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Abstract: We review dark energy models that can present non-negligible fluctuations on scales
smaller than Hubble radius. Both linear and nonlinear evolutions of dark energy fluctuations are
discussed. The linear evolution has a well-established framework, based on linear perturbation
theory in General Relativity, and is well studied and implemented in numerical codes. We highlight
the main results from linear theory to explain how dark energy perturbations become important
on the scales of interest for structure formation. Next, we review some attempts to understand the
impact of clustering dark energy models in the nonlinear regime, usually based on generalizations
of the Spherical Collapse Model. We critically discuss the proposed generalizations of the Spherical
Collapse Model that can treat clustering dark energy models and their shortcomings. Proposed
implementations of clustering dark energy models in halo mass functions are reviewed. We also
discuss some recent numerical simulations capable of treating dark energy fluctuations. Finally, we
summarize the observational predictions based on these models.
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1. Introduction

Since the discovery of the accelerated expansion of the Universe (Riess et al. [1],
Perlmutter et al. [2]), a great variety of explanations have been proposed. The most simple
and well-studied proposal is that the accelerated expansion is caused by the Cosmological
Constant, Λ, which is constant in space and time and naturally possesses no fluctuations.
In this model, Dark Energy (DE) only modifies the background cosmological evolution,
then the modifications in linear and nonlinear evolution of cosmological perturbations are
straightforward to implement. Together with Cold Dark Matter (CDM), which accounts for
roughly 25% of the Universe energy density, the ΛCDM model provides an outstanding
description of cosmological data obtained so far, e.g., Aghanim et al. [3], Abbott et al. [4],
Asgari et al. [5].

Although ΛCDM is very successful in describing almost all cosmological observa-
tions, on theoretical grounds, it is challenged by the Cosmological Constant Problem
Weinberg [6], Carroll [7] and the Cosmic Coincidence Problem Zlatev et al. [8]. More re-
cently, direct measurements of the Hubble constant, H0, have also been challenging the
ΛCDM model, showing a disagreement of about 5σ with respect to the inferred value
from Cosmic Microwave Background (CMB) data Verde et al. [9], Di Valentino et al. [10].
A less significant tension, about 3σ, in the ΛCDM model is related to the predicted
normalization of the matter power spectrum (σ8) and the S8 = σ8

√
Ωm0/0.3 parame-

ter (Perivolaropoulos and Skara [11], Di Valentino et al. [12]). A recent analysis of possible
solutions can be found in Schöneberg et al. [13].

Given these difficulties with Λ, a profusion of alternative models to explain the cosmic
acceleration were proposed. One of the first and most popular alternatives to Λ is the
quintessence class of models. In these models, a new scalar field minimally coupled
to gravity and with no direct interactions to other types of matter plays the role of DE.
This kind of model was studied even before the discovery of accelerated expansion by
Peebles and Ratra [14], Wetterich [15]. In quintessence models, DE is time-dependent
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and its Equation of State (EoS) parameter tracks the background, possibly alleviating the
Coincidence Problem Zlatev et al. [8], Caldwell et al. [16], Steinhardt et al. [17].

Since the quintessence field is dynamical, it necessarily has fluctuations. These fluc-
tuations, however, are relevant only on scales of the order of Hubble radius Ma et al. [18],
Brax et al. [19], DeDeo et al. [20]. On the small scales of interest for structure formation,
quintessence perturbations are much smaller than matter (dark matter plus baryons) per-
turbations and thus are usually neglected. This tiny amount of DE perturbations on small
scales is a consequence of the sound speed of the field perturbations, which has a con-
stant value cs = 1. This value of the sound speed implies that the sound-horizon scale of
quintessence, a scale below which the perturbations are strongly suppressed by pressure
support, is of the order of Hubble radius, cs/H0.

