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Abstract: In this paper, we study the horizon properties and scalar invariants of the spacetime around
a regular black hole (BH) in 4D Einstein Gauss-Bonnet (4D EGB) gravity. It is observed that the
presence of both Gauss-Bonnet (GB) coupling and magnetic charge parameters causes the shrinking
of the outer horizon. We find that the range of the GB parameter α/M2 ∈ (−0.15869, 1), and the
extreme value of magnetic charge reaches up to gextr = 0.886M, which allows for the existence of a
BH horizon, while it is gextr = 0.7698M for pure Bardeen BH. We also investigate the dynamics of
magnetized particles around the magnetically charged Bardeen BH, assuming the particle’s motion
occurs in the equatorial plane in the proper observation frame, and the direction of the magnetic
dipole moment of the particles is always kept radially and its magnitude is constant. Moreover, the
dynamics of magnetically charged particles are also studied, and it is shown that both the energy
and angular momentum of the particles corresponding to circular orbits increases with the increase
of their magnetic charge. Finally, we also study collisions of magnetized, electrically neutral, and
magnetically charged particles around the Bardeen BHs, where we provide analyses of critical angular
momentum that may allow collision of the particles near-horizon radius, producing enormous values
of center of mass energy of the collisions.

Keywords: black holes; magnetic fields; magnetized particles; relativistic stars; orbits

PACS: 04.50.-h; 04.40.Dg; 97.60.Gb

1. Introduction

General Relativity (GR) proposed by Einstein in 1915 was the next modification of the
gravity theories and has been successfully tested in 1919 using a solar eclipse. Since that day,
this theory has been considered as a main theory describing the gravitational interaction
in both strong and weak field regimes. Moreover, general relativity has been successfully
tested in both weak and strong field regimes using a large number of experiments and
observations [1–4]. On the other hand, several fundamental problems such as the physical
singularity at the center of the Schwarzschild BHs (r = 0), ring singularity problem of the
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Kerr BH solution, inconsistency with quantum field theory, etc., which occur in the frame
of GR itself, provide evidence for the theory to become a unique theory of gravity. In order
to avoid these issues and to step forward in the direction of obtaining a unified theory
of interactions, one may need to formulate and explore modifications or/and alternative
theories of gravity.

Higher dimensional theories of gravity help us to understand the nature of the grav-
itational interaction. One of the interesting extensions of the four-dimensional Einstein
gravity to higher dimensions is called Einstein–Gauss–Bonnet (EGB) theory defined in
D > 4 dimensional spacetime. According to the Lovelock theorem, the Gauss–Bonnet
extension will be vanished in D = 4 dimensional spacetime [5]. In order to keep the
Gauss–Bonnet term in D = 4 dimensional spacetime, the authors of [6] have proposed an
approach based on the rescaling of the Gauss–Bonnet term by the factor 1/(D− 4). Using
this approach, one may obtain a 4D in the framework of the EGB theory.

Gravitational collapse of the spherical homogeneous dust in 4D EGB gravity has been
studied in [7]. Qusainormal modes of compact objects in 4D EGB gravity have been studied
by the authors of [8]. The stability of the solution of 4d EGB gravity has been discussed
in Ref. [9]. A review of the dynamics of the particles with non-zero spin around black
hole (BH) in 4D EGB theory can be found [10,11]. Other properties of 4D EGB gravity and
corresponding solutions including horizon structure and optical properties can be found
in Refs. [12–26]. On the other hand, it is worth noting that the approach discussed in [6]
in order to obtain four-dimensional theory of EGB modification has been questioned in
several works [27–30], arguing that the solution and theory in D = 4 is not well-defined.
Here is our main aim to test the theory and corresponding solution using the analysis of
dynamics of particles with the non-zero magnetic charge and dipole around a regular black
hole in 4D EGB gravity.

Testing gravity models using observational tools, particularly, using X-ray observation
data from astrophysical objects, may provide constraints on the physical parameters of
the theory and corresponding solutions [31–34]. At the same time, dynamics of the test
particle can be also considered as a useful tool in developing new tests of metric theo-
ries of gravity [35,36]. General relativistic solutions describing the BHs do not have a
proper magnetic field. Thus, in order to describe the electromagnetic field around the
black hole, one may consider the latter immersed in an external magnetic field [37]. The
electromagnetic field structure will be modified due to spacetime curvature, and this affects
the charged particle dynamics (see, e.g., Refs. [38–54]). On the other hand, one may apply
the dynamics of particles with non-zero magnetic charge or/and dipole around a compact
object in the presence of electromagnetic field to astronomical observation from the compact
objects [25,55–66].

In this study, we plan to explore the spacetime properties as well as particle dynamics
around regular Bardeen BH within the 4D EGB gravity. The paper is organized as follows:
Section 2 is devoted to studying the properties of the spacetime around regular Bardeen
BH in 4D EGB gravity, including horizon structure and curvature scalars.

