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Abstract: Based on the perturbation expansion, we compute the noncommutative corrections to the
minimal surface areas of the pure AdS spacetime and Schwarzschild-AdS black hole, where the
noncommutative background is suitably constructed in terms of the Poincaré coordinate system.
In particular, we find a reasonable tetrad with subtlety, which not only matches the metrics of the
pure AdS spacetime and Schwarzschild-AdS black hole in the commutative case, but also makes
the corrections real rather than complex in the noncommutative case. For the pure AdS spacetime,
the nocommutative effect is only a logarithmic term, while for the Schwarzschild-AdS black hole, it
contains a logarithmic contribution plus both a mass term and a noncommutative parameter related
term. Furthermore, we show that the holographic entanglement entropy with noncommutativity
obeys a relation which is similar to the first law of thermodynamics in the pure AdS spacetime.

Keywords: noncommutative geometry; holographic entanglement entropy

1. Introduction

One way to understand quantum gravity follows the holographic correspondence. In
terms of the open/closed string duality [1–3], the AdS/CFT correspondence connects a
(d + 1)-dimensional AdS space with a d-dimensional CFT which is located at the boundary
of the AdS space. Though it is hard to provide a general proof for this kind of duality,
some evidence gives rise to ideas on how to connect the classical gravity with quantum
gravity. One of the examples is the Ryu–Takayanagi (RT) formula [4,5] in which the
entanglement entropy of a CFT in subsystem A1 is proportional to the minimal surface
area γA in the AdS spacetime whose boundary is located at ∂γA = ∂A2. The proof of the
formula elucidates [10–12] an understanding of the AdS/CFT duality in the cosmic brane
or the topological black hole background. In addition, the covariant entanglement entropy
has also been studied [13], where one can obtain more information about the time evolution
of the entanglement entropy. However, there are still many problems that should be solved
before the holographic dictionary is completed. Here, we list some of the problems and the
literature in which some efforts have been made to try to resolve them.

• How to encode [14] the bulk information from the field theory on the boundary when
the information seems to be non-local?

• How to extend [15–19] the RT formula beyond the classical gravity? What are the
general conditions that the formula should meet?

• Whether can the AdS/CFT duality be extended [20–23] to the de Sitter spacetime or
flat spacetime besides the consideration of symmetries?

• What happens [24,25] in the dual theory if the quantum field is taken into account in
the bulk?

Though many of the questions mentioned above have been studied on the side of
gravity, the relevant questions on the side of quantum field theory have not been dealt
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with. Moreover, the entanglement entropy does not always meet the area law. In order
to complete the holographic dictionary, the noncommutativity of spacetimes should be
considered. Here, we briefly review some interesting models of noncommutative geometry
and describe their applications in quantum gravity. Among the attempts to quantize gravity,
a natural thought is to consider noncommutative spacetimes, which are early dubbed quan-
tized spacetimes that could be traced back to Snyder’s pioneering work [26]. The revival
of noncommutative spacetimes about half a century after Snyder’s work originated [27]
from the low energy effective field theory of string theory. In Ref. [27], the Seiberg–Witten
map establishes a connection between one gauge theory on a noncommutative space-
time and another theory on the commutative spacetime. Based on this map, one can
investigate [28,29] noncommutative gravity by rewriting it as a gauge theory. According
to the coordinate coherent state formalism [30], which records the noncommutativity of
coordinates by the spread of coherent states, the black holes in noncummutative space-
times were constructed [31–35] if the point-like source was replaced with the smearing of
objects. One may also refer to the various attempts in the construction of the noncommu-
tiative gravity [36,37], noncommutative black holes [38], and noncommutative quantum
cosmology [39].

