique such as nearest neighbors,
e.g., [64,65]). Caution is warranted when comparing results using these different definitions
as they may probe different populations and pathways. For example, centrals, the most
massive galaxy in a given halo, and satellites are thought to follow different evolutionary
tracks (e.g., [6,66,67]). Global studies focus on satellite populations by design (minus the
group/cluster central known as the Brightest Group/Cluster Galaxy, BGG or BCG), while
local environment studies may include both centrals and satellites and are sensitive to
the scale used to measure the galaxy overdensity, which can complicate interpretation of
the observed trends [68]. Additionally, environmental effects are usually identified via
comparison to a control or “field” sample, the nature of which can influence the results [69].
Global studies typically adopt regions from surrounding “blank” fields, which will include
voids, groups, and filaments, while local studies often compare to their lowest density bin,
excluding intermediate densities.

In this review, we will focus mainly on studies using the global definition. We define
a galaxy cluster as a relaxed or unrelaxed (or merging) gravitationally-bound structure
with a halo mass (at time of observation) of log M200/M� & 13.5, acknowledging that
many works refer to systems with log M200/M� ∼ 13− 14 as groups. The definition
of proto-cluster is even less clear in the literature; here we define a proto-cluster as an
extended overdensity at z ≥ 2 which will collapse into a cluster by z ∼ 0. The z ≥ 2
redshift boundary is adopted for convenience as in reality the line is very blurred: the
extended structure around clusters at z < 2 may not have completely collapsed even by
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z ∼ 0 [70] and proto-cluster cores at z > 2 may have properties more typically associated
with clusters (i.e., quenched populations, X-ray emission; [71], but see [72]).

1.1.2. Environment Quenching Mechanisms

In a simplified schematic, galaxies are surrounded by a hot halo of ionized gas, the
circumgalactic medium, which cools onto an extended reservoir of neutral hydrogen
surrounding the disk. This HI gas subsequently condenses onto the disk of the galaxy,
forming clouds of molecular gas (H2), which are the nurseries for star formation. Outflows
in the form of stellar winds, jets, and/or galactic fountains [73] can deliver material back
out into the halo of the galaxy, forming a cosmic recycling of gas and material for the
next generation of stars. This baryon cycle in galaxies is often viewed as a “bathtub"
equilibrium model (e.g., [74–76]), where gas content is regulated by inflows and depleted
through outflows and star formation consumption. Importantly, in order to form stars
on long timescales, galaxies require their disk gas reservoir to be replenished not only
by gas recycling, but by external sources, e.g., cold mode gas accretion (e.g., [74]) or gas-
rich mergers. See Hatch [77], Tacconi et al. [78], and Saintonge and Catinella [79] for
recent reviews.

In galaxy clusters, several environmental processes have been identified that may act
on galaxies to enhance or shut down star formation. They fall broadly into three categories.
The first, hydrodynamical processes, depletes a galaxy’s gas reservoirs though interaction
with the hot (107–108 K), dense (10−3 cm−3) intracluster medium (ICM; [80]), often at high
speeds (∼500–1000 km s−1). Starvation (also known as strangulation; [81,82]) heats or
strips the diffuse hot halo of a galaxy upon entering the ICM, halting this replenishment of
disk gas. The effect of this process on a galaxy’s SFR is generally thought to be slow, taking
several Gyr (e.g., [12,83]) and may start far from the cluster center (up to five times the
virial radius, Rvir; e.g., [84]). More aggressive hydrodynamical processes—ram pressure
stripping (RPS; [85]), viscous stripping [86], and thermal evaporation [87]—act directly
to heat or strip the cold molecular gas tightly bound in a galaxy’s disk. Of these, we will
focus on RPS5 in this review, which can range from mild to strong, gradually stripping
the extended cold gas in a galaxy’s outskirts to rapidly removing a significant portion of
the central disk gas on short timescales. The timescale to effect star formation similarly
varies. For extensive reviews on RPS, see Boselli et al. [20], Cortese et al. [88]. Regardless
of the specifics, quenching from hydrodynamical processes generally proceeds outside-in,
affecting the galaxy outskirts first.

The second category is gravitational mechanisms, either galaxy-to-galaxy interactions
or perturbations induced by the halo, called tidal interactions. Galaxy interactions can
take place in the form of mergers (major or minor, gas-rich or gas-poor), interactions, or
fly-bys, with the cumulative effect of multiple high-speed fly-bys called harassment [89–91].
These processes are capable of inducing instabilities in the disk, which may drive gas
inflows to the nucleus. In the local Universe, mergers are likely responsible for triggering
central starbursts and Active Galactic Nuclei (AGN) that drive the quenching of extremely
luminous galaxies (e.g., [92]). The ability of mergers and interactions to trigger or quench
starbursts or AGN at higher redshift, however, is still highly debated in the literature
(e.g., [93–95]). Potentially separate from quenching, gravitational processes may drive
morphological transformation (e.g., [96,97]), though the role of major mergers in forming
ellipticals at high redshift is also highly uncertain (e.g., [98,99]). We will focus on the
observational evidence for quenching by gravitational mechanisms; a full treatment of the
role of interactions in morphological change in (proto-)cluster galaxies is beyond the scope
of this review.

Finally, internal processes that operate in isolated galaxies occur and may even be
enhanced or happen at earlier times in overdense environments. This includes disk instabilities
and stellar feedback as well as AGN feedback, which can heat and/or expel gas and is
particularly relevant in quenching massive galaxies (log M?/M� > 10.5; [13,100–104]).
Luminous AGN may rapidly remove gas from galaxy centers (e.g., [92,105]) while less
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luminous AGN activity may aid in starvation via modest outflows moving gas into the
galaxy outskirts or hot halo (e.g., [101,102,106,107]). Overdense environments can result in
overconsumption (e.g., [35,108])—the depletion of gas via the combined effects of starvation,
consumption by star formation, and modest feedback. This incorporates internal processes
with environmentally-driven suppression of fresh gas accretion and recycling to effect
quenching over a range of timescales, depending on SFR and feedback strength. Unlike
hydrodynamical processes, these mechanisms likely quench inside-out.

How can we look for and separate these mechanism(s) in overdense environments?
Resolved studies (e.g., [109–112]) can look for signatures of quenching across the disk,
separating outside-in from inside-out processes, as well as disturbed morphologies, ram-
pressure stripped tails, and faint tidal features indicating interactions. These studies,
however, are still in their infancy, particularly at high redshift. Aggregate studies of
populations can instead look for trends in galaxy properties (stellar mass, SFR, AGN
fraction, gas content) with environmental proxies (projected radius, local galaxy density,
halo mass) over cosmic time. This allows for the quantification of properties such as: SFG
and QG fractions; stellar mass functions; environmental quenching efficiencies (EQE); SFRs
and deviations from the star-forming Main Sequence6 (MS); and gas depletion timescales
and gas fractions. These will be discussed in Sections 4–6 and then placed in the context of
the mechanisms described here in Section 8.

1.2. What Do We Learn from the Infrared?

The infrared is traditionally broken into three regimes: the near-infrared (NIR), mid-
infrared (MIR), and far-infrared (FIR), the latter of which includes the so-called submillime-
ter (submm) wavelengths. This wavelength range contains a wealth of information, tracing
stellar to star formation to gas properties. Here we summarize the relevant observables
and why they are important for (proto-)cluster studies.

1.2.1. Near-Infrared

In galaxies, the NIR is dominated by evolved stellar populations, the end product of
galaxy growth via star formation and/or mergers. Continuum emission from low-mass
stars produces a ubiquitous stellar bump feature peaked at 1.6 µm, seen in all galaxies
with established stellar populations (by ∼10 Myr after a young starburst; [118]), with the
exception of luminous AGN hosts where the NIR is dominated by the hot dust continuum
(see Lyu and Rieke [60] for a review). NIR constraints near rest-frame 1 µm therefore
provide a robust measure of the total stellar mass—with uncertainties largely driven by
systematics (∼0.3 dex; [119])—as well as sizes, morphologies, and tidal features7. Crucially
for (proto-)cluster studies, the near-IR also provides a long wavelength anchor for color
selections intended to separate SFG and QG populations. The most widely used is the
rest-frame UVJ color selection [121], which uses rest J band (∼1 µm) to break the degeneracy
between stellar age and dust attenuation (e.g., [122–124]) with low (10–30%) contamination
in quiescent color space from SFGs [125–127]. From this, the relative SFG and QG fractions
and environmental quenching efficiencies can be derived (see Section 4).

1.2.2. Mid- to Far-Infrared

Moving to longer wavelengths, the M/FIR regime is dominated by the reprocessed
stellar light emitted in the infrared by small to large dust grains that are pervasive within
(and between) (proto-)cluster galaxies (see Galliano et al. [128] for a review). Within galaxies,
dust is primarily heated by recent star formation, producing aromatic emission features
in the MIR and a broad continuum peaked at ∼70–100 µm in the FIR [129]. Luminous
AGN can additionally generate a hot dust continuum in the N/MIR up to ∼30 µm. Dust-
obscured star formation is the dominant component in massive (log M?/M� & 10) galaxies
at high redshift, with ultraviolet (UV) and optical emission (direct SF tracers) heavily
attenuated [130]. As a result, direct star formation tracers in the UV/optical can severely
underestimate the true SFR and dust corrections can have large uncertainties. In these
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obscured galaxies, the mid and far-IR near the dust peak provide robust SFR tracers
(Kennicutt and Evans [131], and references therein).

In this review, we will refer to various classes of dusty SFGs (DSFGs): luminous in-
frared galaxies (LIRGs, 1011 < LIR/L� < 1012), ultra-luminous infrared galaxies (ULIRGs;
LIR/L� > 1012) and submillimeter galaxies (SMGs; S250µm−2mm > 1 mJy, see Casey et al. [57]
for review). These populations are the most difficult to detect in the UV/optical and can even
be challenging into the short wavelength near-infrared (e.g., [132–135]). For (proto-)cluster
studies, this primarily affects our ability to establish cluster membership and measure
SFRs [136–140]. This challenge is strongly amplified in studies at cosmic noon (z ∼ 1–3)
where star formation and black hole accretion activity peaks and the majority of star forma-
tion is obscured (e.g., [141,142] Zavala & Casey, in prep). Obscured AGN likewise are best
identified in the MIR (e.g., [60,143,144]).

1.2.3. Far-Infrared to Submillimeter/Millimeter

The cold molecular phase of the ISM is traced by longer-wavelength emission in the
FIR-to-submm regime. However, since molecular hydrogen (H2) is symmetric and therefore
has no permanent dipole8, optically-thin dust continuum and the rotational transitions of
carbon monoxide (CO) have become the favored means of observing this gas phase; see
reviews by Solomon and Vanden Bout [145], Carilli and Walter [146], Tacconi et al. [78],
and Saintonge and Catinella [79]. Well past the FIR dust peak (λ & 250 µm), dust emission
becomes optically-thin and is proportional to the bulk cold (∼25 K; [147]) dust mass. Given
the dust temperature, dust-to-gas ratio (DGR), and dust opacity, the gas mass can be
derived from this emission; a standard conversion has been calibrated for the molecular
gas mass in massive (field) galaxies (e.g., [147,148]). This method is particularly efficient at
high redshift, given the strong negative K-correction. The submm is also home to multiple
CO transitions; as the next most abundant molecule, CO serves as a robust proxy for
cold H2 emission, though calibrations may change at low metallicity (e.g., [149]). In the
local Universe, CO emission is often observed in conjunction with atomic HI emission
in the radio to track the molecular+atomic gas reservoir. At higher redshifts (z & 0.5),
where galaxies are more gas-rich, ISM conditions are expected to result in the molecular
gas dominating over negligible atomic gas (see Schreiber and Wuyts [117] and references
therein). As molecular gas is the fuel for star formation, quenching processes are expected
to act directly to perturb, or possibly even remove, the molecular gas reservoir in galaxies;
as such, it is a key observable in assessing the drivers of galaxy evolution. CO emission
lines additionally provide robust spectroscopic redshifts (spec-zs), effective for establishing
(proto-)cluster membership for dusty galaxies.

2. Scope, Definitions, and Outline

This review discusses recent advances in the studies of (typical) galaxy populations in
(proto-)clusters—with an emphasis on high-redshift (z & 0.5–7) works—using NIR (∼1–5 µm),
MIR (∼5–30 µm), and FIR (∼30 µm–3 mm) observations. The range & 500 µm will often
interchangeably be referred to as the submillimeter (submm) for historical reasons. Our
focus will be on progress toward understanding galaxy evolution in overdense environments,
particularly quenching and the role of quenching mechanisms introduced in Section 1. A
notable exception: due to the explosion in progress in infrared studies of (proto-)clusters, this
review cannot cover all relevant advances and we will leave a full treatment of infrared
studies of cluster galaxy sizes, morphologies, and morphological transformation to another
review. In addition, we will not cover Brightest Cluster Galaxies (BCGs), an evolutionarily
distinct population that deserves separate consideration. For discussions of BCGs, we refer
the reader to, e.g., Overzier [33], De Lucia and Blaizot [150], Donahue and Voit [151] and
references therein.

An overview of environment and definitions of galaxy clusters and proto-clusters were
given in Section 1.1. Throughout this review, we will characterize clusters by their virial
radius, Rvir (≡R200, the radius enclosing 200 times the critical density of the Universe at a
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given redshift) and the corresponding virial mass, M200. R500 and M500 are also commonly
used in the literature, where M200 ∼ 1.4× M500

9. We will use M500 where appropriate
given the convention in the literature. We adopt a concordance cosmology, (ΩΛ, ΩM, h) =
(0.7, 0.3, 0.7), and a Kroupa [153] IMF unless otherwise noted.

This review is structured as follows: Section 3 begins with a brief review of (proto-)cluster
selection using near- and far-infrared surveys to highlight the available and upcoming
datasets. Section 4 reviews current analyses of cluster populations using the near-infrared,
covering stellar mass functions and quenched fractions and quenching efficiencies to z ∼ 2.
In Section 5, we present the current state of the literature regarding (obscured) star formation
in (proto-)cluster galaxies from low to high redshift using M/FIR observations. Section 5.4
diverges from this to give a brief summary of AGN activity in clusters. Progress on FIR
and submillimeter measurements of dust and molecular gas in (proto-)cluster galaxies is
presented in Section 6. Section 7 discusses the revival of the “total light” stacking technique—
measuring the averaged properties of large (proto-)cluster samples—through examples
in the areas of intracluster dust (ICD), dust in cluster populations, and cluster galaxy
concentrations. A discussion tying the reviewed studies to quenching in cluster galaxies is
presented in Section 8 and a summary of open questions and important upcoming surveys
and facilities is presented in Section 9.

3. Identifying (Proto-)Clusters in the Infrared: Current and Future Large Surveys

Statistical samples of galaxy (proto-)clusters—covering a large range in halo mass,
dynamical state, and redshift—are necessary for both the use of clusters as probes of
cosmology (see Allen et al. [154] for a review) and as astrophysical laboratories for galaxy
evolution [4,13]. (Proto-)cluster selection is done via multiple techniques, such as tracing
galaxy populations to identify galaxy overdensities, using rare sources as signposts of
massive halos, or observations of the hot gas (107–108 K) of an established ICM. For the
latter, X-ray emission, as a direct observable of the ICM, has been a widely successful tool
in building cluster samples; however, surface brightness dimming results in this selection
being most effective at low to moderate redshifts (see Rosati et al. [155] for a review).
Optical imaging surveys typically identify overdensities of red early-type galaxies (ETGs)
through filters that bracket the 4000 Å break (Red Sequence (RS) selection, e.g., [156,157]);
however, this selection is sensitive to projection effects, favors evolved clusters, lacks a
direct halo mass proxy, and is limited to lower redshifts. These drawbacks can be mitigated
by incorporating imaging in the near-infrared, which can extend the selection of red galaxies
to higher redshifts and/or be used to derive robust photometric redshifts (photo-zs) for
both optically blue and red galaxies. At longer wavelengths, the Sunyaev-Zel’dovich
Effect (SZ; [158]) provides an indirect detection of the ICM, while at higher redshifts the
nature of rare populations such as luminous IR sources can be used to select massive
halos. In this section, we give a broad overview of clusters selected using near-infrared
and submillimeter imaging, including existing and future large cluster surveys. This is
followed by a discussion of infrared selection of proto-clusters.

3.1. Cluster Selection in the Near-Infrared

The introduction of sensitive, wide-field near-infrared imaging surveys10 has greatly
expanded the use of selecting clusters as NIR overdensities, with pioneering work pushing
to z > 1 [164–170]. This generally takes a few forms: optical-NIR colors can be used to
span the 4000Å break at z & 1 [171,172] expanding Red Sequence selection [156] to higher
redshifts, while NIR-only color cuts [173] or two color optical-NIR cuts (“Stellar Bump
Sequence”; [174]) can isolate higher redshift overdensities. With multi-band optical+NIR
imaging, overdensities are now also often identified in photometric redshift space, using
full photo-z probability distribution functions to identify clusters and create cluster member
catalogs (e.g., [169,175]).

Notably, the rest NIR traces stellar mass, allowing for mass-selected cluster catalogs.
NIR selection techniques further benefit from a negative K-correction, with the observed
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flux density at 4.5 µm nearly redshift-independent over z ∼ 0.7–2.5 [169,176]. NIR selection
has successfully identified clusters out to z ∼ 2 (Figure 2), though, like X-ray, its effective-
ness starts to drop around z ∼ 1–1.5 given the current sensitivities of near-infrared surveys
and the need for good coverage of stellar features. Unlike X-ray, NIR selection may identify
more disturbed and young, actively accreting clusters [177]. As with optical selection, the
main limitations on this method are a lack of direct halo mass proxy and projection effects
(e.g., [178]), which can result in the false detection or mis-characterization of a cluster.
For optically or NIR-selected clusters, the halo mass-richness relation [179,180]—where
richness is the number of cluster members above some magnitude—is used to infer the
halo mass from the galaxy component. Richness estimators have been developed with low
scatter (∼0.1–0.2 dex; [181–183]), though contamination or incompleteness in the cluster
membership can still bias the derived halo mass [184].

Figure 2. Halo mass and redshift distribution of cluster candidates identified in large (>100 deg2)
NIR-based (Table 1) and SZ surveys (Table 2). For the NIR, halo masses are largely derived from
mass-richness scaling relations. Redshifts are largely photo-z based. Infrared-based cluster surveys
have grown by orders of magnitude in the last several years and now span 0 < z < 2 and log
M500/M� ∼ 13.5–15. Future surveys are projected to increase this by orders of magnitude.

Here we list some notable NIR-based cluster surveys (Table 1). The Spitzer Adapta-
tion of the Red-Sequence Cluster Survey (SpARCS; [171,172,185]) identified clusters using
z′ − 3.6 µm color selection at z > 1 over 42 deg2 with multi-wavelength coverage and was
the basis of follow-up optical spectroscopic campaigns for the well-studied Gemini Cluster
Astrophysics Spectroscopic Survey (GCLASS; 10 clusters at 0.85 < z < 1.34; [34]) and
Gemini Observations of Galaxies in Rich Early Environments (GOGREEN; 21 groups and
clusters at 1 < z < 1.5; [186]) samples, which will be discussed extensively in Section 4. The
IRAC Shallow and Distant Cluster Surveys (ISCS/IDCS; [169,187]) used extensive multi-
wavelength coverage in the 8.5 deg2 Boötes field to identify >300 log M200/M� ∼ 13.8 clus-
ter candidates from 0.1 < z < 2 as overdensities using robust photometric redshifts [165].
Spectroscopy from the AGN and Galaxy Evolution Survey (AGES; [188]) and targeted
follow-up [165,169,175,189–192] were used to confirm >120 clusters in this sample and
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halo mass measurements were made using X-ray, SZ, and weak lensing as well as statistical
arguments [187,190,193–198]. Substantial M/FIR follow-up was obtained for this sample as
well, adding to the available X-ray to NIR photometry [199]; this survey will be discussed
extensively in Section 5. We note two additional surveys covering up to ∼100 deg2: ∼1,000
group and low-mass cluster candidates were identified using the Red Sequence cluster
finder redMapper [200] in the 24 deg2 Spitzer-HETDEX Exploratory Large Area survey
(SHELA; [201]) and 279 cluster candidates at z > 1.3 were identified using color selection
in the 94 deg2 Spitzer South Pole Telescope Deep Field survey (SSDF; [202]).

Table 1. A(n Incomplete) List of Large Cluster Surveys Incorporating Near-Infrared Observations
(Section 3.1).

Survey Method Cluster Confirmed Area Redshift log M500 References
Candidates Clusters [deg2] (Median) [M�] (Median)

ISCS/IDCS Photo-z Overdensities >300 >120 8.5 0.1–2 (13.8) E08, S12
SHELA RS 1082 − 24 0.5–1.2 a 13.9 a P16, F21

SpARCS RS >200 >10 42 0.6–1.5 −
G00, G05,
M09, W09,

M12
SSDF Color Selection 279 − 94 >1.3 14.1 R14

HSC + unWISE Overdensities around
BGC Candidates 21,661 b − 800 0.1–2 ≥13.8 WH21

DES + unWISE Overdensities around
BGC Candidates 151,244 c − 5000 0.1–1.5 (0.7) − WH22

MaDCoWS Color Selection 2683 38 10,000 0.7–1.5 (1.06) (14.2) G19

SDSS+WISE Overdensities around
BGC Candidates 1959 − 10,000 0.7–1 >14.4 WH18

2MASS+WISE Overdensities around
BGC Candidates 47,600 d − 28,000 0.025–0.3 &14.5 W18

Projected
Roman Photo-z Overdensities 40,000 − 2200 <3 >14 S15
MaDCoWS2 Color Selection − − &10,000 ∼0.5–2 − T., in prep.

Euclid Photo-z Overdensities 2,000,000 − 15,000 <2 >13.8 S16, A17,
R18, E19

Note—This list of cluster surveys incorporating NIR observations is not exhaustive and the surveys listed are
not mutually exclusive. Surveys are listed in order of increasing area covered. A dash indicates information not
readily available in the literature. Redshifts and masses are given as ranges and/or medians, the latter indicated
by parentheses, unless otherwise noted. a Redshift range and average mass for the 70 highest richness cluster
candidates in SHELA, stacked in SZ [203]. b 15,614 previously unknown [204]. c 76,826 previously unknown [205].
d 26,125 previously unknown [206]. References: A17: [207]; E08: [169]; E19: [208]; F21: [203]; G00: [156]; G05: [157];
G19: [209]; M09: [172]; M12: [34]; P16: [201]; R14: [202]; R18: [210]; S12: [187]; S15: [211]; S16: [212]; T, in prep:
Thongkham et al, in prep.; W09: [171]; W18: [206]; WH18: [213]; WH21: [204]; WH22: [205].

More recently, substantially larger cluster surveys have been assembled taking ad-
vantage of wide-field optical surveys combined with WISE all-sky coverage, identifying
rare, massive systems over thousands of square degrees11. The Massive and Distant Clus-
ters of WISE Survey (MaDCoWS; [209]) combined Pan-STARRS and SuperCOSMOS with
WISE over ∼10,000 deg2 to identify 2433 cluster candidates at 0.7 < z < 1.5 (Table 1).
Targeted Spitzer follow-up was obtained for 1723 of these candidates, from which pho-
tometric redshifts and richnesses were measured. Halo masses derived from SZ were
used to calibrate the mass-richness relation. A follow-up catalog, MaDCoWS2, will ex-
pand the redshift range to z ∼ 2 using deeper DeCaLS+CatWISE2020 imaging over again
∼10,000 deg2 (Thongkham, in prep.). Similarly, using 2MASS+SuperCOSMOS+WISE [206],
SDSS+WISE [213], HSC-SSP+unWISE [204] and DES+unWISE [205], over 150,000 cluster
candidates were identified over 0.025 < z < 2 by searching for photo-z overdensities
around massive galaxies, presumed to be current or future BCGs. Mass-richness relations
for these surveys were calibrated using overlap with X-ray and SZ surveys. Figure 2 shows
the M500-redshift distribution of available large catalogs, which span nearly two orders of
magnitude in halo mass.
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Future faculties are projected to increase NIR-selected cluster candidates by another
order of magnitude (Table 1), in conjunction with wide-field optical surveys from, i.e., DES
and the Vera C. Rubin Observatory [222]. Euclid [223], a wide-field UV to NIR surveyor,
will image 15,000 deg2 in YJH bands to moderate depths and is anticipated to identify
two million cluster candidates up to z ∼ 2 [207,208,210,212]. The Nancy Grace Roman
Space Telescope will survey 2200 deg2 with deep (H = 26.5AB) NIR imaging and slitless
spectroscopy, pushing the limits of massive (log M200/M� & 14) (proto)-cluster detection
to z ∼ 3 [211].

3.2. Cluster Selection via the SZ Effect

Similar to X-ray selection, the hot ICM of galaxy clusters can be detected, albeit
indirectly, though its interaction with the Cosmic Microwave Background (CMB) via
inverse Compton-scattering, termed the thermal12 SZ Effect (see Carlstrom et al. [224] for a
review). This interaction causes a distortion in the CMB, suppressing the spectrum below
(rest) 218 GHz (∼1.4 mm) and enhancing it above. The magnitude of this effect relative to
the CMB is constant with redshift, meaning SZ selection of clusters has the advantage of
being largely redshift independent, yielding roughly (within a factor of 2–3; [224]) mass-
limited cluster catalogs [225]. As such, it has been proposed as a promising avenue for
finding large samples of high-redshift (z > 1.5) clusters; however, the exact cluster counts
will depend strongly on instrument resolution and the nuances in the evolving relationship
between the SZ observable, Y500, and M500 (e.g., [226,227]). The latter arises from the
SZ signal’s proportionality to the ICM column density (weighted by temperature); this
provides a halo mass proxy with low scatter, relatively (but not entirely) insensitive to the
detailed physics of heating and cooling processes as well as structural asymmetries [225].
This capability plays an important role in the calibration of mass-richness relations for the
current and future optical/NIR surveys discussed in the previous section [209,228].

Table 2. A(n Incomplete) List of (Proto-)Cluster Surveys Incorporating FIR and Submm Observations
(Section 3.3).

Survey Method Cluster Confirmed Area Redshift log M500 References
Candidates Clusters [deg2] (Median) [M�] (Median)

Clusters
SPTpol SZ 89 81 500 (0.6) (14.6) B14, H20
SPT-SZ 2500 deg2 SZ 677 516 2500 (0.55) (14.4) B15
SPT-ECS SZ 448 408 2770 (0.49) (14.8) B20
AdvACT DR5 SZ 4195 4195 13,211 0.04–1.91 (0.52) >14.6 H18, H21
Planck PSZ1/PSZ2 SZ 1653 1203 34,487 <1 14.5 P14, P16a

Proto-clusters

Planck PHz Color
Selection 2151 − 10,725 (∼2.5 a) − P16b

Projected
SPT-3G SZ ∼10,000 − 1500 (0.7) (>14.1) B14, S22
Simons Obs SZ 26,445 − 16,500 (0.7) (14.3) A19a, R22
CCAT-prime SZ 16,000 − ∼20,000 <2.5 >14 C21
CMB-HD SZ 514,530 − 20,600 (0.9) (13.8) S19, R22
CMB-S4 Wide SZ 107,747 − 27,600 (0.8) (14.2) A19b, R22
PICO SZ 150,000–200,000 − All-Sky <3–4.5 >14.3 H19

Note—This list of cluster surveys incorporating submm observations is not exhaustive and the surveys listed are
not necessarily mutually exclusive. Surveys are listed in order of increasing area covered. A dash indicates infor-
mation not readily available in the literature. Confirmed clusters refers to confirmation via another wavelength
regime and/or via spectroscopy. Redshifts and masses are given as ranges and/or medians, the latter indicated by
parentheses. a Assuming Tdust = 35 K [229]. References: A19a: [230]; A19b: [231]; B14: [232]; B15: [233]; B20: [228];
C21: [234]; H18: [235]; H19: [236]; H20: [237]; H21: [238]; P14: [239]; P16a: [240]; P16b: [229]; R22: [241]; S19: [242];
S22: [243].
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The last two decades have seen great strides in SZ surveys, which have now identified
over 6000 cluster candidates. Large SZ surveys have been conducted by the South Pole
Telescope [50], ACT [244] and Planck [239]; the individual surveys and their references are
listed in Table 2 and the redshift and mass distributions of these surveys can be seen in
Figure 2. Current SZ surveys identify fairly massive clusters at z < 1.5 due to sensitivity
and resolution limitations. The next major step forward will come from SPT-3G, which
began a multi-year 1500 deg2 survey in 2018 and is expected to identify up to 10,000
cluster candidates above log M500/M� & 14 at a median redshift z ∼ 0.7 [241,243]. Future
improvements in sensitivity/mapping speed via the Simons Observatory [230], CMB-
S4 [231], and CMB-HD [242] experiments are expected to increase the number of known
SZ clusters by orders of magnitude. Projections based on expected improvements in noise
and cluster masking techniques (Raghunathan [241]) predict identification of greater than
600,000 SZ clusters with signal-to-noise (S/N) > 5, with >80,000 at z = 1.5–2 and >20,000
at z > 2 over > 65% of the sky, assuming a Tinker et al. [245] halo mass function (Table 2).
Upcoming facilities such as the ground-based telescope CCAT-prime [234] and the Probe
of Inflation and Cosmic Origins (PICO) satellite [236] are additionally projected to use SZ
to great effect in (proto-)cluster selection to high redshift. In addition to 150,000 SZ clusters
to z ∼ 3, PICO’s all-sky survey is anticipated to identify 50,000 proto-clusters to z ∼ 4.5.

3.3. Proto-Cluster Selection in the Infrared

Though proto-clusters can in principle be identified even as modest density contrasts
above the general dark matter distribution out to high redshift (z ∼ 6; see Overzier [33]
for a review), their nature presents several challenges to detection. Proto-clusters are rare
overdensities likely located at the conjunctions of filaments (e.g., [70,246,247]) and can
span 10–30′ on the sky. By definition, a proto-cluster will collapse into a cluster by z = 0;
however, in its pre-collapsed state, proto-clusters often have not yet heated their ICM
sufficiently to detect via X-ray or SZ and have not yet established a telltale RS population.
Establishing overdensities of “normal” galaxies in this epoch (z > 2) requires very deep
surveys over 10 cMpc scales [248], and preferably spectroscopic or narrow band surveys
which mitigate the risk of mistaking structures overlapping in the line-of-sight for bona fide
proto-clusters. However, “normal” galaxies over such large scales manifest a small density
contrast and the expense of such surveys can make them better suited to follow-up of
likely proto-cluster candidates, which can be identified using alternative rare populations
as biased13 tracers.

