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Abstract: The (n, α) reaction contributes in many processes of energy generation and nucleosynthesis
in stellar environment. Since experimental data are available for a limited number of nuclei and in
restricted energy ranges, at present only theoretical studies can provide predictions for all astrophysi-
cally relevant (n, α) reaction cross sections. The purpose of this work is to study (n, α) reaction cross
sections for a set of nuclei contributing in the weak s-process nucleosynthesis. Theory framework is
based on the statistical Hauser-Feshbach model implemented in TALYS code with nuclear masses
and level densities based on Skyrme energy density functional. In addition to the analysis of the
properties of calculated (n, α) cross sections, the Maxwellian averaged cross sections are described
and analyzed for the range of temperatures in stellar environment. Model calculations determined
astrophysically relevant energy windows in which (n, α) reactions occur in stars. In order to reduce
the uncertainties in modeling (n, α) reaction cross sections for the s-process, novel experimental
studies are called for. Presented results on the effective energy windows for (n, α) reaction in weak
s-process provide a guidance for the priority energy ranges in the future experimental studies.

Keywords: neutron induced reactions; alpha emission; Hauser-Feshbach model; s-process

1. Introduction

Fascinating phenomena in the universe, such as evolution of stars, supernova explo-
sions and neutron-star mergers, as well as the synthesis of chemical elements that occur in
stellar environment, crucially depend on a variety of nuclear reactions [1–4]. Nuclear reac-
tion cross sections and rates are an essential for understanding the elemental abundances
in our solar system and the galaxy. Since the properties of many nuclear reactions and
involved nuclei in stellar environment still remain beyond the reach of the most advanced
experimental facilities, theoretical modeling is necessary to provide relevant cross sections
for astrophysical applications [4,5]. Available nuclear reaction cross sections, both from the
experiment and model calculations are summarized in various data bases [6–12].

The stellar burning phases of stars build chemical elements up to the Iron group by se-
quences of fusion reactions [5]. However, elements heavier than Iron are produced by other
types or nuclear processes, in different stellar environment [4]. Of particular importance
are neutron capture reactions that govern two key processes in nucleosynthesis: (i) slow
neutron capture process, known as s-process, which takes place e.g., in giant stars [13,14]
and rotating massive metal poor stars [15], and (ii) rapid neutron capture process, known
as r-process which occurs in explosive stellar environments such as supernova [16–19]
and neutron star mergers [20–23]. The description of neutron capture reactions crucially
depends on the nuclear structure and excitation properties of target and daughter nuclei
involved [24]. One of the key quantities is the reaction Q value, which in general can have
both positive and negative values, and the reaction outcome is governed by the energy of
the incoming neutrons, i.e., by the respective astrophysical conditions which determine
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the neutron energy distribution. Advanced theoretical modeling of nuclear properties and
respective neutron induced reactions is essential to provide reliable input for astrophysical
applications [4].

The focus of this study is the (n, α) reaction in nuclei of relevance for the s-process
nucleosynthesis [25]. For example, 41Ca(n, α)38Ar is considered as the most important
neutron-induced reaction on 41Ca in stellar conditions of the weak s-process at temperature
about 300 MK [26], i.e., it strongly dominates over the neutron induced γ-emission [27].
The (n, α) reaction contributes in many processes of energy generation and nucleosynthe-
sis. It is also an important reaction in primordial and stellar CNO cycle [28]. In order to
determine reaction rates in stellar environment, the reaction cross section as a function of
neutron energy is an essential ingredient [29]. Although the experimental studies provide
some of the necessary cross sections, for systematical implementation of (n, α) reactions
in nucleosynthesis calculations theoretical modeling of the cross sections is indispensable.
As pointed out in Ref. [30], limited amount of experimental data for (n, α) reaction in the
1 keV–1 MeV region, restricts comprehensive data analysis. Only small changes in the
neutron capture reaction cross sections could have significant implications on the path of
the nuclear processes that govern the synthesis of chemical elements [31]. Therefore, it is
necessary to investigate (n, α) cross sections from various theoretical models, with differ-
ent assumptions and microscopic nuclear properties in order to provide complementary
description that could also have implications on the s-process network calculations [25].