Besides the AdS/CFT correspondence with noncommutativity, we have to study the
holographic entanglement entropy with noncommutativity in order to understand the
effects of non-locality on quantum entanglement. While the entanglement entropy of a
local field theory obeys the area law [40,41], which shows the strong correlations among
the states near the boundary, the area law is not necessarily true for a non-local field theory.
For instance, the entanglement entropy of the non-local scalar field theory obeys [23,42] the
volume law. Furthermore, it is of significance to study the non-leading contributions to
holographic entanglement entropy. On the one hand, the non-leading contributions can
extend the dictionary beyond the area term. For example, the background entanglement
from the one-loop quantum correction contributes [24,25] extra terms to entanglement
entropy, and the noncommutative effect contributes [43] an extra divergent term to the
holographic entanglement entropy in a noncommutative gauge theory. On the other hand,
the information contained in the non-leading contributions is meaningful. The non-leading
contributions to entanglement entropy encode [44] the universal terms which discriminate
between different phases. Additionally, the higher derivative effect of gravity yields [16]
the correct universal term for generalized holographic entanglement entropy in the 4d CFT.

In the present work, we added a non-leading term to the surface area, where this
term is induced by the noncommutative structure of spacetimes. We find a specific tetrad
and propose a noncommutative relation based on the Poincaré coordinate system. Then,
the corresponding Moyal product can be given, which is different from those already con-
structed [45–47]. Our treatment is a physically straightforward modification to the classical
theory of gravity. As it stems from the spacetime structure itself, the noncommutative
geometry will show its significance to the holographic entanglement entropy on the side of
quantum field theory.

The procedure is as follows. We establish a noncommutative construction by using the
Moyal product in the Poincaré coordinate system. Then, according to this construction, we
compute the minimal surface areas of the pure AdS spacetime and Schwarzschild-AdS black
hole. As the noncommutative parameter is much smaller than one, it is reasonable [48,49]
to perturbatively expand a geodesic curve with respect to this parameter. That is, it is
important to study the noncommutative contributions to the minimal surface areas by
order. We find that the noncommutative geometry contributes a logarithmic divergent
term for the pure AdS spacetime, where this term is proportional to the noncommutative
parameter. Additionally, we provide a similar discussion for the Schwarzschild-AdS
black hole by the additional consideration of the black hole mass, and the result contains
both a mass term and a noncommutative parameter-related term besides the logarithmic
contribution. Furthermore, for the pure AdS spacetime with noncommutativity, we show
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that the noncommutative holographic entanglement entropy obeys a relation that is similar
to the first law of thermodynamics.

The rest of the paper is organized as follows. In Section 2, we compute the minimal
surface area of the pure AdS spacetime with noncommutativity. Then, we turn to the
Schwarzschild-AdS black hole in Section 3, where the perturbation of the mass parameter
should be performed before the consideration of the noncommutative correction. In
Section 4, we consider the noncommutative stress tensor for the pure AdS spacetime
and analyze the thermodynamic property of the holographic entanglement entropy with
noncommutativity. Finally, we summarize our results in Section 5.

2. The Minimal Surface Area of the Pure AdS Spacetime with Noncommutativity

The metric of the (3+1)-dimensional AdS spacetime in the Poincaré coordinate system
takes the following form:

ds2 = L2 −dt2 + dx2 + dy2 + dz2

z2 , (1)

where L represents the AdS radius. Due to the rotational symmetry in the two models
studied in this and the next sections, it is convenient to adopt the polar coordinates, (ρ, φ),
in the (x, y) plane, and to rewrite the above metric to be

ds2 = L2 −dt2 + dρ2 + ρ2dφ2 + dz2

z2 . (2)

In order to rewrite the above metric by using tetrads, there exist many equivalent
formulations of tetrads, i.e., any one of them provide the same metric. However, we find
that the formulations of tetrads are subtle when the metric is generalized to a noncom-
mutative spacetime. That is, we can write many equivalent formulations of tetrads in
the commutative case; however, most of them lead to a complex correction to minimal
surface areas in the noncommutative case, which is usually regarded as an unphysical
result. Fortunately, we were able to identify a tetrad that meets the requirement in the
commutative spacetime and simultaneously provides a real noncommutative correction to
minimal surface areas for the pure AdS spacetime and Schwarzschild-AdS black hole. This
tetrad can be set to be