3.3.1. Luminous DSFGs, Obscured AGN, and Ultra-Massive Galaxies as Signposts
of Proto-Clusters

Rare galaxy populations which preferentially inhabit the most massive halos at a
given epoch, such as luminous radio galaxies (e.g., [176,249,250]), have long been used as
relatively inexpensive tracers to identify proto-cluster candidates [33]. In the IR, DSFGs,
luminous obscured AGN [251–254], and, recently, Ultra-Massive Galaxies (UMGs) have
been explored as such populations. First, we will discuss DSFGs (often identified in the
submm and called SMGs), which are highly star-forming (SFR> 500 M� yr−1) galaxies
thought to be the progenitors of the most massive ellipticals (e.g., [92,255–257]), which
likely formed in bursts of star formation at z > 2–3 (e.g., [258,259]). Whether SMGs live
in the most massive halos has been a controversial topic, however, with early studies
suggesting that they live in a range of environments (e.g., [260]). Additional arguments
have been made that the short-lived nature of the burst phase (∼100 Myr; [57]) and early
quenching due to downsizing make SMGs a poor tracer of proto-clusters due to large
scatter in the number of SMGs for a fixed dark matter overdensity ([261–263], but see [264]).

There are two lines of observational evidence, however, that suggest DSFGs/SMGs are
useful signposts of proto-clusters (see Chiang et al. [70] for arguments from the theoretical
perspective). First, we can consider clustering, which links galaxy populations to their dark
matter halos [265–267]. The clustering of SMGs has historically been difficult to measure
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due to projection effects (e.g., [268,269]) and the large beamsizes (>15′′) of single-dish
submm telescopes, which can blend multiple submm sources (see, e.g., Casey et al. [57],
Hodge and da Cunha [270] for reviews). Recently, however, studies with high-resolution
ALMA imaging (e.g., [256,257]) have mitigated the blending issue and found that the
clustering of the most luminous SMGs (S870 & 6 mJy) is consistent with SMGs inhabiting
very massive halos at z > 2 (see also [264], for clustering of DSFGs around high-redshift,
massive quasars, a likely tracer of massive halos). This is supported by emerging evidence
of extreme massive, IR-luminous SFGs at very high redshift, which can likely only form in
the largest halos in such an early epoch (z = 6.9; [271]). This makes very luminous SMGs
promising candidates as signposts for the most massive halos at high-z [272], expected to
collapse into log Mhalo/M� ∼ 15 clusters at z ∼ 0. The fate of halos hosting moderately
luminous SMGs is less clear, however.

Second, early submm surveys quickly discovered significant DSFG overdensities in
known structures such as a z = 1.99 proto-cluster in GOODS-N [260,272] and SSA22 at
z = 3.09 [273–275]. These and three other such overdensities (a proto-cluster in COSMOS14

at z = 2.1, MRC 1138-256 at z = 2.16, and PCL2001 at z = 2.47) discovered in ∼3 deg2 of
submm surveys, were found to have >5–10 DSFGs over 10–30′ scales (Casey et al. [277]
and references therein). Assuming a short lifetime of 100 Myr, Casey [278] showed that
the probability of randomly observing >5 (>10) rare sources over a proto-cluster volume
of 104 cMpc3 is <6% (<0.01%). They further showed that given the 3 deg2 area of the
submm surveys, these proto-clusters match the number density of massive clusters at z = 0,
albeit with large uncertainties. These observations and arguments support specifically that
overdensities of >5 DSFGs are robust signposts of proto-clusters. Subsequently, DSFG
overdensities in >20 proto-clusters have been identified and characterized in the literature;
an incomplete list including their redshift, observing window, total SFR, projected volume,
and projected halo mass is shown in Table 3. FIR/submm surveys additionally have
generated large catalogs of proto-cluster candidates identified as DSFG overdensities (see
the next section, e.g., [229,279–281]). The nature of these proto-clusters will be discussed
further in Section 5.3.

Beyond DSFGs, there are two populations identified using infrared observations that
are gaining momentum as signposts for proto-clusters. The first is extreme, hyper-luminous
obscured AGN, the so-called hot dust-obscured galaxies (Hot DOGs; [251,252]) and other
WISE-selected bright populations15 [253]. These rare sources (there are ∼ 1, 000 Hot DOGs
over the full sky) appear to be signposts of massive halos, with Hot DOGs observed to
reside in overdense regions as traced by Ly α [282] and infrared/submm [254,283–286]. Hot
DOGs may be powered by prodigious merger activity [287] and have low molecular gas
reserves [288]. This population, which can be radio-quiet [254,288], presents an interesting
counterpoint to overdense environments which host radio-loud AGN (e.g., [176]), which
are associated with massive jets and thus strong feedback. However, the populations of
these proto-cluster candidates have yet to be studied in detail.

The second population is log M?/M� > 11 galaxies at z > 3, termed Ultra-Massive
Galaxies. UMGs at high redshift may be the intermediate step between DSFGs and z = 0
cluster ellipticals and/or BCGs and are expected to inhabit massive halos given their
extreme mass build-up by z ∼ 3. Identifying these galaxies requires wide-field NIR capa-
bilities to obtain the rest-frame optical and measure a stellar mass, with NIR spectroscopic
follow-up to confirm (e.g., [127,289–296]). McConachie et al. [297] recently presented
spectroscopically-confirmed overdensities around two UMGs at z ∼ 3.4 from the Massive
Ancient Galaxies At z > 3 NEar-infrared (MAGAZ3NE) survey [298,299], which will be
discussed further in Section 5.3. Additional investigation of the environments around
UMGs is needed to confirm their utility as a proto-cluster signpost.
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Table 3. An Incomplete List of Proto-clusters in the Literature with DSFG Overdensities.

Name Redshift NDSFG
spec−z

Observing ΣSFR b Volume c log Mz
200 log Mz=0

200 References
Window a [M� yr−1] [cMpc3] [M�] [M�]

GOODS-N
proto-cluster

1.99 6 10 × 10 2600 ± 300 9000 13.8 ± 0.2 &14.5–15 B04, C09, C16

COSMOS
proto-cluster

2.10 8 8 × 20 5300± 600 15,000 14.2± 0.3 &15 S12, Y14, H16,
C16, Z19

MRC 1138-256
(PKS1138)

2.16 5 6 × 9 2200± 500 8000 ∼14 &15 K00, P00, K11,
V13, R14, D14,
S14, C16, E16,
E18, Z18, T19,
J21

PHz G237.0+42.5 2.16 4 10 × 11 1485± 71 18,500 ∼14 ∼15 K21a, P21
HELAISS02 (core) 2.171 4 π0.252 1510± 170 − − − G19
2QZCluster (core) 2.2 7 π12 1000 138 − − K16
BOSS1244 (core) 2.24 0 π22 6720 2000 − − Z22
BOSS1542 (core) 2.24 0 π22 6300 2000 − − Z22
HS1700+64 d 2.3 4 8 × 8

π1.52 (core)
2100± 500

4900±
1200 (core)

6900
130 (core)

∼14 &15 Ch15, K16, L19,
H19

PCL1002 e 2.47 7 14 × 14 4500± 500 15,000 &13.5 &14.5–15 D15, C15a, C15b,
C16, Z19, C21

HXMM20 (core) 2.602 5 π0.132 1700± 200 − − − G19
HS1549+19 d 2.85 4 50

π1.52 (core)
2300± 500
12,500 ±

2800 (core)

10,600
240 (core)

∼14 &15 L19

SSA22 3.09 12 20 × 30 5700± 800 21,000 13.9± 0.2 & 15 S98, S00, H04,
C05, G05, T09,
L09, U12, K13,
U14, U15, K15,
A16, K16, C16,
U17, K21b

SPT2018-45 (core) 3.2 0 π42 9200 2000 − − W21
SPT0303-59 (core) 3.3 0 π42 15,700 2050 − − W21
SPT0457-49 (core) 3.988 0 π42 7800 2600 − − W21
Distant Red Core
(core)

4.002 10 0.6 × 0.7 6500 876.5 13.7± 0.2 &15 L18, O18, L20

SPT2052-56 (core) 4.257 0 π42 7400 2800 W21
SPT2349-56 (core) 4.302 23 π0.362 4480 128 ∼13–13.4 &15 M18, H20, R21,

W21
SPT2335-53 (core) 4.756 0 π42 7000 3200 − − W21
SPT0553-50 (core) 5.323 0 π42 10,500 3500 − − W21
z57OD 5.692 0 π4.22 − − − &14.7 O05, J18, H19
SPT0348-62 (core) 5.654 0 π42 7800 3800 − − W21
z66OD 6.585 0 π4.22 − − − ∼14.5 H19
SPT0311-58 (core) 6.9011 0 π42 10,900 4500 − − W21

Note—This list of proto-clusters with DSFG overdensities is not exhaustive. Proto-clusters are listed in order of
increasing redshift. The primary references that contain the information listed in this table are bolded. Quantities
measured over a limited central area designed the “core” are labeled as such. A dash indicates information
not readily available in the literature. a Observing window is listed as the full survey area or effective area (in
arcmin2) assumed for the proto-cluster core in the relevant reference. b Summed SFR of DSFG and/or other
identified proto-clusters members, see listed references for details. c The comoving volume is derived from the
listed observing window and δz and/or taken from the relevant reference. d Proto-cluster numbers are the SFR
and area of spec-z confirmed SMGs. Core numbers are from the summed SFR of all (unconfirmed) 24 µm and
850 µm source in the core region as described in Lacaille et al. [300]. e A nearby structure, CL1002-0220 at z = 2.51
has been argued to be both a high-z, potentially virialized cluster [71,301] and a filament that will merge with
PCL1002 [72]. Its gas properties will be discussed in Section 6.2.4. References: A06: [302]; B04: [272]; C05: [273];
C09: [260]; C15a: [303]; C15b: [277]; C16: [278]; Ch15: [304]; C21: [72]; E16: [305]; E18: [306]; D14: [307]; D15: [308];
G05: [274]; G19: [309]; H04: [310]; H16: [311]; H19: [312]; H20: [313]; K00: [314]; K11: [315]; K13: [316]; K15: [317];
K16: [318]; K21a: [319]; K21b: [320]; J18: [321]; J21: [322]; L09: [323]; L18: [324]; L19: [300]; L20: [325]; M18: [326];
O05: [327]; O18: [328]; P00: [329]; P21: [330]; R14: [331]; R21: [332]; S98: [333]; S00: [334]; S12: [335]; S14: [336];
T09: [275]; T19: [337]; U12: [338]; U14: [339]; U15: [340]; U17: [341]; V13:[342]; W16: [301]; W21: [343]; Y14: [344];
Z18: [345]; Z19: [346]; Z22: [347].
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3.3.2. Selecting DSFG Overdensities in Shallow, Wide (or All-Sky) Submm Surveys

Even given the comparatively large area over which FIR/submm data is available
from ground-based facilities and Herschel, the rarity of proto-clusters [21,278] presents a
challenge in building statistical samples. Low-resolution, wide-field or all-sky submm
surveys can integrate the emission from multiple DSFGs (e.g., [326,328,348]), while multi-
band wavelength coverage can identify “cold” submm sources, i.e., those whose dust
peak has redshifted into the ∼350–500 µm range, placing them at z ∼ 1.5–3 (modulo the
dust temperature; e.g., [349]). This can provide a catalog of proto-cluster candidates in
a relatively unbiased way, while taking advantage of the negative K-correction in the
submm [350]. Here we present the recent results from Planck as an example.

The Planck All-Sky survey catalogued compact sources (with a beamsize of 4–5′

at 100–857 GHz, ∼ 2.5 Mpc at z ∼ 2) in the Planck Early Release Compact Source Cat-
alog (ERCSC; [351]), Catalogue of Compact Sources (PCCS; [352]), and Second Cata-
logue of Compact Sources ([PCCS2; [281]). Early analyses of these catalogs identified
numerous proto-cluster candidates which were then compared with Herschel surveys
(e.g., [279,353,354]), where half of the Planck compact sources resolved into multiple discrete
Herschel sources [355]. A subsequent list of 2151 cold, compact sources was constructed
via color selection using 217–857 GHz + 3 THz IRIS data [356] to isolate high-redshift
(z & 1.5− 4, median z ∼ 2.5 assuming Tdust = 35 K) sources in the cleanest 26% of the
sky (PHz catalog; [229]). Herschel follow-up of 228 of these cold sources [280] revealed 93%
were associated with on average 10 red Herschel sources (the rest were lensed DSFGs), with
stacked 350 µm extended emission consistent with expected proto-cluster sizes (Figure 3,
see [357] for Spitzer/IRAC follow-up). Unlike using a straight catalog of compact sources,
this color selection rejects Galactic sources, low-z contaminants, and low-z clusters with
strong SZ (see also [355,357]).

Figure 3. (a) Herschel SPIRE 350 µm stacking of 228 Planck PHz cold sources [229]. Extended emission
is seen over the 8.7′ × 8.7′ cutout, consistent with these sources being proto-cluster candidates. For
comparison, panel (b) shows the stacking of 278 z < 1 Herschel Lensing Survey clusters [358], (c) single
500 µm sources from HerMES16, and (d) shows 500 random positions in the HerMES Lockman field.
Figure reproduced from Figure 12 in Planck Collaboration et al. [280], with permission from ©ESO.
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Are Planck “cold” sources robust proto-cluster candidates? Several works have now
confirmed submm overdensities among the PCCS sources [357,360–363]. On the other hand,
the source density of PHz “cold” sources is 0.21 deg−2, more than three orders of magnitude
higher than predicted for proto-clusters in a standard cosmological framework [348,364,365].
This discrepancy can be resolved if multiple unrelated high-z proto-clusters fall into the
Planck beam, as predicted by semi-analytic simulations [365] and observed in limited
spectroscopic follow-up [330,360,366,367]. Recently, Lammers et al. [368] cross-matched
187 PHz sources with Herschel SPIRE17 imaging compiled in the Herschel Extragalactic
Legacy Project (HELP; [370]), finding that 21% are associated with >3σ SPIRE overdensities,
a higher fraction than the PCCS sample (8%). Revisiting the Negrello et al. [365] simulations,
they determined the average number of line-of-slight overdensities in a Planck source was
four, but that the ratio of the flux of the brightest overdensity was 3× higher than the second
brightest overdensity in 60% of cases, signaling that one candidate proto-cluster dominates.
Gouin et al. [371] examined star formation in massive halos in IllustrisTNG [372], finding
that theoretical Planck cold sources largely consist of one large SF halo plus smaller halos of
background/foreground interlopers. They predict ∼70% of their simulated Planck sources
will evolve into massive (log M200/M� > 14) clusters by z ∼ 0, though they note that the
simulations continue to underestimate galaxy SFRs relative to observations [364,373]. In
rough support of our discussion in the previous section, they find that the number of SFGs
(>7 with SFR> 10 M� yr−1) can discriminate Planck sources more likely to evolve into
clusters.

The discussion is ongoing but there is compelling evidence that a significant fraction
of submm cold sources are selecting proto-clusters at z & 2–4. Techniques will have to be
developed to mitigate contamination and wide-field narrow-band imaging (e.g., [374]),
spectroscopy, and/or statistical techniques (Section 7) are needed to take advantage of
future large proto-cluster candidate samples. In the next several sections, we turn our focus
from (proto-)cluster surveys to the (proto-)cluster galaxy populations, exploring what we
have learned in the near-, mid/far-IR, and submm regimes.

4. The Near-Infrared: Stellar Mass Functions and Quenched Populations

Absent external influences, galaxies stop forming stars (i.e., quench) via secular pro-
cesses (supernovae, stellar winds, AGN feedback; e.g., [375–377]), often termed mass- (or
self-)quenching. A long standing question is whether mass-quenching is separable from
environmental-quenching [6]: in other words, does mass-quenching operate independently
of environment and does environmental-quenching operate independently of stellar mass?
Mass-quenching is strongly stellar mass-dependent, with higher mass galaxies quenching
first (i.e., downsizing; [378–381]). Low-mass galaxies mass-quench on longer timescales; at
log M?/M� . 9, this timescale exceeds the Hubble time and such galaxies have not yet
quenched in the field (with rare exceptions, e.g., [382]) as seen in the high star-forming
fraction in the void regions in Figure 1. This makes low-mass galaxies an ideal population
to address the role of environmental quenching. Higher mass galaxies cannot be neglected,
however, as they may be effected by different environmental processes.

In this section, we review the current literature using NIR to characterize the stellar
populations in clusters, with the goal of addressing how galaxies in extreme environments
quench over cosmic time. As described in the introduction, two key tools are provided
by the NIR: the stellar masses of cluster members and the division of cluster members
into SFG and QG populations using UVJ (or equivalent) color selection. In Section 4.1, we
discuss what we know about stellar mass functions (SMFs) in clusters and as a function of
local galaxy density; the latter has been pushed to low masses. In Section 4.2, we define and
examine the environmental quenching efficiency—excess quenching due to environmental
processes—to high redshift and beyond the virial radius.
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4.1. The Stellar Mass Function in Overdense Environments

A fundamental characterization of a galaxy population is the stellar mass function,
the number distribution of galaxies in bins of stellar mass, which encodes information on
the processes that have contributed to and impede stellar mass growth. The SMFs of most
galaxy populations18 are well described by a single or double Schechter function [385],
parameterized by shape [characteristic mass (M?), low-mass slope (α)] and overall normal-
ization (Φ?). In the field, the shape of the SMF changes little to z ∼ 4 while its normalization
evolves, driven by mass-quenching increasing the QG population (e.g., [386,387]).

If we assume that the field SMF is dominated by mass-quenching, differences in the
SMF in overdense environments can be attributed to environmental quenching. These
differences have been searched for using both “global”19 and “local” definitions of environ-
ment, as traced by different proxies (e.g., cluster-centric radius vs. local galaxy density).
The distinction may not be trivial: early work in Vulcani et al. [389] and Vulcani et al. [390]
examined the stellar mass function down to log M?/M� ≥ 10.2 using both local and global
definitions on optical cluster surveys20. They found differences from the field SMF only
when considering local environment, illustrating that caution should be taken in comparing
works using inhomogenous definitions of environment.

Subsequent (global) cluster studies incorporating the NIR (and often going to lower
mass limits) largely find that the total SMF in clusters has a clear environmental dependence
up to z ∼ 1.5 ([388,394–397], but see [390,398]). Figure 4 (right panel) compares the shape
of the SMF function compiled from 11 galaxy clusters at 1 < z < 1.4 from the GOGREEN
survey to a coeval field sample [388]. The cluster total SMF reflects an overabundance of
massive galaxies, with a deficit at the lower-mass end relative to the field. Remarkably,
however, when the galaxy populations are split into star-forming and quiescent (using
UVJ colors), the shapes of the SFG and QG SMFs become independent of environment
(Figure 4, left and middle panels). This characteristic behavior of the SMF in overdense
environments has been observed in low (z ∼ 0.2–0.4; [394,395]) and intermediate-redshift
clusters21 (z ∼ 0.5–1.2; [388,396,397,399]), in low-mass cluster/group scale halos [401], and
in local environment studies [400,402]. They suggest that (1) environmental quenching is
mass-independent at log M?/M� & 10, in order to maintain the shape of the SFG SMF, and
(2) differences in cluster total SMFs are driven by an excess in the quenched galaxy fraction.
In support of the latter, QGs are found to dominate the cluster galaxy counts to survey
mass limits (log M?/M� = 9.5; [35,397]), in sharp contrast to the field and consistent with
the local SFR-density relation extending to at least z ∼ 1.
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Figure 4. The SMFs of QGs (left), SFGs (middle), and the total population (right) in 11 GOGREEN
clusters at 1 < z < 1.4 (circles; [388]). Renormalized field SMFs (crosses) drawn from the COS-
MOS/UltraVISTA survey [387] are shown in comparison. For QGs and SFGs separately, the shapes
of the SMFs are independent of environment. For the total population, there is an excess of high-mass
and a dearth of low-mass galaxies in the clusters. Figure reproduced from Figure 6 in van der Burg
et al. [388], with permission from ©ESO.

Environmental dependence in the shape of the SFG and QG SMFs, however, becomes
apparent at lower stellar masses. For example, van der Burg et al. [397], observing 21
Planck-selected clusters at 0.5 < z < 0.7 to log M?/M� ∼ 9.5, found that the QG SMF has
a significantly flatter low-mass slope in the clusters than the field, indicating an excess of
low-mass quenched galaxies. This flatter α was also observed for log M?/M� = 9–10 QGs
in group-scale overdensities over 0.2 < z < 1.5 [400] and up to cluster-scales in the local
environment ORELSE survey22 over 0.6 < z < 1.3 [402]. While van der Burg et al. [397]
found no environmental-dependence in shape of the SFG SMF, Tomczak et al. [402] reported
a strong dependence in their highest density bin (see also the local environment studies
by [404–406]), indicating mass-dependent quenching. The importance of quantifying the
low-mass slope was demonstrated by Papovich et al. [400], who convolved their SFG and
QG SMFs derived in regions of low galaxy density with constant and mass-dependent
quenching (Figure 5). Due to the extremely steep slope of the field SFG SMF at low
mass (panel b), mass-independent environmental quenching (panel c) would result in the
equivalent strong upturn in the low-mass slope of the QF SMF (panel d). Even a modest
mass-dependence in environmental quenching, however, can more easily replicate the flat
α observed in overdense environments. This effect is even more pronounced at z ∼ 1–1.5
where the they find an even shallower low-mass slope. Notably both constant and mass-
dependent quenching toy models can reproduce the high-mass end; as such, pushing to
log M?/M� = 9 and lower provides the most discriminating power in quantifying the
evolution of the SMF with environment.
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Figure 5. A toy model showing that combining the observed QG SMF in the lowest density quartile
(D1, panel a) with the steep low-mass end of the SFG SMF (panel b) observed in both the highest
(D4) and lowest (D1) density quartiles requires a mass-dependent environmental quenching model
(panel c, bottom) to avoid a strong excess in the low-mass quenched galaxies in overdense environ-
ments (panel d). Both quenching models are able to reproduce the high-mass end. Figure reproduced
by permission of the ©AAS from Figure 5 in Papovich et al. [400].

In summary, there is a general consensus that SMF studies reveal a clear environmental
influence driving the quenched galaxy fraction to dominate at all stellar masses probed (or
in other words an increase in the QG SMF normalization) which modifies the shape of the
total SMF in favor of excess massive (quenched) galaxies. At the same time, the separate QG
and SFG SMFs at the high-mass end show no evolution in shape, which can be achieved via
quenching that is independent or moderately-dependent on stellar mass. At the low-mass
end, on the other hand, where secular mass-quenching is largely absent, a flattened slope
in the QG SMF strongly suggests a mass-dependent environmental quenching efficiency.

4.2. The Quenched Fraction and Environmental Quenching Efficiency

A more direct look at environmental quenching can be achieved using the quenched
fraction ( fq ≡ NQG/NQG+SFG) and the environmental quenching efficiency (εenv or EQE;
e.g., [6]),

εenv =
fq,cl − fq,field

1− fq,field
, (1)

which quantifies how many galaxies are quenched in an overdense environment, fq,cl, that
would not have been quenched in a low-density environment, fq,field. By accounting for
the field, εenv in principle removes mass quenching (though there is some evidence of
excess mass quenching in overdense environments; [407]). This quantity has also been
referred to in the literature as the “transition fraction” (e.g., [67]), the “conversion fraction”
(e.g., [35,381]), and the “quenched fraction excess” (e.g., [388,408,409]). We use “environ-
mental quenching efficiency” instead of “transition fraction” or “conversion fraction” as
they imply a relationship between the galaxy populations being compared (i.e., that the
control or “field” sample will become the cluster sample) that may not be accurate, as we
will discuss in this section.
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4.2.1. The Multi-Dimensional Dependencies of Quenching at z < 1

Quenched galaxies are well known to dominate cluster populations in the local Uni-
verse. As discussed in Section 4.1, separation of the cluster SFG and QG populations using
UVJ colors revealed that the total cluster SMF is dominated by quenched galaxies over a
wide range in mass up to z ∼ 0.6 [397] and likely even up to z ∼ 1. To demonstrate this,
Balogh et al. [35] examined the fraction of QGs and EQE in 10 GCLASS massive clusters at
z ∼ 1 relative to coeval low-mass clusters/groups and the field as well as SDSS clusters
at z ∼ 0 (Figure 6, left). The SFR-density relation is clearly in place to z ∼ 1, with the log
M200/M� ∼ 14.5 GCLASS clusters showing similar quenched fractions as local clusters
for log M?/M� & 10.3. The comparison to log M200/M� ∼ 13–14.5 GEEC2 low-mass
clusters/groups [410] and the Ultravista [387] field further illustrates the halo mass de-
pendence of environmental quenching (see also [401,411]), with low-mass clusters/groups
showing less deviation from the field.

In addition to halo mass, EQE decreases with increasing cluster-centric radius [397,407],
a result that builds on earlier studies of the radial dependence of optically blue and red
galaxy fractions in clusters (e.g., [412,413]). These dependencies join the possible stellar
mass dependence discussed previously in the context of SMFs (Section 4.1), though we note
again that some works report a mass-dependence at z ∼ 0.5− 1 [35,388,400] while others
report none [69,397,414] , which may be a function of stellar mass survey limits. Further
complicating our view of quenching is the still-open question of the inter-dependency of
mass- and environmental-quenching.

There is therefore a pressing need for studies which probe these multi-dimensional
dependencies simultaneously over a range in redshift. Pintos-Castro et al. [407] recently
capitalized on new Hyper Suprime Cam imaging of 209 NIR-selected SpARCS clusters
at 0.3 < z < 1.1 to compile a large sample of galaxies that could be binned by redshift,
stellar mass, and cluster-centric radius simultaneously. Using UVJ, they calculated the
star-forming fraction ( fSF ≡ NSFG/NQG+SFG) as well as εenv(r, M?) as in Equation (1). As
expected given environmental quenching, fSF is found to decrease from R200 into the cluster
cores. In addition, they define the mass quenching efficiency as εmass(r, M?) = fq(r, M?)−
fq(r, MSF

? )/(1− fq(r, MSF
? )), where MSF

? is the stellar mass at which most galaxies are still
forming stars at a given radius (in practice this is driven by their stellar mass completeness
limit). Using fSF to define the stellar mass at which quenching “starts” (Mstart

? [ fSF ∼ 0.8])
and “ends” (Mend

? [ fSF ∼ 0.2]) in the cluster cores (r < 0.4R200), outskirts (0.4 < r/R200 < 1),
and field (4 < r/R200 < 6), they observe accelerated quenching in that both Mstart

? and
Mend

? occur at lower stellar masses (by ∆logM?/M� ∼ 0.3–0.4) in the cores relative to the
outskirts/field, a difference which increases from z ∼ 1→ 0.3 (accelerated downsizing).
In other words, εmass is more efficient in the cluster cores and thus not independent
of environment.
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Figure 6. (left) The quiescent fraction versus stellar mass of GCLASS clusters and GEEC2 low-mass
clusters/groups at z ∼ 1 (yellow circles and red pentagons; Balogh et al. [35]) compared to three
clusters at z ∼ 1.6 (green shaded region; Lee-Brown et al. [415]). Comparisons are made to coeval
field samples from UltraVISTA (dash dot line at z ∼ 1 and blue shaded region for z ∼ 1.6). Local
SDSS clusters are also shown, demonstrating that the SFR-density relation is in place at z ∼ 1 for
log M?/M� & 10.3 cluster galaxies. The comparison between GCLASS clusters and GEEC2 low-
mass clusters/groups reveals a halo mass dependence, while the comparison of clusters at z ∼ 1
and z ∼ 1.6 shows a redshift and stellar mass dependence. (right) The environmental quenching
efficiency in massive (proto-)clusters as a function of redshift. The stellar mass limit of each sample
is denoted by the color scale. Closed symbols and regions contain multiple clusters, while open
symbols are single clusters. Gray hatches and circles mark εenv measured within r ∼ 0.5R200; all others
are within r ∼ R200. Strong stellar mass [388,407] and redshift [407,416] dependencies are observed
in cluster surveys. A halo mass dependency is also suggested by the comparison of Planck clusters
(log M200/M� ∼ 15; [397]) to the SpARCS and GOGREEN surveys (log M200/M� ∼ 14.5; [388,407]).
Quenched high-mass populations can be found in clusters out to z ∼ 1.7 [417] and in proto-clusters at
z ∼ 2–2.5 [346]. Figures adapted from Figure 3 in Balogh et al. [35], Figure 7 in Lee-Brown et al. [415],
and Figure 12 in Pintos-Castro et al. [407], reproduced by permission from the ©AAS.

Likewise, they find that εenv (Equation (1)) depends on stellar mass. Figure 6 (right)
shows a compilation of εenv measurements in massive clusters across 0.5 < z < 2.5. Broken
into multiple stellar mass bins, environmental quenching in the Pintos-Castro et al. [407]
sample displays a strong dependence on both stellar mass and redshift: for low-mass
galaxies, EQE starts as relatively negligible at z ∼ 0.7 (εenv . 0.1) but rises by a factor of
2− 3 by z ∼ 0.5. EQE in higher mass galaxies starts at a higher base, but shows a similar
rise over ∼ 2.5 Gyr. At z ∼ 1.2, the GOGREEN clusters (stars in Figure 6, right; [388])
have a comparable εenv to the SpARCS sample in matched stellar mass bins, with a higher
εenv ∼ 0.8 reported for their higher mass galaxies, demonstrating a stellar mass dependence
in EQE. At redshift 0.5 < z < 0.7, on the other hand, van der Burg et al. [397] measured
εenv ∼ 0.85 for Planck-selected clusters using similar radial and stellar mass bins as Pintos-
Castro et al. [407]. This high quenching efficiency was observed to have no stellar mass
dependence. A possible explanation for this difference is the halo masses of the samples.
The SpARCS sample covers a range in halo mass with an average log M200/M� ∼ 14.5
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based on richness measurements (I. Pintos-Castro, private communication), comparable
to the GOGREEN clusters. The Planck-selected sample has a higher typical halo mass
of log M200/M� ∼ 15. Furthermore, low-mass cluster/group studies find lower, stellar-
mass dependent EQEs than either cluster survey [401,411]. Could different quenching
mechanisms be dominating in the most massive halos? This comparison underscores the
need for analysis that controls for halo mass as well as stellar mass, cluster-centric radius,
and redshift, as quenching processes likely depend on all four parameters.

4.2.2. The Role of Pre-Processing to High Redshift

To date, the results we have discussed have focused on the quenched fraction and EQE
within R200 to z ∼ 1. In the local Universe, however, quenching and morphological transfor-
mations have been observed well beyond the cluster virial radius (3–5Rvir; [5,14,408,418–423]),
which requires environmental effects to start the quenching processes during infall. This is
generally termed pre-processing (e.g., [14,424–431]), where quenching begins in the lower-
density group environment23 [400,434]. For context, 20–40% of local clusters’ stellar mass is
expected to accrete in the form of groups [429]. Outside the local Universe, a non-zero EQE
has been observed beyond the virial radius in clusters at z ∼ 0.5–1, converging on a value
as high as εenv ∼ 0.35 in very high-mass clusters [388,397]. Pintos-Castro et al. [407] found
that fSF was flat from r ∼ R200 → 6R200 for all stellar masses up to z ∼ 1 (see also [421]),
suggesting that if pre-processing is occurring, it starts at very large radii.