The experimental data on (n, α) reaction cross sections for the s-process are available
for a limited set of nuclei and in restricted ranges of neutron energies [6,32,33]. Recent
measurements of (n, α) reactions include e.g., refs. [26,34–43]. The (n, α) reaction has been
measured in the s-process branching point at 59Ni, in view of considerable differences
between model predictions and experimental data [38,44]. Novel experimental techniques
and detector systems have been recently developed to provide accurate new data [45,46].
The NICE-detector opened new perspectives to determine neutron capture cross-sections
with charged particle in the exit channel with sufficient accuracy, for different nuclear and
astrophysical applications [47]. Presently available experimental data and the correspond-
ing empirical formulae cannot provide complete cross sections necessary for applications
in astrophysical and nucleosynthesis models. Therefore, in this work we aim to investigate
(n, α) reaction cross sections from the theory side, based on Hauser-Feshbach statistical
model [48,49] implemented in the nuclear reaction program TALYS-1.95 [50,51]. When pos-
sible, nuclear properties needed for this study are based on the energy density functional
theory, using Skyrme-type functional with improved description of pairing, HFB-17 [52].
Due to its relevance in the s-process nucleosynthesis, the (n, α) reactions will also be ana-
lyzed for the range of temperatures characteristic in stellar environment, by averaging the
cross sections over the Maxwell-Boltzmann distribution.

The objective of this work is to study (n, α) reaction cross sections for nuclei introduced
in the weak s-process network calculations of a massive star, including convective He
burning core and shell C- burning [25]. The weak s-process produces most of the s-
process isotopes between iron and strontium [25]. As pointed out in Ref. [25], the s-process
nucleosynthesis is rather uncertain, especially in the C shell, due to uncertainties in the
neutron capture cross sections. Therefore, in this study we aim to improve the knowledge
on (n, α) reaction cross sections of importance for the weak s-process, with focus on twelve
relevant nuclei as introduced in Ref. [25]. These nuclei are: 17O, 18F, 22Na, 26Al, 33S, 37Ar,
39Ar, 40K, 41Ca, 59Ni, 65Zn, and 71Ge. The reaction outcome depends on the respective
Q-values, that are listed for this set of nuclei in Table 1. For all nuclei the Q values are based
on Skyrme HFB-17 interaction [52], except for 17O, 18F, and 22Na, where the experimental
values [53,54] are adopted since the model calculations resulted in larger differences when
compared to the experiment (we use these values also in the forthcoming calculations
of the cross sections). For all nuclei under consideration, the Q values are positive, thus
allowing (n, α) reaction already at low neutron energies, that is of particular relevance for
the respective reaction rates in stellar environment, as will be discussed in Section 3.2.



Universe 2022, 8, 25 3 of 15

Table 1. Q-values for (n, α) reactions used in this work, obtained from Skyrme HFB-17 interaction [52],
except for nuclei denoted with * where the experimental Q-values are adopted [53,54].

Nucleus Q(MeV)
17O 1.817 *
18F 6.418 *

22Na 1.952 *
26Al 2.462
33S 3.870

37Ar 3.264
39Ar 3.060
40K 2.973

41Ca 6.101
59Ni 5.711
65Zn 6.223
71Ge 5.704

The Gamow peak represents one of the most important concepts in the study of
thermonuclear reactions in stars [55–57]. The corresponding energy range known as
Gamow window, determines the effective stellar energy region in which most charged-
particle induced nuclear reactions occur [55,56,58,59]. In Ref. [58] the Gamow windows of
a variety of astrophysical reaction rates have been explored in a systematic study over the
nuclide map using Hauser-Feshbach model. Since available experimental data on (n, α)
reaction cross sections for s-process nuclei are incomplete, predictions of astrophysically
relevant energy ranges are of importance for the future design and planning of nuclear
astrophysics measurements, including those using radioactive ion beams at novel facilities.
Therefore, one of the objectives of this work is to determine the astrophysically relevant
energy window where the (n, α) reactions occur in stellar environment. In this way, we
aim to provide the guidelines for the energy ranges to be measured in future experiments
on s-process nuclei, that are necessary to reduce currently existing systematic uncertainties
in model calculations.