(ka)µ = (la, na, ma, wa), (3)

where the four components are determined3 in terms of the Kronecker delta as follows:

la = L
(

iδa
0

2z2 + iδa
2

)
, na = L

δa
1
z

, ma = L
(
−iρ

δa
0

2z2 + iρδa
2

)
, wa = L

δa
3
z

. (4)

Therefore, we construct the metric by using the above tetrad as follows,

gµν = ηabka
µkb

ν, (5)

where ηab is defined by4

ηab =


0 0 1 + i 0
0 1 0 0

1− i 0 0 0
0 0 0 1

. (6)

We introduce a new variable q which is defined by q ≡ 1/z, so that q→ ∞ corresponds
to the infinity of the AdS spacetime. In particular, such a transformation avoids the
ambiguity when the inverse of a coordinate is set to be an operator, i.e., when an ordinary
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spacetime is generalized to a noncommutative one. Now, we can propose the following
noncommutative relation by using the commutator between the operator of q and that of ρ,

[q̂, ρ̂] = ih, (7)

where h is the noncommutative parameter that is dimensionless.
Under the above noncommutative relation, the multiplication of functions in noncom-

mutative geometry can be realized in terms of the Moyal product, see, for instance, the
Moyal product of two functions with respect to two variables u and v,

f (u, v) ∗ g(u, v) = f (u, v)ei h
2 (
←
∂u
→
∂v−

←
∂v
→
∂u)g(u, v), (8)

where u = q and v = ρ are specified in the present paper. As a result, we can write the
noncommutative metric from the ordinary (commutative) one, Equation (5), as follows:

ḡµν = ηabka
µ ∗ kb

ν, (9)

from which we derive the square of the line element with noncommutativity up to the first
order of h,

ds̄2 = L2
[
−q2dt2 + hqdtdφ + q2dρ2 + (q2ρ2 − hqρ)dφ2 +

dq2

q2

]
. (10)

According to the Poincaré coordinate system, the projection of the minimal surface
into the plane depicted by the coordinates ρ and q−1 is a circle when φ is integrated from
zero to 2π; therefore, it is convenient to introduce the following polar coordinate system,
(r, θ), to compute the minimal surface area

ρ = r cos θ, q−1 = r sin θ, (11)

where θ ∈ [ε, π/2], ε is a regularization factor that is close to zero and associated with a
lattice length of fields on the boundary, and r represents the spacetime scale.

Now, we can easily write the minimal surface area with the noncommutative deforma-
tion using Equations (10) and (11) as follows:

A = 2πL2
∫ π

2

ε

√
(ṙ2 + r2)(cos2 θ − h sin θ cos θ)

r sin2 θ
dθ, (12)

where a dot stands for the differentiation with respect to θ. As the noncommutative
parameter h is much smaller than one, we expand the geodesic curve r(θ) with respect to it,

r(θ) = r0 + hr̄(θ) + O(h2), (13)

where r0 is the initial constant corresponding to the spatial scale and r̄(θ) represents the
first order noncommutative modification to the curve. Because the term related to ṙ2 is
proportional to h2, see Equation (13), the minimal surface area, Equation (12), reduces ap-
proximately to the following form if only the first order of h is considered in the square root,

A = 2πL2
∫ π

2

ε

√
cos2 θ − h sin θ cos θ

sin2 θ
dθ

≡ A0 + Ā, (14)
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where A0 is the ordinary (commutative) minimal surface area and Ā is the first order
noncommutative correction to A0. By applying the Taylor expansion of Equation (14) to h,
we can easily obtain A0 and Ā, respectively,5

A0 = 2πL2
(

1
sin ε

− 1
)

, (15)

and
Ā = πL2h log

ε

2
, (16)

where the latter can also be understood as the nonlocal contribution from the noncommuta-
tive spacetime.