Recently, a study by Werner et al. [69] demonstrated that the choice of the “field” in
global environment studies can obfuscate environmental signatures. Using GOGREEN
and GCLASS clusters at 0.8 < z < 1.4, they compared the quenched fraction and εenv
in the cluster (r < R200), infall regions (1 < r/R200 < 3), and field (outside the cluster
and infall regions). They note that the backsplash24 population is expected to be small at
these redshifts (e.g., [436]). They found that the infall region contains a higher fraction of
massive QGs and twice as many satellites per central galaxy at fixed stellar mass compared
to the field region, indicating it is populated by more massive halos. Comparing the
cluster and infall regions suggests that nearly all log M?/M� > 11 and half of all log
M?/M� = 10− 11 galaxies are quenched prior to crossing R200 by z ∼ 1. Similarly, local
environment studies find high quenched fractions in group-scale overdensities, supporting
groups as the dominant site for quenching [381,400,429]. Werner et al. [69] calculated the
EQE separately using the field plus infall regions (probing pre-processing) and the infall
plus cluster regions (probing cluster quenching), finding that the former is strongly mass-
dependent, while the latter shows only a weak stellar mass dependence. This suggests
different processes dominating in the group vs. cluster environments and that the “field"
control samples chosen impact the measured EQE. This has yet to be reconciled with the
studies discussed in the previous section.

Can all pre-processing be attributed to group processes? A major hindrance to cur-
rent discussions of pre-processing is understanding the range of influence of the primary
halo relative to the effects of the local (group) environment. An open question is where
to place the boundary of a cluster; this is commonly assumed to be the virial radius
for convenience but recent works suggest a more physically motivated “edge” in the
splashback radius [435,437–439], based on the fall-off of the matter density profile. Further-
more, the influence of the ICM may reach even further as suggested by recent simulations
(e.g., [440–442]) which show gas stripping at large radii, likely associated with virial accre-
tion shocks [443,444]. This adds to the multi-dimensional quenching dependencies (stellar
mass, halo mass, cluster-centric radius, redshift) outlined in the previous section, indicating
simultaneous measures of both the global and local environment may be necessary to disen-
tangle the quenching processing arising from cluster and group environments. Quenching
in the group environment and this evidence of extended cluster influence will be discussed
in more detail in Section 8.3.1.
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4.2.3. Strongly Evolving Quenching Efficiency at High Redshift?

Moving further into the epoch of z = 1–2, the picture of quenching in individual
clusters becomes one of large variation from system to system over a relatively small set of
observations. There are several examples of clusters with substantial quenched populations
at z ∼ 1.5–2 [415,445–451], which contrasts with increasing evidence for significant star
formation activity in cluster cores during this epoch (see Section 5). Lee-Brown et al. [415]
analysed IRC 0218, a low-mass cluster at z = 1.62, in comparison to a similarly low-mass
cluster at z = 1.58 [451], and a high-mass X-ray cluster JKCS 041 at z = 1.8 [450]. With large
uncertainties, all three clusters show a stellar mass-dependent quenched fraction (Figure 6;
left), with nearly all high-mass galaxies (log M?/M� > 10.85) quenched. The quenched
fraction drops to the field level by log M?/M� ∼ 10. Comparing with clusters at z ∼ 1
from Balogh et al. [35], Lee-Brown et al. [415] concluded there is at most a modest evolution
in environmental quenching efficiency (at the low-mass end) from z ∼ 1.6→ 1 indicated
by these three systems.

Conversely, statistical evidence has pointed to a strong evolution. Construction of
the IRAC 3.6 µm and 4.5 µm luminosity functions (LFs) of ISCS cluster galaxies over
0.3 < z < 2 found a strong deviation from the characteristic luminosity predicted from
passive evolution models at z & 1.4 [452,453], indicating an era of substantial stellar
mass growth above this redshift. Nantais et al. [416] later found a strong rise in the
EQE from z ∼ 1.6 → 0.9 using 14 confirmed SpARCS clusters. For cluster galaxies with
log M?/M� ≥ 10.3, the average εenv in three z ∼ 1.6 clusters was consistent with zero
(though with large variation between the clusters). The environmental quenching efficiency
then rises abruptly (Figure 6, right) and the quenched fraction increases from 42% at
z ∼ 1.6 (consistent with the field) to 80% by z ∼ 1.3 (see also [388,396,401], for elevated
environmental quenching at z ∼ 1.3), an evolution requiring rapid quenching over <1 Gyr.
These results suggest that some massive clusters may undergo a significant transition
between z = 2 → 1, where environment-specific quenching mechanisms “turn on” and
then efficiently produce substantial quenched populations by z ∼ 1. What drives this
transition is not yet known, though the variation from cluster-to-cluster appears to be
intrinsic rather than a selection effect. This is demonstrated in Figure 6 (right, open squares)
through a sample of 5 SPT clusters at relatively fixed halo mass (log M?/M� ∼ 14.5) at
1.4 < z < 1.7, where significant variation is observed in the environmental quenching
of a specific population: high-mass (log M?/M� > 10.85) galaxies in the cluster cores
(r < 0.3R200; [417]).

The strong redshift evolution in εenv in the Nantais et al. [416] sample is reminiscent
of the redshift evolution seen earlier in the Pintos-Castro et al. [407] clusters (and seen in
cluster SFGs, see Section 5.2.2), with a significant shift in the epoch in which quenching
ramps up. Massive halos are more likely to complete their collapse and virialization during
the epoch of z ∼ 1.5–2 [21,454] and it is not unreasonable to assume the ramp up of efficient
quenching starts earlier in more massive halos. Although both drawn from the SpARCS
survey, the higher redshift Nantais et al. [416] clusters are likely already of similar mass
as the lower redshift Pintos-Castro et al. [407] sample on average, consistent with this
hypothesis. A more direct demonstration was presented in Reeves et al. [401], which
found a strong dependence of EQE on halo (and stellar) mass by comparing X-ray and
spectroscopically-selected low mass clusters/groups to GOGREEN clusters at fixed redshift
(1 < z < 1.5). This again stresses the need to control for halo mass in these analyses.

4.3. Summary

In summary, NIR studies of SMFs, quenched fractions, and environmental quenching
efficiencies in clusters and high-density environments confirm an excess in quenched
populations attributed to environmentally-driven processes. The picture of quenching is
complex, however, and different processes may mix or dominate in different epochs, as well
as depend on halo and stellar mass. Stellar mass dependence in particular can constrain
specific quenching mechanisms (see Section 8) and stellar mass-dependent quenching is
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strongly supported by the low-mass slope of cluster SMFs and EQE analysis in large studies
where environment and stellar mass can be treated simultaneously. This is not universally
observed, however, and can be complicated by our still developing understanding of the
role of pre-processing. In terms of redshift, quenched fractions among massive galaxies
remain comparable to the local Universe up to z ∼ 1, though an evolving EQE is observed
over large redshift baselines, increasing by a factor of ∼ 3 over z ∼ 1→ 0.5. Above z ∼ 1, a
large variation is seen in the quenched populations in (small numbers of) massive clusters,
with again evidence for an evolving EQE where a large redshift range is probed. A field-like
quenched fraction and EQE consistent with zero in clusters at z ∼ 1.5 suggests a transition
epoch, wherein a rapid ramp up in environmental quenching processes occurs in massive
halos completing their initial collapse during this epoch.

As a final note, rest-frame UVJ colors have been invaluable (and relatively inexpensive
method) for separating the star-forming and quenched populations in overdense environ-
ments. However, this separation is not without contamination and results can be sensitive
to the exact UVJ boundaries chosen [407]. UVJ also does not provide a robust proxy for
(specific)-SFR without additional (in)direct tracers at UV and/or IR wavelengths [124]. In
the next section, we examine (obscured) star formation directly from the M/FIR regime.

5. The Mid- to Far-Infrared: Dust-Obscured Star Formation and AGN

As stated in the introduction, it has long been established that the morphology-density
relation observed in local clusters [1] is accompanied by a SFR-density relation [4], whereby
cluster populations have a significantly lower SFG fraction than populations in lower
density environments. Subsequently, this relation was found to evolve over time, with the
optically blue cluster SFG fractions increasing with redshift (the Butcher-Oemler Effect;
[32]). This evolution was later observed in IR-selected populations as well, including
a rise in the (U)LIRG fraction [138,170,378,419,421,455–466], mirroring the steep rise in
SF in the field to z ∼ 1− 3 (e.g., [142], Zavala & Casey, in prep.), though with a lower
normalization. The nature of this evolution provides a vital complement to the studies
focused on quenched populations discussed in Section 4.

In this section, we break the discussion of M/FIR observations of (proto-)cluster
galaxies into a few topics. In Sections 5.1 and 5.2, we examine galaxy clusters at z < 1 and
1 < z < 2, respectively, in terms of the observed (obscured) star-forming fraction ( fSF) and
cluster galaxy SFRs and specific-SFRs (SSFR ≡ SFR/M?) as a function of cluster-centric
radius (out to the infall regions well beyond R200) and normalized by halo mass. In general,
these sections will be cast in a framework of looking for evidence of slow (few to several
Gyr) versus rapid (<100–500 Myr) environmental quenching. The former will produce
a signature of suppressed SSFRs, distinguishing cluster SFGs from the field MS, while
the latter will manifest itself primarily in fSF. Environmental quenching mechanisms and
their timescales were introduced in Section 1.1. Additionally, our discussion of 1 < z < 2
clusters will consider whether the SFR-density relation is weakened or even reversed
during this epoch.

In Section 5.3, we explore the current M/FIR observations of proto-cluster galaxies
at z > 2, outlining the challenges in working with limited data and resolution over the
large areas and volumes typical of proto-clusters (>10–30′, ∼103–104 cMpc3; [21,70,248]).
From these observations, vigorous total SFRs have been measured and we place them in
context of halo mass (observed and at z = 0) and the cosmic SFRD, with the caveats of
large uncertainties. We then discuss DSFG-rich proto-clusters in the context of the full
proto-cluster population, relative to our understanding of gas availability at high redshift
and emerging evidence for early quenching populations. Finally, Section 5.4 presents a
brief overview of AGN in (proto-)clusters and the importance of identifying obscured AGN
using current and future MIR capabilities. M/FIR emission due to intracluster dust is saved
for Section 7.1.
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5.1. Low Redshift (z < 1): Evidence for Multiple Quenching Mechanisms Operating in Clusters
5.1.1. The IR Butcher-Oemler Effect

We start by looking at SFG populations in clusters at low to intermediate redshift for
evidence of environmental processes. A natural first question is whether the IR Butcher-
Oemler Effect is driven by the evolution in the (obscured) star formation of the infalling
field population, which strongly decreases over z ∼ 1 → 0. Webb et al. [467] explored
this issue using Spitzer/MIPS25 24 µm imaging to study the IR population in 42 massive
(log M200/M� = 14–15) red-sequence selected clusters [156,157] at 0.3 < z < 1. Using
statistical background subtraction—which avoids selection bias due to requiring an optical
counterpart to identify cluster membership—they quantified the redshift evolution of the
halo mass-normalized total SFR (ΣSFR/Mhalo) in LIR > 2× 1011 L� cluster galaxies, fitting
a redshift evolution ∝ (1 + z)5.4±1.9 (Figure 7). Given the uncertainties, this is consistent
with the evolution of field galaxies (∝ (1 + z)3−4; e.g., [469–472]). A similar analysis and
conclusion was reached in Haines et al. [465], studying the star-forming fraction in the
lower redshift (0.1 < z < 0.3) LoCuSS26 cluster sample using background subtraction.
The same was again concluded by Popesso et al. [474], who used group [475] and cluster
(e.g., [138,466,476,477]) IR LFs to integrate to low luminosities (log LIR/L� ∼ 7).
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or photo-z cluster membership are indicated in the legend. Catalog or imaged stacked samples
are shown as squares. All SFRs were converted to a Kroupa [153] IMF and the Kennicutt [478]
conversion from LIR to SFR. The lines show different redshift evolution relations for ΣSFR/Mhalo:
∝ z1.77 (black dashed line; [378]); ∝ (1 + z)5.4 (dark teal dash-dot line; [197,467,479]); ∝ (1 + z)7

(black dotted line; [456,480,481]), normalized at z = 0.5. The general evolution for field galaxies
∝ (1 + z)3−4 [469–472] is shown in the gray region. The light teal dash-dot line shows the ∝ (1+ z)5.4

relation scaled from log M200/M� = 14.5 → 14 following ΣSFR/Mhalo ∝ M−1.5
halo [467], see text

for details.

An evolution in ΣSFR/Mhalo that is the same between clusters and the field, however,
is inconsistent with the non-zero environmental quenching efficiency discussed in Section 4.
Follow-up studies of the LoCuSS clusters using spectroscopy (identifying LIR > 5× 1010 L�
cluster members via optical emission lines) found a steeper evolution in the (obscured)
star-forming fraction (∝ (1 + z)6−7; see also [336,456,463,481,482]), which they attributed
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to more accurate sampling of the cluster population over their previous study using
background subtraction [421]. After controlling for the field, a residual evolution on order
(1 + z)2−4 remained up to z < 0.4, indicating sub-dominant but significant environmental
quenching. Similarly, a residual evolution in the average cluster galaxy SFR on order
(1 + z)2 was found in Alberts et al. [197] over z = 0.3→ 1.5. Figure 7 presents a compilation
of these studies compared with example redshift evolutions ∝ (1 + z)5−7 and a shallower
relation ∝ z−1.77 proposed by Popesso et al. [483]. The latter better captures the uniquely
steep evolution at low redshift observed by Haines et al. [421], which provides the strongest
evidence for a deviation from the evolution of the field (infalling) population up to z ∼ 1.

In addition to studying the evolution with redshift, Webb et al. [467] examined the de-
pendence of the mass-normalized total SFR on halo mass, finding ΣSFR/Mhalo ∝ M−1.5±0.4

halo
(see also [474]). In Figure 7, we scale the (1 + z)5.4 relation (dark teal dot-dash line) by
this mass dependency to low-mass clusters (log M200/M� ∼ 14; light teal dot-dash line),
assuming the original Webb et al. [467] sample has an average mass of log M200/M� ∼ 14.5
(as do [466,474], on average). The result is roughly consistent with the low-mass cluster
samples presented in Popesso et al. [474] (thin diamonds) and stacked in Alberts et al. [197]
(white squares), confirming qualitatively a halo mass dependence. As in the measure-
ment of quenched populations (Section 4), halo mass should therefore not be ignored in
examining the total SFR budget in clusters.

5.1.2. The Global (Radial) Dependence of the Obscured SFR

In further support of environmental-specific quenching mechanisms are two observa-
tional characteristics of cluster SFG populations at z < 1. First, the overall fraction of IR
luminous galaxies is a strong function of cluster-centric radius and suppressed below the
field fraction out to large radii (3–5Rvir; [138,419–421,466,484]). Second, systematic suppres-
sion of SSFRs at fixed mass and redshift in massive (log M?/M� > 10) star-forming cluster
galaxies is observed at the level of ∼0.2–0.3 dex up to z ∼ 1.4 [137,197,421,466,484,485]. In
the LoCuSS sample, these suppressed SFGs are kinematically separate, intermediate in
phase space27 between quenched cluster members in the cores and those forming stars at
unsuppressed rates in the outskirts (Figure 8, left; [421]). Such separation could point to
a slow quenching mechanism such as starvation, the gradual stripping of the diffuse hot
halo and cessation of new gas accretion on entering the cluster ICM [81,491]. Conversely, a
strong radial gradient in fSF in the same sample is best reproduced with a delayed quench-
ing model28 with a high quenching efficiency, in which SF was able to continue for 0.3–2 Gyr
on crossing R200 before quenching (Figure 8, right; [421]). Given that both suppressed
SFRs and a strongly spatially evolving fSF are seen, both slow and rapid quenching might
be operating simultaneously. Out to large radii (r & 2R200), a persistent 20% deficit in
fSF (see also [407], discussed in Section 4.2) requires pre-processing, likely in the group
environment (Figure 8, right; see [434] for a LoCuSS group study). As such, the Haines
et al. [421] analyses indicate environmental quenching is occurring via multiple processes
in the LoCuSS clusters.
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Figure 8. (left) Phase space (caustic) diagram of SFGs in the LoCuSS sample split into four bins of
SSFR. X’s indicate the mean radii and line-of-sight velocity dispersions in each bin, with the ellipses
showing the 1σ uncertainties. Gray points are QGs. SFGs with suppressed SSFRs are kinematically
separated from those without. (right) The star-forming fraction from obscured (red) and unobscured
(pink) SF tracers. A sharp decrease is seen into the cluster cores. Delayed then rapid models of
quenching are shown in the solid lines; a delay time of ∼1 Gyr best models the IR fSF. A ∼20%
suppression below the field to large radii requires pre-processing to reproduce. The dot dash line
indicates the model where all star formation is instantaneously quenched when galaxies reach
pericenter. Figures adapted from Figures 8 and 16 in Haines et al. [421], reproduced by permission of
the ©AAS.

At higher redshift, a MIPS-selected population in SpARCS J161314+564930 (z = 0.872; [484])
was observed to have a bimodal nature, including both normal SFGs on the star-forming
Main Sequence as well as sub-Main Sequence SFGs with optical spectra more consistent
with passive galaxies (see also [420]). When placed on a phase space diagram, the sub-MS
SFGs occupy the same region as a virialized or backsplash population. Compared to
recently-accreted SFGs, their SSFGs are suppressed by ∼0.9 dex, echoing the kinematic
separation by SSFR found by Haines et al. [421]. While these suppressed SFRs again point
to slow quenching, a strong radial dependence in the MIPS-detected fraction suggests
rapid quenching is also occurring. The combination of slow and rapid quenching is further
supported over a long redshift baseline (0.3 < z < 1.5) in local environment studies
with ORELSE [493] and in the ISCS cluster sample ([197], see also [485]). Stacked mass-
limited ISCS cluster catalogs (containing both SFGs and quiescent galaxies) reveal a strong
evolution relative to the field (Figure 7). However, by splitting off the optically blue
population (an incomplete stand-in for the SFG population only), Alberts et al. [197] found
suppressed SFRs with at most a weak trend relative to the field evolution with redshift.
This indicates that the change in the mass-limited sample is driven by a swiftly changing
fSF, found by Alberts et al. [197] to be roughly consistent with RPS models [494] up to
z ∼ 1, occurring simultaneously with slower quenching that suppresses SFRs.

5.2. Intermediate Redshift (z ∼ 1–2): A Transition Epoch for Massive Clusters

Despite the strong evolution in SF activity seen relative to the field discussed in
the previous section, the quenching efficiency remains high for massive galaxies in mas-
sive clusters to z ∼ 1 (Section 4) and the local SFR-density relation appears to be in
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place [34,35,467,484]. Early optical and NIR analysis of z < 1 cluster populations predicted
that cluster galaxies formed at high redshift in short bursts, quenched, and evolved pas-
sively since z ∼ 2 [169,170,495–501]. Infrared studies moving to z > 1, however, quickly
provided evidence of a deviation from passive evolution in the NIR LFs (see Section 4) and
significant SF activity, weakening (or even reversing) the SFR-density relation, in both local
environment studies [115,502] and down into cluster cores (e.g., [139,140,192,464,503–512]).
However, evolved massive clusters with quenched cores have also been identified at these
high redshifts (e.g., [346,415,445,447–451]).

5.2.1. Is There a(n Infrared) Reversal in the SFR-Density Relation?

A true reversal in the SFR-density relation at high redshift would signal that environ-
mental processes are capable of driving an excess of star formation in addition to quenching
it—a distinct scenario from the disappearance of the SFR-density relation due to the ramp-
ing down of environmental quenching as seen in Section 4. An enhancement of SF in
massive structures is consistent with hierarchical growth [513] and galaxy interactions
and/or RPS could drive instabilities that trigger nuclear starbursts ([20] and references
therein). Early evidence for a reversal was presented in local environment studies [115,502]
and for massive (log M200/M� > 13.8) clusters XMMXCS J2215.9-1738 (z = 1.46; [504])
and ClG J0218.3-0510 (z = 1.62; Tran et al. [464], but see Tran et al. [514]) based on an
increase in the fraction of DSFGs with increasing local density, into the cluster cores. Con-
versely, XMMU J2235.2-2557 at z = 1.393 [448], a more massive cluster, was found to show
no reversal.

The difficulty in establishing a change in the SFR-density relation is illustrated nicely
by ClG J0218.3-0510 [464,515,516]. Quadri et al. [446] examined this cluster using a mass-
limited (log M?/M� > 10) catalog and defining the environment using the nearest neigh-
bors technique. Quiescent galaxies were separated from SFGs using color-selection plus
MIPS 24 µm imaging and, from this, the quenched fraction and EQE (see Section 4) were
both found to be in excess over the field, albeit with large uncertainty, signaling the SFR-
density relation is still in place (see also [415], using UVJ selection). By way of contrast,
Santos et al. [139] examined the same cluster as a function of cluster-centric radius out to
large radii (r ∼ 10 Mpc) in optical to FIR imaging, with membership based on spec-zs and
photo-zs. Quiescent cluster galaxies were identified using a cut on SSFR, from spectral
energy distribution (SED) fitting, with a field sample drawn from the same data. From
this, they found that the fSF was statistically identical between the cluster (r < 1 Mpc) and
field, with an excess of SFGs in the infall region (1–3 Mpc). This excess may be due to an
overabundance of high-mass SFGs in the infall region [69], while the lack of excess within
1 Mpc (or a potential deficit in the core, see [482]) may be consistent with the positive
quenching efficiency noted by Quadri et al. [446]. However, the lack of environmental
dependence of the SFG SMF (Section 4.1) and the field-like fSF in the cluster, drawn from
the same data, suggests the SFR-density relation is no longer in place [139]. These studies,
mass-limited versus luminosity-limited, with different definitions of environment and
different field comparison samples, demonstrate the challenges in interpreting the data.

Like Santos et al. [139], Ma et al. [140] and Santos et al. [511] interpreted a high
halo mass-normalized SFR in XMMXCS J2215.9-1738 (z = 1.46) and XDCP J0044.0-2033
(z = 1.58) as evidence for a reversal in the SF-density relation (Figure 7). Smith et al. [517]
examined a low-mass cluster with an emerging Red Sequence at z = 1.99 [518] using
SCUBA-2, ALMA, and JVLA imaging. They found the SFR per unit area in the cluster core
to be orders of magnitude greater than the field; together with a high mass-normalized SFR,
they reported a reversal. However, the increase in SFR density paralleled the increase in
galaxy density, so this effect can likely be explained without environmental enhancement
of star formation. This was also demonstrated for ClG J0218.3-0510 in Tran et al. [514];
using Hα SFRs, they found that the SFR per galaxy still decreased slightly into the cluster
cores, ruling out a reversal. Taken together, though individual cluster studies prove that
vigorous star formation is starting to be evident in some z = 1–2 massive clusters, perhaps
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weakening the SFR-density relation, differences in cluster selection and cluster membership
identification, constraints on SF, and intrinsic variations make it difficult to establish or
refute a true reversal.

5.2.2. The Transition to Efficient (Rapid) Quenching at z ∼ 1.4 in Clusters

Both targeted and survey imaging with Spitzer/MIPS, Herschel/PACS29 and SPIRE,
and SCUBA-2 have been used to move beyond single cluster M/FIR studies in a limited
number of cluster samples at z = 1–2. Noble et al. [520] obtained deep PACS imaging of
3 SpARCS/GCLASS clusters at z ∼ 1.2, using optical spectroscopy to place IR luminous
cluster galaxies in phase space and look at trends in SFR. A significant drop in the SFR,
SSFR, and fSF of the (optically-confirmed) IR population was found in the intermediate
(between infalling and core) and cluster core regions of phase space. This is consistent
with the environmental signatures observed in optical studies of the full GCLASS samples
(10 clusters at z = 0.85–1.2) in Muzzin et al. [34].

Very few cluster samples with FIR covering a longer redshift baseline are available.
Extensive M/FIR imaging in the Boötes field was used to examine the ∼300 ISCS/IDCS
cluster candidates over z ∼ 0.3–2 [169,187], including Herschel/SPIRE from HerMES over
nearly the full survey and follow-up deep Spitzer/MIPS and Herschel/PACS for a confirmed
subset at z ∼ 1–2 (see Section 3.1 for further details on the ISCS/IDCS). Analyzing 16
spectroscopically-confirmed massive (log M200/M� ∼ 14) ISCS clusters at z = 1–1.5 with
MIPS 24 µm imaging, Brodwin et al. [175] measured the field-relative fSF and SSFR of
log LIR/L� > 11.5 cluster galaxies as a function of cluster-centric radius, using their
largest radial bin (r ∼ 1.5 Mpc) as a proxy for the field (see also [521]). Figure 9 (panel a)
shows a rapid evolution over the redshift range probed (∼1.5 Gyr), with the lower redshift
end showing the expected decrease in fSF with decreasing radius. At z & 1.4, however,
the ISCS clusters reveal an increase in the MIPS-derived fSF and a flattening of the field-
relative SSFR (panel b). Supporting this, Alberts et al. [197] stacked on mass-limited
(log M?/M� ≥ 10.1) cluster member catalogs from 274 ISCS clusters from z = 0.3–1.5 using
shallow Herschel/SPIRE imaging, finding that the stacked (average) 250 µm luminosity
in their highest redshift bin draws even with and may even be in excess over the stacked
(average) 250 µm luminosity of coeval field galaxies.

Subsequent studies of the ISCS/IDCS clusters paint a similar picture. Looking at
visually-classified early-type galaxies, Wagner et al. [522] observed significant residual star
formation at z ∼ 1.5, which declined by z ∼ 1.25. Using deep Herschel/PACS imaging of 11
ISCS/IDCS clusters over 1 < z < 1.75, Alberts et al. [523] established that this transition
holds at the bright end. Figure 9 (panels a–c) shows again that the fSF and average SSFR of
PACS-detected cluster (U)LIRGs are independent of environment at z > 1.4, though the
uncertainties and use of projected radii could hide a weak trend. Stacking on mass-limited
cluster member catalogs on PACS images confirms no radial dependence at z > 1.4 (panel
d). The average SFR is likewise independent of environment at all redshifts probed, giving
no indication that slow quenching has had time to act (panel c). Accounting for the IR
luminous population (log LIR/L� ≥ 11.7) only, the halo mass-normalized total SF draws
even with the field at these redshifts (Figure 7), though with significant cluster-to-cluster
variation even at fixed halo mass [175,523] that spans the range of suggested redshift trends
∼ (1 + z)5−7. An analysis of SCUBA-2 850 µm sources in 8 X-ray selected clusters at higher
mass (log M200/M� & 14.5) likewise shows large scatter at the same epoch [524]. Weak
excesses in the SFR at high redshift (z > 1.4) or in 10.1 < log M?/M� < 10.8 galaxies
(Figure 9, panel b) in the ISCS/IDCS cluster cores may support a reversal; however, this
sample is not large enough to split by redshift and stellar mass simultaneously.
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Figure 9. Star formation properties of ISCS/IDCS cluster galaxies at z > 1 as a function of projected,
cluster-centric radius. (a) The star-forming fraction for MIPS- [175] and PACS-detected [523] popula-
tions. By z ∼ 1.4, fSF is flat or even rising into the cluster cores. (b) The field-normalized SSFRs, where
the field is taken from the largest radial bin. Light and dark gray hexagons show the PACS-detected
sample divided into log M?/M� = 10.1–10.8 and log M?/M� > 10.8 bins, respectively, instead of
redshift. The lower mass bin shows evidence of a rise in SSFR into the cores. (c) The average SFR of
the PACS-detected sample, which show no radial trends. (d) Mass-limited cluster members stacked
on PACS 100 µm imaging. No radial trend is evident at z > 1.4, while a strong radial trend appears
by z ∼ 1.2.

An important consideration in redshift evolution studies is whether one is work-
ing with progenitor samples, at fixed halo mass, or with no halo mass accounting. The
ISCS/IDCS studies just discussed are at roughly fixed halo mass; the full ISCS catalog has
roughly log M200/M� ∼ 13.8 over 0.3 < z < 1.5 while the targeted ISCS/IDCS clusters at
1 < z < 1.75 are more massive at log M200/M� ∼ 14.3–14.7. The wide redshift baseline
studies of both the full catalog and targeted clusters reveal that the ISCS clusters are under-
going a transition at roughly z ∼ 1.4 at approximately fixed halo mass, above which quenching
is inefficient and a true SFR-density reversal is possible, suggesting the quenching ramp
up is not solely a function of halo collapse or growth. On the other hand, a comparison of
the halo mass-normalized SFR budget (Figure 7) demonstrates a dependence of the bulk
star formation properties on halo mass. As we have seen that ΣSFR/Mhalo is inversely
correlated with halo mass (Figure 7; see [467]), we can speculate that this transition will
be earlier (later) for higher (lower) mass halos. The redshift bins in the ISCS targeted and
full catalog studies, however, prevent a direct comparison and this type of analysis has
not been done in any progenitor samples. A transition scenario, however, mirrors NIR
studies of environmental quenching efficiency, which see a drop at 1.4 < z < 1.65 ([416],
see Section 4).

So has a true reversal in the SFR-density relation been observed? Both NIR and
M/FIR studies have found that the local SFR-density relation is significantly weakened,
or even negligible, at z ∼ 1.4–1.6 in samples of massive clusters, though with significant
scatter likely including an order of magnitude intrinsic variation in the total SF at relatively
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fixed cluster properties (selection, halo mass, epoch; Figure 7). Evidence for an excess of
(obscured) SF in the cluster environment is more tenuous, owing to small samples and
large uncertainties that preclude, i.e., the ability to separately account for stellar mass and
environment over the relevant redshift range. Compelling evidence for a reversal has been
recently provided, however, by both local environment studies and simulations. Lemaux
et al. [525] examined the SFR-density relation over z ∼ 2–5 in spectroscopic samples divided
by local density from the VIMOS Ultra Deep Survey (VUDS; [526]). Probing up to proto-
cluster core densities (including the area containing the Hyperion supercluster; [527]), they
found a significant trend of increasing SFR (derived from UV-NIR SED) with increasing
local density at z & 3, driven mostly by an excess of log M?/M� & 10 galaxies in overdense
regions. The trend was still significantly detected, however, when stellar mass differences
across density bins were accounted for, signaling a true SFR-density reversal (but see [528],
for a conflicting result using an overlapping dataset). While a flattening, not a reversal,
was observed at z ∼ 2–3, the VUDS spectroscopic sample lacks DSFGs, which dominate
the total star formation during this epoch, and so the onset of this reversal remains an
open question. On the simulation front, Hwang et al. [529] used the IllustrisTNG [372]
cosmological hydrodynamic simulation to study the SFR-density relation over 0 < z < 2
from the cluster (log Mhalo/M� ∼ 14 at z ∼ 1.5) to the field environment (see also [21,530]).
A true reversal was observed in all intermediate- to high-density bins, with excess star
formation in intermediate-density (group) environments at z & 1 and in clusters from
z & 1.5 (see also [531]). This simulated reversal holds at fixed stellar mass, indicating it
is environment driven. Conversely, the (simulated) molecular gas mass always decreases
with increasing local density, suggesting that mechanisms that accelerate the consumption
of gas may drive the steep evolution in the star formation in clusters.