Section 3 is devoted to the analysis of dynamics of the magnetized particles around
regular Barden BH in the framework of 4D EGB gravity. Magnetically charged particle
motion has been discussed in Section 4. In Section 5, we discuss the magnetized particle’s
collision. We conclude and summarize the results of the paper in Section 6. In this paper, we
use a space-like signature (−,+,+,+) for the spacetime and geometrized unit of the system
where G = 1 = c. Latin (Greek) indices run from 1 (0) to 3.

2. Regular Bardeen BH in 4D EGB Gravity

Consider the properties of the spacetime around static regular Bardeen BH in the 4-EGB
gravity with re-scaled Gauss–Bonnet coupling constant, α/(D− 4) including minimally
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coupled with the nonlinear electrodynamics (NED) in D-dimensional spacetime. The action
for this case has the form [26]

SG =
1

16π

∫
dDx

√
−ḡ
(

R +
α

D− 4
LGB + L(F)

)
, (1)

where L(F) is the Lagrangian density, which is the function of the electromagnetic field
invariant F = FµνFµν/4, Fµν = ∂µ Aν − ∂ν Aµ is the electromagnetic field tensor for the
gauge potential Aµ, and LGB is the Gauss–Bonnet correction of form

LGB = RµνρσRµνρσ − 4RµνRµν + R2 , (2)

ḡ is the determinant of the metric tensor gµν and R, Rµν and Rµ
νγσ are Ricci scalar, Ricci

tensor and Reimann tensor, respectively, the gravitational field equations can be found
varying the action (1) in the following form

Gµν +
α

D− 4
Hµν = Tµν, (3)

where

Gµν = Rµν −
1
2

gµνR , (4)

Hµν = 2(RRµν − 2RµσRν
σ − 2RµνσρRσρ − RµσδρRσδρ

ν )− 1
2

gµνL(F) , (5)

Tµν = 2
[

LFFµσFσ
ν −

1
4

gµνL(F)
]

. (6)

The Lagrangian density for the NED field in the D-dimensional spacetime has the following
form [26]

L(F) =
(D− 1)(D− 2)µD−3

4gD−3

( √
2g2F

1 +
√

2g2F

) 2D−3
D−2

, (7)

with

F =
g2(D−3)

2r2(D−2)
, (8)

where g is the magnetic charge governed by the NED field.
The solution of Equation (3) with the Lagrangian of form (7) in 4D EGB theory when

D = 4 has the following form [26]

ds2 = − f (r)dt2 +
1

f (r)
dr2 + dΩ2 , (9)

with

f (r) = 1 +
r2

2α

(
1±

√
1 +

8Mα

(r2 + g2)
3
2

)
, (10)

where α is the GB coupling parameter and M is the total mass of the regular BH. In this
work, we use the “-” sign for the function in Equation (10) due to the fact that in the limit of
α→ 0, this solution tends to the regular Bardeen BH in general relativity [67], which turns
to the Schwarzschild BH solution in GR when g = α = 0. Furthermore, in our analytical
and numerical calculation and producing plots, we use α/M2 → α.

The non-zero components of the four-potential of the electromagnetic field surround-
ing the BH are [62,68]

Aµ = (A∗t , 0, 0, Aφ), A∗t = − ig
r

, Aφ = gcosθ. (11)
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2.1. Event Horizon Structure of the Regular Bardeen BH in 4D-EGB Gravity

First, we study the event horizon properties of the spacetime around regular Bardeen
BH governed by the line element given in Equation (9).

In Figure 1, we have shown the radial dependence of the lapse function f (r) in
Equation (10) for the different values of parameters α and g. The left panel corresponds
to the fixed value of α = −0.1 and the right one corresponds to the fixed value of α = 0.3.
The values of the lapse function f (r) intersect with the zero lines at two points which
correspond to the inner and outer horizons. When α ≥ 0, as the magnetic charge increases,
the distance between these horizons decreases, and when it reaches some extreme value,
the inner and outer horizons converge to form a single horizon. The extreme values of
magnetic charge depend on the GB parameter α, and we will be back to the relationship
later in this subsection. The analysis of the solution of the equation f (r) = 0 shows that
there is an extreme value of magnetic charge gext and:

(i) There are two (inner and outer) event horizons corresponding to the values of
magnetic charge g < gext;

(ii) There is one event horizon corresponding to the value of magnetic charge g = gext
and one has the extremely charged regular Bardeen BH;

(iii) There is no event horizon corresponding to the values of magnetic charge, g > gext
and one deals with a no-horizon strong gravitating regular object.

0 1 2 3 4 5 6
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-0.5

0.0

0.5
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 (r)
α=-0.1
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Figure 1. The radial dependence of the lapse function f (r) for the different values of parameter.
left panel is for α = 0.1 and the right one is for α = 0.3.