In this section, the noncommutative effect is manifested through the Moyal product
of our tetrad (Equation (4)), see Equation (9). We calculate the noncommutative minimal
surface by using the deformed metric Equation (10). From Equation (16), we see that the
noncommutative effect provides a logarithmic divergent term with suppression factor h.
Because Ā is minus, the noncommutative effect decreases the minimal surface area of the
pure AdS spacetime.

3. The Minimal Surface Area of the Schwarzschild-AdS Black Hole
with Noncommutativity

We deal with the Schwarzschild-AdS black hole in two steps. In the first step, we
compute its minimal surface area by regarding [48,50] the mass of the Schwarzschild black
hole, M, as a perturbative parameter in the pure AdS spacetime. Then, following the
method we applied in the above section, we derive in the second step the noncommutative
correction to the minimal surface area of the Schwarzschild-AdS black hole. That is,
based on the pure AdS spacetime, our result contains the contributions from the pure AdS
spacetime together with the mass correction and the noncommutative parameter correction.

The metric of the (3+1)-dimensional Schwarzschild-AdS black hole takes the following
form [50]:

ds2 =
L2

z2

(
− f (z)dt2 +

dz2

f (z)
+ dρ2 + ρ2dφ2

)
, (17)

where f (z) is associated with the black hole mass M and reads

f (z) = 1−Mz3. (18)

As mentioned above, M is treated as a perturbative parameter under the condition
Mz3 � 1, where such a reparametrization has been made that Mz3 is dimensionless.

In the first step, we derive the minimal surface area of the Schwarzschild-AdS black
hole in the polar coordinate (r, θ),

A0 = 2πL2
∫ π

2

ε

[
r2 + ṙ2 + Mr3 sin3 θ

(
1 + Mr3 sin3 θ

)(
r2 cos2 θ + rṙ sin 2θ + ṙ2 sin2 θ

)]1/2

× cos θ

r sin2 θ
dθ. (19)

By expanding r(θ) with respect to M, we obtain

r(θ) = l + Ma(θ) + O(M2), (20)
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where l is a constant that is associated with a spacial scale and satisfies the inequality
Ml3 � 1. Substituting Equation (20) into Equation (19), we then derive the leading
contribution up to the first-order of mass M,

A0 = 2πL2
∫ π

2

ε

(
1 +

1
2

Ml3 sin3 θ cos2 θ

)
cos θ

sin2 θ
dθ

≡ A0 + AM, (21)

where A0 is the minimal surface area of the pure AdS spacetime, see Equation (15), and
AM represents the mass correction to A0,

AM =
1
4

πL2Ml3. (22)

As a result, we work out the minimal surface area of the Schwarzschild-AdS black
hole, A0, in the approximation of the first-order of M.

Now, we calculate the noncommutative correction to A0 in the second step by follow-
ing the method utilized in the above section. Combining Equation (19) with Equation (10),
we write the minimal surface area of the Schwarzschild-AdS black hole with noncommuta-
tivity as follows:

A = 2πL2
∫ π

2

ε

[
r2 + ṙ2 + Mr3 sin3 θ(1 + Mr3 sin3 θ)(r2 cos2 θ + rṙ sin 2θ + ṙ2 sin2 θ)

]1/2

×
(

cos2 θ − h sin θ cos θ
)1/2 dθ

r sin2 θ
. (23)

Defining
A ≡ A0 + Ā, (24)

and substituting both Equations (13) and (20) into Equation (23), we derive the contribution
from the noncommutative modification up to the first order of h,

Ā = −πL2h
∫ π

2

ε

(
1 +

1
2

Ml3 sin3 θ cos2 θ

)
dθ

sin θ

= πL2h log
ε

2
− π

32
πL2Ml3h. (25)

When the mass parameter is set to zero, the above result returns to that of the pure
AdS situation, for which see the first term of Equation (25) or Equation (16). On the other
hand, besides the noncommutative correction from the noncommutative AdS spacetime,
the noncommutativity also modifies the contribution from the mass term of the black hole,
for which see the second term of Equation (25).