One of the first proposed models beyond the quintessence that can possible present rel-
evant perturbations on small scales is the tachyon scalar field (Sen [21], Padmanabhan [22],
and Bagla et al. [23]). The main difference with respect to quintessence is that the tachyon
field has a time-varying speed of sound, which can be smaller than unity, thus allowing the
field to cluster more effectively on smaller scales.

It was also observed that even more general scalar field models could be constructed.
The so-called k-essence models were initially proposed in the context of inflation
(Armendariz-Picon et al. [24], Garriga and Mukhanov [25]). In such models, one has the
freedom to choose both the kinetic term and the potential of the scalar field, which trans-
lates into liberty to choose the EoS parameter and cs. Therefore, in this class of models,
DE can have an arbitrarily low speed of sound; thus, its perturbations can be the same
order of magnitude of matter perturbations. In this scenario, DE has the potential to impact
structure formation beyond the background level.

More recently, the class of Horndesky theories, Horndeski [26], was rediscovered and
it was shown that both quintessence and k-essence models are sub-classes of Horndesky.
At the linear perturbation level, these sub-classes are parameterized by the αK parameter
Bellini and Sawicki [27]. In the context of Horndesky theories, many models beyond
k-essence exist, including non-minimally coupled scalar fields, which also modify gravita-
tional interaction. The various types of models that can explain the accelerated expansion
can also be described in the Effective Field Theory framework, Gubitosi et al. [28]. Many of
these proposals are discussed in Amendola et al. [29].

In this review, we will focus on DE models described by minimally coupled to gravity
scalar fields. We also restrict our attention to fields with no direct interaction with other
matter fields. The k-essence class of models can be parametrized as perfect fluids defined by
two time-dependent functions, w(t) and cs(t), and this description will suffice to analyze
how large DE fluctuations can be and estimate their observational impact.

The first step to understand DE fluctuations is to study them at the linear perturbative
level, which is described by the well-established theory of linear cosmological perturba-
tions, e.g., Kodama and Sasaki [30], Mukhanov et al. [31], Ma and Bertschinger [32]. In this
context, the study of DE perturbations is straightforward but limited to large scales that
did not develop nonlinear matter fluctuations. Difficulties arise when trying to study DE
fluctuations in the nonlinear regime. Historically, structure formation was studied using
the Newtonian theory, which cannot deal with relativistic fluids such as DE. The obvious
approach of using full-blown General Relativity to include DE fluctuations in structure
formation studies is undoubtedly challenging. In fact, relativistic studies of structure for-
mation with Clustering Dark Energy (CDE) were developed quite recently Dakin et al. [33],
Hassani et al. [34,35].

The first attempt to study Clustering DE (CDE) models in the nonlinear regime used
an integration between the Newtonian Spherical Collapse Model (SCM) and a “local” Klein-
Gordon equation, modified to permit the clustering of quintessence Mota and van de Bruck [36].
This study was able to show important new effects due to DE fluctuations, which were
later confirmed by more general and well-justified models. For instance, depending on the
evolution of its EoS, DE fluctuations can become nonlinear, impact the nonlinear evolution
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of matter fluctuations, and change the virialization state of matter halos. Hence, it became
clear that CDE can impact structure formation. Later on, some authors constructed a more
formal and general framework to include CDE in the SCM, Abramo et al. [37], Creminelli
et al. [38], Basse et al. [39].

The main focus of this review is to describe and discuss the applicability of the
generalizations of the SCM capable of treating CDE models. We also pay special attention
to the corresponding modifications on the Halo Mass Functions (HMF), which, up to now,
have not been explored by numerical simulations. Moreover, we review the impact of CDE
on cosmological observables and prospects for its detection.