In order to study the effects of the NED charge and GB coupling parameters on the
radius of the outer horizon, one may use the conditions grr → ∞, grr = 0 leading to the
equivalent equation f (r) = 0.

The dependence of the outer event horizon from the magnetic charge of regular
Bardeen BH (left panel) and the GB coupling parameter (right panel) are shown in Figure 2,
respectively. One can see that the extreme values of the charge g corresponding to the case
with single horizon decreases with the increase of the GB coupling parameter. Moreover,
the increase of the charge parameter causes the decrease of the upper value of α parameter.
In order to find the extreme value of the charge gext and the corresponding value of the
radius of event horizon rext

h of the extreme magnetically charged regular BH, one may solve
the system of equations

f (r) = 0 , f ′(r) = 0 .

Possible values of the parameters α and g corresponding to the extreme regular
Bardeen BHs in 4D EGB theory are shown in Figure 3. In this plot, the space α − g is
divided into two regions corresponding to BH and no-horizon objects. Numerical analysis
shows that the coupling parameter α lies in the range of, α/M2 ∈ (−0.15869, 1) and the
values of the magnetic charge take the values in the range g/M ∈ (0, 0.88625). The radius of
the event horizon of the extreme regular BH in 4D EGB gravity takes the values in the range
rh/M ∈ (0.840291, 2). One may also obtain that at α/M2 ' −0.15869 and g ' 0.886247M,
the outer horizon takes the value (rh)min ' 0.840291M. Moreover, from Figure 3, one may
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observe that in the limit when α = 0, the extreme magnetic charge of the Bardeen BH has
the value gext = 4M/(3

√
3) ' 0.7698M.
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Figure 2. The dependence of outer event horizon on the parameters g (left panel) and α (right panel).
Here, the radius of horizon of rh is normalized in M.
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Figure 3. Relations between the values of parameter α and the BH charge g for the existence of the
Bardeen BH horizon.

2.2. Curvature Scalars

The curvature invariants such as the Ricci scalar R = gµνRµν, square of the Ricci tensor
R = RµνRµν and the Kretschmann scalar K = RαβµνRαβµν may be useful in deeply under-
standing the properties of a spacetime and nature of the gravity. Thus, here, we investigate
the curvature invariants of the spacetime (9) around regular Bardeen BH in 4D EGB gravity.
Performed calculations show that the scalar invariants have the following forms

R = − 6
α

[
1−

√
1 + 8αM

(g2+r2)
3
2

(g2 + r2)
2
[
(g2 + r2)

3/2 + 8αM
]2

{(
g2 + r2

)5
+ 4α2M2 (12)

×
(

16g4 + 14g2r2 + 5r4
)
+

αM√
g2 + r2

(
16g4 + 23g2r2 + 12r4

)(
g2 + r2

)2}]
,
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R = − 18

α2(g2 + r2)
11
2
(
(g2 + r2)

3
2 + 8αM

)3

[√
1 +

8αM

(g2 + r2)
3
2

{(
g2 + r2

)10

+ αM
(

g2 + r2
) 7

2
[
32α2M2

(
16g4 + 14g2r2 + 5r4

)
+
(

24g4 + 39g2r2 + 20r4
)

×
(

g2 + r2
)3]

+ 4α2M2
(

48g4 + 60g2r2 + 29r4
)(

g2 + r2
)5
}
−
(

g2 + r2
)10

− αM
(

28g4 + 47g2r2 + 24r4
)(

g2 + r2
) 13

2 − 16α4M4
(

128g8 + 224g6r2

+ 228g4r4 + 100g2r6 + 17r8
)
− 8α3M3

(
160g8 + 424g6r2 + 514g4r4

+ 277g2r6 + 62r8
)(

g2 + r2
) 3

2 − α2M2
(

288g8 + 936g6r2 + 1241g4r4

+ 756g2r6 + 188r8
)(

g2 + r2
)3
]

, (13)

K = − 12

α2(g2 + r2)
11
2
(
(g2 + r2)

3
2 + 8αM

)3

[√
1 +

8αM

(g2 + r2)
3
2

{
32α3M3

×
(

16g4 + 14g2r2 + 5r4
)(

g2 + r2
) 7

2
+ 4α2M2

(
48g4 + 60g2r2 + 29r4

)(
g2 + r2

)5

+ αM
(

24g4 + 39g2r2 + 20r4
)(

g2 + r2
) 13

2
+
(

g2 + r2
)10}

−
(

g2 + r2
)10

− 16α4M4
(

128g8 + 224g6r2 + 364g4r4 + 148g2r6 + 27r8
)

−
√

g2 + r2
[
αM
(

28g4 + 47g2r2 + 24r4
)
×
(

g2 + r2
)6

+ 8α3M3
(

160g8 + 424g6r2 + 582g4r4 + 277g2r6 + 64r8
)(

g2 + r2
)]

− 3α2M2
(

96g8 + 312g6r2 + 425g4r4 + 248g2r6 + 64r8
)(

g2 + r2
)3
]