The paper is organized as follows. Section 2 includes a brief overview of the theory
framework and methods for (n, α) reactions and their implementation in TALYS code.
In Section 3.1 the results on the cross sections for the s-process nuclei are presented and
discussed. The results for astrophysically relevant energy ranges for (n, α) reactions in
s-process nuclei and respective Maxwellian averaged cross sections are also given and
discussed in Sections 3.2 and 3.3. Summary and conclusions are given in Section 4.

2. Theory Framework

Neutron induced reaction cross sections in this work are described using the sta-
tistical Hauser-Feshbach model implemented in the nuclear reaction program TALYS-
1.95 [50,51]. More details about the formalism of Hauser-Feshbach statistical model are
given in refs. [8,48,49]. The model assumes the validity of the compound nucleus reaction
mechanism and a statistical distribution of nuclear excited states [14,49]. This method is
appropriate when the level density in the contributing energy window around the peak
of the projectile energy distribution is sufficiently high to justify a statistical treatment [8].
The compound nucleus formation dominates when the energy of the incident particle is
low enough, below ≈20 MeV. This condition is almost always satisfied in astrophysical
environments. Among various outgoing particles obtained from the compound nucleus,
dominating contributions to the cross section come from neutron, γ-ray, proton, and α-
particle. Comprehensive Hauser-Feshbach model calculations of astrophysical reaction
rates are available in ref. [8].

In the present work, nuclear reaction code TALYS-1.95 is used to calculate (n, α) re-
action cross sections [50,51]. This computational framework includes necessary input on
nuclear structure properties, optical models, level densities, fission properties, etc. [51].
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Nuclear level densities along with optical model transmission coefficients are considered
as two most important ingredients of the statistical model. The knowledge on all relevant
physical quantities and properties of target nuclei, could be used from available experi-
mental data or theoretical models. However, in the case of nuclei for which experimental
data are limited, theoretical models represent the only possible source of relevant nuclear
data. Since many statistical model ingredients are not available from the experiment,
phenomenological models are often used instead [8].

The nuclear properties needed for this study, in particular nuclear masses and level
densities, are calculated using the nuclear energy density fuctional (EDF) theory. This
framework represents the most complete description of ground-state properties, collective
excitations and processes over the whole nuclide chart, from relatively light systems to
superheavy nuclei, and from the valley of stability to the drip-lines [60–72]. Among the
microscopic approaches to the nuclear many-body problem, no other method achieves
comparable global accuracy at the same computational cost. It is the only approach that
can describe the evolution of nuclear structure throughout the nuclide chart. In practical
implementations the nuclear EDF framework is analogous to Kohn-Sham density functional
theory (DFT) [73,74]. It is a widely used method for electronic structure calculations in
condensed matter physics and quantum chemistry. Energy density functionals have so far
been constructed mostly empirically, with their parameters usually adjusted to properties
of symmetric and asymmetric nuclear matter, and bulk properties of a set of nuclei.

For the purpose of the present work, two main approaches based on the TALYS code
are employed [50,51]. In the first case the experimental masses are used, and the level
densities are based on a Fermi gas model. We denote this setting as TALYS-a. The second
approach is more consistent, based on microscopic theoretical description, that employs
the Skyrme-type functional for the description of nuclear masses and level densities (in
the following, denoted as TALYS-b). In particular, the Skyrme functional with improved
description of pairing, HFB-17, is used. More details on the interaction parameters, con-
strained within Hartree-Fock-Bogoliubov model are available in ref. [52]. The Skyrme
EDF has been in the past successfully employed in description of a variety of nuclear
properties and astrophysically relevant processes. As pointed out in ref. [75], when dealing
with nuclear astrophysics applications, various nuclear inputs should be, when possible,
determined from global, universal and microscopic models. Therefore, the implementation
of the Skyrme functional represents a reasonable and consistent approach in modeling
the (n, α) reaction cross sections. The Hauser-Feshbach model also requires description
of the transmission coefficients for the α particle emission. In this work we employ well
established α optical model potential from ref. [76], where the parameterisation used are
given in detail in the TALYS-1.95 implementation [77]. Compound nucleus cross section
also includes width fluctuation correction (WFC) which accounts for the correlations be-
tween the incident and outgoing waves [77]. These correlations enhance the elastic channel,
and accordingly decrease other open channels. In this work the WFC factors are calculated
using the Moldauer model [78]. With these settings, we use the TALYS-1.95 code [77]
to calculate the (n, α) reaction cross sections, as well as the Maxwellian averaged cross
sections (MACS) of particular relevance for the weak s-process nucleosynthesis and future
experimental studies of (n, α) reactions at novel research facilities.