5.2.3. Summary

To summarize these two sections on galaxy clusters, obscured SFGs in galaxy clusters
at z < 1 provide evidence for a mix of slow and rapid environmental quenching in the
suppression of their (S)SFRs and fSF. These effects depend on cluster-centric radius (or
location in phase space) and halo mass, but in general widespread quenching of the
cluster SFG population persists to z ∼ 1. In the 1 < z < 2 era, however, the SFR-density
relation is observed to weaken in some cluster samples, though quenched clusters are
also observed throughout this epoch, signaling a large intrinsic cluster-to-cluster variation
(often compounded by non-intrinsic variation caused by inhomogeneous datasets and
techniques). At these redshifts, evolutionary trends of the total SFR normalized by halo
mass with redshift start to diverge and there are indications of an accelerated evolution
compared to the field (Figure 7); however, limited cluster samples with IR data that cover
a range in redshift limit our ability to robustly pin down the redshift evolution for the
dusty populations that make up the bulk of the total SFR. Evidence for a true reversal of
the SFR-density relation is likewise tenuous at best, though it is supported by simulations.
Nevertheless, in good agreement with NIR studies that see a drop in the EQE at z ∼ 1.5
(Section 4), M/FIR studies of cluster samples over a similar redshift range find field-like
star formation activity at this epoch, necessitating rapid quenching of their populations by
z ∼ 1. This indicates that the dominant quenching mechanism(s) likely evolve over cosmic
time (see Section 8).

5.3. High Redshift (z > 2): The Realm of Proto-Clusters

Now we move into the realm of infrared studies of proto-clusters. In Section 3.3, we
discussed the evidence for luminous DSFGs (often synonymous with SMGs) as signposts of
early massive halos, potentially proto-clusters in the phase of vigorous star formation that
builds up massive cluster ellipticals (e.g., [532]). Significant DSFG overdensities have been
identified in over 20 individual proto-clusters (confirmed and candidates) from z ∼ 2–7
(Table 3) and wide, shallow submm surveys are a promising source of new proto-cluster
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candidates. In this section, we examine the nature of (obscured) star formation in proto-
clusters (see Overzier [33] for a general proto-cluster review).

5.3.1. The Nature of (Obscured) Star Formation in Proto-clusters

Proto-clusters subtend large areas on the sky (>10′; [21,70,248,278]) and correspond-
ingly fill large cosmic volumes (103−4 cMpc3), theoretically existing at the nodes of filaments.
Recent semi-analytic modeling from Chiang et al. [21] provides a rough framework for
how star formation may proceed in these early environments: at z ∼ 10→ 5, proto-clusters
experience inside-out growth, establishing a core as the primary halo(s) reach 1012 M�
by z ∼ 5, the halo mass at which star formation efficiency (SFE) peaks (see Wechsler and
Tinker [533] for a review). This is followed by a period of more spatially extended star
formation over the full proto-cluster volume, as secondary halos grow to peak SFE. High
SFRs are enabled in this environment (∼1000 M� yr−1), building ∼65% of the stellar mass
in z = 0 massive clusters [21]. The epoch of z ∼ 1.5 → 0 then sees the final transition to
collapsed clusters and widespread quenching, roughly consistent with the observational
literature presented in previous sections.

Testing this framework has made slow progress due to the large areas and high
redshifts involved. For DSFGs, wide-field surveys with single-dish submm telescopes
and/or Herschel have paved the way for targeted follow-up with ALMA and spectroscopic
campaigns. FIR or submm spectroscopy is often necessary to confirm the most dusty
sources (e.g., [534,535]). Early work associated single or a few extreme DSFGs with galaxy
overdensities at z ∼ 4–5 such as GN20 [534,536,537]; HDF850.1 [535]; AzTEC-3 [538]; and
CRLE [539]. Subsequently, DSFGs have been both associated with known proto-clusters and
used directly in proto-cluster identification when detected in large numbers (>5) over an
appropriate area (Section 3.3). As an example of the former, a correlation between Lyman-
α Emitters (LAEs) and red SMGs has tentatively been detected in an LAE overdensity
at z = 5.692 [312]. Furthermore, for the latter, spectroscopic follow-up of SPT-2349-56
confirmed 14 DSFGs at z = 4.3 using [CII] and CO emission lines, with a combined SFR
of 6000 ± 600 M� yr−1 [262]. Ten of these DSFGs occupy a region with a 19′′ (130 kpc)
diameter, signaling a core in the process of rapid assembly, which will likely collapse to
form the BCG. Single-dish submm and wider ALMA observations suggest a surrounding
extended structure [313], consistent with our nominal theoretical framework.

Teasing out the detailed nature of these DSFG overdensities requires high-resolution
follow-up. Figure 10 illustrates the power of ALMA in characterizing these proto-cluster
cores as well as the difficulties in characterizing the full structure. The Distant Red Core
(DRC; [324,325,328]) was targeted as the brightest source (A/B) in an overdensity of
LABOCA 870 µm sources. Moving from 27′′ to ∼1.5′′ resolution reveals the extended
LABOCA emission to be comprised of 11 blended DSFGs, 10 of which form a proto-cluster
core at z = 4.001 (see also SSA22; [341]). Occupying an area of 260 kpc × 310 kpc, these
DSFG have a combined SFR ∼ 6500 M� yr−1, with the majority of this provided by
just three members. Furthermore, imaging at 0.12′′ resolution reveals that even these
galaxies may be blends; DR-1 is comprised of three clumps with extreme SFR densities of
∼800–2000 M� yr−1 kpc−2. Expanded follow-up of the full structure could recover up to
14,400 M� yr−1 if all LABOCA sources are associated with the proto-cluster. Interestingly,
MUSE30 observations of the central 1′ × 1′ area found an associated Lyman α blob but
no LAEs; it is unclear if this is due to, i.e., suppression of Lyα in proto-cluster cores [541]
or a dearth of unobscured SFGs. As an example with wider coverage, the core of SSA22
(z = 3.01) hosts an overdensity of DSFGs, at the node of 30 Mpc-scale filaments traced by
LAEs in narrow band imaging (e.g., [310,542]). Again, this appears consistent with our
theoretical framework, but these studies also serve to emphasize that the available current
rich datasets still give an incomplete view.
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Figure 10. The Distant Red Core, a proto-cluster at z = 4.002. (left) The 870 µm LABOCA map
(smoothed to a resolution of 27′′) reveals 8 sources, an overdensity relative to field submm number
counts (e.g., [543]). (middle) ALMA 2 mm continuum map of LABOCA sources A and B, which
resolves into 11 discrete sources, 10 of which are in the proto-cluster. Orange and green contours
show radio continuum from ATCA and JVLA, respectively. (right) A high-resolution (0.12′′) ALMA
870 µm map of source DRC-1, which resolves further into three star-forming clumps. Figure adapted
from Figure 1 in Oteo et al. [328], reproduced by permission of the ©AAS.

Large surveys over areas of the expected size of proto-clusters (∼10′) have been
conducted in a few fields with good spectroscopic coverage. This has yielded proto-clusters
with total SFRs of∼1500–6500 M� yr−1 at z ∼ 2–4, with∼ 4–14 spectroscopically-confirmed
DSFGs per structure (Table 3; e.g., [277,278,326,328,330]). Importantly, these total SFRs
are formally lower limits due to spectroscopic incompleteness in lower luminosity SFGs.
Individually, the DSFGs are forming stars at hundreds to thousands of solar masses per
year. Despite this, DSFGs in proto-clusters largely lie on the field MS at z ∼ 2 [311,330,346]
and z ∼ 4 [325], with few examples of true starbursts (4× above the MS).

Ideally, we would like to understand this activity in the context of a proto-cluster’s
current structure and its evolution to z ∼ 0; however, this is a challenging task. As described
in Long et al. [325], halo masses of proto-clusters are estimated using various methods
based on summing the halos of individual members using halo abundance matching [544].
This includes a host of uncertainties; for example, understanding the bias of the population
being observed, double counting halos due to overlap, and corrections for spatial and/or
spectral incompleteness. Some attempts that have been made in the literature for dusty
proto-clusters are listed in Table 3 and in Figure 7, we show the halo mass-normalized
total SFRs in comparison with lower redshift clusters. The dusty proto-clusters largely
favor the steepest trend in ΣSFR/Mhalo of (1 + z)7 (see discussion in Sections 5.1 and 5.2);
however, are these proto-clusters representative? Given a halo mass and redshift, the final
z = 0 halo mass of a proto-cluster can be estimated from simulations (albeit subject to the
uncertainties outlined above as well as uncertainties from intrinsic scatter in proto-cluster
properties and the simulation assumptions; e.g., [70,248,433,454,545]). Following Chiang
et al. [70], most of the proto-clusters with infrared observations discussed here will evolve
into Coma-like structures with log Mz=0

200 /M� & 15. It remains to be shown whether lower
mass proto-clusters with DSFG overdensities are common and also favor a steep rise in the
halo mass-normalized total SFR.

An alternative measure of star formation activity that has become common in the
literature is to estimate the SFR density compared to that of the field. This has been done in
an inhomogeneous way, however, with some studies adopting the survey area to estimate
the proto-cluster volume (e.g., [278]) and others adopting a smaller effective area around
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the main DSFG overdensity (Table 3). We will refer to the latter as proto-cluster “cores”,
given that the volumes estimated are much smaller than the predicted total volume [21,70]
and likely only represent the primary halo. In Figure 11, we compile the SFRDs of the proto-
clusters (shown as lower limits due to spec-z incompleteness) and proto-cluster “cores”
listed in Table 3. The volumes used have been converted to comoving where necessary for
a fair comparison to the field SFRD, which is dominated by halos that have not detached
from the Hubble flow.

Figure 11. The SFRD of proto-clusters and proto-cluster cores with DSFG overdensities at z ∼ 2–7
(Table 3) in comparison with the field [142]. Most of these proto-clusters will have a z = 0 halo
mass comparable to the Coma Supercluster (log Mz=0

200 /M� & 15). Caution: the volumes assumed
are highly uncertain and inhomogeneously derived; a robust analysis requires more uniform
volume definitions be adopted in the literature. The total SFRs are also often underestimated
due to membership/spectroscopic incompleteness. For comparison, we show the projected SFRD
for proto-clusters with a z = 0 halo mass of log M200/M� ∼ 14.3 from [21] (red dotted line). Coma
progenitors sit above the field but as lower limits, a comparison to theory is limited. Proto-cluster
cores, however, are up to a few orders of magnitude in excess of the field when considering the
central DSFG overdensity. See Table 3 for the relevant references.

In addition to the observations, we include the theoretical SFRD predicted for a log
Mz=0

200 /M� ∼ 14.3 halo from Chiang et al. [21] (dashed red line), perhaps representing more
typical proto-clusters to our Coma progenitors. The dusty proto-cluster SFRDs largely sit
above the coeval field relation in Figure 11 but being lower limits, we are prevented from
a meaningful comparison with the simulated lower mass halo. The proto-cluster “cores”
largely sit 1–2 orders of magnitude above the proto-clusters, though their specific relative
positions are likely inaccurate due to inhomogeneous definitions of effective area and again
spectroscopic incompleteness (or uncertain or no background subtraction when spec-zs
are unavailable). High-density central halos appear to persist to z ∼ 7 [343]. Deriving
a robust, comparable measure of proto-cluster volume and improving spectroscopic (or
narrow band imaging) coverage would allow us to assess the star formation in these central
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halos relative to the extended proto-cluster structure. This would be a compelling tool in
constraining the build-up of stellar mass in proto-clusters.

5.3.2. Placing Dusty Proto-Clusters in Context: A More Ubiquitous or Atypical Phase?

As discussed in the previous section, the DSFG-rich proto-clusters most well studied
to date likely inhabit the most massive halos in their respective epochs, with projected
masses at z ∼ 0 comparable to the Coma Supercluster. Placing these dusty proto-clusters
into the broader context of all proto-clusters and ultimately structure growth is complicated
by several factors. Primarily, we are limited by our ability to spectroscopically confirm
the rising number of DSFG-rich proto-cluster candidates from shallow, wide field surveys
(Section 3.3.2). Similarly, not all known proto-clusters have the infrared data necessary to
identify or rule out a DSFG population.

Despite these limitations, we can consider what the nature of DSFGs themselves
tells us about the prevalence of DSFG-rich proto-clusters. As alluded to in Section 3.3.1,
the typical lifetimes of rare sources provide key constraints. In the field, DSFGs are
thought to be a phase of short (10–150 Myr) bursty star formation, triggered by gas-
rich mergers/interactions or disk instabilities, and regulated by the resulting feedback
(e.g., [546,547]). However, steady gas infall may prolong this phase, sustaining high SFRs
for almost a gigayear (e.g., [548]). As discussed earlier, DSFG-rich proto-clusters may be
preferentially located at the nodes of massive filaments, which are predicted to contain
∼60% of all gas at z ∼ 3 [549]. An example of this might be the DSFG-rich proto-clusters
PCL1002 (z ∼ 2.5; [72,277,278,303,308,346]) and a secondary structure containing DSFGs
at z = 2.51 (CL J1001+022031; [71,72,301,309]), which are part of the proto-super cluster
“Hyperion” [527], a structure containing seven high-density peaks connected by filaments.
Recently, Umehata et al. [550] directly traced such filaments via Lyα emission in the inter-
galactic medium of SSA22, finding that SMGs and AGN were coincident with the gas in
both projected and velocity space (Figure 12). These filaments, which connect the DSFGs
and AGN in SSA22 over large scales, may be capable of funneling gas into these active
galaxies, prolonging their lifetimes. Direct evidence in support of such inflowing gas into
massive halos was presented in Daddi et al. [551], which analyzed three Lyα filaments
leading into the center of mass of a DSFG-rich group at z = 2.91. Definitively identifying
inflows is difficult, however (see the discussion in [551]). Likewise, filamentary structures
have only been mapped in a few systems, and as such we can not yet rule out DSFGs
outside these concentrated nodes or determine the importance of filaments in extending
DSFG activity. See Section 6.2.4 for further discussion of submm observations of molecular
gas in proto-cluster galaxies relative to filaments.

In favor of shorter lifetimes, molecular gas studies of proto-cluster DSFGs (see Section 6.2.4)
point to short gas depletion timescales32 (.200–500 Myr; [328,330,346], but see 337) and
therefore rapid quenching in the absence of new (cold) gas accretion and/or gas recycling
(e.g., [76,552,553]). Sustained gas accretion (via filaments or otherwise) is at odds with
models that project z ∼ 2 massive halos enter a shock-heated regime at & 1012 M� [444],
which throttles fresh gas accretion via starvation (but see the work by Daddi et al. [551]
on gas inflows into massive halos discussed in the previous paragraph). Even at its high
redshift, the mass of the DRC puts it in a “cold in hot” regime (see Figure 9 in [325], as well
as Figure 19 in [330] for more examples) where cold gas streams established prior to virial
shock heating would need to penetrate an otherwise hot halo ([444,554], and references
therein). Consistent with this picture, [CI] and CO mapping of the molecular gas halo
around the Spiderweb Galaxy (central to the Spiderweb proto-cluster) support growth via
recycled gas rather than pristine gas inflows [306]. This would seem to favor DSFGs as a
short-lived phase.
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Figure 12. (A) Velocity map of Lyα emission from MUSE. Contours show Lyα surface brightness
greater than 0.3× 10−18 erg s−1 cm−2. Circles (squares) indicate the positions of SMGs (X-ray AGN).
(B) The Lyα filaments in three-dimensions. Blue and magenta denote SN > 2 and >5 voxels. The
locations of SMGs, AGN-host SMGs, and X-ray AGN are shown in orange circles, red diamonds, and
brown hexagons. The DSFGs and AGN are cospatial with the Lyα filaments on megaparsec scales.
Figure reproduced from Figure 3 in Umehata et al. [550] and reprinted with permission from ©AAAS.

As discussed extensively in Casey [278], statistical arguments and predictions can be
made for both possibilities. As mentioned in Section 3.3.1, they found the volume density
of DSFG-rich proto-clusters to be consistent with the population of low-redshift, massive
(>1015 M�) clusters, albeit with large uncertainties. If accurate, and assuming a long
lifetime due to cold gas accretion, they predict that most proto-clusters should be observed
in a DSFG-rich phase33. Conversely, they estimated that 20–40% of proto-clusters should be
observed in a DSFG-rich phase in a short lifetime scenario, assuming a 100 Myr lifetime and
4–8 bursts of 5–10 DSFGs to build the 40± 10 log M?/M� ∼ 11 cluster galaxies observed
at z ∼ 1 [388]. An interesting question posed by Casey [278] is whether, in the scenario
of observing >5 short-lived DSFG simultaneously, a common triggering mechanism is
required. Hypothetically, star formation triggering on large scales could be facilitated by
filaments [550] or by optimal conditions for mergers and interactions [341]; however, both
the ability of these processes to trigger star formation (Section 8.3.2) and the nature of
DSFGs in proto-clusters need further investigation.

Are DSFGs (observationally) ubiquitous in proto-clusters given our current datasets?
Recently, McConachie et al. [297] identified two proto-clusters at z ∼ 3 as overdensities
associated with UMGs (see Section 3.3.1) in a survey covering 0.84 deg2. Using UVJ color
selection to separate star-forming and quiescent galaxies, they established an elevated
quenched fraction over the field for log M?/M� > 11 galaxies (see also [320,528,555]),
suggesting (in the absence of submm data) that these proto-clusters are being observed post-
or in between bursts, given that the UMG was likely assembled in a dusty star-forming
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phase [298,299]. On the other hand, non-detections in ALMA established significant gas-
poor, massive galaxy populations in two proto-clusters with DSFG overdensities (COSMOS
and PCL1002, Table 3, [346]). Along with the vigorous dusty star formation, these proto-
clusters have an EQE of ∼0.45 (Figure 6 [right]), comparable to clusters at lower redshift.
Understanding the universality of the DSFG-rich phase in proto-clusters will require large,
unbiased proto-cluster surveys combined with improved sensitivity, resolution, and wide-
field capabilities in the submm (such as with LMT/TolTEC, see Section 9).

5.4. Obscured AGN in Clusters

Supermassive black holes are thought to be ubiquitous in massive galaxies, and in
their actively accreting phase (termed Active Galactic Nuclei or AGN) may play a crucial
role in the regulation of galaxy growth via feedback [59,556]. In overdense environments,
AGN may influence both (proto-)cluster galaxy evolution and the halo ecosystem through
injection of energy into the ICM [557]. Hyper-luminous, heavily obscured AGN may also
serve as signposts for proto-clusters, as discussed in Section 3.3.1.

The current literature on AGN in (proto-)clusters has established a deficit of lumi-
nous AGN in local and low-redshift clusters relative to the field (i.e., [558–560]). The
fraction of AGN in clusters rises rapidly with redshift, however, reaching field levels by
z ∼ 1–2 [523,561–565]. In fact, there is some evidence that AGN fractions may even be
enhanced in high-redshift clusters [523,562] and in proto-clusters ([316,323,566–568], but
see [569]). This suggests an important role for AGN in overdense environments, how-
ever, our current picture is hindered by both the current unclear nature of the relationship
between AGN and galaxy growth [570,571] and our ability to account for all AGN in a
given population.

AGN are notoriously difficult to survey in a complete manner; they can be identified
by their emission in the X-ray through the radio, though no one single wavelength selection
returns a full census of AGN (e.g., [572–574]). By far the most elusive AGN population
is that of heavily dust-obscured and Compton-thick (CT) AGN. These AGN can be so
deeply embedded in dust (columns of NH & 1024 cm−2) that they can be missed even
in the hard X-ray bands. Their emission, however, cannot help but escape in the mid-
infrared. With current capabilities, the luminous end of this population has been identified
using infrared colors via Spitzer (e.g., [575,576]) and WISE [577] or through SED fitting of
the optical-infrared (e.g., [144,199,523,574,578,579]). These techniques have not captured
the faint end of the population, however, and estimates based on local samples poorly
constrain the percentage of heavily obscured AGN at 10–50% of the total AGN population
(e.g., [580–583]). For a recent review of what we know about heavily obscured AGN, see
Lyu and Rieke [60] in this special issue.

Few cluster studies have examined MIR AGN. Using WISE color selection, Mishra
and Dai [584] confirmed a lower fraction of MIR AGN in clusters than in the field at
low redshift, in good agreement with AGN studies in other wavelength regimes. The
clustering of MIR AGN is likewise known to be weak relative to X-ray and radio AGN
at low redshift (z < 0.8; [585]), but rises rapidly to z ∼ 2, suggesting that MIR AGN are
increasingly associated with high-z clusters [586,587]. The fraction of color-selected MIR
AGN in the ISCS cluster sample was found to rise to field levels by z ∼ 1–1.5 [561,564].
Alberts et al. [523] expanded this analysis using SED fitting to classify galaxies as AGN
or host-dominated as a function of cluster-centric radius, finding at z > 1 an excess of
AGN-dominated galaxies in the cluster cores relative to the field drawn at R ∼ 3Rvir. This
suggests triggering of AGN in the cluster environment, possibly through increased merger
activity. This connection has not been established however, as the relationship between
AGN and mergers in the field is still unclear at high redshift (e.g., [95]), despite compelling
evidence in the local Universe (e.g., [588–592]). It is important to note that mergers may
be preferentially associated with the obscured AGN phase (e.g., [593–596]) and so our
understanding in both the field and in clusters will likely undergo a dramatic shift with
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upcoming surveys by JWST, which can robustly identify obscured AGN to low luminosities
(e.g., [144]).

6. The Far-Infrared to Submillimeter: Dust and Gas Measurements

While our previous sections have primarily focused on the consequences of envi-
ronmental quenching—as observed through changes to the stellar populations and star
formation rates at near-IR and mid-IR wavelengths—we now shift our focus to the un-
derlying cause for these changes, namely the role of the cold molecular phase of gas in
cluster galaxies. As discussed in Section 1.2, cold H2 cannot be observed directly and there-
fore 12CO rotational transitions and dust continuum emission, observed at FIR-to-submm
wavelengths, are instead used as proxies. This important gas phase provides the direct
fuel for star formation and is linked to the evolution of the cosmic SFRD (i.e., [142]), with
the cosmic molecular gas density mirroring the shape of the SFRD, peaking at z = 1–3
and declining by almost an order of magnitude to the present day (e.g., [147,597,598]).
This strongly suggests that molecular gas is fundamental to the process of quenching and
therefore a key component in investigating the link between quenching and environment.
However, whether the molecular gas in galaxies is affected by the cluster environment has
long been debated.

In this section, we discuss the progress that has been made over the last 40 years on
quantifying the (molecular) gas content in cluster galaxies. As context for these studies,
we start by briefly reviewing the state of gas scaling relations in the field and the major
techniques and uncertainties in molecular gas analysis. In Section 6.2, we cover gas mea-
surements from low-z clusters to z > 2 proto-clusters. We start from a historical perspective:
early integrated CO studies in cluster galaxies suggested that the dense molecular gas
phase was impenetrable to environmental effects. More recent work, however, using the
revolutionary capabilities of ALMA, NOEMA, and the JVLA over a wider range of red-
shifts, cluster environments, and gas proxies has shown a broader spread of behaviors,
from depleted to enhanced molecular gas contents. Finally, we end with a discussion of
spatially-resolved gas studies, which have the potential to provide the greatest insight
into quenching mechanisms. In low-redshift cluster galaxies, environmental effects on
the molecular gas have become evident through perturbed and asymmetric gas features,
but spatially-resolved molecular gas studies are still few and far between beyond the
local Universe.

6.1. Gas Scaling Relations

The cold interstellar medium, as observed through dust and molecular gas, has
emerged as a primary focus of galaxy evolution studies. Before we jump into environmental
effects, however, we first briefly review efforts using field galaxies to quantify the global
correlations between SFR and molecular gas content, both of which have been shown to
be redshift- and mass-dependent (e.g., [76,599–603]). There has been considerable effort
in trying to understand the origin and evolution of the star-forming MS, in particular
through the “bathtub" equilibrium model (e.g., [75,604]), where gas content is regulated
through inflows, outflows, and star formation. For example, the tightness of the MS can
be attributed to variations in the molecular gas content and the SFE (or its inverse, the
gas depletion timescale, tdepl = Mgas/SFR). In other words, a galaxy’s SFR offset from the
MS correlates with these quantities, with galaxies above the MS having shorter depletion
timescales and higher molecular gas-to-stellar mass ratios [605,606].

At low redshift, the global scaling relations34 between star formation and the cold
molecular gas content are primarily due to large-scale efforts to measure these properties
over a wide dynamic range within a homogeneous, unbiased sample of galaxies. The IRAM
30-m telescope35 has been critical in this effort through mass-selected surveys such as the
CO Legacy Database for GASS (COLD GASS; [611]) and its extension, xCOLD GASS, [606],
with CO (1− 0) observations of ∼500 galaxies down to M? > 109 M� in the local Universe
(see also [78], for a tabulated list of field surveys using CO and dust continuum).
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At higher redshifts (typically z > 0.5), increased sensitivity and resolution are paramount,
and therefore more distant surveys require the use of interferometers, such as PdBI,
NOEMA, and ALMA. The Plateau de Bure High-z Blue Sequence Surveys (PHIBSS1 and
2; [612,613]) represent the largest pointed CO surveys in the distant Universe, consisting of
∼130 SFGs (SFR > 30 M� yr−1) with CO (2− 1) or CO (3− 2) detections in three distinct
redshift slices over 0.5 < z < 2.5. Averaging on-source integration times of 25 and 12 h,
respectively, [78], PHIBSS1 and 2 targeted sources on or above the MS in order to ensure a
high probability of a CO detection, and thus have a slight bias against sub-MS galaxies with
potentially lower CO luminosities. Moreover, ALMA observations of the Rayleigh–Jeans
dust continuum emission (λ ∼ 1 mm) exist for∼600 galaxies in the COSMOS field, selected
from 24 µm and Herschel priors, with a similar bias toward more massive and IR-bright
SFGs [148]. Nevertheless, these surveys, along with a host of supplementary CO and dust
continuum samples, have provided the best means to empirically extend the integrated
molecular gas scaling relations to z ∼ 3 using hundreds of galaxies ([147,148,602,603], and
references therein). This has yielded functional forms for both the molecular gas-to-stellar
mass ratio and molecular gas depletion timescale in terms of the products of power laws
with three separable variables: redshift, stellar mass, and offset from the MS. The out-
come of these scaling relations has revealed that the depletion timescale and molecular
gas-to-stellar mass ratio vary slowly and steeply with redshift, respectively, as well as
strong dependencies for both with location on the star-forming MS plane [78,614]. Despite
this progress, there remain gaps in our understanding due to observational limitations
(e.g., sample incompleteness at low SFR and stellar mass) and uncertainties associated with
the H2 proxies used to measure the gas mass. We discuss the latter briefly below.

6.1.1. Caveats for Molecular Gas Mass Measurements

The exploitation of CO transitions and dust continuum observations has paved the
way for molecular gas studies, but not without several limitations and assumptions. The
derivation of a total molecular gas mass from either the CO line luminosity or dust mass de-
pends on various parameters, namely the CO excitation and the CO-to-H2 conversion factor
(αCO) for the former, and the mass-weighted dust temperature (Tdust,mw),36 the dust opac-
ity, and the dust-to-gas ratio for the latter. A detailed discussion of the assumptions used
to estimate these parameters can be found in Bolatto et al. [615], Carilli and Walter [146],
Genzel et al. [602] and Scoville et al. [148]; here we summarize the main caveats and
current outlook.

As briefly introduced in Section 1.2.3, carbon monoxide is the second most abundant
molecule in the ISM, with a ratio of one CO molecule to every ∼10,000 hydrogen molecules.
Given its low excitation potential, which primarily occurs through collisions with H2, it is
easily observed from ground-based facilities, thus making it a convenient molecular gas
tracer. The global CO excitation produces a ladder of populated energy levels, with the
relative strengths of the observed rotational transitions quantified in CO spectral line en-
ergy distributions (SLEDs). The SLED is dependent on gas properties such as temperature
and critical density, with higher rotational transitions tracing denser molecular gas. In
the case of thermalized excitation, the CO line luminosity is constant for all energy levels;
however, in the more likely case of subthermalized excitation, a correction is required to
account for the conversion of a Jupper > 1 line intensity to the ground state in order to
infer a total gas mass. This is typically expressed as a CO line brightness temperature
(e.g., rJ1 = L′CO(J−(J−1))/L′CO(1−0)). There are large uncertainties associated with excitation
corrections, particularly as the rotational number J increases, with the exact SLED shape
strongly dependent on the galaxy type and gas excitation properties (see detailed discus-
sions in [146,615,616]). Indeed, beyond the local Universe, most surveys rely on these
mid-to-higher order CO rotational transitions, due to their frequency and brighter flux at a
given redshift (∝ ν2), and thus suffer from potentially large systematic uncertainties when
estimating the ground-state emission from higher excitation lines.
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An even greater source of uncertainty arises from the conversion of the CO luminosity
into a molecular gas mass, known as αCO, where Mmol = αCOLCO. This factor depends
on a host of ISM conditions, such as the gas density, temperature, and velocity dispersion,
as well as a strong dependence on metallicity (e.g., [149]). In the Milky Way, αCO can be
determined directly through the virial mass technique with the observation of spatially-
resolved giant molecular clouds. By measuring their sizes and kinematics, and under the
common assumption that the CO (1− 0) line emission is optically thick, one can obtain
a relationship between CO luminosity and gas mass. This has yielded a Galactic value
of αCO = 4.3 (M� (K km s−1 pc−2)−1), with ∼0.1 dex uncertainty (see detailed review by
Bolatto et al. [615]).

Outside the local Universe, direct determination of αCO is challenging, and studies
typically rely on spectral line modeling of multiple transitions and isotopologues of CO
(such as 13CO, e.g., [617]) to determine gas conditions, or use optically-thin dust emission
to estimate a gas mass (see below). Therefore, it is common for the Galactic αCO to be
adopted for star-forming disk galaxies with approximately solar metallicity on the MS.
However, various factors could contribute to deviations from this value. For example,
galaxies with molecular gas at higher temperatures or with increased velocity dispersion
(e.g., due to turbulent motion, outflows, ram-pressure, mergers, starbursts) would require a
lower value of αCO as higher energy states are excited, yielding larger CO luminosities [618].
These factors will somewhat influence the αCO in high-metallicity galaxies, with a much
more dramatic influence on lower-metallicity galaxies, as less dust is available to shield
CO from photodissociating, necessitating a higher value for αCO [619]. Many studies
attempt to account for this with a metallicity-dependent correction, though often based
on a mass-metallicity relationship. Thus, measurements for αCO can vary from ∼1 to 4 to
12 (M� (K km s−1 pc−2)−1) for starbursts, Milky Way-like, and low-metallicity galaxies,
respectively, making direct comparisons of gas masses over heterogeneous samples difficult.

A comparatively inexpensive alternative to CO, submm continuum emission in the
optically-thin regime (λrest > 250 µm) is proportional to the total dust mass, which can
be related to the gas mass37 via a minimal number of parameters. The first, the mass-
weighted dust temperature, has an observed range of 15–30 K in local to high-redshift (MS
to starburst) field galaxies (e.g., [621]). While it can be robustly measured in individual
galaxies with adequate coverage of the FIR, studies are often working off of a single
continuum band, particularly beyond the low-redshift Universe. In these cases, it is
common to adopt a constant Tdust,mw = 25 K38 (e.g., [147]). This assumption was recently
tested in Dunne et al. [622], which found that, despite a significant correlation between LIR
and Tdust,mw, using a constant and individually-measured Tdust,mw produced consistent
results for massive, MS galaxies.