. (14)

When α = g = 0, the spacetime (9) becomes Ricci flat and curvature invariants take
the values R = 0,R = 0 and K = 48M2/r6 which cover the Schwarzschild spacetime.
When the radial coordinate tends to zero, the scalar invariants take the following form

lim
r→0

R = − 6
α

(
1−

√
1 +

8αM
g3

)
, (15)

lim
r→0
R =

18
α2

(
1 +

4αM
g3 −

√
1 +

8αM
g3

)
, (16)

lim
r→0

K =
12
α2

(
1 +

4αM
g3 −

√
1 +

8αM
g3

)
, (17)

which are regular for non-zero parameters α and g. When α → 0 curvature invariants
defined by Equations (15)–(17) remain regular, particularly, Ricci scalar at the center takes
the form R = 24 M/g3.

The radial dependence of the Ricci scalar (top-left panel), square of Ricci tensor
(top-right panel) and Kretschmann scalar (bottom panel) of the spacetime (9) are shown
in Figure 4. For convenience, we normalize all the scalar invariants and make them
dimensionless. In Figure 4, we set αmin = −0.15, and the unit of the GB coupling parameter
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α is given in M2. The black solid lines in Figure 4 correspond to Schwarzschild spacetime.
One can see from the figure that the presence of the magnetic charge makes the scalar
invariants finite (non-zero) at the center of the BH (r = 0), while the presence of the
parameter α causes all the scalar invariants to decrease.
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0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

20

40

60

80

100

r/M

M
4

R
μ
ν

R
μ
ν

g=0, α=0

g=gmax, α=0

g=gmax, α=0.5

g=gmax, α=αmin

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

100

200

300

400

r/M

M
4

R
μ
νσ

δ
R
μ
νσ

δ

g=0, α=0

g=gmax, α=0

g=gmax, α=0.5

g=gmax, α=αmin

Figure 4. Dimensionless Ricci scalar (left panel), square of Ricci tensor (right panel) and Kretschmann
scalar (bottom panel) as a function of dimensionless radial coordinate r/M for different values of the
RBH parameters g and α.

3. Magnetized Particles Motion

In this section, we explore the dynamics of magnetized particle motion around the
regular Bardeen BH in 4D EGB theory. Using the potential (11), one can immediately obtain
the non-zero component of the electromagnetic field tensor in the form of

Fθφ = −g sin θ , (18)

and together with the radial orthonormal component of the magnetic field in the following
form [65,69]

Br̂ =
g
r2 . (19)

3.1. Equation of Motion

The Hamilton–Jacobi equation for magnetized particles motion around a black hole in
the presence of an electromagnetic field reads [55,70]

gµν ∂S
∂xµ

∂S
∂xν

= −
(

m− 1
2
DαβFαβ

)2

, (20)

where the interaction between magnetized particles and the magnetic field is taken into
account by the termDµνFµν. The polarization tensor should satisfy the following conditions,

Dαβ = ηαβσνuσµν , Dαβuβ = 0 , (21)



Universe 2022, 8, 549 8 of 20

where µν is the magnetic dipole moment of the particle with the four velocity uα and ηαβσν

is the Levi–Civita tensor. The electromagnetic field tensor Fαβ is defined as

Fαβ = uαEβ − uβEα − ηαβσγuσBγ . (22)

Using Equations (21) and (22), one may calculate the interaction term DαβFαβ in the
following form

DαβFαβ = 2µαBα = 2µα̂Bα̂ . (23)

Hereafter, we set the following assumption on the directions of the magnetic dipole of
the magnetized particle and magnetic field of the regular Bardeen BH in 4D EGB gravity:

• We assume the direction of the magnetic dipole moment is parallel to the equatorial
plane and the magnetic field. In fact, the direction of the magnetic dipole moment of
the magnetized particle should be along the direction of the magnetic field lines in
order to provide equilibrium in interaction with maximum energy.

• The first assumption implies that the magnetic dipole has only radial components
µi = (µr, 0, 0).

• For simplicity, the motion could be considered in the proper observer frame, which is
convenient to avoid a relative motion problem.

• Again, for simplicity of calculations, the value of dipole moment magnitude is as-
sumed to be constant.