4. Thermodynamic Property of Holographic Entanglement Entropy
with Noncommutativity

To further analyze the noncommutative effects on the thermodynamic property of
holographic entanglement entropy, we study the stress tensor under noncommutative
deformation. For simplicity, the following analysis is based on the deformed spacetime
Equation (10), where the noncommutative effects associated with higher orders of h are
ignored. In this way, we regard the noncommutative Minkowski spacetime as the pure
AdS spacetime associated with matter. We note that the holographic entanglement entropy
is corrected noncommutatively as stated in Sections 2 and 3 when the background metric
is deformed by Equation (10), which means that the holographic entanglement entropy
remains unchanged whether the noncommutative effect is regarded as matter or not.
The reason lies in the fact that holographic entanglement entropy is only sensitive to the
background metric.
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We start with the gravitational action of the noncommutative (3 + 1)-dimensional
pure Ads spacetime [51,52] with matter,

S =
1

16πGN

∫
M

d4x
√
−g
(

R +
6
L2

)
+ Smatter −

1
8πGN

∫
∂M

d3x
√
−γ Θ +

1
8πGN

Sct(γµν), (26)

where R is the Ricci scalar of the spacetime, Smatter is the matter action equivalent to the
noncommutative contribution, γ is the boundary metric, Θ is the trace of the extrinsic
curvature Θµν = 1

2 (∇µnν +∇νnµ) with nµ the outward pointing normal vector to the
boundary ∂M, and Sct is the counterterm action. To obtain a finite stress tensor on the
boundary ∂M, the counterterm action Sct is chosen as a covariant function,

Sct = −
2
L

∫
∂M

√
−γ

(
1− L2

4
R
)

d3x. (27)

Next, we compute the stress tensor,

Tgrav
µν = − 1

8πGN

(
Θµν −Θγµν +

2
L

γµν − LGµν

)
, (28)

where Gµν = Rµν− 1
2 Rγµν is the Einstein tensor associated with γµν. Substituting Equation (10)

into the above equation, we obtain the energy component

− 8πGNTgrav
00 =

hLq
2ρ

+
Lh2

4ρ2 + O(h3). (29)

We find from this component that the leading contribution without noncommutative
corrections is vanishing, which coincides with [51] the usual result in the pure AdS4
spacetime. The first term in the right-hand side of Equation (29) is divergent when we
take q→ ∞ at the boundary; however, there are no covariant ways to cancel this because
noncommutative correction is coordinate-dependent. In order to cancel the divergent term,
we introduce a coordinate-dependent counterterm, which is as follows:

Shct =
h

2L

∫
∂M

√
−γ

(
1
ρq

)
d3x, (30)

and add it to the action Equation (26). Thus, we obtain the finite result,

− 8πGNT
grav

00 =
Lh2

4ρ2 . (31)

From Equation (31), we can see that the noncommutative correction to the stress tensor
is of order h2 and depends only on the radial coordinate. As the stress tensor is divergent
around ρ = 0, we have to regularize it by replacing the vanishing radial coordinate with a
cutoff ε′; for further elaboration, see footnote 6 below.

In ref. [53], an analogous relation with the first law of thermodynamics is detailed for
a subsystem A when the system is excited,

Tent · ∆SA = ∆EA, (32)

where ∆SA measures how much SA (entanglement entropy) is increased in the exited state
compared with the ground state of the CFT on the boundary ∂M, and ∆EA is the increased
amount of energy in the subsystem A. Note that Tent means the effective temperature or
the so-called entanglement temperature, which is proportional to the inverse of the length
scale of subsystem A.
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For the pure AdS spacetime with noncommutativity as discussed in Section 2, we
obtain the corresponding increased energy of subsystem A by considering Equation (31),