In addition to Tdust,mw, deriving a gas mass from Mdust requires the dust opacity (a
function of grain properties; [128]) and the dust-to-gas ratio (proportional to metallicity;
e.g., [621,623]), both of which are often unavailable. This has limited most studies to
massive, high-metallicity galaxies, for which the DGR can be reasonably assumed to be
in the range 100–150 (e.g., [621,623,624]). Dust opacity, on the other hand, is difficult to
measure outside the Milky Way and so, given that we expect reasonably small ranges for
Tdust,mw and the DGR, empirical calibrations between Ldust and Mgas have been derived
through comparisons with CO both locally and at high redshift [78,147,148,625,626], with
the uncertainties for CO-based gas masses described above. Using these calibrations, dust
continuum and CO- (and [CI]-)based gas masses are found to be in good agreement across
a range of redshift and luminosity (e.g., [78,622,627]), with dust-based gas masses having
modest systematics (secondary dependencies on, e.g., MHI/MH2 ratio, SFR) at the 20%
level [620,622]. We note that these calibrations should only be applied to the global submm
flux; Tdust,mw and the DGR ratio vary on smaller spatial scales [120,628].

Thus, while systematics remain in our gas measurements and we can expect our
calibrations to break down in the low-mass, low-metallicity regime, both CO and dust
provide robust, comparable gas tracers in the field. Whether this holds as a function of
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environment, however, is largely untested. Particularly at high redshift, it is unknown if
cluster galaxies have similar dust properties as their counterparts in the field. Likewise, we
can expect that environmental quenching processes effect both gas and dust and potentially
in different ways. Dust and molecular gas are often co-spatial, as H2 requires dust grain
surfaces to form [629,630]. However, ram pressure stripping, for example, could strip dust
and molecular gas at different rates, depending on their distribution within the disk [631].
In the other direction, preliminary studies suggest that RPS can also compress HI within
a galaxy, triggering the transformation to H2. The enhanced molecular gas fractions
(e.g., [632]) observed may require commensurate grain growth during this process [633].
Until we do a thorough, simultaneous study of CO and dust across environments, our
interpretation of gas masses will be limited.

6.2. Environmental Effects on the Galaxy-Integrated Molecular Gas Content
6.2.1. An Historical Perspective

Studies of environmental effects on the cold ISM of galaxies were pioneered at radio
wavelengths, focusing on atomic hydrogen (HI). This is the dominant gas component
of the ISM at low redshifts, often extending beyond the optical disk in typical galaxies
and therefore not as strongly bound to the gravitational potential well (e.g., [13,634]). The
resounding consensus from these studies was that cluster environments host a unique pop-
ulation of “anemic” or HI-deficient galaxies; this depletion of atomic hydrogen presented
the first observational signature of the removal of a galaxy’s ISM due to environmental
effects (e.g., [635–637]). As technological advances paved the way for shorter wavelength
observations in the infrared and submillimeter regimes, molecular gas studies within
clusters searched for similar environmental signs through CO emission lines. Although
molecular gas makes up a smaller budget of the ISM than HI in low-redshift disk galaxies,
it is more directly linked to the formation of stars (e.g., [638]) and therefore could be a more
straightforward probe into environmental quenching. However, it is also a denser phase of
gas and more tightly bound to the inner disk.

The Virgo cluster, nearby and containing a significant number of HI-deficient galaxies,
was the breeding ground for some of the first studies on environmental effects of molecular
gas. Following in the footsteps of atomic gas cluster studies, the molecular gas content
has often been analyzed within the context of the HI-deficient cluster galaxies. Initial
studies found this population to exhibit high molecular to atomic gas mass ratios and
contain typical (field-like) CO gas reservoirs [639–641], even after accounting for mass
and morphology dependencies [639] and probing to low luminosities [642]. Other cluster
studies followed suit, finding comparable CO gas contents in isolated field galaxies to those
associated with the rich Coma supercluster, where environmental effects might be more
extreme [643]. This was confirmed not only in FIR-selected galaxies, which could be biased
against low star formation rates [644], but also in optically-selected galaxies in both the
Coma [645] and Fornax [646]39 clusters. Conversely, after reanalyzing distances to Virgo
galaxies and comparing to a small field CO sample from Young et al. [647], Rengarajan
and Iyengar [648] concluded there was evidence for H2 deficiencies in the Kenney and
Young [639] cluster data, though the field galaxies were infrared-selected and thus favored
a more gas-rich population given the strong correlation between gas mass and infrared
luminosity [645]. Indeed, Fumagalli et al. [11] later quantified that the average infrared
luminosity of gas-deficient galaxies (defined as having both low HI and H2 contents)
was ∼2× lower than that of normal galaxies, signifying the importance of probing down
the luminosity function to the same flux completeness when comparing isolated and
cluster galaxies.

These initial studies were also plagued by a lack of large-field CO surveys, rendering
comparisons between cluster and isolated populations incomplete. In 1995, the Five
College Radio Astronomy Observatory Extragalactic CO Survey [649]40 presented one of
the first CO surveys that sampled ∼300 galaxies spanning a range of parameters (e.g.,
morphologies, optical sizes, environments), though the survey was not complete in a flux-
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limited sense [649] and favored FIR-bright (and thus CO-bright) galaxies [645,651]. Utilizing
this survey along with other nearby field galaxies from Sage [652], and compiling molecular
gas observations of cluster galaxies from the literature, Casoli et al. [651] investigated
statistical comparisons of environmental effects on molecular gas. They defined a CO
deficiency parameter normalized to the optical size of the galaxy and analogous to prior HI

studies. Even after attempting to account for non-detections of CO using a survival analysis,
they still found no evidence for significant CO deficiencies in nearby cluster cores. These
early results thus lead to the general interpretation that processes like strangulation and ram-
pressure stripping can effectively remove the atomic gas on relatively short timescales of∼a
few hundred Myr (e.g., [653,654]), while the denser, and often centrally peaked, molecular
gas [655] is left unaltered and shielded from hydrodynamical effects [639,649,650] over
∼Gyr periods, comparable to cluster crossing times (e.g., [639]).

6.2.2. Low-Redshift (z < 1) Cluster Trends

As sample sizes have increased and sensitivity limits have decreased, the picture has
now become more nuanced, with low-redshift cluster studies typically finding depleted
molecular gas reservoirs in cluster galaxies. Many of the aforementioned pioneering studies
suffered from small sample sizes, biased selections, heterogeneous data sets, and large
uncertainties on the total CO fluxes and gas masses (see also discussions in [11,13]). With
recent technological advances, there has been a resurgence of CO surveys over the last
∼15 years, allowing environmental comparison studies to partially mitigate some of these
issues in the nearby Universe. For example, Fumagalli et al. [11] attempted to homogenize
the recovered CO flux measurements in 47 nearby spiral galaxies within Virgo, Coma,
groups, and in the field, after finding a weak correlation between molecular and atomic gas
depletion in Virgo-only cluster galaxies [656]. They utilized the BIMA41 and Nobayama
CO [658] surveys, which had similar sensitivities and analysis techniques that yielded
estimated gas mass dispersions of <0.4 dex. Despite missing gas-poor galaxies due to
infrared selections, they detected a global depletion of molecular gas in a significant subset
of HI-deficient galaxies, and a notable lack of H2 deficiency in HI-normal galaxies; this
presented some of the first evidence for indirect environmental effects on the molecular gas
in cluster galaxies. A similar trend was observed in Abell 1367, part of the Coma Superclus-
ter, using 19 optically-selected spiral galaxies with CO (1− 0) and (2− 1) detections from
the IRAM 30-m telescope [659]. Classifying the galaxies according to their evolutionary
stage, with more evolved states defined as higher levels of HI deficiency and redder optical
colors [660], they found larger H2 deficiencies in spirals with more advanced evolutionary
states, in addition to a few abnormal gas morphologies (see also Section 6.3).

The launch of Herschel ushered in a number of dedicated surveys at far-infrared wave-
lengths, spanning galaxies over a wide range of environments, morphologies, and masses.
As in the pioneering molecular gas studies from the 1980s, the Virgo cluster has been a
ubiquitous target, for example, in both the Herschel Virgo Cluster Survey (HeViCS, [26])
and the volume-limited Herschel Reference Survey (HRS, [661]). Providing estimates of
obscured SFRs and dust masses, these surveys offered suitable samples for studying envi-
ronmental trends on dust and molecular gas in combination with new CO follow-up studies
and archival programs. With a magnitude-limited sample of 35 Virgo spiral galaxies from
HeViCS, Corbelli et al. [662] investigated correlations between stellar mass, HI, cold dust,
and molecular gas contents. They found that as HI deficiency increases, the dust-to-stellar
mass and molecular gas-to-stellar mass ratios decrease, while the dust-to-total gas and
molecular-to-total gas ratios increase, with a more pronounced correlation in the dust com-
ponent. This provides evidence that both dust and molecular gas can indeed be affected by
the cluster environment, but to a lesser extent than the HI gas, likely due to H2 being more
tightly confined in the central disk. Studies using the mass-selected HRS confirmed this
result and further differentiated Virgo cluster galaxies from a field sample selected with
similar criteria, totaling ∼200 galaxies for statistical comparisons. Homogenizing various
CO measurements and defining a control sample of field galaxies with low HI-deficiencies,
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Boselli et al. [663] found that HI-deficient cluster galaxies also have depleted molecular gas
contents for a given stellar mass, with the level of H2-deficiency weakly but significantly
increasing with HI-deficiency. Cortese et al. [631] similarly measured a notable depletion
of HI, H2, and dust contents in the Virgo cluster population. Each of these results was
robust to systematic uncertainties in the CO-to-H2 conversion factor (Section 6.1.1), using
both a constant and a luminosity- or metallicity-dependent αCO. Taken together, these
Virgo studies hint at a possible differential quenching or stripping efficiency of each ISM
component (see also [664]), from molecular gas to dust to atomic gas, likely due to their de-
creasing concentration within the disk (i.e., increasing scale length). This is consistent with
outside-in quenching, as expected from hydrodynamical mechanisms such as ram-pressure
stripping [631,663].

Recently, additional studies have attempted to holistically characterize the Virgo clus-
ter environment through phase-space diagrams, local galaxy density, and filament analyses,
out to large radial extents. Morokuma-Matsui et al. [665] used a mass-limited sample (log
M?/M� > 9) of ∼170 galaxies with CO-detections (or upper limits) from the literature,
with accompanying stellar mass and SFR estimates, in order to investigate molecular gas de-
ficiencies relative to isolated galaxies as a function of a variety of environmental definitions.
They found that not only do cluster galaxies have lower SFRs (as discussed extensively in
Section 5) and lower molecular gas fractions than field galaxies on average, but there is also
a radial/accretion history dependence when normalizing for stellar mass (see Figure 13).
Both quantities decrease and further deviate from the field quantities with decreasing
clustercentric radius, increasing projected local galaxy density, and earlier accretion epoch
as based on the position in the phase-space diagram, quantified as (r/r200) × (∆v/σv).
Moreover, they find the radial dependence transitions more sharply at ∼1.5R200, which
they interpret as a sign of possible ram-pressure stripping, given it occurs roughly where
they expect the boundary to exist between the recent infall and virialized populations.
The CO gas masses, SFRs, and stellar masses for Virgo galaxies that were assembled in
Morokuma-Matsui et al. [665], in addition to our own literature compilation of distant
clusters, are included in Figure 14, where we plot molecular gas mass and the gas fraction
offset from the scaling relations as a function of redshift.

c

r: 0.34 (p: 1.44E-05)r: 0.27 (p: 1.89E-03) r: 0.25 (p: 3.61E-03)

Figure 13. The radial trends of the molecular gas-to-stellar mass ratio (MH2 /M?) for Virgo cluster
galaxies, where Mstar-dependencies of field galaxies have been subtracted to expose field offset
quantities. The median values are plotted as large black circles, with individual points shown as
gray circles. The dashed line at zero represents the field value with 1σ uncertainties indicated by the
shaded gray region. The Spearman’s rank order correlation coefficient and corresponding p-value
are displayed in black text at the top of each panel. There is a trend toward larger offsets of molecular
gas-to-stellar mass ratio with decreasing clustercentric radius (left panel), as well as with other
environmental tracers, such as increasing projected local galaxy density (middle panel), and earlier
accretion epoch (right panel). Figure adapted from Figures 6–8 in Morokuma-Matsui et al. [665],
reproduced by permission of the ©AAS.
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Castignani et al. [666] further identified 245 galaxies within large-scale filamentary
structures in Virgo, presenting an intermediate environment to contrast to the isolated
field and denser core. They detect a significant fraction of gas-deficient (HI, H2, or both)
galaxies in filaments, and a steady decrease in SFRs and gas contents as galaxies progress
from the field to filaments to the cluster core (see also the similar monotonic decrease in the
fraction of SFGs in increasing density within the Coma cluster shown in Figure 1), while the
correlation is stronger for HI than the molecular gas, 84% of early-type galaxies, which tend
to live in the densest group-like filamentary regions, have depleted reservoirs, possibly
due to starvation and/or group preprocessing. Conversely, late-type galaxies within Virgo,
selected from the JCMT Nearby Galaxies Legacy Survey (NGLS; [667]), have higher H2
gas masses and longer depletion timescales than similarly-selected group galaxies on
average [668]; this result holds even when accounting for CO non-detections with upper
limits using a survival analysis. Given the lower HI-masses of the cluster galaxies, this
could imply a more efficient conversion of HI gas into H2 gas in rich clusters compared
to group environments (see also Section 6.2.3). It has also been suggested that disturbed
and non-virialized clusters similarly represent intermediate environments. For example,
galaxies within the nearby merging Antlia Cluster contain typical molecular gas reservoirs
for their mass and SFR, implying that the less-dense ICM in the disturbed cluster does not
significantly effect the molecular gas component [669].

The molecular gas content of galaxies as a function of environment has now been
investigated beyond the local Universe, both in the infall [457,670] and virialized [671,672]
regions of clusters out to z ∼ 0.5 with CO, and to z ∼ 0.7 [673] using dust continuum
(see also Section 6.2.3 and Section 6.2.4 for examples at z > 1). From Figure 14 (left panel)
it is apparent that galaxies in overdense environments follow the same general trend as
field galaxies: the molecular gas mass for MS galaxies rises with increasing redshift and
stellar mass. In detail, however, the picture is more complicated. Using a prescription for
αCO based on SFR, Castignani et al. [672] measured no effect on the molecular gas content
in 17 FIR-selected cluster LIRGs at z = 0.2− 0.6, while Jablonka et al. [671] concluded
that three z ∼ 0.4 cluster galaxies had a lower CO luminosity at fixed stellar mass or
infrared luminosity. However, these studies primarily focused on LIRGs above the star-
forming main-sequence to maximize CO detectability, and thus potentially suffer from
selection effects, such as Eddington and Malmquist biases [670]. The Spatially Extended
EDisCS Survey (SEEDisCS; [674,675]) instead targeted 49 star-forming galaxies on the
main-sequence (72% of the sample is within 0.3 dex) in two z ∼ 0.5 clusters within 5R200.
Matched in color, stellar mass, and redshift to PHIBSS2 field galaxies, the cluster sample
comprises a unique population of galaxies with low gas-to-stellar mass ratios that is absent
in the field comparison (see z ∼ 0.5 points in right panel of Figure 14); there is a slight
preference for this subset to be located along the cluster infall regions, again hinting at an
environmental dependence on molecular gas properties. Supporting this, Betti et al. [673]
stacked dust continuum measurements of mostly MS galaxies at z ∼ 0.7 as a function of
local environment in COSMOS, from which they derived low molecular gas content in
their intermediate and high galaxy density bins. Thus, at z . 0.7,42 environmental studies
seem to be converging on the idea that the integrated molecular gas content is on average
depleted compared to isolated field galaxies, though with some evidence for elevated gas
masses in Virgo spirals (e.g., [632,668]).
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Figure 14. (left) Molecular gas mass as a function of redshift for Virgo galaxies and other various
cluster samples. The lines represent the field-scaling relations at three different stellar masses, using
the formulations in Tacconi et al. [603]. There is a clear increase in gas mass with increasing redshift,
stellar mass, and offset from the star-forming Main Sequence, for both field and cluster galaxies.
(right) The molecular gas fraction offset of cluster galaxies from the field-scaling relations at a given
stellar mass, star formation rate, and redshift, for the same cluster galaxies in the left panel, while
low-redshift clusters display a mix of depleted and elevated gas fractions, z > 1 cluster galaxies are
preferentially elevated compared to the field with the exception of 2 galaxies at z ∼ 2 and stacked
averages at z ∼ 1.4 using dust continuum as a proxy for molecular gas (stars). The gray shaded region
represents the Tacconi et al. [603] field-scaling relations with an associated ±0.2 dex uncertainty.
Virgo sources compiled from Morokuma-Matsui et al. [665] and references therein. Other surveys
compiled from data in Chapman et al. [304], Gómez-Guijarro et al. [309], Tadaki et al. [337], Geach
et al. [457,601], Cybulski et al. [670], Castignani et al. [672], Betti et al. [673], Spérone-Longin et al.
[674,675], Noble et al. [676,677], Rudnick et al. [678], Hayashi et al. [679], Alberts et al. [680], Williams
et al. [681], Coogan et al. [682], Wagg et al. [683], Aravena et al. [684].

6.2.3. Intermediate-Redshift (1 < z < 2) Cluster Trends

The picture emerging at z > 1 is still preliminary, primarily due to large scatter from
small samples, and the time-intensive nature of probing to sufficiently low CO flux limits
at high redshift. Many early studies thus focused on molecular gas in only one or two,
often unique, (proto-)cluster galaxies, e.g.: an infrared luminous AGN in the outskirts of
a cluster at z = 1.1 [683]; a bright AGN within a z = 1.4 galaxy overdensity around a
central radio source [685]; and a potentially interacting cluster galaxy pair at z = 1.2 [686].
Other studies have instead used high-redshift clusters to conduct pseudo-blind CO surveys,
exploiting the high density of galaxies over a narrow redshift range to target numerous
galaxies simultaneously due to the availability of wide receiver bandwidths and large
primary beams [304,512,676–679,681,682,684,687,688]. For example, Aravena et al. [684]
pointed at a z ∼ 1.55 candidate galaxy cluster, covering four spectroscopically-confirmed
sources at a similar redshift. Using the JVLA, they detected CO (1 − 0) in two of the
confirmed members, as well as in two serendipitous galaxies with optical counterparts. The
galaxies had SFEs consistent with high-redshift SFGs, demonstrating the utility of using
overdense environments to efficiently target CO in typical distant galaxies in a reasonable
integration time (∼20 h on source). Similarly, Rudnick et al. [678] pointed the JVLA at
the peak location of MIPS cluster members in the well-known star-forming cluster ClG
J0218.3-0510 at z = 1.62 (see Section 5.2.1). In 100-hours of integration time, only two out
of 6 (9) confirmed members through spectroscopic (grism) redshifts resulted in significant
CO (1− 0) emission, both 24 µm detected. Despite one source having a SFR an order of
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magnitude below the MS, the molecular gas fractions are consistent with the field-scaling
relations from Genzel et al. [602], and stacking on the star-forming members without CO
detections did not yield any signal.

With the increased sensitivity of ALMA, 1 < z < 2 cluster surveys are now observing
molecular gas reservoirs with even higher efficiency, detecting CO or dust in &10 galaxies
with a mere few hours of integration time. The results have been puzzling. The majority
of CO studies have measured integrated molecular gas fractions that are enhanced (or
consistent with but systematically above) the field-scaling relations [602,603] for a given
stellar mass and SFR (see solid circles at z ∼ 1.5 in right panel of Figure 14). Using CO (2− 1),
this has been shown in a seemingly heterogeneous sample of clusters, from three rich NIR-
detected SpARCS clusters (J0225, J0224, J0330) at z ∼ 1.6 [676,677], a mature X-ray cluster
at z = 1.46 (XMMXCS J2215.9–1738) with an overdensity of SMGs in the core [679,687],
and a lower-mass X-ray cluster at z = 1.3 [681]. It has been postulated that these enhanced
gas fractions could result from various effects, for example: (1) an environmental pressure
that increases the formation of molecular gas through compression of the ISM [689]; (2) a
preferential location that is conducive to efficient gas inflows (e.g., [444,690,691]); (3) a
mechanism that perturbs the gas such that a smaller fraction of it is available to form stars;
(4) a selection effect; or (5) an environmental dependence on the conversion factor between
CO and H2 (αCO; see Section 6.1.1). The latter two possibilities are unlikely the sole causes.
Indeed, Hayashi et al. [679] accounted for metallicity effects using a mass-dependent αCO.
Moreover, Noble et al. [676] found a higher fraction of cluster galaxies offset from the
scaling relations than non-detections, and Hayashi et al. [679] stacked 12 quiescent galaxies
with no measurable gas content down to Mgas = 1010 M�. Perhaps more surprisingly,
there are very few CO-detected galaxies at this redshift that lie >1 dex above the MS, and
some of the most elevated gas fractions are in fact in galaxies >0.5 dex below the MS (see
right panel of Figure 14). Furthermore, subsequently deeper CO observations, down to
an rms of ∼0.1–0.2 mJy/beam over 50 km/s channels, have not produced a population of
cluster galaxies with reduced gas reservoirs compared to the field-scaling relations in these
clusters [677,681].

Conversely, some studies have found evidence of significant gas deficits at high red-
shift, particularly when using dust continuum as a molecular gas tracer. Alberts et al. [680]
derived the average (stacked) gas content of 126 cluster galaxies across 11 ISCS clusters at
z ∼ 1.4. Performing a comparison to stacked field samples and field-scaling relations, they
found that cluster SFGs (on or above the MS) have on average 2–4× lower molecular gas
masses and fractions than the field (shown as stars at z ∼ 1.5 in right panel of Figure 14).
This result holds out to 2Rvir, suggesting gas loss starting outside the cluster virial radius
as the cause of the rapid quenching motivated in Section 5 for this epoch (see discussion
in Section 8.3.1). However, this work must be reconciled with CO studies before a robust
interpretation can be made. While both CO and dust continuum are established as robust
gas tracers in the field, this has not been tested in overdense environments. As noted earlier,
in the local Universe both dust and CO show signs of depletion likely due to stripping but
not at the level of more extended HI content, suggesting both are more tightly bound in the
central disk [662]. Cortese et al. [631] found a tentative increase in the ratio of molecular
gas to dust mass in HI-deficient Virgo galaxies by ∼1.5×, suggesting that dust is more
easily stripped (see Section 6.2.2). This result, however, was only significant at the 1σ level.
Since ISM conditions at high redshift significantly differ from the local Universe, resolving
this disconnect will require both measurements of CO and dust in a statistical sample of
high-redshift cluster galaxies.

Do any 1 < z < 2 CO studies find gas deficits? One study of a z = 1.99 X-ray-
detected cluster (Cl J1449+0856) has measured molecular gas fractions on or slightly below
the field-scaling relations using gas masses from CO (1− 0) in three main-sequence BzK
galaxies [682].43 Notably, this is not due to reaching a low CO flux limit, as the ALMA
observations used in the Coogan et al. [682] study are appreciably shallower than than those
of Noble et al. [677] and Williams et al. [681]. One important feature of Cl J1449+0856, which
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is NIR-selected and X-ray detected, is that it contains a significant quiescent population in
the core [692]. In contrast, the three z ∼ 1.6 NIR-selected clusters with high gas fractions
in Noble et al. [676,677] have low quenching efficiencies ([399,416], see also Section 4.2.3).
This indicates that significant cluster-to-cluster variation is likely a culprit for some of the
seemingly heterogeneous results at high redshift, where sample sizes are still small. It is
also interesting to note that using multiple CO transitions (4− 3, 3− 2, and 1− 0), Coogan
et al. [682] found that many of the galaxies in the z = 1.99 cluster displayed starburst-like
excitation in the SLEDs, with substantial amounts of denser molecular gas44. Similarly,
an independent study of the z = 1.46 cluster XMMXCS J2215.9–1738 found a significant
fraction of dense CO (5− 4) gas compared to field galaxies [512]. This could suggest that
using a larger ratio of the CO line brightness temperatures (e.g., r21 = L′CO(2−1)/L′CO(1−0))
might be more appropriate for these high-redshift cluster galaxies, which would bring
down the gas fractions when estimated from higher-order rotational transitions (see also
Section 6.1.1). The current ALMA receiver bands only permit CO (1− 0) to be observed
up to z ∼ 0.35; however, this will change with the full installment of receiver Band 1 over
35–50 GHz [694] which recently had a successful first light run and will enable sensitive
observations of CO (1− 0) out to z ∼ 2 in a reasonable integration time and permit studies
of environmentally dependencies on CO excitation.

6.2.4. High Redshift (z > 2) Proto-Cluster Trends

The question raised in the previous section of the distribution of CO among different
transitions becomes even more salient at higher redshifts. At z > 2, many studies rely on
higher excitation transitions (J > 3) to probe molecular gas contents with ALMA, and/or
use the lower frequency receivers available with, e.g., JVLA for CO (1− 0) observations,
albeit with less sensitivity compared to ALMA. Again, early studies focused on a few token
galaxies in proto-clusters (e.g., SMGs at z > 4 [534,537,538]); both the central radio source
(MRC 1138-262; [305]) and an Hα-emitter (HAE229; [695]) belonging to the Spiderweb
conglomeration at z ∼ 2.2; and a single detection of an infrared-bright, optically-faint
galaxy in the dense core of HS1700+64 at z = 2.3 [304]. Proto-cluster studies of molecular
gas have now expanded to a handful of systems, namely PCL1002 (and other structures
associated with Hyperion), 4C23, SSA22, USS1558, GN20, SPT2349-56, and the Distant
Red Core (see Table 3 for details on those detected with DSFG overdensities). Extended
gas reservoirs and high gas fractions have been measured for galaxies within many of
these proto-clusters [71,72,304–306,309,337,367,537,538,695]. For example, detecting CO
(3− 2) in 16 Hα emitting galaxies (on or above the main-sequence) over three proto-cluster
fields from 2 . z . 2.5, Tadaki et al. [337] found a mass-dependent effect: less massive
proto-cluster galaxies (10.5 < log M?/M� < 11) harbor slightly enhanced gas fractions
(though consistent within errors) and longer depletion timescales relative to their isolated
counterparts, while more massive members are similar to the coeval field (albeit based
on only three CO detections with log M?/M� > 11). They propose that accelerated
gas accretion along cosmic filaments might replenish the gas reservoirs and sustain star
formation over long periods in lower-mass galaxies (e.g., [74]), while the gas could be heated
by virial shocks or AGN in the more massive systems (see discussion in Section 5.3.2).

Studies of filaments associated with the Hyperion proto-supercluster at z ∼ 2.5
have yielded similar results. Using CO (1− 0), Champagne et al. [72] detected a slight
enhancement in the gas fractions of galaxies within PCL1002, yet also measured a integrated
SFE that is comparable to the field. A nearby structure (CLJ1001) was analyzed by Wang
et al. [301] as a proto-cluster core due to its extended X-ray emission (but see [72], which
characterized this structure as a filament). Using phase-space diagrams, they investigated
the gas content of massive SFGs as a function of their accretion history. They found
that the molecular gas reservoirs are reduced from the infall region to the center within
a single radial orbit, hinting at fast quenching mechanisms like tidal or ram-pressure
stripping. Gómez-Guijarro et al. [309] utilized a variety of observatories to target multiple
CO transitions in the Hyperion overdensity, as well as reporting the discovery of two new
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gas-rich proto-cluster cores at z ∼ 2.2 and z ∼ 2.6. They also propose a mass-dependent
trend in gas properties, finding low-mass member galaxies with high gas fractions but
main-sequence SFEs.

As in the 1 < z < 2 cluster studies, dust continuum measurements of proto-cluster
galaxies typically estimate lower gas masses than those from CO emission lines. For
example, Aoyama et al. [696] contend that CO (3− 2) fluxes overestimate the gas masses
in proto-cluster USS1558-003 due to higher than expected gas excitation, while the ALMA
dust continuum measurements at 1.1mm suggest the large gas reservoirs are actually
consistent with the field-scaling relations. In the z = 2.49 proto-cluster 4C23.562, CO
(3− 2) emission also produced higher gas mass estimates compared to those from 1.1mm
dust continuum and optically-thin [CI] line emission by ∼0.15 dex on average, but only
in 2 galaxies, while the remaining 3 galaxies displayed consistent measurements from
all three tracers [697]. Zavala et al. [346] similarly measured field-like gas masses from
1.3mm continuum observations, and additionally discovered a population of gas-poor
members at the high-mass end. These studies highlight the importance of obtaining CO
SLEDs in a large number of high-z proto-cluster galaxies to constrain gas excitation. A
recent survey of 10 highly star-forming Herschel sources in Planck high-z (PHz) proto-cluster
candidate fields from 1.3 < z < 3 has measured multiple CO transitions, finding the
SLEDs to peak at quantum rotation number J = 3, implying low excitation [367]. Increased
samples sizes are needed to provide further calibration of CO gas and dust masses in high-z
(proto)-cluster fields.

Additionally, some surveys are placing the first constraints on the CO luminosity
function and cosmic gas density in high-redshift overdense environments. Using five
CO (3− 2)-detected sources in a z = 2.49 proto-cluster (4C23.56; [698]), Lee et al. [699]
estimated a cosmic gas density that is ∼6–20× higher than z ∼ 2 field estimates (e.g., [700]).
They measured a lower limit of 1–5×109 M� Mpc−3, depending on the redshift range
considered for the volume (∆zCO or ∆zfilter). A low-resolution mosaic on the Spiderweb
proto-cluster with the Australia Compact Array (ATCA) has similarly exposed an enhanced
CO luminosity function that is ∼tens of times higher than blank fields [322]. Studies of
gas and dust in proto-cluster members at z > 4 have found a similarly high number
of gas-rich and starburst galaxies, including: the DRC at z = 4.0 [325,328]; GN20 at
z = 4.05 [534,536,537]; SPT2349-56 at z = 4.3 [313,326]; and AzTEC-3 at z = 5.3 [538]. These
studies establish proto-clusters as sites of rapid stellar mass growth at early times.

In summary, a rich dataset of integrated molecular gas properties in galaxies within
(proto-)cluster environments has emerged out to z ∼ 3, covering a∼ 2.5 dex range in stellar
masses and SFRs along the Main Sequence (Figure 14). Low-redshift cluster members
display a wide range of gas fractions, including a clear population of Main Sequence
galaxies with depleted gas reservoirs compared to coeval field galaxies. CO-based studies
at 1 < z < 2 have instead discovered numerous gas-rich galaxies, with a notable absence of
galaxies below the field gas scaling relations, despite probing galaxies down to low SFRs.
Dust continuum tracers, however, paint a different picture, with stacked measurements
estimating gas fractions that are a few times below the field. While the enhanced gas
fractions at 1 < z < 2 are intriguing, we have yet to conclusively determine what drives
them. Resolving the molecular gas spatially and kinematically is the first step toward
answering this, as various quenching mechanisms are expected to have different effects on
the gas.