3. Results and Discussion
3.1. (n, α) Reaction Cross Sections for s-Process Nuclei

The theory framework outlined in Section 2 is employed in the study of (n, α) reaction
cross sections for the set of nuclei involved in the weak s-process [25]. Figure 1 shows the
(n, α) reaction cross sections for the set of twelve nuclei introduced in Section 1. For the
sake of completeness, we present not only astrophysically relevant low-energy range of
the cross sections, emphasized by using logarithmic scale, but a complete result. At low
energies, E <100 keV, the cross sections show the 1/v dependence that is a general feature
in neutron induced reactions in this energy range [79]. At the intermediate energies, all
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of the cross sections are peaked within the energy range E ≈ 1- 20 MeV. Their maximal
values vary from ≈30 mb for 71Ge toward more than 300 mb for 41Ca and 18F. The shape
of the cross sections corresponds to the general expectation for the compound nucleus
reaction, i.e., the (n, α) reaction cross section increases to a maximum and then decreases
because higher energies start opening new emission channels [79]. The details of the cross
sections sensitively depend on the properties of nuclei involved in reactions, in particular
on their masses, excitation spectra and level densities. Clearly, the variations of the cross
sections for presented nuclei indicate the necessity for systematic calculations that include
all relevant nuclear properties.

10
-3

10
-2

10
-1

10
0

10
1

10
2

E (MeV)

10
0

10
1

10
2

10
3

10
4

σ
(m

b
)

17
O

18
F

22
Na

26
Al

33
S

37
Ar

39
Ar

40
K

41
Ca

59
Ni

65
Zn

71
Ge

XX(n,α),Y

Figure 1. The (n, α) reaction cross section as a function of the incoming neutron energies for target
nuclei as listed in the figure.

Model calculations are especially important for 18F, 22Na, 39Ar, 40K, 65Zn and 71Ge,
because no experimental data are existing on (n, α) reactions for these nuclei, or they are
very limited. For other s-process nuclei studied in this work, some experimental data are
available in the restricted low-energy range [26,35,37,38,80–82]. Figure 2 shows the (n, α) re-
action cross sections for 17O, 26Al, 33S, 37Ar, and 41Ca target nuclei, where the experimental
data exist in the low-energy range [26,35,37,81,82]. Two different Hauser-Feshbach model
calculations have been performed, (i) with experimental masses and level densities from the
Fermi gas model (TALYS-a) and (ii) nuclear masses and level densities calculated with the
Skyrme functional (TALYS-b), with the exception of 17O, where the experimental mass is
used, due to the reasons discussed above. In this way one can also obtain the information on
the sensitivity of the cross sections on these two essential ingredients in modeling reaction
cross sections, i.e., up to an order of magnitude difference is obtained between the results
of these two calculations. Nevertheless, the cross sections correspond reasonably well to
the experimental data for 26Al [35], 33S [81,82], 37Ar [37], and 41Ca [26]. For comparison,
Figure 2 also shows the results from the evaluated data sets NON-SMOKER [8] TENDL-
2019 [83], ENDF-B-VIII [84], JEFF-3.3 [9] and BROND-3.1 [85]. These data sets include
results of Hauser-Feshbach model calculations, however, in comparison to the present
work, they are based on different selections of nuclear masses, excitation spectra, level
densities, optical potential, WFC factors, and as a result the corresponding cross sections
are subject to variations depending on the nuclear input. Figure 2 shows that in most of
the cases, reasonable agreement is obtained between the present results and experimental
data. Comparison with other evaluated data display qualitative agreement though some
systematic differences are obtained, except at lower-end energies where the TENDL-2019
data show rapid decrease of the cross sections for several orders of magnitude (except for
37Ar). There is no reported explanation for the strong kink observed for the TENDL-2019
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cross sections. Although experimental data also exist for the 59Ni cross section [38,44],
these are not shown here because of a single resonance peak structure obtained at 203 eV
excitation energy, for which the Hauser-Feshbach model is not applicable. For 40K, only a
single data point is available, at very low energy, 0.025 eV. Thus, novel experimental studies
are needed over a broader astrophysically relevant energy range that would also allow to
constrain and improve model calculations.
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Figure 2. Comparison between the calculated and experimental (n, α) reaction cross sections for
17O, 26Al, 33S, 37Ar, and 41Ca. Model calculations include experimental nuclear masses and level
densities from the Fermi gas model (TALYS-a) and nuclear masses and level densities from the
Skyrme functional (TALYS-b). For comparison, results from the NON-SMOKER [8] TENDL-2019 [83],
ENDF-B-VIII [84], JEFF-3.3 [9] and BROND-3.1 [85] data sets are also shown. The experimental data
are taken from refs. [26,35,37,81,82].