The plan for this review is the following. Section 2 presents the essentials of rela-
tivistic perturbation theory that describe DE perturbations and their scale dependence.
In Section 3, we review quintessence and k-essence models, highlighting the conditions
under which relevant DE perturbations can be present. Section 4 discusses the SCM and its
generalizations to study homogeneous and inhomogeneous DE models. Section 5 presents
the Pseudo-Newtonian description of the SCM, which permits direct contact with linear
relativistic perturbations on small scales and provides a clear and general framework to
study CDE models in the nonlinear regime. We discuss the impact of DE fluctuations on
HMF in Section 6. The observational impact of CDE is reviewed in Section 7. We discuss
the main results and perspectives in Section 8.

2. Linear Perturbations

To understand the basic behaviour of DE perturbations, it is enough to consider scalar
perturbations in the absence of anisotropic stresses. In this case, the perturbed line element
in the Newtonian gauge is given by Ma and Bertschinger [32]

ds2 = a2(η)
[
−(1 + 2Φ)dη2 + (1− 2Φ)d~x2

]
, (1)

where η is the conformal time and Φ the gravitational field. The energy momentum of a
perfect fluid with energy density ρ, pressure p, and four-velocity uµ is given by

Tµν = (ρ + p)uµuν − pgµν , (2)

which includes background (overbar quantities) plus perturbed quantities: ρ = ρ̄ + δρ,
p = p̄ + δp, uµ = ūµ + vµ.

We also restrict the analysis to the matter-dominated era and the actual DE dominated
phase. Then, at background level, we have the Friedman equations, including matter
(barions plus dark matter, indicated by the subscript m) and dark energy (indicated by the
subscript de), given by

H2 ≡
(

a′

a

)2

=
8πG

3
a2(ρ̄m + ρ̄de) , (3)

H′ = −4πG
3

(ρ̄m + ρ̄de(1 + w)) , (4)

where w = p̄de/ρ̄de is the EoS parameter for DE and the prime indicates derivative with
respect to the conformal time, η. Density parameters of matter and DE are defined by

Ωm =
ρ̄m(a)
ρc(a)

and Ωde =
ρ̄de(a)
ρc(a)

, (5)

where ρc = ρ̄m + ρ̄de is the critial density.
In this review, we present examples using the CPL parametrization of the EoS, Cheval-

lier and Polarski [40], Linder [41]

w = w0 + wa(1− a) , (6)
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where w0 and wa are constants. Since Λ gives a good description for the background
evolution, we fix w0 = −1 and will vary wa to show the impact of DE fluctuations in a
scenario that is very similar to ΛCDM at low redshift.

In Fourier space, the (00) component of Einstein equations is given by

k2Φ + 3H
(
Φ′ +HΦ

)
= 4πGa2(ρ̄mδm + ρ̄deδde) , (7)

where δ` = δρ`/ρ̄` is the density contrast for a given component identified by the subscript
`. The conservation equations for perturbations of each fluid component, ∇νδTµ

ν = 0, can
be written as

δ′ + 3H(δp/δρ− w)δ + (1 + w)
(
θ − 3Φ′

)
= 0 (8)

θ′ +H
(

1− 3c2
a

)
θ = k2Φ +

δp/δρk2δ

1 + w
, (9)

where θ = ikjvj is the divergence of the fluid peculiar velocity and c2
a = p̄′/ρ̄′ is the adiabatic

sound speed of the fluid. The pressure perturbation is given by Bean and Dore [42]

δp = c2
s δρ + 3H(1 + w)

(
c2

s − c2
a

)
ρ̄

θ

k2 , (10)

where c2
s = (δp/δρ)rest is the sound speed of the fluid in its rest frame.

An adiabatic or barotropic fluid is defined by cs = ca. The fluid is said to possess
entropy perturbation if cs 6= ca. In general, DE models have entropy perturbations, but it is
also possible to construct adiabatic models, e.g., Linder and Scherrer [43], Unnikrishnan
and Sriramkumar [44].