∆E′A =
∫

d2xT grav
00 =

∫ l

ε′
2πρT grav

00 dρ =
Lh2

16GN
log

ε′

l
, (33)

where we have regularized the stress tensor around the coordinate origin.6 On the other
hand, here, ∆S′A is just Ā (see Equation (16)) divided by 4GN . Considering Equations (33)
and (16), we obtain the relation,

T′ent · ∆S′A = ∆E′A +
Lh2

16GN
log

1
2

, (34)

where T′ent ≡ h
4πL , which plays a similar role to Tent of Equation (32). We notice that

Equation (34) is similar to Equation (32) and the second term on its right-hand side is the
subleading term that derives from the noncommutativity.

According to Equation (34), we find that the noncommutative correction of holographic
entanglement entropy also obeys an analogous relation to the first law of thermodynam-
ics. Comparing Equation (34) with Equation (32), we believe that the noncommutative
correction of holographic entanglement entropy is related to the increased amount of
entanglement entropy from a certain excited state [54].

5. Summary

In this paper, we highlight that noncommutative generalization of the minimal surface
areas is nontrivial. At the commutative level, there exist many equivalent formulations
of tetrads that give rise to the same metric. However, at the noncommutative level, most
of them lead to complex noncommutative corrections of minimal surface areas, which is
unphysical. Therefore, the construction of a specific tetrad is subtle. Fortunately, we have
found such a tetrad and obtained the real noncommutative corrections to the minimal
surface areas for the pure AdS spacetime and Schwarzschild-AdS black hole.

The RT formula shows the relation between the entanglement entropy SA′ of conformal
fields and the minimal surface area in Einstein gravity [4],

SA′ =
Area
4GN

. (35)

While the leading term of the holographic entanglement entropy is not altered by
the noncommutativity of spacetimes, we observe that an extra divergent term is induced
by the noncommutative geometry. The noncommutative spacetime we consider in the
present paper may be interpreted as the perturbation of matter. This leads to the result
that the disturbance of the stress tensor at the boundary corresponds to the perturbed state
from the vacuum state. Equation (34) shows that the holographic entanglement entropy
with noncommutativity satisfies a similar relation to the first law of thermodynamics.
While we do not have a direct interpretation of the holographic entanglement entropy
with noncommutativity in the boundary theory, we believe that it corresponds to the
entanglement entropy of excited states. Here, we only consider the noncommutative
holographic duality in the pure AdS spacetime. It is a nontrivial attempt to study the
noncommutative holographic correspondence when spacetime is added with extra matter.
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Notes
1 The entanglement entropy of subsystem A is defined as the von Neumann entropy SA when the degrees of freedom in subsystem

A’s complement, subsystem B, are traced out. It describes how the two subsystems A and B are entangled or correlated each other.
2 A closely related quantity is the black hole entropy which is proportional to the horizon area according to the Bekenstein–Hawking

formula. One can refer to Refs. [6–8] for related discussions about the black hole entropy from the viewpoint of quantum field
theory. The entanglement entropy computed from the RT formula is equivalent to the black hole entropy in certain cases, such as
in the AdS black hole [4] and in the black hole on a brane [9].

3 For instance, we can give another tetrad which will give rise to a complex noncommutative correction to minimal surface areas,

la = L
(

δa
0
z

)
, na = L

δa
1
z

, ma = L
(

ρδa
2

2z2 + ρδa
3

)
, wa = L

(
δa

2
2z2 + δa

3

)
.

It is equivalent to Equation (4) in the commutative spacetime.
4 For the unphysical tetrad mentioned above in footnote 3, the corresponding ηab takes the form

ηab =


−1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

.

5 According to the RT formula mentioned in Introduction, the undeformed holographic entanglement entropy (A0/(4GN))
corresponds to the entanglement entropy of the boundary field between disk A and its complementary region B because the
spacetime maintains the rotating symmetry.

6 Note ε′ ≡ εl, where l is the length scale of subsystem A, as to ε, it is dimensionless, see Equation (16).
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