3.2. Astrophysically Relevant Neutron Energy Window for (n, α) Reactions

Next we explore the (n, α) reaction cross sections relevant for the s-process nucleosyn-
thesis in stellar environment. For this purpose the cross sections are averaged over the
Maxwell-Boltzmann distribution, that describes the distribution of the neutron energies
with respect to the corresponding temperature [30],

〈σ〉(kT) =
2√
π
(kT)−2

∫ ∞

0
σ(E)Ee−

E
kT dE, (1)

where k and T denote the Boltzmann constant and temperature, respectively. Figure 3
shows the Mawellian averaged (n, α) reaction cross sections (MACS) [30] obtained for the
same set of nuclei discussed in Section 3.1. In the astrophysically relevant low-temperature
range, one can observe a systematic decrease of the MACS values, that is governed by the
1/v dependence of the cross sections shown in Figure 1. Following the Gaussian-like shape
of the cross sections at intermediate energies, E ≈ 1–30 MeV (see Figure 1), the correspond-
ing MACS values start to increase in the temperature range kT ≈ 100 keV–1 MeV. Model
calculations also identify a hierarchy of the MACS values, showing the largest cross sections
for the four target nuclei, 18F, 41Ca and 33S, and 17O that reflect large cross sections in the
low energy region shown in Figure 1. The MACS values for other nuclei appear in most
of the cases an order of magnitude smaller. The resulting behaviour of the MACS values
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could have implications in network calculations of the weak s-process nucleosynthesis,
identifying relevant contributions from (n, α) reactions for nuclei where the corresponding
cross sections have larger values. However, these cross sections need to be considered in
competition with neutron induced reactions with other possible exit channels.
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Figure 3. The (n, α) reaction cross sections averaged over the Maxwell-Boltzmann distribution for
the set of nuclei shown as a function of temperature.