In our preceding works [62,65,68,69], taking into account the above assumptions, we
have shown that the analytical form of the interaction takes the following form

DαβFαβ =
2µg
r2 . (24)

The proper magnetic field generated by the magnetic charge of the regular Bardeen
BH in 4D EGB gravity has an axial symmetric behaviour. Therefore, the specific energy
and angular momentum of the magnetized particles are still conserved. We investigate the
radial motion of a magnetized particle in the spacetime of a magnetically charged regular
Bardeen BH in 4D EGB gravity at the equatorial plane. The effective potential for the radial
motion has the following form [65,69]

Veff(r;L,B, Qm) = f (r)

[(
1− B

r2

)2
+
L2

r2

]
, (25)

here, we introduced a new relation
B =

µ

m
g , (26)

which is responsible for the magnetic interaction between the magnetized particle and the
proper magnetic field. We also introduce another dimensionless non-negative parameter
β = µ/(mM). The estimated value of β for the system of magnetized neutron star (white
dwarf) having a dipolar magnetic field with µ = (1/2)BR3 orbiting around a SMBH has

β =
BNSR3

NS
2mNSMSMBH

' 0.18
(

BNS

1012G

)(
RNS

106cm

)(
mNS

M�

)−1(MSMBH

106M�

)−1
. (27)

In Refs. [62,65,68,69], the authors have considered the magnetar SGR (PSR) J1745–2900
with magnetic dipole moment µ ' 1.6× 1032 G · cm3 and mass m ≈ 1.5M� orbiting the
SMBH Sgr A* (M ' 4.1× 106M�) [71] as a test magnetized particle and obtained the
value for the parameter β ≈ 10.2. Thus, in our further calculation, we fix the value of the
magnetized parameter as β = 10.2.
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The radial profiles of the effective potential for the radial motion of the magnetized
particles with β = 10.2, around regular Bardeen BHs in 4D EGB theory are shown in
Figure 5. We have fixed the particle’s angular momentum as L = 4.3M and the BH
magnetic charge g = 0.3 (left panel). One can see from the figure that the positive values
of the GB parameter α cause the increase in the effective potential, while the magnetic
charge decreases it. It is seen from the right panel of Figure 5 that after the increase in the
magnetic charge of the BH, the maximum value of the effective potential decreases due to
the centrifugal repulsive behavior of the magnetic interaction.
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Figure 5. Radial dependence of the effective potential for radial motion of a magnetized test particle
with β = 10.2 around regular BH in EDGB gravity for different values of parameter α.

3.2. Stable Circular Orbits

From the condition, ∂rVeff = 0, we obtain the specific angular momentum that helps
to provide circular orbits for the magnetized particles. In order to find the energy of the
particle along the circular orbits, we insert the obtained specific angular momentum into
the effective potential given in Equation (25), and we have

L2 =
1

ψ(r)− 2
r3

{
βgM− 2r

2α
Ψ(r)− βgM

r2 − rψ(r)(r− βgM)

}
(28)

E2 =

(
g2 + r2) 5

2
√

1 + 8αM

(α2+r2)
3
2
(2r− βgM)

8α2r

(
(g2 + r2)

5
2
√

1 + 8αM

(g2+r2)
3
2
− 3Mr4

)(r2Ψ(r) + 2α
)2

(29)

where

ψ(r) =
6Mr

(g2 + r2)
5
2
√

1 + 8αM

(g2+r2)
3
2

, Ψ(r) = 1−
√

1 +
8αM

(g2 + r2)
3
2

.

Figure 6 presents the radial dependence of the specific angular momentum and energy
of magnetized particles with β = 10.2, orbiting the Bardeen BH in EDGB gravity for the
fixed values of magnetic charge g = 0.3 M and different values of the GB parameters. One
can see from Figure 6 that the presence of the negative values of the parameter α causes
a slight increase in the minimum values of the energy and angular momentum, while at
positives values of the BG parameter, α, they increase.

Now, we study the behavior of circular orbits; namely, we consider the innermost
stable circular orbits (ISCO) radius. The equation to obtain ISCO radius can be found using
the condition ∂rrVeff = 0 and inserting the expression of the angular momentum for circular
orbits given in Equation (28). Due to the extra long and complicated form of the ISCO
equation, here, we provide graphical analysis of the effects of the magnetic charge of the
Bardeen BH and the GB parameter on the ISCO radius of magnetized particles.
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Figure 6. Radial dependence of specific angular momentum (left panel) and energy (right panel) of a
magnetized test particle, with β = 10.2, along circular orbits for different values of the NED charge of
the BH and coupling constant α.

Figure 7 demonstrates the ISCO radius of magnetized particles for the fixed value of
the parameter β = 10.2 as a function of the magnetic charge g for the different values of
the GB parameter α. It is observed from the figure that when α = g = 0, the ISCO radius
is located at the distance 6M. One can easily see from the figure that an increase of the
parameter α causes the decrease of the ISCO radius, and the decreasing rate increases with
the increase of the magnetic charge. However, at the higher values of the α parameter,
the minimum of the ISCO radius goes far from the central BH due to the decrease of the
extreme values of the magnetic charge g.
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Figure 7. ISCO radius profiles of the magnetized test particle for the fixed value of the parameter
β = 10.2 for different values of the NED magnetic charge and the GB coupling parameter α.