6.3. Lessons from Spatially-Resolved Studies

Spatially-resolved studies of molecular gas are now providing insight into how the
gas is affected by the cluster environment, particularly through detailed studies of CO
radial profiles, morphologies, and kinematics of low-redshift cluster galaxies. For exam-
ple, mapping CO and far-infrared continuum in Virgo spirals from the HeViCS with the
IRAM-30 m telescope, Pappalardo et al. [701] measured steeper molecular gas and dust
profiles in HI-deficient galaxies. Fumagalli et al. [11] similarly showed that while not all
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HI-deficient galaxies have reduced molecular gas contents, galaxies do have depleted CO
when the HI is removed from within the optical disk, indicating that molecular gas is more
tightly bound. Virgo studies have also found molecular gas disks to be truncated compared
to field populations [28,702]. Moreover, the spatial extent of CO and dust is correlated with
the level of HI depletion, with truncated molecular gas [12] and dust [703] disks present
in more HI-deficient galaxies, as well as decreasing CO-to-optical diameter ratios (i.e.,
becoming more gas deficient) with decreasing HI-to-optical diameters [704]. On the other
hand, observing a higher CO transition of (3− 2) with the JCMT, Mok et al. [705] found
no truncation of molecular gas sizes in HI-flux selected Virgo spirals, but did measure
steeper CO profiles with enhanced central surface densities in the cluster sample. These
many results all suggest that the environment removes gas from the outside-in, and can
potentially further increase H2 formation in the galaxy center. Simulations have shown that
moderate ram-pressure stripping could result in this behavior [706].

The mapping of CO morphologies in low-redshift cluster galaxies similarly supports
the idea that ram-pressure can affect the molecular gas, though tidal stripping features
can also produce similar signatures (e.g., [707]). Both in Coma and the merging cluster
Abell 1367 (part of the Coma Supercluster), molecular gas with asymmetric and complex
distributions has been revealed in member spiral and irregular galaxies [659,708,709]. Fur-
thermore, in two cases, the CO was significantly offset from the optical centroid, indicative
of perturbed gas from ram pressure stripping. Even in the Fornax cluster, which is less
massive and should therefore have less efficient ram-pressure stripping, many low-mass
galaxies (.3× 109 M�) have disturbed molecular gas morphologies, including some with
gas tails that are aligned with the cluster center [29]. Molecular gas asymmetries have
further been identified within lower-density group environments through peculiar CO
distributions [710], suggesting some amount of pre-processing might also be occurring.

While these studies show great progress and are reaching some consensus, they have
been limited by small sample sizes, marginal spatial resolution, heterogeneous comparisons,
or some combination thereof. Large cluster programs on ALMA will transform this. For
example, the Virgo Environment Traced in CO (VERTICO) survey [27] has observed CO
(2− 1), as well as other CO isotopologues and gas tracers, at an exquisite resolution of
∼700 pc in 51 Virgo galaxies over a broad range of SFRs and stellar masses, with ancillary
HI imaging [711]. Using a homogeneously-selected and analyzed sample of spatially-
resolved field galaxies from HERACLES45, VERTICO uncovered an identical molecular
gas mass-size relation in both samples, concluding that any environmental effects on the
molecular gas act equally on the integrated gas mass and resolved gas distribution. They
also highlighted the low scatter in the relationship when using isodensity radii sizes as
opposed to 90% flux-percentage radii. Zabel et al. [28] further investigated the shapes
of the CO radial profiles in VERTICO, finding more compact and steeper H2 profiles in
cluster galaxies with larger HI deficiencies, partially echoing the results in prior Virgo
studies [12,705]. They interpret these findings as evidence for ram-pressure stripping, and
additionally identify several Virgo galaxies with clear morphological signatures of stripping
events that have normal-to-enhanced amounts of molecular gas but depleted of HI. Further
kinematic studies of the molecular gas in ram-pressure stripped galaxies are necessary to
fully characterize the effect on this denser gas phase, and are the motivation behind the
ALMA JELLY large program (PI: Jachym), which currently has observations underway.

In the meantime, dedicated studies of gas kinematics and morphologies in individ-
ual ram-pressure stripped galaxies have provided the clearest picture of environmental
effects on the molecular gas component. Large amounts of extraplanar CO (including
13CO; [713]) have now been detected in tail-like features of low-redshift cluster galaxies
(e.g., [29,714–716]), sometimes seen kiloparsecs away from the disk (e.g., [31,717–720]). In
particular, much focus has been on some of the most obvious ram-pressure stripped candi-
dates, known as jellyfish galaxies due to their long tentacle-like tails of ionized gaseous
debris [721,722], often with knots of star formation (e.g., [723–725]). For example, ESO
137-001 in the Norma cluster (Abell 3627) is an exquisite example of ram-pressure strip-
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ping in action; diffuse Hα emission, discrete HII regions, and shock-excited molecular
gas—revealed through MIR rotational transitions of warm H2 with Spitzer/IRS46 [727,728]—
are embedded within a ∼80 kpc long X-ray tail that emanates from a undisturbed spiral
disk [729,730]. CO was detected in the tail out to ∼60 kpc, with the amount of gas decreas-
ing along the length of tail [717]. High-spatial resolution observations of CO (2− 1) at 350 pc
with ALMA (Figure 15) revealed both filamentary and clumpy CO, including clouds of CO
at the heads of streams of young stars [731], known as “fireballs” [732]. Jáchym et al. [731]
argue that these different CO structures represent different evolutionary stages of stripping,
with the filamentary structures within the tail forming in situ (potentially from stripped
HI), while some CO clumps might have been stripped directly from the disk.

Figure 15. The jellyfish galaxy, ESO 137-001, with ALMA CO (2− 1) (red), Hα from MUSE (green),
and Chandra X-ray emission (contours), overlaid on a 3-color image from HST. At 350 kpc resolution,
the CO is distributed along filaments and clumps, potentially representing different phases of gas
stripping. Figure adapted from Figure 3 in Jáchym et al. [731], reproduced by permission of the
©AAS.

In concert with the morphological evidence for molecular gas in tails, the kinematics
of CO in ram-pressure stripped galaxies has also provided insight into how this denser gas
phase is affected. For example, studies have now revealed direct evidence for a marked
influence on molecular gas in the Virgo cluster galaxy NGC 4402 through disturbed CO
morphology with the SMA [733] and kinematics with ALMA at ∼100 pc resolution [719].
The CO in the stripped plume, on the leading side of the galaxy, has a clear velocity offset
of up to 60 km s−1 from the galaxy’s normal rotation [719]. The kinematic disturbance
exhibits a radial gradient, with the velocity offset increasing with distance from the nucleus.
This is a strong indication of the influence of ram pressure, consistent with stripping acting
from the outside-in, and potentially removing the more diffuse molecular gas [720,733,734].
Moreover, compressed CO gas along the leading edge [719] of NGC 4402 is coincident
with enhanced star formation traced by UV [733] emission (Figure 16). Compressed gas
has additionally been observed in other ram-pressure stripped galaxies [720,735], and can
also result in an increase in the molecular gas fraction [736,737]. Therefore, ram pressure
can possibly trigger star formation enhancement during the stripping phase, and prior to
ultimate quenching [738].

Spatially-resolved kinematic studies of the molecular gas component in distant galax-
ies (within the field and clusters) are still in their infancy, with most high-redshift studies
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targeting single (typically star-bursting) galaxies in CO (e.g., [537,739–743]). In particular,
there are only a handful of higher-resolution (primary beam of a ∼few kiloparsecs) CO
detections in main-sequence field galaxies at z > 1 [744,745]. Instead, efficient multiplexing
over dense clusters has resulted in spatially-resolved CO observations of multiple cluster
galaxies at high redshift; there are currently 8 CO (2− 1) detections within a single ALMA
field-of-view (FOV) over a z = 1.6 cluster [677], 11 CO (4− 3) detections of Hα emitters
within a z = 2.5 proto-cluster [746], and 14 z ∼ 1.6 cluster galaxies with spatially-resolved
CO kinematics [747], all at ∼3 kpc resolution. Lee et al. [746] found cluster galaxies to have
broader CO line widths by 50% compared to field galaxies, despite having similar CO
intensities. They attributed this to increased merger events. Noble et al. [677] reported
the first tentative evidence for molecular gas stripping at z ∼ 1.6 through the presence of
asymmetric molecular gas tails and truncated gas disks. There is also a clear offset between
the gas and stellar disk centroids in a handful of galaxies, indicative of perturbed gas. One
galaxy stands out in particular (right panels in Figure 16), due to an elongated gas tail
that extends well beyond the optical stellar disk. Moreover, the gas kinematics of this
cluster galaxy display the most glaring evidence for RPS, as the tail gas is accelerated from
the base to the tip. Modeling the CO rotation in 13 additional galaxies within the same
z ∼ 1.6 SpARCS clusters, Cramer et al. [747] further measured a high degree of kinematic
asymmetry in the molecular gas. These signatures, in tandem with elevated gas fractions
compared to field galaxies [676], are indicative of environmental processes acting on the
gas component. These results might indicate that z ∼ 1.6 cluster galaxies are undergoing
modest ram pressure stripping, which could explain the apparently high gas fractions: if
the stripping causes the gas to become compressed at the leading edge, it could cause an
efficient conversion of neutral hydrogen into the molecular phase (see also [737]).

UV
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Figure 16. (left) Adapted from Lee et al. [733] and Cramer et al. [719] in top and bottom panels,
respectively. The locations of UV peaks (gray-scale, top) correlate with sites of molecular gas
compression (CO, bottom) in a ram-pressure stripped galaxy in Virgo. (right) Adapted from Noble
et al. [677]. ALMA CO observations of a z ∼ 1.6 cluster galaxy display similar indications of ram-
pressure stripped molecular gas tails (2− 6σ red contours on grayscale HST F160W in upper right
panel), including a strong kinematic signature—accelerated gas toward the tip of the tail (color image
in bottom right panel). Figures reproduced by permission of the ©AAS.

7. Total Emission from (Proto-)Clusters: “Total Light” Stacking

In the previous three sections, we discussed detailed studies of the galaxy populations
in (proto-)clusters using near- to far-infrared (submm) observations. These studies often
involved expensive spectroscopic and photometric follow-up to confirm cluster galaxy
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membership and perform individual multi-wavelength characterization. This kind of
follow-up is impractical on the scale of the thousands of (proto-)cluster candidates we
are identifying in current and future wide-field and all-sky surveys (Sections 3 and 9).
Furthermore, we are often confined by current capabilities to studying the most luminous
populations; for example, galaxies need to be bright in the optical/NIR to obtain a secure
spectroscopic or photometric redshift. Though capabilities are growing in terms of detecting
and characterizing challenging populations such as low-mass and heavily dust-obscured
galaxies, the expense of confirming individual (proto-)cluster membership remains high.
These issues combined with (1) a large intrinsic range in cluster properties (i.e., halo
mass, dynamical state), (2) selection bias from different cluster selection techniques, and
(3) intrinsic variations in cluster populations even in similarly selected, similar mass clusters
(e.g., [175,523]) highlight the need for complementary statistical analyses that can recover
cluster properties in large cluster catalogs. A statistical approach may in fact be the only
way to take full advantage of future large (proto-)cluster surveys.

In this section, we discuss the renewed interested in using (image) stacking (e.g., [748])
of full (proto-)cluster systems, in which all emission is considered without first identifying
individual constituents. Stacking boosts the collective signal over the background noise
fluctuations, which often dominate over the signal of individual clusters in wide, but
shallow surveys. These “total light” stacks47 measure the average or median flux (after
background subtraction) of the (proto-)cluster sample at a given wavelength, which repre-
sents the typical integrated light from all cluster components, as well as the radial profile of
that emission, given moderate spatial resolution. In Section 3.3.2, we saw how this tech-
nique was used to characterize Planck “cold sources”, i.e., compact sources in the 4′ Planck
beam which were resolved into extended emission in stacks at 350 µm (25′′ beam; Figure 3).
We start our discussion with an overview of the history of this technique in looking for
intracluster dust (ICD) and then showcase two recent examples of analyses characterizing
the dust/star formation properties and concentrations of cluster populations.

7.1. Intracluster Dust

An early demonstration of the power of stacking large samples of clusters was pre-
sented in Kelly and Rieke [749], who observed a strong, evolving stacked signal in the 60 µm
emission of 71 clusters over z ∼ 0.3–0.9 using IRAS. This summed MIR emission was ex-
pected to originate from two components of clusters: intracluster dust and cluster galaxies
(via star formation and/or AGN). Here we give a brief overview of ICD in the context of in-
frared studies. For an in-depth review of ICD, we refer the reader to Shchekinov et al. [750].
We discuss the second component, cluster galaxies, in the next section.

Since early confirmations of heavy elements in the hot ICM from X-ray spectroscopy [80,751],
it has been expected that dust grains—stripped or ejected from cluster galaxies—are colli-
sionally heated by X-ray-emitting gas, producing diffuse FIR emission [752]. The lifetime,
and thus the observability, of this dust remains unclear, however. Dust destruction via sput-
tering is expected to occur on the order of 106 to 109 years, depending on grain properties
and gas density [753,754]. Despite this potentially short lifetime, ICD may play a major
role in cluster evolution, facilitating the cooling of intracluster gas (e.g., [752,755–758]) and
affecting scaling relations [759]. This diffuse component, however, has proven difficult to
observe. One common technique is to analyze the reddening of optical sources behind
the clusters (e.g., [760–764]). Another is direct observations in the infrared, which have
been carried out on a few local clusters (e.g., [765–768]). Generally speaking, however, this
diffuse, faint signal is lost in the large fluctuations of the cosmic infrared background. As
such, stacking studies provide a promising alternative, albeit with the requirement that the
ICD and galaxy components need to be separated.

Further stacking studies using IRAS [769–771] found that IR SEDs built from the total
stacked emission were consistent with galaxy spectra, with an evolution in IR luminosity
that mimicked the global cosmic evolution of star formation. Comparing the total IR
emission to X-ray indicated an extreme gas-to-dust ratio if cluster IR emission is dominated
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by ICD [770], inconsistent with limits set by reddening studies (e.g., [761,762]). Expanded
coverage of the dust peak through the combination of IRAS and Planck 100–857 GHz
(3 mm–350 µm) imaging of 645 low-redshift (median z = 0.26± 0.17) SZ-selected clus-
ters [772] enabled the modeling of the total IR emission with a modified blackbody
(κνBν(Tdust) where κν ∝ νβ)48. Even with no ability to remove point sources due to
low resolution, the best fit model (β = 1.5 and Tdust = 24.2± 3.0 K) was found to be
consistent with thermal emission from coeval field galaxies [776,777]. Given the best-fit
Tdust, they derived dust masses and dust-to-gas mass ratios consistent with previous liter-
ature (DGR ∼ 2− 5× 10−4; [769,770]). Using higher resolution Herschel coverage of 327
clusters, Gutiérrez and López-Corredoira [778] subtracted the contribution from (detected)
point sources and set a 95% upper limit on the surface brightness of ICD of 1.3× 10−2,
0.7× 10−2, and 0.5× 10−2 MJy sr−1 at 250, 350, and 500µm, implying a strong deficiency
in intracluster dust (see also [768]). Together with reddening studies and simulations, these
IR studies help paint the current picture that ICD is a small component of the ICM, with on
the order of ∼0.1–3% of the dust abundance in the ISM of the Milky Way. However, this
small amount of dust may still be non-negligible in the cooling of the cluster ICM [764] and
there remain uncertainties in the spectral index (up to 20%) and dust opacity (up to 50%;
see Section 4.2.1 in [772]) used to calculate the dust mass. Given these, ICD has not been
ruled out as an important contributor in cluster evolution.

7.2. Total Emission from Cluster Galaxy Populations

Given the stringent upper limits placed on the ICD component of the total IR emission
discussed in the previous section, we can now consider the use of “total light” stacking
in studying the other component of the IR emission: the (proto-)cluster galaxy popula-
tions, including traditionally hard to observed populations such as low-mass and heavily
obscured galaxies. In this section, we look at recent analyses using total stacking in the
M/FIR, measuring dust-obscured star formation and/or AGN activity. Recent works
have also expanded “total light” stacking to the near-infrared (measuring the total stellar
mass; [568,779]) and the UV (measuring unobscured star formation; [780]). Given the
moderate resolution (compared to the cluster radius) of all-sky or wide-field surveys from
GALEX, WISE, Spitzer, and Herschel, a radial profile analysis can be done in addition to
looking at the integrated light.

7.2.1. The Integrated Light of Cluster Galaxies: Dust Emission and the Contribution from
Low Mass Galaxies

As discussed extensively in Sections 4 and 5, infrared observations of quenched
populations and (obscured) SF activity in clusters have provided evidence for a transition
epoch at z ∼ 1.5, above which significant star formation is found in some massive clusters,
indicating the local SFR-density relation is no longer in place. “Total light” stacking
can expand this analysis beyond the relatively luminous cluster populations to examine
the typical SED of all constituent galaxies. This includes low-mass (log M?/M� < 10)
cluster galaxies, which we have discussed play a unique role in identifying environmental
quenching as their mass-quenching timescale can exceed the Hubble time.

Here we consider the total stacked emission in multiple bands in the M/FIR, which can
be used to construct the average IR SED of cluster galaxies (neglecting the ICD component)
and measure the dust temperature. As mentioned in Section 7.1, Planck Collaboration
et al. [772] carried out this analysis on SZ-selected, massive clusters at z ∼ 0.3, finding
a relatively cold (average) dust temperature of ∼24 K, coinciding with a lack of warm
dust in the MIR. This lack of warm dust has also been observed in the stacking of less
massive (log M200/M� ∼ 13.8) ISCS clusters from z = 0.5 → 1.6, with average effective
temperatures ranging from 30 to 36 K, increasing with increasing redshift [779]. By way
of comparison, massive z ∼ 1 field galaxies have a typical Tdust,eff of 42 K [781]. Modeling
the IR SED instead with a two component fit, Alberts et al. [779] reported ratios of cold to
warm dust of Lcold/Lwarm = 4.3→ 1.7 over z = 0.5→ 1.6, only reaching parity with the
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field at high redshift (Lcold/Lwarm = 1.36 at z ∼ 1 in the field; [781]). If we assume massive
(log M?/M� ≥ 10) cluster galaxies have effective dust temperatures comparable to their
field counterparts (e.g., [520,523]) and given that Tdust increases with LIR (e.g., [57,782]),
this suggests that the cluster “total light” IR SED has a significant contribution from low-
luminosity, low-mass galaxies, which increases with decreasing redshift. We note, however,
that there are studies that support both colder (e.g., [783]) and warmer (e.g., [680,784])
FIR SEDs in massive cluster galaxies, and the full diversity of the FIR SED in overdense
environments in not yet well constrained.

This lack of warm dust may also signal that (luminous and obscured) AGN activity
is not a significant component in the total cluster emission, though the rise in effective
temperature with redshift qualitatively parallels the rise in AGN fractions in clusters
(Section 5.4), as well as rising SFRs. The trend toward warmer stacked SEDs continues
into the proto-cluster regime: Planck Collaboration et al. [280] stacked 228 “cold sources”
(see Section 3.3.2, Figure 3)—proto-cluster candidates probably at z ∼ 2–4—which may
have warm effective temperatures. Dust temperature and redshift are degenerate in their
analysis; however, in the likely redshift range of z ∼ 2–3 from Herschel colors, they measure
Tdust,eff ∼35–45 K. Similarly, Kubo et al. [568] reported high temperatures and a stacked IR
SED best modeled with a very warm temperature component in their sample of 179 HSC
proto-clusters at z ∼ 3.8. They conclude this warm component is only explainable by
luminous AGN.

Can we disentangle the low-mass galaxy (or AGN) component from the total emission
stacks? Alberts et al. [779] compared the average “total light” stacked SSFRs of the ISCS
clusters in four redshift bins over z = 0.5− 1.6 to their previous stacks on individual
galaxies in mass-limited cluster member catalogs (log M?/M� ≥ 10.1; [197]). They found
that the average SSFRs of both the total and high-mass populations were consistent within
the uncertainties, rising with redshift to draw even with the field by z ∼ 1.4. This could
be interpreted two ways: (1) the SSFR is dominated by the massive galaxies, at odds with
the relatively cold SEDs discussed above, or (2) the low-mass cluster galaxies are being
effectively quenched at similar rates as their high-mass neighbors.

To test this, Alberts et al. [779] quantified the ratio of the 250µm flux from massive
galaxies to total (stacked) emission, removing any model assumptions in deriving the SSFRs.
In the field, this ratio is ∼60–80% for log M?/M� = 10–11 galaxies, derived from SPIRE
observations [785] and simulations [786]. This is consistent with low-mass galaxies having
low obscuration (<30% of SF is obscured at log M?/M� < 9; [130]). Shockingly, however,
the ratio for log M?/M� = 10–11 ISCS cluster galaxies to the total stacked emission is,
averaged over all redshifts, 15± 5%! This suggests an improbably large contribution from
low-mass galaxies to the total cluster FIR emission, given that we expect low obscuration.
Several explanations seem unlikely: the similarity between SFG SMFs in clusters and
field (Section 4) rules out a vastly higher ratio of low- to high-mass galaxies in clusters.
Low-mass cluster galaxies appear to be on the MS [787], not preferentially starbursting.
One might argue that massive, highly obscured cluster galaxies are simply missing, due
to the difficulties in confirming membership; however, at the highest redshift, accounting
for a significant amount of missing SF would require a strong reversal in the SFR-density
relation [779]. Likewise the observed total SF from massive galaxies (Section 5) and drop in
quenching efficiency at high redshift (e.g., [416]) rule out that the massive galaxies have
simply quenched. A few studies [788–790] have put forth tentative evidence that cluster
galaxies may be more dusty then their field counterparts; however, follow-up “total light”
stacking of the ISCS sample in the UV found the unobscured SFR was consistent with
field-like obscuration in low-mass cluster galaxies ([780], see also [514]). Further work
characterizing the dust properties in cluster galaxies is needed to resolve this mystery.

These studies, deriving averaged dust temperatures and star formation properties in
large cluster samples, showcase the potential of total stacking in recovering the integrated
emission from the full cluster population. In the next section, we discuss an example that
takes advantage of resolving this total emission.



Universe 2022, 8, 554 54 of 103

7.2.2. Radial Profiles and the c-Mhalo Relation

When total emission stacks are more extended than the imaging beamsize (and of
sufficient S/N), the (observed) radial profile can be quantified. In current studies, the
extent of the stacked stellar and dust emission in clusters seems to trace the overall Dark
Matter (DM) mass distribution, as measured by stacked SZ [772] or the cluster velocity
dispersion [779]. Recently, the Herschel profile of stacked Planck-selected proto-clusters
was found to extend to ∼6–8′ [368], roughly comparable to the expected area covered by
proto-clusters [70]. Pushing this analysis further, we can infer the intrinsic radial profile to
measure the distribution of the baryons and compare to the cluster halo. Given hierarchical
structure formation, DM haloes are expected to be described by a self-similar, universal
density profile over scales of 10 kpc to 10 Mpc [791,792], parameterized by the magnitude
of the overdensity (halo mass) and a scale radius, rs. The Navarro-Frenk-White (NFW)
profile [793,794] is often assumed as a fiducial model.

A consequence of the supposition that the density structure of halos can be param-
eterized by halo mass and scale radius alone and is universal means the halo mass and
scale radius must be correlated. This is often expressed as the concentration-mass relation
(where concentration c ≡ R200/rs). The c−Mhalo relation for DM has been both modeled
via simulations and observed via halo mass tracers such as weak lensing, with a general
lack of consensus. At the high-mass end (log Mhalo/M� & 14), simulations disagree on
whether the c−Mhalo relation is relatively flat [795] or shows a sharp upturn [796,797],
possibly depending on whether relaxed or unrelaxed clusters are considered ([798,799], but
see [796]). The observed c−Mhalo relation for DM has an even wider range of results (see
Figure 6 in [800]).

In the near-infrared, the galaxy or stellar mass distribution is the observable, not
the DM halo. Though these distributions have been successfully modeled using NFW,
again there is wide disagreement in c−Mhalo, reflecting the complicated effects of cooling,
feedback, and gravitational interactions with the DM halo on the baryons (e.g., [801–803]).
Stacking provides a statistical way to measure the extent of cluster emission and the
c−Mhalo relation over large samples, informing our models of cluster baryonic evolution.
With stacking, information on sub-structure in individual clusters is lost; however, this
provides a more robust measure of the typical concentration [804].

Figure 17 shows the concentrations derived from observations of the stellar mass den-
sity [384] and galaxy number density [805–811]. Overlaid are predictions from Correa et al. [799]
and Diemer and Joyce [812] of the c200-M200 relation for DM halos49, showing the flat re-
lation and upturn, respectively, for Planck2015 cosmology ([814], other cosmologies give
similar trends). In general, galaxies seem to be less concentrated than the DM as a function
of both redshift and halo mass, with several exceptions in individual clusters [805,808] and
with Hennig et al. [811] reporting a range of concentrations at fixed halo mass.
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Figure 17. Halo concentrations (c ≡ r200/rs) derived from galaxy density profiles [805–811], stellar
mass density profiles [384], and total light stacking [779] as a function of redshift (left) and M200

(right). Solid and dashed lines show the DM halo concentrations from [799,812], respectively. DM
concentrations are relatively flat with redshift and halo mass, with the exception of an upturn at
high-mass predicted for unrelaxed clusters. The stellar component is often observed to be less
concentrated than the DM, but with exceptions at high redshift and low-mass, which may reflect
complex baryonic physics in unrelaxed or merging systems.

How do these compare to the average concentration stacked over many clusters?
Alberts et al. [779] fit the stacked near-IR and far-IR emission from 232 clusters with NFW
profiles, applying corrections for the observation beamsize and cluster centroiding to
recover the intrinsic profile. From the corrected profiles, they found that both the near- and
far-IR could be described by an NFW profile50 with a high concentration (c ≈ 7) at relatively
fixed halo mass (log M200/M� = 13.8, see [169,175,523]) and across a wide redshift range
(z = 0.5–1.5). This result suggests the total stellar mass concentration is higher than DM, at
odds with the majority of concentrations derived from galaxy populations in individual
clusters. Applying this stacking technique to large, well chosen cluster samples, controlling
for halo mass, dynamical state, etc., is needed to resolve this contention.

In summary, the “total light” stacking technique is a promising way to perform
statistical analyses on the large cluster samples enabled by current and upcoming wide-
field and all-sky surveys. Here we have overviewed just three examples, looking at ICD,
the total M/FIR emission from galaxy populations in (proto-)clusters, and the c−Mhalo
relation, each of which has highlighted the need for further statistical analysis in these areas.

8. Quenching in (Proto-)Cluster Galaxies (the Infrared Perspective)

In the preceding sections, we have presented the current state of the literature regard-
ing infrared observations of galaxy populations in (proto-)cluster environments. From
this, a complex (and still developing) picture has been painted of environmentally-driven
galaxy evolution and quenching. In this section, we discuss this IR picture in the con-
text of potential (qualitative) quenching pathways (Figure 18), and tabulate some of the
primary quenching mechanisms with their supporting signatures and IR observations in
Figure 19. Environmental quenching mechanisms—hydrodynamical, gravitational, and
internal—were introduced in Section 1.1.
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8.1. All Scenarios: Starvation

We commence with starvation—likely the most universal and potentially ubiquitous
process—starting in intermediate density regions (∼ 10−5–10−4 cm−3). The efficiency
of new gas accretion via cold streams is expected to be a strong function of halo mass,
decreasing as halos enter the shocked heated regime at >1012 M� (e.g., [74,444]). In the
group or cluster environment, the hot intragroup medium (IGrM) or ICM accelerates this
process by further heating or stripping51 existing halo gas. This process is likely slow,
stripping hot halo gas on timescales longer than a Gyr [815–817] and its influence on star
formation, fueled by cold, molecular disk gas, can occur over a few to several Gyr. In
Figure 18, this is depicted as infalling galaxies losing some or all of their hot halo (yellow
circle) on the crossing into the ICM (some, particularly low-mass, group galaxies may have
also lost their hot halos). Though the boundary is shown as sharp in the schematic, in
reality the ICM is not smooth and the effects of starvation may begin at very large radii (up
to ∼5Rvir; e.g., [84,442,665,690,818]).

Figure 18. A depiction of potential quenching pathways for galaxies falling into a massive (log
M200/M� & 14) galaxy cluster (red dotted line denotes the virial radius). An infalling massive group
(log M200/M� ∼ 13) is depicted in light teal. Galaxies (blue spirals) are roughly sized according to
stellar mass, with solid (dashed) lines tracing their radial (eccentric) orbit around the cluster potential.
Note: morphological transformations are not shown in this cartoon for simplicity. Yellow and orange
denote hot halo and cold molecular disk gas, respectively. Red denotes quenched regions with little
to no gas. A star marks AGN activity. Scenarios A and B, along with their variations, are discussed in
Section 8.
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Figure 19. A tabulated list of the primary quenching mechanisms that fall within the scenarios
outlined in Section 8, along with their respective signatures, some of the more robust lines of
supporting evidence from infrared studies, and open questions.

As discussed in Section 5, slow quenching characteristic of starvation may present
as mild to moderately suppressed SSFRs. A bimodal distribution (MS and sub-MS)
has been observed in the (dusty) SFG populations of clusters at z < 1, with sub-MS
galaxies having lived in the cluster longer than the MS SFGs according to phase space
diagnostics [421,466,484]. This suppression (in the SSFR of massive cluster galaxies) ap-
pears to be independent of redshift (on average) at least up to z ∼ 1 at fixed halo mass [197].
Starvation is a plausible mechanism for creating this population. Some molecular gas
studies additionally support this, as evidenced by a gradual depletion of gas compared
to field galaxies in Virgo from ∼3R200 to the core, and as a function of accretion history
(e.g., [665], see Figure 13).

Is there evidence against starvation? Surviving hot halos have been observed in
local cluster galaxies (e.g., [819,820]), though typically in very massive galaxies with deep
potential wells. A radial analysis of Abell 1795 places galaxies with surviving halos on the
outskirts of the cluster, with a clear decrease in occurrences into the cluster center [821].
Still, a recent simulation suggests that not only is gas stripping ineffective for both the hot
and cold gas components, but that the hot ICM can feed the hot halo [822]. This seems
inconsistent with infrared observations of a sub-MS population unless that hot halo gas
remains heated and unavailable for future cooling onto the disk, which would fall under
our definition of starvation. On the other hand, suppressed (obscured) SSFRs are not
observed at z & 1–1.5 (Figure 9), and molecular gas masses may be on par with or surpass
field levels (Figure 14), supporting that the nature of quenching in clusters changes over
cosmic time and starvation alone may be sub-dominant to more rapid mechanisms (or not
have enough time to act) at higher redshifts.

8.2. Scenario A: Combined Hydrodynamical and Internal Quenching

We continue under the assumption that starvation operates on the majority of galax-
ies that fall into massive clusters and, given enough time, is reflected in their SFRs and
(molecular) gas properties. We will now consider additional quenching mechanisms—
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both hydrodynamical and internal – first in the context of a representative intermediate-
mass (log M?/M� ∼ 10–11) SFG on a radial orbit during its initial infall onto the cluster
core (Figure 18, Scenario A). We will then consider how the efficacy of each mechanism
may vary as a function of stellar mass and orbital trajectory, outlining possible varia-
tions/combinations of these processes in Scenarios A.1–A.3.