In order to assess the information on the systematic uncertainties in modeling (n, α)
reactions, it is necessary to compare the results from various theoretical approaches based on
different assumptions. In ref. [86] the variations of theoretical results have been explored for
26Al(n, α)23Na reaction cross sections when using three different approaches, TALYS [50],
EMPIRE [87], and NON-SMOKER [8]. Figure 4 shows the MACS results of the present
work for 22Na, 26Al, and 33S, 37Ar, and 39Ar target nuclei in comparison with those from
several other model calculations based on different assumptions on the nuclear properties
and approaches in modeling the reaction mechanism. These include NON-SMOKER
reaction cross sections data base [8], Evaluated Nuclear Data File (ENDF-B-VII.1) [7], Joint
Evaluated Fission and Fusion (JEFF-3.1) Nuclear Data Library [30], JENDL-4.0 Library for
Nuclear Science and Engineering [10], and ROSFOND-2008 nuclear data [11]. The MACS
results from this work are in qualitative agreement with the Hauser-Feshbach calculation
NON-SMOKER for 22Na (except for kT >100 keV), 26Al, and 39Ar, while for 33S and
37Ar even more than an order of magnitude difference is obtained. Agreement with the
ENDF, JEFF and JENDL evaluation data depends on the range of kT values of interest.
For example, the MACS values for 33S in this work, as well as those from NON-SMOKER,
are considerably larger than ENDF, JEFF, and JENDL evaluation data for kT < 10 keV. In the
case of 26Al, 33S, and 39Ar, for kT < 100 keV, large discrepancies are obtained between the
present MACS values (as well as those from other models) and the ROSFOND evaluation
data, which also show different trend with increasing temperature. Clearly, different
foundations in various model calculations result in considerable model dependence of the
MACS values.

Figure 5 shows the MACS values for 40K, 41Ca, 59Ni, 65Zn, and 71Ge target nuclei. In
addition to the comparison with other evaluations as shown before, for 65Zn the results from
the Chinese Evaluated Nuclear Data Library (CENDL-3.1) are also displayed. For all nuclei
except 40K, good qualitative agreement of TALYS-b MACS values with other evaluations
is obtained, except for the ROSFOND-2008 which result in considerably smaller values
except for 40K. The differences obtained from comparison of the cross sections from various
theoretical frameworks demonstrate the necessity for calculations of the MACS values
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using different approaches and parameterizations, and analyses of their impact in the
network calculations of the s-process nucleosynthesis in realistic stellar conditions.
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Figure 4. The Maxwellian averaged cross sections (MACS) for (n, α) reaction for 22Na, 26Al, and 33S,
37Ar, and 39Ar as functions of temperature. The present results (TALYS-b) are compared to those
from NON-SMOKER [8], ENDF-B-VII.1 [7], JEFF-3.1 [30], JENDL-4.0 [10], and ROSFOND-2008 [11].
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Figure 5. The same as in Figure 4, but for 40K, 41Ca, 59Ni, 65Zn, and 71Ge target nuclei. In addition to
the results from other data sets, comparison with the MACS values from the CENDL-3.1 [12] nuclear
data library is also shown.

3.3. Astrophysically Relevant Neutron Energy Range for (n, α) Reactions

As shown in Section 3.2, the (n, α) reaction cross sections are subject to a considerable
model dependence. In order to have more stringent constraints on the astrophysically
relevant neutron induced reactions, novel experimental studies are needed. As discussed in
Section 3.1 available experimental data on s-process nuclei studied in this work are rather
limited. One of the objectives of this study is to determine what are the astrophysically
relevant energy ranges that could contribute in modeling the nucleosynthesis. These
relevant energy ranges, known as Gamow window, are determined as the overlap region
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between the Maxwell Boltzmann distribution of the interacting particles and the low-energy
tail of the reaction cross section [55]. The exact position of the Gamow window depends on
typical temperature regimes characteristic for a specific core and burning stages during
stellar evolution. While in the case of reactions that involve the charge particles, the Gamow
peak is determined by the interplay of the Maxwell-Boltzmann distribution and tunneling
of the incoming particle throught the Coulomb barrier of target nucleus [58], in the case
of (n, α) reactions there is no Coulomb barrier for the incoming particle and the relevant
energy range is determined by the overlap of the Maxwell-Boltzmann distribution and the
reaction cross section. This is illustrated in Figure 6 which shows the contributions from the
Maxwell-Boltzmann distribution fD(E) (in arbitrary units for the presentation purposes)
and (n, α) reaction cross sections for 41Ca,59Ni, 65Zn, and 71Ge as a function of neutron
energy. The distributions are displayed for the range of temperatures kT = 30–210 keV. For
these temperatures the Maxwell-Boltzmann distributions limit the neutron energy range
at low energies. For comparison, the (n, α) cross sections are also shown. Thus, only the
low-energy part of the cross sections are relevant for astrophysical applications within the
temperature range as given above.
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Figure 6. The (n, α) reaction cross sections as a function of neutron energy σ(E), and Maxwell-
Boltzmann distribution fD(E) (in arbitrary units) for the range of temperatures kT = 30–210 keV,
shown for 41Ca, 59Ni, 65Zn, and 71Ge.