4. Magnetically Charged Particles Motion

In this section, we will explore the dynamics of a magnetically charged particle
characterized by a non-vanishing magnetic monopole. Following the same logic as in
the previous sections, we will construct the equation of motion. For a magnetically charged
and electrically neutral particle, the Hamilton–Jacobi equation takes the form

gαβ

(
∂S
∂xα

+ iqm A?
α

)(
∂S
∂xβ

+ iqm A?
β

)
= −m2 , (30)

where qm and m are the magnetic charge and rest mass of the test particle, respectively. The
Hamilton–Jacobi equation can be expanded, together with Equation (11) as

− 1
f (r)

(
E− gqm

r

)2
+

L2 csc θ

r2 +
1
r2

(
∂S
dθ

)2
+ f (r)

(
∂S
dr

)2
= −m2 . (31)
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The effective potential of the radial motion of the magnetically charged particle moving
at the equatorial plane, where, θ = π/2 has the form,

Veff =
λg
r

+

√
f (r)

(
1 +
L2

r2

)
, (32)

where λ = qm/m.
In Figure 8, we have shown the radial dependence of the effective potential for the

radial motion of the magnetically charged particle around a regular Bardeen BH in 4D
EGB gravity for different values of the parameters λ (top panels) and α (bottom panel),
and the fixed values of the magnetic charge g and the GB parameter α, respectively. One
can see from the figure that in all cases, the behavior of the effective potentials are alike:
rapidly growing, going away from the attractor, reaching its maximum, and then starting
to smoothly decrease until it hits the constant value of kinetic energy of the particle, far
away from the BH. If we consider only the vicinity of the BH, we can say that the height in
maximum of the effective potential Veff increases with increasing the parameter λ, and also
the same for α, while the other parameters are fixed.
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Figure 8. Effective potential dependence on radial distance for magnetically charged test particles,
moving around the Bardeen regular black hole in 4D EGB gravity, possessing magnetic charge g.
Top panels: Veff against r/M for different values of negative and positive magnetic charge parameter
λ in the case of fixed g = 0.5 and α = 0.5. Bottom panel: For different values of the parameter α in
the case of fixed g = 0.5 and λ = 0.5.

Generally, the circularity of obits of the test magnetically charged particles around
BHs is defined by the following conditions using the effective potential (32),

Veff(r, g, α, λ,L) = E , V′eff(r, g, α, λ,L) = 0, (33)
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where the prime denotes a derivative with respect to r. Now, one can obtain E = E/m
and L = L/m of the magnetically charged particles at circular orbits using the solutions of
Equation (33) in the following form

E =
λg
r

+

√
f (r)

(
1 +
L2

r2

)
, (34)

L2 =
r4(− f ′(r)2)+ 2r3 f (r) f ′(r) + 2g2λ2 f (r)

r2 f ′(r)2 − 4r f (r) f ′(r) + 4 f (r)2

+
2
√
−2g2λ2r3 f (r)2 f ′(r) + 4g2λ2r2 f (r)3 + g4λ4 f (r)2

r2 f ′(r)2 − 4r f (r) f ′(r) + 4 f (r)2 . (35)

The radial profiles of the specific angular momentum L of the magnetically charged
particle, circularly orbiting the BH, in different cases are illustrated in Figure 9. The top
panel of this figure demonstrates profiles of L2 for different values of the parameters λ
and α, while the bottom panel shows the radial dependence of the angular momentum for
various values of the magnetic charge g. We can mark from Figure 9 that all the cases we
tested have an innermost stable circular orbit, where the existence of its minimum is taken
place. It is observed from the figure that in order for the orbits of the magnetized particles to
be circular, as the value of the magnetic interaction parameter increases (an increase of both
magnetic charges of the particles λ and the BH g), the particles’ angular momentum should
be increased. However, with the increase of g, the position where the angular momentum
is minimum shifts toward the central object sufficiently with comparison to the case when
λ is increased.
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Figure 9. Angular momentum square dependence on radial distance for magnetically charged test
particles, moving around the Bardeen regular black hole in 4D EGB gravity, possessing magnetic
charge g. Top panels: L2 against r/M for different values of magnetic charge parameter λ and for
the parameter α in the case of fixed g = 0.5. Bottom panel: For different values of the parameter g in
the case of fixed α = 0.3 and λ = 0.5.
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First, in order to determine the ISCO position, we set up an additional condition for
the second derivative of the effective potential to be zero, i.e.,

V′′eff(r, g, α, λ,L) = 0. (36)

In fact, it is impossible to solve Equation (36) with respect to r. Therefore, in order
to calculate the ISCO radii for the magnetically charged particles, we solve the equation
graphically together with conditions in Equations (33) and (36).

The results derived from solutions of these equations with respect to r, for different
values of the parameters α and λ, are illustrated in Figure 10. The left and right panels
in this figure both present rISCO vs. g; however, in the left panel, the parameter λ is fixed
as λ = 0.3, and in the right panel, we fix the parameter α = 0.01. It is observed from the
figure that an increase of the GB parameter cause a decrease in the ISCO radius, while the
BH charge g causes it to increase when λ = 0.3. However, when the values of λ� 1, the
ISCO radius has a maximum at a critical value of the magnetic charge of the BH, while the
increase of λ causes an increase in the ISCO radius.
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Figure 10. Innermost stable orbits dependence on magnetic charge parameter of the black hole g
for different values of α, while fixing λ = 0.3 (left panel) and for different values of λ, while fixing
α = 0.01 (right panel).