8.2.1. Ram Pressure Stripping and Overconsumption in “Typical” Intermediate-Mass
Cluster Galaxies

Ram-Pressure Stripping

As previously discussed, an intermediate-mass galaxy eventually loses access to its
hot halo upon entering the hot ICM, with stripping and/or heating preventing the gas
from cooling onto the disk. As it moves deeper into the cluster at high speeds, it encounters
increasing ram pressure which may eventually affect its colder, more tightly bound gas
reservoir. The magnitude of this effect is still under debate and likely depends on several
parameters (i.e., stellar mass, orbit, inclination, halo mass; [822–826]). Semi-analytic models
and hydrodynamic cosmological simulations generally support effective cold gas stripping
on timescales much shorter than the crossing time (∼2 Gyr at z ∼ 0; see discussion in [20]).
Detailed simulations that take into account, for example, an inhomogenous ICM with
multiple gas phases support even more rapid timescales [706,826].

In the local Universe, RPS events have been directly observed as truncated gas disks
and/or stripped tails (i.e., jellyfish galaxies, see Section 6), strongly suggesting that gas
stripping is an important quenching mechanism at late times ([13,827–829], see also Boselli
et al. [20], Cortese et al. [88] for thorough reviews). However, the picture beyond the local
Universe is much less clear. Up to z ∼ 1, aggregate infrared studies of cluster populations
may indirectly support RPS in a few ways. Just as suppressed SSFRs may be a signature of
slow quenching at z < 1, the strong radial dependence of the star-forming fraction signals
concurrent rapid quenching (Section 5), with galaxies preferentially quenched in the cluster
cores where RPS should be most effective (due to high ICM densities, ∼10−3–10−1 cm−3,
and high galaxy velocities, e.g., [85,440,830]). Along similar lines, the effectiveness of
RPS increases with decreasing stellar mass and could plausibly produce the flattened
low-mass slope observed in cluster QG SMFs (Section 4.1). More tentatively, the halo mass
dependence of the EQE suggested by the comparison of different cluster samples (Figure 6,
right) could be consistent with RPS. The increased velocities and ICM densities in more
massive halos should enhance RPS; however, turbulence also increases with halo mass
(and perhaps redshift) and may act to weaken RPS (e.g., [831,832]).

At z > 1, the observed abrupt evolution in both the fSF and EQE requires that rapid
quenching dominate, building up a substantial portion of the quenched population from
z ∼ 1.5→ 1 (Sections 4 and 5). Cluster SFGs during this epoch are observed to live on the
MS; as outside-in quenching, RPS intrinsically allows for the “delayed, then rapid” scenario
(e.g., [492]), wherein star formation will continue unaffected in the central disk for some
delay timescale. Integrated gas studies at z > 1 are decidedly mixed on the gas properties
of cluster galaxies at high redshift, however. Averaged (stacking) studies of MS cluster
SFGs (using dust continuum) indicate strong molecular gas deficits, while individual CO
studies find high or enhanced gas fractions, seemingly inconsistent with significant (cold
gas) stripping. Resolved studies, on the other hand, show preliminary signs of perturbed
gas, which may explain both the high gas fractions and point to the occurrence of stripping
(see Section 6).

Resolved studies are likely key to solidifying the role of cold gas stripping across
cosmic time. High-resolution optical studies of local [109,112] and z ∼ 1 galaxies [36]
have observed evidence for outside-in quenching using optical SFR tracers, a result con-
sistent with RPS (and/or starvation). In the IR, local studies find centrally concentrated
molecular gas (e.g., [705]) and at high-z, there is tentative evidence for a jellyfish galaxy at
z ∼ 0.7 [833,834] and perturbed molecular gas disks at z ∼ 1.6 [677] which suggest RPS at
early epochs; however, spatially-resolved submm studies at high redshifts are difficult and
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have been limited to a few sources. As a population study, Finn et al. [835] examined the
MIPS 24 µm sizes of local galaxies relative to their stellar mass distribution as a function
of both global and local environment. They found that galaxies in overdense environ-
ments tend to have more centrally concentrated star formation, a trend that correlated with
increased HI deficiency. Centrally concentrated SF has also been observed in a z ∼ 1.6
cluster [836].

For a representative, intermediate-mass galaxy, RPS may proceed outside-in and
produce differential stripping of the various gas and dust components due to their varying
scale lengths (e.g., [631]). However, it is unlikely to be able to completely strip the disk gas
given the deep potential well at log M?/M� > 10 [88] and may even compress the disk
gas [705], driving it into the nucleus (e.g., [706,837]) and enhancing H2 formation [633].
This could boost the central SFE—as seen in jellyfish galaxies (e.g., [722,738,838,839]) and
some z ∼ 1.6 cluster galaxies [836]—and/or feed AGN activity (a contentious issue in
jellyfish, see Section 4.3 in [20], for a full discussion). Copious starbursting activity is ruled
out by cluster galaxies being largely on or just below the MS; however, star formation
enhancements may be too small to detect easily [840]. On the other hand, there is tentative
evidence for an enhanced MIR AGN fraction in clusters at high redshift (see Section 5.4),
which would require a trigger mechanism. This leads back to the redshift dependence of
RPS, which is currently an open question [73,494,841]. We can speculate that the increase
in galaxy compactness [842] and gas fractions [601,843,844] at high redshift may render
RPS generally less effective. For some galaxies at z > 1, then, overconsumption is a sound
alternative or addition.

Overconsumption

The effectiveness of overconsumption—quenching due to concurrent starvation, star
formation, and modest feedack—is a strong function of a galaxy’s SFR and feedback
strength. In the local Universe, low SFRs mean long quenching timescales (∼10 Gyr),
while at higher redshift (z > 0.4), high SFRs and strong feedback in massive galaxies
can quench on timescales shorter than the dynamical time [35,108]. From obscured SFR
studies in the infrared (Section 5), we have seen that cluster galaxy SFRs at z > 1 can
be comparable to field galaxies prior to (rapid) quenching, with short or comparable
gas depletion timescales (∼0.1–3 Gyr; Section 6). In MS galaxies, star formation (and
feedback) scale with stellar mass, consistent with the evidence for a mass-dependent EQE
(Section 4). Overconsumption could therefore plausibly provide the rapid quenching
required at z ∼ 1–2; however, it is difficult to explain a weakening (or reversal) in the
SFR-density relation in massive clusters at z ∼ 1.5 (Section 5.2.1) if overconsumption is the
dominant or sole quenching mechanism. As with RPS, resolved studies, looking for inside-
out quenching, would provide strong evidence for processes such as overconsumption.
Inside-out quenching, however, appears to be more characteristic of quenching centrals,
rather than satellites [112].

Scenario A Summary

Which, then, is the dominant mechanism quenching our representative galaxy? It is
apparent that no single quenching mechanism stands out as an obvious fit to the infrared
observations. Moreover, it is likely that the primary mechanism changes with cosmic time.
At z < 1, starvation and RPS are likely both operating alongside mass-quenching. At
z > 1, RPS and overconsumption could combine to effect rapid quenching after a delay
time. Though conventionally RPS is thought to be most effective in cluster cores, eccentric
orbits [723], inhomogenities in the ICM, and/or group membership could lead to RPS in
the cluster outskirts (or beyond, see Sections 8.2.2 and 8.3.2). Weaker RPS, stripping the
more diffuse material of an extended atomic or molecular gas disk, could also be a key
player and could combine with overconsumption by removing material heated or ejected
by feedback from galactic fountains [73,845] or AGN [846,847]. As such, it is unclear if a
single mechanism dominates, and we conjecture that it varies from galaxy-to-galaxy which
mix of quenching processes is driving the evolution in Scenario A.
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8.2.2. Deviations from Scenario A in other stellar mass regimes

Near-infrared studies have provided strong evidence for a stellar mass-dependence
of EQE (Section 4, Figure 6, right), which emphasizes that we should examine the fates of
galaxies outside of the representative mass regime that was discussed in the previous section.

High-mass Cluster Galaxies (Scenario A.1)

We start with high-mass (log M?/M� & 10.5–11) galaxies, for which we consider two
sub-pathways: pre-quenching outside the cluster (Figure 18, A.1, red quenched disk) and
mass- or environmental-quenching within the cluster (Figure 18, A.1, spiral with yellow
halo, orange disk gas, and star). Mass-quenching in high-mass galaxies is largely thought
to be regulated by AGN feedback (e.g., [100,105,848–851]), which is likely the dominant
quenching mechanism for this population at least up to group scales at z ∼ 0 [6]. Via
infrared studies, we have seen that the high-mass end of the SMF of cluster SFGs and
QGs maintains the same shape as the field SMFs (e.g., [388]), which could indicate similar
evolutionary paths. In the GCLASS and GOGREEN clusters, high-mass cluster galaxies
are quenched at the same percentage as the field at z ∼ 1 (Figure 6, e.g., [35]) and, at
slightly higher redshift, the cluster infall regions are found to contain an overabundance
of massive halos, with nearly all high-mass galaxies quenched before crossing R200 [69].
The deficit of AGN in z < 1 clusters (Section 5.4) limits the amount of mass-quenching via
AGN feedback that can be witnessed in the cluster environment. These observations may
support the pre-quenched pathway, i.e., that high-mass galaxies quench prior to entering
cluster environments (as seen in simulations, e.g., [852]). This pathway may include
quenching in groups (see Scenario B) or early quenching in proto-clusters, potentially due to
environmentally-driven differences in the star formation histories of massive galaxies [853].
Both DSFGs, the likely progenitors of massive cluster ellipticals, and high-mass quenched
galaxies have been observed in some z > 2 systems.

On the other hand, FIR observations have identified obscured, high-mass SFGs in
cluster cores at z > 1, which are largely on the MS (e.g., [523]). Is environmental quenching
(as opposed to mass-quenching) effective once these massive SFGs fall into the cluster?
Their deep potential wells suggest gas stripping may be weak or ineffective, (e.g., [88,822]);
however, even weak heating or stripping in conjunction with high SFRs and feedback would
drive overconsumption in excess of pure mass-quenching (e.g., [73,407]), as discussed in
the main Scenario A. This is potentially consistent with the enhanced mass-quenching
efficiency at low cluster-centric radii observed in cluster galaxies at z ∼ 0.3–1 (see Figure 13
in [407]), though we note their mass bin spans log M?/M� = 10–11.2 rather than isolating
very massive galaxies. Thus, as with our representative cluster galaxy, infrared studies
support a diverse range of scenarios for high-mass (proto-)cluster galaxies, potentially
involving a combination of environmental and mass-quenching across field, group, cluster,
and proto-cluster environments.

Low-Mass Cluster Galaxies: Stripping (Scenario A.2) or Overconsumption (Scenario A.3)?

At the other extreme, low-mass galaxies represent a key population in testing envi-
ronmental quenching, as their quenching time in isolation can exceed the Hubble time
(e.g., [382]). Gas stripping is expected to be effective on timescales much shorter than
the gas depletion timescale for log M?/M� . 9–10 galaxies, given even moderate ram
pressure and/or tidal interactions (e.g., [73,830,854–858]). Locally, outside-in quenching
has been tentatively observed for this population (e.g., [112]) and NIR observations of the
QG SMF low-mass slope and nonzero EQE strongly support environmental quenching
at low masses (Section 4). In Figure 18, A.2, we show that low-mass galaxies can likely
undergo near complete gas stripping and quenching before first passage of the cluster core
(e.g., [20], and discussion therein).

On the other hand, RPS also depends on both orbital parameters and halo mass. RPS
is most effective on radial orbits that bring galaxies into high-density areas at high speeds
(e.g., [859]). For cluster galaxies on eccentric orbits, there is some evidence that gradual, long
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timescale RPS can occur [723], but also evidence from simulations that stripping is generally
ineffective at quenching galaxies on eccentric orbits, even at low mass [822,859]. In this
scenario (Figure 18, A.3), could low-mass galaxies quench via overconsumption? Even at
high redshift, field low-mass galaxies maintain SFRs of .10 M� yr−2 (e.g., [130]). On the
other hand, stellar feedback in dwarf galaxies has been invoked to reconcile the mismatch in
dwarf galaxy abundance between simulations and observations [860]. Additionally, there is
observational evidence of winds and galactic fountains in some dwarf galaxies (e.g., [861]),
but the effectiveness and timescales are still unclear. From the infrared, environmental- and
mass-quenching appear inter-dependent within R200 for log M?/M� < 10 galaxies up to
z ∼ 0.7 (Section 4.2; [407]), suggesting they should be treated simultaneously. Given the
unique role of environment in quenching low-mass galaxies in general, this population
warrants a renewed focus in light of the increased capabilities of future facilities (e.g., JWST;
see Section 9).

The hydrodynamical and internal quenching mechanisms and their required condi-
tions discussed in this section are listed in Figure 19 alongside a summary of supporting
infrared evidence and open questions.

8.3. Scenario B: Pre-Processing and Galaxy Interactions

In the previous section, we discussed mock pathways in which hydrodynamical and
internal processes operate on infalling and cluster galaxies over a range of stellar masses.
Here we explore pre-processing and gravitational quenching mechanisms. These processes
should not be thought of as wholly unrelated to hydrodynamical or internal quenching. As
we are discovering, the (infrared) observational data can accommodate complex quenching
pathways and, as such, we will continue to refer to mechanisms like stripping in this
section’s discussion.

8.3.1. The Environment beyond the Virial Radius

Twenty to forty per cent of the galaxies in log M200/M� ∼ 14 clusters at z = 0
were likely accreted as a group or low-mass cluster [20,429]. In infrared observations, the
star-forming fraction remains well below the field to large cluster-centric radii [407,421]
and a low fSF has been directly observed in groups falling into the LoCuSS clusters at
z ∼ 0.3 [434]. Similarly, at z ∼ 1, galaxies in the infall regions of clusters are found to live
in comparatively massive halos with a overabundance of satellites and a high quenched
fraction [69].

In Scenario B (Figure 18), we consider the conditions in a group halo that will even-
tually merge with a massive cluster. In the group environment, galaxies experience
lower relative velocities, which could facilitate mergers and interactions. Group halos
are within the shock heated regime (>1012 M�), though the IGrM presents less extreme
conditions (density, temperature) than in the ICM. Nevertheless, starvation is likely ef-
fective [83,815,862], particularly for low-mass galaxies with shallow potential wells. RPS
may also occur, though observations are currently mixed: some works find gas stripping
in groups [710,838,845,863] while others find none, even of the more extended HI reser-
voir [864,865]. The effects of gas stripping would likely take longer to realize in groups
(∼3 Gyr for stripping, up to &5 Gyr for the SSFR; [866,867]), but could combine with
overconsumption to speed along the process in high-mass galaxies.

Group pre-processing or extended cluster influence? (Scenario B.1)

That environmental quenching occurs in groups seems well supported by the obser-
vations (e.g., [434,838]), even if the mechanism remains unclear. However, as discussed
in Section 4.2.2, we should be careful about ascribing all environmental effects outside
the cluster to pre-processing in the group environment. It is common to define the virial
radius as the “edge” of cluster influence; however, this assumption is not physically well
motivated [868]. Recently, the steep dropoff in cluster matter density profiles has been
termed the splashback radius (Rsp; [435,437–439]), a physically-motivated radius at which
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bound particles reach the apocenter52 of their orbit after first infall [869]. Rsp depends
on the matter accretion rate onto the halo as well as redshift, such that slowly (rapidly)
accreting halos at low-z (high-z) have a splashback radius up to 2× (1×) Rvir [439].

Is the splashback radius the boundary we should consider when separating cluster
quenching from pre-processing? At low redshift, this is complicated by the backsplash
population, which may be found up to 2–2.5Rvir [436]. An additional complication is the
unknown range of influence of the ICM. Gas infalling onto massive halos is expected
to compress and form shocks (termed virial accretion shocks, e.g., [443,444]), which we
consider in Figure 18, Scenario B.1. Such shocks are now supported by observational
evidence in the form of high-energy gamma-ray rings around local clusters [870–872].
Using high-resolution, zoom-in simulations of 16 clusters, Zinger et al. [440] found that at
z > 0.6 virial accretion shocks were present out to 2–3Rvir (see also [873–879]), and were
effective at starting the process of starvation (see also [84,818,880,881]), with the effect of
quenching some galaxies before crossing Rvir. They concluded that early starvation could
dominate over pre-processing as a quenching mechanism in the infall regions [84,882,883].
Subsequent simulations suggest an even more dramatic effect, that RPS associated with
virial accretion shocks can deplete molecular gas directly [441]. In the infrared, there is
tentative evidence for molecular gas depletion out to 2Rvir at high redshift [680], which
would lend itself to this scenario. However, the gas properties of cluster galaxies in that
epoch are still poorly understood (see Section 6). Further complicating this picture are
potential shocks from cluster mergers [884], and gas streams and cold fronts permeating
the ICM [690,691]. As such, we must move forward cautiously in disentangling the effects
of group pre-processing from cluster influence beyond the virial radius.

8.3.2. Gravitational Quenching in Group and Cluster Environments

Our last consideration is the role of gravitational quenching, facilitated by tidal in-
teractions, fly-bys (harassment) and strong interactions, or major and minor mergers. Of
these, the most well-studied is (major) mergers, and enhanced merger fractions have been
reported across several cluster studies out to high redshift ([682,885–889], but see [890]).
The causal link between mergers and quenching has been difficult to establish, however.
In the field, local (gas-rich) mergers are thought to trigger starbursts (e.g., [891–893]) and
AGN (e.g., [588–592]) by driving gas inflows into the nucleus, though the ability of a merger
to drive inflows depends strongly on the details of the encounter ([894], see [59] in this
Special Issue for a review on the local merger-AGN relationship). At high redshift, a link
between mergers and AGN activity has not been cleanly established [93–95], which could
be due to changing ISM conditions and enhanced gas fractions (e.g., [895,896]). It could
also be due to the difficulties in merger identification, which is sensitive to the technique
used and often biased against late-stage mergers, particularly at high redshift [897]. As
AGN activity is expected to peak in the late stages of a merger (e.g., [96,898]) and is likely
to be heavily obscured [593–596,899,900] or even Compton thick [901,902], we may be
missing the connection with current capabilities. Harassment and interactions are even
more difficult to establish, requiring high-resolution imaging to establish the presence of
features such as asymmetries, bars, warped disks, which are then not unique signatures of
harassment but point only to some perturbing force (i.e., RPS, tidal interactions).

In Figure 18, Scenario B, we consider a group, with some pre-processing, on infall into
a cluster. Compared to gas stripping, the conditions for interactions/mergers are favorable
in groups due to low relative velocities (e.g., [903–905]), and we postulate that some of
the group members may merge before infall. By contrast, the high velocities in clusters
may suppress merger activity while facilitating high speed fly-bys that accumulate into
harassment. This is not entirely clear-cut, however. Recent analysis of the hydrodynamical
simulation Illustris showed that, compared to isolated infalling galaxies, infalling group
members retain lower relative velocities [906], which may facilitate mergers in cluster
outskirts (e.g., [887]). As such, our Scenario B includes two group galaxies destined to
merge after passing the cluster R200.
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Will merging quench these galaxies? As stated earlier, the end result of merger activity
is unclear; however, we can gain some context based on infrared observations. In terms of
triggering star formation, as in local mergers, copious starbursting activity is disallowed as
we typically observe cluster galaxies at all redshifts to be on or below the MS (Section 5).
On the other hand, there is tentative evidence of an excess in the MIR AGN fraction in
clusters at high redshift [523], for which a triggering mechanism is needed (Section 5.4).
Enhanced interaction/merger fractions would be a natural explanation for this triggering
and potential subsequent quenching by AGN feedback (e.g., [175]). Similarly, the centrally
concentrated star formation and molecular gas observed in resolved studies of both local
and high-redshift clusters [835,836] could be driven by gravitational mechanisms; however,
Ikeda et al. [836] found no correlation between enhanced central SFE and close galaxy pairs.

Progress in understanding quenching by gravitational mechanisms will require more
high-resolution studies and improved infrared capabilities, such as with JWST, in identi-
fying merger and AGN activity in more obscured phases. Gravitational mechanisms in
overdense environments likely also need to be invoked to explain morphological changes
in cluster galaxies; however, that is a topic for another review. As in the previous section,
pre-processing and gravitational quenching mechanisms and their required conditions are
listed in Figure 19 with a summary of supporting infrared evidence and open questions.

9. Conclusions and Future Prospects

This review has presented the state of infrared studies investigating environmental
influences on galaxy evolution in the most extreme regions, clusters and proto-clusters, out
to high redshift. While the resounding conclusion is that environment plays an important
role in driving quenching in excess of secular processes, it is also clear that current infrared
evidence can accommodate a variety of quenching scenarios, with multiple mechanisms
potentially acting concurrently, and with the dominant mechanism(s) likely changing over
cosmic time. In Figure 19, we attempt to summarize the possible scenarios (discussed
in some detail in Section 8) in terms of the more robust signatures from IR observations,
along with listing some of the many open questions. As surveys and capabilities continue
to expand and selection biases are mitigated, we will refine our understanding of these
quenching pathways. While there is still much work to be done, the near-, mid-, and
far-infrared regimes have provided unique perspectives, including quantifying quenching
efficiencies, measuring radially-dependent obscured star formation rates, and probing
spatially-resolved molecular gas reservoirs. Expanding on this work and continuing to
unite it with powerful observables in other wavelength regimes is necessary to address the
pressing questions that remain.

Thankfully, the future prospects for infrared studies of environment are promising,
from cluster detection to cluster population analyses. In Sections 3.1 and 3.2, we briefly
mentioned some of the upcoming surveys and facilities that will expand the number of
(proto-)cluster candidates selected in the NIR and via SZ and submm colors by orders
of magnitude. These surveys will greatly broaden the dynamic range of our group and
(proto-)cluster surveys and allow considerable binning by cluster properties, breaking the
degeneracies between halo properties and galaxy properties discussed throughout this
review. Overlap in (optical/)NIR and SZ selections will produce large samples with known
redshifts and halo masses.

The sheer number of (proto-)cluster candidates will necessitate confirmation from
wide-field spectroscopic surveys and analyses using statistical techniques such as the total
light stacking, discussed in Section 7. Upcoming spectroscopic facilities with multiplexing
and/or slitless capabilities (e.g., MOONS53 and ERIS54 on the Very Large Telescope (VLT),
JWST, Euclid, Roman, and future Extreme Large Telescopes) will provide confirmation (and
detailed characterization, see below) of populations in a moderate sample of clusters. On
the more distant horizon, two proposed space missions would provide wide-field NIR
spectroscopic follow-up: SPHEREx55 and ISCEA56. SPHEREx will conduct an all-sky
spectral survey at ∼1–5 µm, providing spectroscopic redshifts of known clusters up to
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z ∼ 0.9 [907]. ISCEA, funded for a NASA mission concept study, has the science goal of
mapping large scale structure at cosmic noon and would observe 50 proto-cluster fields on
>10 Mpc scales, gathering spectra for ∼1000 galaxies per field over 1–2 µm and mapping
the 3D cosmic web with better than 50 km s−1 resolution [908]. In the redshift range ∼1–2,
ISCEA would measure the Hα and Hβ emission lines to a few solar masses per year in SFR,
mitigating the effects of dust extinction discussed throughout this review.

Targeted follow-up will continue to play an outsized role in understanding cluster
populations. Of particular importance in disentangling environmental processes is under-
standing the behavior of gas, particularly the cold molecular gas that fuels star formation.
Interferometers such as ALMA and NOEMA will continue to be invaluable on this front,
particularly via resolved studies; however, it is imperative that we also utilize the more
wide-field capabilities of single-dish submm observatories [909]. For example, the 50-m
Large Millimeter Telescope (LMT) will offer 5′′ spatial resolution at 1–2 mm via its new
bolometer camera TolTEC57, with fast mapping speeds (see also NIKA258 on IRAM, MUS-
TANG2 on GBT59, and the proposed Atacama Large Aperture Submillimeter Telescope
(AtLAST; [912])). This will enable us to quantify the dust in cluster galaxies to z ∼ 2 and
obscured star formation at higher redshift. Resolving the contention in the gas-to-dust
ratio in overdense environments and the gas and dust scale lengths relevant for stripping
processes (Section 6) is then paramount to (re-)calibrate dust as a molecular gas proxy
and/or establish cold dust content as a unique signature of stripping.

There are other areas where we are poised to make great strides. Slit and slitless
spectroscopy (and narrow/medium band imaging) via JWST and sensitive, large FOV
ground-based NIR spectrographs will return highly complete cluster catalogs; for example,
JWST can detect and spatially resolve the Paα or Paβ emission lines − robust SFR tracers
with minimal dust extinction—to a few solar masses per year in just a few hours at z ∼1–260.
This will account for previously missed obscured and low-mass cluster members. Indeed,
we have emphasized in several contexts that low-mass galaxies (and populations like AGN)
may be key to understanding environmental quenching. With the successful launch and
commissioning of JWST, we now have a unique opportunity to efficiently carry out global
and local environmental studies to log M?/M� < 8. In a similar vein, JWST’s mid-infrared
capabilities will revolutionize our understanding of AGN populations by revealing and
characterizing obscured supermassive black holes to cosmic noon and beyond. JWST
further provides the high-resolution (0.06-0.1′′), sensitive rest-frame NIR imaging needed
to robustly quantify merger and interaction rates and tie these processes to the triggering of
star formation and AGN across different environments and spanning cosmic time. Given
our current and upcoming capabilities, the infrared will continue to deliver a wealth of
information regarding the role of environment in shaping the evolution of galaxies.
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Abbreviations

The following abbreviations are used in this manuscript:

2MASS Two Micron All Sky Survey
ACT Atacama Cosmology Telescope
AGES Spectroscopy from the AGN and Galaxy Evolution Survey
AGN Active Galactic Nuclei
AlFoCS ALMA Fornax Cluster Survey
ALMA Atacama Large Millimeter Array
ATCA Australia Compact Array
AtLAST Atacama Large Aperture Submillimeter Telescope
BCG Brightest Cluster Galaxy
BGG Brightest Group Galaxy
BIMA Berkeley Illinois Maryland Association
[CI] Neutral Atomic Carbon
CO Carbon Monoxide
COLD GASS CO Legacy Database for GASS
COSMOS Cosmic Evolution Survey
CT Compton-thick (AGN)
DECaLS Dark Energy Camera Legacy Survey
DES Dark Energy Survey
DGR Dust-to-Gas Ratio
DM Dark Matter
(Hot) DOGs (Hot) Dust-obscured Galaxies
DRC Distant Red Core
EDisCs ESO Distant Cluster Survey
EQE Environmental Quenching Efficiency
ERCSC Planck Early Release Compact Source Catalog
ERIS Enhanced Resolution Imager and Spectrograph
ETG Early-Type Galaxy
FOV Field-of-view
GASP GAs Stripping Phenomena in galaxies survey
GBT Green Bank Telescope
GCLASS Gemini Cluster Astrophysics Spectroscopic Survey
GOGREEN Gemini Observations of Galaxies in Rich Early Environments
H2 Molecular Hydrogen
HERACLES HERA CO-Line Extragalactic Survey
HerMES Herschel Multi-tiered Extragalactic Survey
HeViCS Herschel Virgo Cluster Survey
[HI] Neutral Atomic Hydrogen
HRS Herschel Reference Survey
HSC-SSP Hyper-Surprime Cam-Subaru Strategic Program
ICBS IMACS Cluster Building Survey
ICD Intra-cluster Dust
ICM Intra-cluster Medium
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IGrM Intra-group Medium
IMF Initial Mass Function
(N/M/F)IR (Near/Mid/Far-)Infrared
IRAM Institut de Radioastronomie Millimètrique
IRAS InfraRed Astronomy Satellite
IRS InfraRed Spectrograph
ISCS/IDCS IRAC Shallow and Distant Cluster Surveys
ISO Infrared Space Observatory
ISS IRAC Shallow Survey
JCMT James Clerk Maxwell Telescope
JVLA Karl G. Jansky Very Large Array
JWST James Webb Space Telescope
LAE Lyman-α Emitter
LABOCA Large Apex BOlometer CAmera
LF Luminosity Function
LMT Large Millimeter Telescope/Gran Telescopio Milimétrico Alfonso Serrano
LoCuSS Local Cluster Substructure Survey
MaDCoWS Massive and Distant Clusters of WISE Survey
MAGAZ3NE Massive Ancient Galaxies At z > 3 NEar-infrared
MIPS Multi-Band Imaging Photometer
MOONS Multi-Object Optical and Near-infrared Spectrograph for Spitzer
MS Main Sequence
MUSE Multi-Unit Spectroscopic Explorer
NDWFS NOAO Deep Wide-Field Survey
NFW Navarro-Frenk-White (profile)
NGLS Nearby Galaxies Legacy Survey
NIKA2 New IRAM KID Arrays 2
NOEMA NOrthern Extended Millimeter Array
NMBS NEWFIRM Medium-Band Survey
ORELSE Observations of Redshift Evolution in Large-Scale Environments
PACS Photodetector Array Camera & Spectrometer
Pan-STARRS Panoramic Survey Telescope and Rapid Response System
PCCS(2) (Second) Planck Catalogue of Compact Sources
PdBI Plateau de Bure Interferometer
PHIBSS Plateau de Bure High-z Blue Sequence Survey
PICO Probe of Inflation and Cosmic Origins
Photo-z Photometric Redshift
QG Quiescent Galaxy
RPS Ram Pressure Stripping
RS Red Sequence
SCUBA Submillimeter Common-User Bolometer Array
SDSS Sloan Digital Sky Survey
SDWFS Spitzer Deep Wide-field Survey
SED Spectral Energy Distribution
SEEDisCS Spatially Extended EDisCS Survey
SF Star Formation
SFE Star Formation Efficiency
(D)SFG (Dusty) Star-Forming Galaxy
SFR Star Formation Rate
SFRD Star Formation Rate Density
SHELA Spitzer-HETDEX Exploratory Large Area survey
SLED Spectral Line Energy Distribution
SMG Sub-Millimeter Galaxy
SMF Stellar Mass Function
Spec-z Spectroscopic Redshift
SpARCS Spitzer Adaptation of the Red-sequence Cluster Survey
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SPIRE Spectral and Photometric Imaging REceiver
SPT South Pole Telescope
SSDF Spitzer South Pole Telescope Deep Field
SSFR Specific-Star Formation Rate
Submm Submillimeter
SWIRE Spitzer Wide-area InfraRed Extragalactic survey
SZ Sunyaev-Zel’dovich (Effect)
(U)LIRG (Ultra-)Luminous Infrared Galaxy
UMG Ultra-Massive Galaxy
UV Ultraviolet
VERTICO Virgo Environment Traced in CO survey
VLT Very Large Telescope
WINGS WIde-Field Nearby Galaxy-cluster Survey
WISE Wide-field Infrared Survey Explorer

Notes
1 Referenced facilities: InfraRed Astronomy Satellite (IRAS; [38]); Infrared Space Observatory (ISO; [39]); Spitzer Space Telescope [40];

Wide-field Infrared Survey Explorer (WISE; [41]); Herschel Space Telescope [42]; AKARI [43]; Planck [44].
2 Referenced instruments: Submillimeter Common-User Bolometer Array (SCUBA; [45]), SCUBA-2 [46], AzTEC [47], Large Apex

BOlometer CAmera (LABOCA; [48]).
3 Referenced facilities: James Clerk Maxwell Telescope (JCMT; [45]), Large Millimeter Telescope/Gran Telescopio Milimétrico

Alfonso Serrano (LMT; [49]), South Pole Telescope (SPT; [50]), Atacama Cosmology Telescope (ACT; [51]).
4 Referenced facilities: the NOrthern Extended Millimeter Array (NOEMA; [52,53]); the Plateau de Bure Interferometer (PdBI; [54]);

the Atacama Large Millimeter Array (ALMA; [55]), and the Karl G. Jansky Very Large Array (JVLA; [56]).
5 We note that starvation is likely a form of mild RPS that effects hot halo gas and not a fully distinct process. However, for

convenience, we refer to stripping of cold disk gas as RPS throughout this review.
6 The star-forming Main Sequence (MS; [113–116]) is the observed correlation between the star formation and stellar mass of a

galaxy, which exhibits low scatter (∼0.3 dex) and a trend in the SFR per unit mass which increases with increasing redshift. The
latter results in the SFR for a MS galaxy rising by two orders of magnitude from z ∼ 0 to z ∼ 1 (see Schreiber and Wuyts [117]
and references therein).