In the following we determine the relevant energy windows for (n, α) reactions for
the complete previously studied set of nuclei. For this purpose, we analyze the subintegral
function used in calculating the MACS values (1),

f I(E) = σ(E)Ee−E/(kT), (2)

that provides the cross section weighted by the corresponding Maxwell-Boltzmann distri-
bution at a given energy. The reaction energy windows described by the function f I(E),
together with the corresponding (n, α) reaction cross sections are shown in Figure 7 for
17O,18F, 22Na, and 26Al. As expected, the reaction energy windows become wider with
increasing temperature, but their exact location sensitively depends on the specific target
nucleus under consideration. For all nuclei, the maximal reaction peaks for kT = 30 keV
are located below energy of 0.1 MeV. To assess the accurate information on astrophys-
ically relevant energy windows, calculations need to be performed for each nucleus of
interest. Therefore, we show the results for relevant (n, α) reaction windows also for 33S,
37Ar, 39Ar, and 40K in Figure 8 and for 41Ca, 59Ni, 65Zn, 71Ge in Figure 9. The results give
quantitative predictions which energy windows are important for different nuclei within
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given temperature range, and in this way provide a guidance for the future experimental
studies of (n, α) reactions, and their implementation in the s-process network calculations.
As already discussed in Section 3.2, considerable model dependence of (n, α) reaction cross
sections necessitate more experimental data that could provide additional constraints on
these reactions that contribute to the s-process nucleosynthesis.
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Figure 7. Relevant (n, α) reaction energy windows for the range of temperatures kT = 30–210 keV
described with the function f I(E) (in arbitrary units, see text) and the respective reaction cross
sections for 17O,18F, 22Na, and 26Al target nuclei.
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Figure 9. The same as Figure 7, but for 41Ca, 59Ni, 65Zn, and 71Ge target nuclei.

4. Conclusions

In this work we have investigated (n, α) reaction cross sections for the set of nuclei
contributing to the s-process nucleosynthesis. Model calculations have been performed in
the theory framework based on Hauser-Feshbach statistical model through its implementa-
tion in the nuclear reaction program TALYS-1.95 [50]. When possible, model calculations
are kept consistent by using nuclear properties necessary for the reaction calculated in
the framework of Skyrme energy density functional. The (n, α) reactions have been in-
vestigated in view of their relevance for the weak s-process nucleosynthesis, thus their
average over the Maxwell-Boltzmann distribution for the range of stellar temperatures has
been calculated.

An important contribution of this work is a quantitative assessment of the energy
window in which (n, α) reactions occur in stars, that is by its role equivalent to the well
known Gamow window, with a difference that in the case of (n, α) reactions no tunnel-
ing through the Coulomb barrier is needed in the entrance channel. Model calculations
in this work determined relevant energy windows for (n, α) reactions for the range of
astrophysically represented temperatures, indicating a strong dependence of the exact
location of the energy window on specific target nucleus under consideration. Quantitative
predictions of astrophysically relevant energy windows for (n, α) reactions, that contribute
in the s-process nucleosynthesis, provide a guidance for the future experimental studies
of these reactions. In particular, measurements in the energy windows as identified in
Figures 7–9 are necessary, especially for nuclei for which none or very limited data exist,
18F, 22Na, 39Ar, 40K, 59Ni, 65Zn, and 71Ge. As shown in this study, (n, α) reactions, similar
as all other neutron induced reactions, are subject to a considerable systematic model
dependence. Therefore, novel experimental data are necessary in the predicted relevant
energy windows, that could provide additional constraints on these reactions and reduce
currently existing theoretical uncertainties. In the forthcoming studies the (n, α) reaction
cross sections obtained in this work could also be implemented in the s-process network
calculations to explore the variations of isotopes in the element abundances.
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