5. Particles Collisions near Bardeen BH in 4D EGB Gravity

The idea and mechanism of the energy release process from BHs by the collisions of
falling particles to the BHs is first developed by Banados, Silk and West in Ref. [72], where
the extreme rotating Kerr BH case is explored, and it is shown that in this case, the center
of mass energy of the colliding particles may be diverged.

Later, the process in the presence of external magnetic fields has been developed in
Ref. [73] for the collisions of charged particles around magnetized BHs and showed that
the energy extraction process becomes more effective in the case of head-on collisions.

The center-of-mass energy of collisions of two test particles can be derived by the sum
of four momenta of the colliding particles in the following form [74,75],

{Ecm, 0, 0, 0} = m1uµ
1 + m2uµ

2 , (37)

where uµ
i is the four-velocity of the colliding particles with the mass mi, i = 1, 2. The square

of center-mass energy can be calculated as

E2
cm = m2

1 + m2
2 − 2m1m2gµνuµuν . (38)

After simple algebraic calculations, we have

E2
cm

m1m2
=

m1

m2
+

m2

m1
− 2gµνuµ

1 uν
2 . (39)
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Let us assume the colliding particles have masses m1 = Xm and m2 = Ym.

E2
cm

m2 = X2 + Y2 − 2gµνuµ
1 uν

2 . (40)

In this work, we explore the collisions of magnetized and magnetically charged
particles near the Bardeen BH in 4D EGB gravity. For simplicity, in our further calculations,
we consider that the colliding particles have the same mass; i.e., m1 = m2 = m, and their
initial energies are also the same and equal to their remaining mass as E1 = E2 = m. Thus,
Equation (40) takes the following form.

E2
cm =

E2
cm

4m2c4 = 1− gαβuα
1uβ

2 , (41)

where uα
1,2 are the four velocities of the colliding particles. Now, we plan to investigate sev-

eral scenarios of collisions of magnetized particles at the equatorial plane (where θ = π/2)
with magnetized, electrically (magnetically) charged, and neutral particles in the frame of
the proper observer.

Four-velocities of magnetized, magnetically charged and neutral particles have the form,

ṫ =
E

f (r)
, (42)

ṙ2 = E2 − f (r)

[(
1− β

gM
r2

)2
+

L2

r2

]
, (43)

φ̇ =
L
r2 , (44)

and

ṫ =
1

f (r)

(
E − λg

r

)
, (45)

ṙ2 =

(
E − λg

r

)2
− f (r)

(
1 +

L2

r2

)
, (46)

φ̇ =
L
r2 . (47)

Correspondingly, the expression for the center-of-mass energy of the two particles
takes the following form,

E2
cm
2

= 1 +
1

f (r)

(
E1 −

λ1g
r

)(
E2 −

λ2g
r

)
− L1L2

r2 (48)

− 1
f (r)

√√√√(E1 −
λ1g

r

)2
− f (r)

(
1 +

L2
1

r2

)√√√√(E2 −
λ2g

r

)2
− f (r)

(
1 +

L2
2

r2

)
,

and

E2
cm
2

= 1 +
E1E2

f (r)
− L1L2

r2 − 1
f (r)

√√√√E2
1 − f (r)

[(
1− β1

gM
r2

)2
+
L2

1
r2

]

×

√√√√E2
2 − f (r)

[(
1− β2

gM
r2

)2
+
L2

2
r2

]
. (49)

Note that one may use the above equations for neutral particles equalizing β = 0 and
λ = 0.
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5.1. Critic Angular Momentum

We assume the colliding particles motion occurs in the equatorial plane around the
Bardeen BH in 4D EGB. When the collision occurs near the event horizon, the center of
mass energy reaches its maximum. The angular momentum has a critical value that causes
the radial velocity to be zero (ṙ = 0) [72]. The angular momentum exceeds the critical
value, and the particle cannot come close to the orbits near the event horizon, while the
momentum smaller than the critical value the particle falls down into the central BH.

Here, we study the critical angular momentum to test electrically neutral particles.
In Figure 11, we show the dependence of critical values of the angular momentum

of test neutral particles from the GB parameter (left panel) and the magnetic charge of the
BH (right panel) by varying the charge and GB parameters, respectively. One can see from
this figure that larger values of the magnetic charge and the GB parameter correspond
to smaller values of the angular momentum; however, the angular momentum decreases
(quasi) linearly with the increase of α while the decreasing is power-law with respect to
increase of the magnetic charge g.
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Figure 11. Figures show the dependence of the critical value of angular momentum to the α.