7 Sizes, morphologies, and disturbed features (indicating galaxy interactions) can be identified in the rest-NIR up to z ∼ 1 with the
current capabilities of HST. These measurements, however, are known to be sensitive to dust at the short wavelengths typically
probed (e.g., [120]); this uncertainty will be addressed by upcoming observations with JWST (Section 9). As such, we will not
attempt a full overview of these measurements in this review, though they may be discussed in supporting contexts.

8 H2 can emit radiation through the quadrupole moment, but these transitions have low probabilities and require high excitation
energies.

9 Assuming an NFW profile with a concentration c = 5 [152]. See Section 7.2.2 for an expanded definition of the NFW profile and
concentration parameter.

10 For example, the NOAO Deep Wide-Field Survey (NDWFS; [159]), the NEWFIRM Medium-Band Survey (NMBS; [160]), the IRAC
Shallow Survey (ISS; [161]), the Spitzer Deep Wide-field Survey (SDWFS; [162]), and the Spitzer Wide-area InfraRed Extragalactic
survey (SWIRE; [163]).

11 Referenced Surveys: the Massive and Distant Clusters of WISE Survey (MaDCoWS; [209], the Panoramic Survey Telescope
and Rapid Response System (Pan-STARRS; [214])), SuperCOSMOS [215], the Dark Energy Camera Legacy Survey (DECaLS;
PI: D. Schlegel and A. Dey), CatWISE2020 [216], the Two Micron All Sky Survey (2MASS; [217]), the Sloan Digital Sky Survey
(SDSS; [218]), unWISE [219], the Hyper-Surprime Cam-Subaru Strategic Program (HSC-SSP; [220]), and the Dark Energy Survey
(DES; [221]).

12 The SZ effect is comprised of two components: the thermal component due to the random thermal motions of electrons and a
kinetic component from the bulk gas motion relative to the CMB. For galaxy clusters, the thermal component dominates and as
such as we will not discuss the kinetic SZ.

13 Galaxy bias is the statistical relation between the spatial distribution of a galaxy population and the underlying dark matter
density field. Bias is strongly dependent on the galaxy population being observed.

14 Cosmic Evolution Survey (COSMOS; [276]).
15 Hot DOGs are selected as dropouts in the first two WISE filters at 3.4 and 4.6 µm [169,252]. Similar sources can be chosen in WISE

color-color space combined with radio detections [253].
16 The Herschel Multi-tiered Extragalactic Survey (HerMES; [359]).
17 Spectral and Photometric Imaging Receiver (SPIRE [369]).
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18 BCGs are a notable exception (e.g., [383,384]) and are typically excluded from cluster SMF measurements.
19 For a discussion of the construction of SMFs in clusters, including necessary cluster member completeness corrections, we refer

the reader to Section 3 in van der Burg et al. [388].
20 the WIde-Field Nearby Galaxy-cluster Survey (WINGS at 0.04 < z < 0.07; [391]), The IMACS Cluster Building Survey (ICBS at

0.25 < z < 0.45; [392]) and ESO Distant Cluster Survey (EDisCs at 0.4 < z < 0.6; [393]).
21 At higher redshifts, the environmental dependence of the total SMF in overdense regions is less clear [399,400].
22 Observations of Redshift Evolution in Large-Scale Environments (ORELSE; [403]).
23 For higher redshift clusters, pre-processing may occur in the proto-cluster environment through top-heavy halo and stellar mass

functions (e.g., [21,432,433]).
24 Backsplash galaxies are gravitationally-bound cluster members that have completed their first pass of the cluster center and are

on orbits taking them back into the cluster outskirts and infall regions [435].
25 Multi-Band Imaging Photometer for Spitzer (MIPS; [468]).
26 The Local Cluster Substructure Survey (LoCuSS; [473]).
27 An observational (projected) caustic or phase space diagram uses the line-of-sight velocities relative to the cluster velocity

dispersion and cluster-centric radii relative to the virial radius of a cluster population to kinematically separate galaxies by their
time since infall (e.g., [486–488]). Simulations show projected phase space is in good agreement with theoretical full 3D phase
space diagrams (e.g., [489,490]).

28 A “delayed, then rapid” model, in which SFRs are unaltered for some delay time upon infall followed by quenching on short
timescales, was first proposed in Wetzel et al. [492].

29 Photodetector Array Camera & Spectrometer (PACS; [519]).
30 Multi-Unit Spectroscopic Explorer (MUSE; [540]).
31 CL J1001+0220 was originally identified as a high-z cluster due to associated extended X-ray emission [301]. Its status as a cluster

is unclear, however; subsequent analysis in Champagne et al. [72] argues that the X-ray emission originates from a radio relic
rather than an ICM.

32 We note the uncertainties that arise from the CO-H2 conversion could result in increased τdepl , see Section 6.
33 Given a high individual SFRs (>1, 000 M� yr−1, discussed in Section 5.3), a “long” lifetime would be limited to <500 Myr so as

not to exceed a final mass of log M?/M� = 11.5.
34 For spatially-resolved scaling relations, including the definition of a molecular gas Main Sequence, see Bolatto et al. [607], Lin

et al. [608], and Ellison et al. [609].
35 Institut de Radioastronomie Millimétrique (IRAM; [610]).
36 The mass-weighted dust temperature represents the temperature of the dominant (by mass) cold dust component. It is typically

lower than the luminosity-weighted temperature measured from the peak of the FIR SED.
37 Local studies have shown that the dust mass is a good tracer of total (HI+H2) gas mass in HI dominated galaxies [620]. As HI

cannot yet be observed beyond low redshift, high-redshift calibrations of dust as a gas proxy are largely based on CO and are
often stated to represent the molecular component. This is likely reasonable as high-z galaxies are thought to be dominated by H2
(see Schreiber and Wuyts [117] and references therein); however, this remains an unknown systematic.

38 This calibration may no longer be valid at high redshifts where the cosmic background boosts galaxy dust temperatures.
39 There was some evidence that Fornax cluster galaxies in Horellou et al. [646] had weaker CO emission compared to the atomic

gas content, but the amount was typical given their low star formation rates.
40 See also Young and Scoville [650] for a compilation of individual detections at that time.
41 Berkeley Illinois Maryland Association (BIMA; [657]).
42 There is a deficit of CO cluster studies from 0.6 < z < 1, which might be partially due to broad oxygen and water vapor

absorption bands at 120 and 183 GHz, limiting continuous coverage of CO (3− 2) and (2− 1) at z ∼ 0.8–0.9.
43 CO (4− 3) was detected in 8 galaxies total in the Coogan et al. [682] study, but some lacked stellar masses and SFR estimates in

order to determine how their gas fractions compare to the field-scaling relations.
44 See also Daddi et al. [693] for starburst-like excitation in CO (5− 4) within z = 1.5 BzK field galaxies.
45 HERA CO-Line Extragalactic Survey (HERACLES; [712]).
46 InfraRed Spectrograph (IRS; [726]).
47 Total light stacking is the stacking of image cutouts large enough to contain entire (proto-)cluster structures, rather than stacking

on individual galaxies within the (proto)clusters.
48 A note of caution: in reality MIR/FIR emission is a summation of a series of blackbodies at different temperatures representing

different dust grain sizes and compositions. The observed dust temperature, however, is usually reported as a single, luminosity-
weighted temperature or a more robust two-temperature model including “warm” and “cold” components [773]. In this review,
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we primarily discuss the commonly-used effective dust temperature, Tdust,eff, derived from modeling a modified blackbody plus
MIR power law [621,774,775].

49 Simulation predictions were calculated using the Colossus python toolkit [813]; http://www.benediktdiemer.com/code/
colossus/, accessed on 16 April 2022.

50 To be accurate, an NFW profile was found to fit the far-IR at &0.3 Mpc, with a relative deficit at smaller radii relative to the
near-IR profile [779].

51 We note that many studies refer to this stripping as ram pressure stripping. For ease of discussion, we have defined and refer to
starvation as heating and/or removal (i.e., through stripping, tidal interactions, evaporation) of the hot halo gas and RPS as the
(ram pressure) stripping of cold atomic or molecular disk gas.

52 The apocenter is the point of an orbit farthest from the center of attraction.
53 Multi-Object Optical and Near-infrared Spectrograph; https://vltmoons.org/, accessed on 2 September 2022.
54 Enhanced Resolution Imager and Spectrograph; https://www.eso.org/sci/facilities/develop/instruments/eris.html, accessed

on 2 September 2022.
55 SPHEREx; https://spherex.caltech.edu/, accessed on 2 September 2022.
56 Infrared Satellite for Cluster Evolution Astrophysics; https://iscea.ipac.caltech.edu/, accessed on 2 September 2022.
57 Commissioning in 2022, http://toltec.astro.umass.edu/, accessed on 2 September 2022.
58 New IRAM KID Arrays 2 (NIKA2; [910]).
59 MUSTANG2 [911], Green Bank Telescope (GBT).
60 For example, see JWST Cycle 1 GO Program 1572 https://www.stsci.edu/jwst/science-execution/program-information.html?

id=1572, accessed on 2 September 2022.
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Deep Observations of CO Line Emission from Star-Forming Galaxies in a Cluster Candidate at Z = 1.5. Mon. Not. R. Astron. Soc.
2012, 426, 258–275. [CrossRef]

685. Casasola, V.; Magrini, L.; Combes, F.; Mignano, A.; Sani, E.; Paladino, R.; Fontani, F. A Gas-Rich AGN near the Centre of a Galaxy
Cluster at z ~ 1.4. Astron. Astrophys. 2013, 558, A60. [CrossRef]

686. Castignani, G.; Combes, F.; Salomé, P.; Andreon, S.; Pannella, M.; Heywood, I.; Trinchieri, G.; Cicone, C.; Davies, L.J.M.; Owen,
F.N.; et al. Molecular Gas in Two Companion Cluster Galaxies at z = 1.2. Astron. Astrophys. 2018, 617, A103. [CrossRef]

687. Hayashi, M.; Kodama, T.; Kohno, K.; Yamaguchi, Y.; Tadaki, K.i.; Hatsukade, B.; Koyama, Y.; Shimakawa, R.; Tamura, Y.; Suzuki,
T.L. Evolutionary Phases of Gas-rich Galaxies in a Galaxy Cluster at z = 1.46. Astrophys. J. 2017, 841, L21. [CrossRef]

688. D’Amato, Q.; Gilli, R.; Prandoni, I.; Vignali, C.; Massardi, M.; Mignoli, M.; Cucciati, O.; Morishita, T.; Decarli, R.; Brusa, M.; et al.
Discovery of Molecular Gas Fueling Galaxy Growth in a Protocluster at z = 1.7. Astron. Astrophys. 2020, 641, L6. [CrossRef]

689. Bahé, Y.M.; McCarthy, I.G.; Crain, R.A.; Theuns, T. The Competition between Confinement and Ram Pressure and Its Implications
for Galaxies in Groups and Clusters. Mon. Not. R. Astron. Soc. 2012, 424, 1179–1186. [CrossRef]

690. Zinger, E.; Dekel, A.; Birnboim, Y.; Kravtsov, A.; Nagai, D. The Role of Penetrating Gas Streams in Setting the Dynamical State of
Galaxy Clusters. Mon. Not. R. Astron. Soc. 2016, 461, 412–432. [CrossRef]

691. Zinger, E.; Dekel, A.; Birnboim, Y.; Nagai, D.; Lau, E.; Kravtsov, A.V. Cold Fronts and Shocks Formed by Gas Streams in Galaxy
Clusters. Mon. Not. R. Astron. Soc. 2018, 476, 56–70. [CrossRef]

692. Strazzullo, V.; Coogan, R.T.; Daddi, E.; Sargent, M.T.; Gobat, R.; Valentino, F.; Bethermin, M.; Pannella, M.; Dickinson, M.; Renzini,
A.; et al. Deciphering the Activity and Quiescence of High-redshift Cluster Environments: ALMA Observations of Cl J1449+0856
at z = 2. Astrophys. J. 2018, 862, 64. [CrossRef]

693. Daddi, E.; Dannerbauer, H.; Liu, D.; Aravena, M.; Bournaud, F.; Walter, F.; Riechers, D.; Magdis, G.; Sargent, M.; Béthermin, M.;
et al. CO Excitation of Normal Star-Forming Galaxies out to z = 1.5 as Regulated by the Properties of Their Interstellar Medium.
Astron. Astrophys. 2015, 577, A46. [CrossRef]

694. Huang, Y.D.T.; Morata, O.; Koch, P.M.; Kemper, C.; Hwang, Y.J.; Chiong, C.C.; Ho, P.; Chu, Y.H.; Huang, C.D.; Liu, C.T.; et al. The
Atacama Large Millimeter/sub-millimeter Array band-1 receiver. In Proceedings of the Modeling, Systems Engineering, and
Project Management for Astronomy VI, Edinburgh, UK, 10 August 2016; Angeli, G.Z., Dierickx, P., Eds.; 2016 ; Volume 9911,
p. 99111V. [CrossRef]

695. Dannerbauer, H.; Lehnert, M.D.; Emonts, B.; Ziegler, B.; Altieri, B.; De Breuck, C.; Hatch, N.; Kodama, T.; Koyama, Y.; Kurk, J.D.;
et al. The Implications of the Surprising Existence of a Large, Massive CO Disk in a Distant Protocluster. Astron. Astrophys. 2017,
608, A48. [CrossRef]

696. Aoyama, K.; Kodama, T.; Suzuki, T.L.; Tadaki, K.i.; Shimakawa, R.; Hayashi, M.; Koyama, Y.; Pérez-Martínez, J.M. The
Environmental Dependence of Gas Properties in Dense Cores of a Protocluster at z 2.5 Revealed with ALMA. Astrophys. J. 2022,
924, 74. [CrossRef]

697. Lee, M.M.; Tanaka, I.; Iono, D.; Kawabe, R.; Kodama, T.; Kohno, K.; Saito, T.; Tamura, Y. Revisited Cold Gas Content with Atomic
Carbon [C i] in z = 2.5 Protocluster Galaxies. Astrophys. J. 2021, 909, 181. [CrossRef]

698. Tanaka, I.; De Breuck, C.; Kurk, J.D.; Taniguchi, Y.; Kodama, T.; Matsuda, Y.; Packham, C.; Zirm, A.; Kajisawa, M.; Ichikawa, T.;
et al. Discovery of an Excess of Hα Emitters around 4C 23.56 at z = 2.48. Publ. Astron. Soc. Jpn. 2011, 63, 415. [CrossRef]

699. Lee, M.M.; Tanaka, I.; Kawabe, R.; Kohno, K.; Kodama, T.; Kajisawa, M.; Yun, M.S.; Nakanishi, K.; Iono, D.; Tamura, Y.; et al. A
Radio-to-mm Census of Star-forming Galaxies in Protocluster 4C23.56 at Z = 2.5: Gas Mass and Its Fraction Revealed with ALMA.
Astrophys. J. 2017, 842, 55. [CrossRef]

700. Decarli, R.; Walter, F.; Aravena, M.; Carilli, C.; Bouwens, R.; da Cunha, E.; Daddi, E.; Ivison, R.J.; Popping, G.; Riechers, D.; et al.
ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: CO Luminosity Functions and the Evolution of the Cosmic Density
of Molecular Gas. Astrophys. J. 2016, 833, 69. [CrossRef]

http://dx.doi.org/10.3847/1538-4357/aa87b2
http://dx.doi.org/10.3847/1538-4357/aab3e7
http://dx.doi.org/10.3847/1538-4357/ac48f6
http://dx.doi.org/10.3847/1538-4357/ac58fa
http://dx.doi.org/10.1093/mnras/sty1446
http://dx.doi.org/10.1088/0004-637X/752/2/91
http://dx.doi.org/10.1111/j.1365-2966.2012.21697.x
http://dx.doi.org/10.1051/0004-6361/201321599
http://dx.doi.org/10.1051/0004-6361/201832887
http://dx.doi.org/10.3847/2041-8213/aa71ad
http://dx.doi.org/10.1051/0004-6361/202038711
http://dx.doi.org/10.1111/j.1365-2966.2012.21292.x
http://dx.doi.org/10.1093/mnras/stw1283
http://dx.doi.org/10.1093/mnras/sty136
http://dx.doi.org/10.3847/1538-4357/aacd10
http://dx.doi.org/10.1051/0004-6361/201425043
http://dx.doi.org/10.1117/12.2232193
http://dx.doi.org/10.1051/0004-6361/201730449
http://dx.doi.org/10.3847/1538-4357/ac34fa
http://dx.doi.org/10.3847/1538-4357/abdbb5
http://dx.doi.org/10.1093/pasj/63.sp2.S415
http://dx.doi.org/10.3847/1538-4357/aa74c2
http://dx.doi.org/10.3847/1538-4357/833/1/69


Universe 2022, 8, 554 98 of 103

701. Pappalardo, C.; Bianchi, S.; Corbelli, E.; Giovanardi, C.; Hunt, L.; Bendo, G.J.; Boselli, A.; Cortese, L.; Magrini, L.; Zibetti, S.; et al.
The Herschel Virgo Cluster Survey. XI. Environmental Effects on Molecular Gas and Dust in Spiral Disks. Astron. Astrophys. 2012,
545, A75. [CrossRef]

702. Davis, T.A.; Alatalo, K.; Bureau, M.; Cappellari, M.; Scott, N.; Young, L.M.; Blitz, L.; Crocker, A.; Bayet, E.; Bois, M.; et al. The
ATLAS3D Project—XIV. The Extent and Kinematics of the Molecular Gas in Early-Type Galaxies. Mon. Not. R. Astron. Soc. 2013,
429, 534–555. [CrossRef]

703. Cortese, L.; Davies, J.I.; Pohlen, M.; Baes, M.; Bendo, G.J.; Bianchi, S.; Boselli, A.; De Looze, I.; Fritz, J.; Verstappen, J.; et al. The
Herschel Virgo Cluster Survey . II. Truncated Dust Disks in H I-deficient Spirals. Astron. Astrophys. 2010, 518, L49. [CrossRef]

704. Chung, E.J.; Yun, M.S.; Verheijen, M.A.W.; Chung, A. 12 CO( J = 1 $\to $ 0) On-the-fly Mapping Survey of the Virgo Cluster
Spirals. II. Molecular Gas Properties in Different Density Environments. Astrophys. J. 2017, 843, 50. [CrossRef]

705. Mok, A.; Wilson, C.D.; Knapen, J.H.; Sánchez-Gallego, J.R.; Brinks, E.; Rosolowsky, E. The JCMT Nearby Galaxies Legacy
Survey—XI. Environmental Variations in the Atomic and Molecular Gas Radial Profiles of Nearby Spiral Galaxies. Mon. Not. R.
Astron. Soc. 2017, 467, 4282–4292. [CrossRef]

706. Tonnesen, S.; Bryan, G.L. Gas Stripping in Simulated Galaxies with a Multiphase Interstellar Medium. Astrophys. J. 2009,
694, 789–804. [CrossRef]

707. Combes, F.; Dupraz, C.; Casoli, F.; Pagani, L. CO Emission in NGC 4438 : A Case for Tidal Stripping? Astron. Astrophys. 1988,
203, L9–L12.

708. Vollmer, B.; Braine, J.; Balkowski, C.; Cayatte, V.; Duschl, W.J. 12CO(1-0) Observations of NGC 4848: A Coma Galaxy after
Stripping. Astron. Astrophys. 2001, 374, 824–838. [CrossRef]

709. Scott, T.C.; Usero, A.; Brinks, E.; Bravo-Alfaro, H.; Cortese, L.; Boselli, A.; Argudo-Fernández, M. Highly Perturbed Molecular
Gas in Infalling Cluster Galaxies: The Case of CGCG97-079. Mon. Not. R. Astron. Soc. 2015, 453, 328–337. [CrossRef]

710. Lee, B.; Wang, J.; Chung, A.; Ho, L.C.; Wang, R.; Michiyama, T.; Molina, J.; Kim, Y.; Shao, L.; Kilborn, V.; et al. ALMA/ACA CO
Survey of the IC 1459 and NGC 4636 Groups: Environmental Effects on the Molecular Gas of Group Galaxies. Astrophys. J. Suppl.
Ser. 2022, 262, 31. [CrossRef]

711. Chung, A.; van Gorkom, J.H.; Kenney, J.D.P.; Crowl, H.; Vollmer, B. VLA Imaging of Virgo Spirals in Atomic Gas (VIVA). I. The
Atlas and the H I Properties. Astron. J. 2009, 138, 1741–1816. [CrossRef]

712. Leroy, A.K.; Walter, F.; Bigiel, F.; Usero, A.; Weiss, A.; Brinks, E.; de Blok, W.J.G.; Kennicutt, R.C.; Schuster, K.F.; Kramer, C.; et al.
Heracles: The HERA CO Line Extragalactic Survey. Astron. J. 2009, 137, 4670–4696. [CrossRef]

713. Lee, B.; Chung, A. The ALMA Detection of Extraplanar 13CO in a Ram-pressure-stripped Galaxy and Its Implication. Astrophys.
J. 2018, 866, L10. [CrossRef]

714. Vollmer, B.; Braine, J.; Pappalardo, C.; Hily-Blant, P. Ram-Pressure Stripped Molecular Gas in the Virgo Spiral Galaxy NGC 4522.
Astron. Astrophys. 2008, 491, 455–464. [CrossRef]

715. Verdugo, C.; Combes, F.; Dasyra, K.; Salomé, P.; Braine, J. Ram Pressure Stripping in the Virgo Cluster. Astron. Astrophys. 2015,
582, A6. [CrossRef]

716. Moretti, A.; Paladino, R.; Poggianti, B.M.; D’Onofrio, M.; Bettoni, D.; Gullieuszik, M.; Jaffé, Y.L.; Vulcani, B.; Fasano, G.; Fritz, J.;
et al. GASP—X. APEX Observations of Molecular Gas in the Discs and in the Tails of Ram-Pressure Stripped Galaxies. Mon. Not.
R. Astron. Soc. 2018, 480, 2508–2520. [CrossRef]

717. Jáchym, P.; Combes, F.; Cortese, L.; Sun, M.; Kenney, J.D.P. Abundant Molecular Gas and Inefficient Star Formation in Intracluster
Regions: Ram Pressure Stripped Tail of the Norma Galaxy ESO137-001. Astrophys. J. 2014, 792, 11. [CrossRef]

718. Jáchym, P.; Sun, M.; Kenney, J.D.P.; Cortese, L.; Combes, F.; Yagi, M.; Yoshida, M.; Palouš, J.; Roediger, E. Molecular Gas
Dominated 50 Kpc Ram Pressure Stripped Tail of the Coma Galaxy D100. Astrophys. J. 2017, 839, 114. [CrossRef]

719. Cramer, W.J.; Kenney, J.D.P.; Cortes, J.R.; Cortes P. C.; Vlahakis, C.; Jáchym, P.; Pompei, E.; Rubio, M. ALMA Evidence for
Ram Pressure Compression and Stripping of Molecular Gas in the Virgo Cluster Galaxy NGC 4402. Astrophys. J. 2020, 901, 95.
[CrossRef]

720. Cramer, W.J.; Kenney, J.D.P.; Tonnesen, S.; Smith, R.; Wong, T.; Jáchym, P.; Cortés, J.R.; Cortés, P.C.; Wu, Y.T. Molecular Gas
Filaments and Fallback in the Ram Pressure Stripped Coma Spiral NGC 4921. Astrophys. J. 2021, 921, 22. [CrossRef]

721. Owers, M.S.; Couch, W.J.; Nulsen, P.E.J.; Randall, S.W. Shocking Tails in the Major Merger Abell 2744. Astrophys. J. 2012, 750, L23.
[CrossRef]

722. Poggianti, B.M.; Fasano, G.; Omizzolo, A.; Gullieuszik, M.; Bettoni, D.; Moretti, A.; Paccagnella, A.; Jaffé, Y.L.; Vulcani, B.; Fritz, J.;
et al. Jellyfish Galaxy Candidates at Low Redshift. Astron. J. 2016, 151, 78. [CrossRef]

723. Ebeling, H.; Stephenson, L.N.; Edge, A.C. Jellyfish: Evidence of extreme ram-pressure stripping in massive galaxy clusters.
Astrophys. J. 2014, 781, L40. [CrossRef]

724. Fumagalli, M.; Fossati, M.; Hau, G.K.T.; Gavazzi, G.; Bower, R.; Sun, M.; Boselli, A. MUSE Sneaks a Peek at Extreme Ram-Pressure
Stripping Events - I. A Kinematic Study of the Archetypal Galaxy ESO137-001. Mon. Not. R. Astron. Soc. 2014, 445, 4335–4344.
[CrossRef]

725. Rawle, T.D.; Altieri, B.; Egami, E.; Pérez-González, P.G.; Richard, J.; Santos, J.S.; Valtchanov, I.; Walth, G.; Bouy, H.; Haines, C.P.;
et al. Star Formation in the Massive Cluster Merger Abell 2744. Mon. Not. R. Astron. Soc. 2014, 442, 196–206. [CrossRef]

http://dx.doi.org/10.1051/0004-6361/201219689
http://dx.doi.org/10.1093/mnras/sts353
http://dx.doi.org/10.1051/0004-6361/201014550
http://dx.doi.org/10.3847/1538-4357/aa756b
http://dx.doi.org/10.1093/mnras/stx345
http://dx.doi.org/10.1088/0004-637X/694/2/789
http://dx.doi.org/10.1051/0004-6361:20010800
http://dx.doi.org/10.1093/mnras/stv1592
http://dx.doi.org/10.3847/1538-4365/ac7eba
http://dx.doi.org/10.1088/0004-6256/138/6/1741
http://dx.doi.org/10.1088/0004-6256/137/6/4670
http://dx.doi.org/10.3847/2041-8213/aae4d9
http://dx.doi.org/10.1051/0004-6361:200810432
http://dx.doi.org/10.1051/0004-6361/201526551
http://dx.doi.org/10.1093/mnras/sty2021
http://dx.doi.org/10.1088/0004-637X/792/1/11
http://dx.doi.org/10.3847/1538-4357/aa6af5
http://dx.doi.org/10.3847/1538-4357/abaf54
http://dx.doi.org/10.3847/1538-4357/ac1793
http://dx.doi.org/10.1088/2041-8205/750/1/L23
http://dx.doi.org/10.3847/0004-6256/151/3/78
http://dx.doi.org/10.1088/2041-8205/781/2/L40
http://dx.doi.org/10.1093/mnras/stu2092
http://dx.doi.org/10.1093/mnras/stu868


Universe 2022, 8, 554 99 of 103

726. Houck, J.R.; Roellig, T.L.; Van Cleve, J.; Forrest, W.J.; Herter, T.L.; Lawrence, C.R.; Matthews, K.; Reitsema, H.J.; Soifer, B.T.;
Watson, D.M.; et al. The infrared spectrograph on the Spitzer Space Telescope. In Proceedings of the Optical, Infrared, and
Millimeter Space Telescopes, Glasgow, UK, 12 October 2004; Mather, J.C., Ed.; 2004; Volume 5487, pp. 62–76. [CrossRef]

727. Sivanandam, S.; Rieke, M.J.; Rieke, G.H. A Warm Molecular Hydrogen Tail Due to Ram-pressure Stripping of a Cluster Galaxy.
Astrophys. J. 2010, 717, 147–162. [CrossRef]

728. Sivanandam, S.; Rieke, M.J.; Rieke, G.H. Tracing Ram-pressure Stripping with Warm Molecular Hydrogen Emission. Astrophys. J.
2014, 796, 89. [CrossRef]

729. Sun, M.; Jones, C.; Forman, W.; Nulsen, P.E.J.; Donahue, M.; Voit, G.M. A 70 Kiloparsec X-ray Tail in the Cluster A3627. Astrophys.
J. 2006, 637, L81–L84. [CrossRef]

730. Sun, M.; Donahue, M.; Voit, G.M. Hα Tail, Intracluster H II Regions, and Star Formation: ESO 137-001 in Abell 3627. Astrophys. J.
2007, 671, 190–202. [CrossRef]

731. Jáchym, P.; Kenney, J.D.P.; Sun, M.; Combes, F.; Cortese, L.; Scott, T.C.; Sivanandam, S.; Brinks, E.; Roediger, E.; Palouš, J.; et al.
ALMA Unveils Widespread Molecular Gas Clumps in the Ram Pressure Stripped Tail of the Norma Jellyfish Galaxy. Astrophys. J.
2019, 883, 145. [CrossRef]

732. Kenney, J.D.P.; Geha, M.; Jáchym, P.; Crowl, H.H.; Dague, W.; Chung, A.; van Gorkom, J.; Vollmer, B. Transformation of a Virgo
Cluster Dwarf Irregular Galaxy by Ram Pressure Stripping: IC3418 and Its Fireballs. Astrophys. J. 2014, 780, 119. [CrossRef]

733. Lee, B.; Chung, A.; Tonnesen, S.; Kenney, J.D.P.; Wong, O.I.; Vollmer, B.; Petitpas, G.R.; Crowl, H.H.; van Gorkom, J. The Effect
of Ram Pressure on the Molecular Gas of Galaxies: Three Case Studies in the Virgo Cluster. Mon. Not. R. Astron. Soc. 2017,
466, 1382–1398. [CrossRef]

734. Young, L.M.; Meier, D.S.; Crocker, A.; Davis, T.A.; Topal, S. Down but Not Out: Properties of the Molecular Gas in the Stripped
Virgo Cluster Early-type Galaxy NGC 4526. Astrophys. J. 2022, 933, 90. [CrossRef]

735. Lizée, T.; Vollmer, B.; Braine, J.; Nehlig, F. Gas Compression and Stellar Feedback in the Tidally Interacting and Ram-Pressure
Stripped Virgo Spiral Galaxy NGC 4654. Astron. Astrophys. 2021, 645, A111. [CrossRef]

736. Nehlig, F.; Vollmer, B.; Braine, J. Effects of Environmental Gas Compression on the Multiphase ISM and Star Formation . The
Virgo Spiral Galaxies NGC 4501 and NGC 4567/68. Astron. Astrophys. 2016, 587, A108. [CrossRef]

737. Moretti, A.; Paladino, R.; Poggianti, B.M.; Serra, P.; Ramatsoku, M.; Franchetto, A.; Deb, T.; Gullieuszik, M.; Tomičić, N.; Mingozzi,
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