A similar decrease of the critical angular momentum with respect to the increase of α
is also observed in the left panel of Figure 12. However, in contrast to Figure 11, it is seen
from the panel that the values of the angular momentum increase with the increase of the
magnetic coupling parameter β; similarly, the increasing rate is also a power-law depending
on the values of β due to the centrifugal behavior of magnetic interaction between the
proper magnetic field of the Bardeen BH and the magnetic dipole of the particles.
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Figure 12. The same figure with Figure 11 but for magnetized particles.

It is observed from Figure 13 that an increase of the parameter λ causes a decrease of
the momentum; similarly, the critical angular momentum decreases linearly with respect to
the increase of the GB parameter. Moreover, one can also see that when parameter λ > 0.5,
the critic value in the angular momentum increases with increasing the magnetic charge g,
reaches its maximum, and then starts decreasing.
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Figure 13. The same figure with Figure 11 but for magnetically charged particles.

5.2. Center of Mass Energy of Collisions of Particles

Now, we analyze the center of mass energy of colliding test particles with the critic
angular momentum.

In Figure 14, we show the radial dependence of center of mass energy (Ecm) of collisions
of test electrically neutral particles around magnetically charged regular Bardeen BHs in
4D EGB gravity for different values of the GB parameter. It is seen from the figure that as
the parameter α increases, the energy increases due to the event horizon coming close to
the central BH.
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Figure 14. Radial profiles of center of mass energy of the collisions of two neutral particles with neutral
particles for different values of the GB parameter and corresponding critic angular momentum.

Figure 15 shows the center of mass energy (Ecm) of the collisions of two magnetized
particles as a function of radial coordinates. Here, we obtain the magnetic charge as
g/M = 0.4 and the GB parameter as α/M2 = 0.2 in the case of magnetized particles
collisions with neutral particles and magnetized particles. The energy increases in collisions
of test particles with magnetized particles, and the energy increases as β increases.
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Figure 15. The same figure as Figure 14 but for collisions of two magnetized particles for different
values of the GB parameter and the corresponding critic angular momentum.

Figure 16 demonstrates the behavior of the center of mass energy of head-on collisions
of magnetically charged particles around the Bardeen BH, with the critical angular mo-
mentum corresponding to their parameter λ. It is seen from the figure that the presence



Universe 2022, 8, 549 17 of 20

of the magnetic charge of the particles causes it to sufficiently decrease the energy near
the horizon.
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Figure 16. The same figure with Figure 14 but for collisions of magnetically charged particles with
(i) neutral particles (left panel), and (ii) magnetically charged particles (right panel). Here, we choose
α/M2 = 0.2 and g/M = 0.4.

In Figure 17, we show the behavior of center of mass collisions of magnetically charged
and magnetized particles. It is observed from the comparisons of Figures 16 and 17 that the
magnetic charge increases the center of mass energy sufficiently.
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Figure 17. The same figure as Figure 14 but for collisions of magnetically charged particles with
magnetized particles. Here, we choose α/M2 = 0.2 and g/M = 0.4.

6. Conclusions

The present work is devoted to the study of magnetically charged and magnetized
particle dynamics around magnetically charged regular Bardeen BHs in 4D EGB theory.
We have first explored properties of horizon structure and found minimum and maximum
values of the GB coupling parameter as α/M ∈ (−0.1586, 1). We have also provided the
space for the values of the magnetic and GB coupling parameters and divided by two the
areas where the event horizon of the BH exists and does not exist. It is also shown that both
the BH charge and GB parameters cause a decreasing of the outer event horizon radius. The
study of curvature scalars shows that the increase of the parameter α enables the curvature
scalar to grow, while the magnetic charge forces them to decrease.

We have investigated the dynamics of magnetized particles around the Bardeen BH
in 4D EGB, assuming the particle’s motion occurs in the equatorial plane in the proper
observation frame, and the direction of the magnetic dipole moment of the particles is
always kept as radial, and the magnitude is constant. It is obtained that the minimum
values of energy and angular momentum of the particles corresponding to circular orbits
decrease with the increase of the GB parameter and the radius of the ISCO also decreases.

The dynamics of magnetically charged particles have also been studied and showed
that both the energy and angular momentum of the particles, at circular orbits, increase with
the increase of their magnetic charge. The ISCO radius of the particles also increases as the
magnetic charge of the particles increases. However, the radius increases first, with respect
to the increase of the BH charge, reaches its maximum, and then decreases back again.
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Finally, we have studied collisions of magnetized, electrically neutral and magnetically
charged particles around the Bardeen BHs in 4D EGB. We have also analyzed critical values
of the angular momentum that may allow colliding the particles near the horizon radius
and center of mass energy of the collisions. It is found that the critic values of the angular
momentum and the center of mass energy decrease with the increase of both the BH charge
and GB parameters as well as the parameter λ. Meanwhile, the presence of the magnetic
charge reduces their increase.
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