Let us analyze the behaviour of perturbations in an adiabatic DE model, which has
simpler equations—see Ballesteros and Lesgourgues [45] for a more general treatment.
In this case, the last term in (10) vanishes. Assuming w and cs as constants, from (8)–(10)
we can determine a second order equation for DE density contrast

δ′′de +H(1− 3w)δ′de +
[
3H′

(
c2

s − w
)
+ 3H2

(
c2

s − w
)(

1− 3c2
s

)
+ c2

s k2
]
δde

= −(1 + w)
[
k2Φ− 3H

(
1− 3c2

s

)
Φ′ − 3Φ′′

]
. (11)

Let us focus on small scales, k2 � H2,H′ and k2Φ � HΦ′, Φ′′. During the matter-
dominated era, we have the well-known solution δm ∝ a and Φ = constant, and Equation (11)
simplifies to

δ′′de +H(1− 3w)δ′de + c2
s k2δde = −(1 + w)k2Φ . (12)

For non-negligible c2
s , Equation (11) has a constant solution

δde = −
(1 + w)

c2
s

Φ . (13)

Since, from (7), δm ∼ k2Φ, DE perturbations are usually negligible on small scales
when compared to the matter perturbations.

For negligible cs, Equation (11) has the following solution, Abramo et al. [46],
Sapone et al. [47], Creminelli et al. [48]

δde = −
(1 + w)

(1− 3w)
δm , (14)

which is a good approximation even for Early DE models Batista and Pace [49].
As can be seen, the magnitude of DE perturbations is determined by both w and cs.

If w ' −1, as it should be at low-z, DE perturbations are strongly suppressed regardless of
cs. For DE models in which w deviates from−1 at higher redshift and with low or negligible
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cs, DE perturbations can be as large as matter perturbations in the matter-dominated era,
as indicated by (14). As we will see, in this case, DE fluctuations can become nonlinear and
impact structure formation.

The solution (14) also indicates a correlation between matter and DE perturbations.
Positive matter perturbations, which will be associated with the formation of halos in the
nonlinear regime, will induce DE overdensities in the case of 1 + w > 0 and underdensities
if 1 + w < 0. As we will see later, in the nonlinear regime, this correlation can induce
pathological behaviour for phantom DE models (w < −1), namely, δde < −1.

The comoving scale bellow which DE perturbations is strongly suppressed by its
pressure support, given by the sound horizon

rs =
∫ 1

ai

csda
a2H

, (15)

in which H = ȧ/a is the usual Hubble parameter and the dot indicates derivative with
respect to time. In regions below this scale, the pressure support halts the growth of DE
perturbations. As we will see, quintessence models have cs = 1; then, rs ∼ 1/H0 and their
perturbations are very small on scales below the Hubble radius.

Let us estimate the value of cs, which induces large DE perturbations on small scales.
For instance, cs = 10−3 gives a sound horizon rs ' 14Mpc (assuming best fit Planck18 cos-
mology Aghanim et al. [3]). This value is associated with a mass scale M = 4π/3ρ̄m0(rs/2)3

' 2× 1014M�, where ρm0 is the matter density now. The value cs = 10−3 was indeed
reported to impact the formation of halos of such mass by Basse et al. [39]. As we will
discuss later, in this work the authors considered that DE fluctuations do not break linear
approximation. In the limit of cs → 0, however, DE fluctuations can become nonlinear, de-
pending on the value of w. Nevertheless, the impact of DE fluctuations becomes important
for nonlinear structure formation for cs < 10−3.

3. Dark Energy Models

Now that we have understood under which circumstances DE perturbations can be
significant on small scales, let us discuss some DE models that can present such large
perturbations. The variety of DE models is enormous, with several reviews, books, and
extensive analysis about them, e.g., Copeland et al. [50], Amendola and Tsujikawa [51], Yoo
and Watanabe [52], Tsujikawa [53], Ade et al. [54]. We will focus on the k-essence class of
models, which provide enough generality for w and cs to permit large DE perturbations.

Models of k-essence were initially introduced in the context of inflation, (Armendariz-
Picon et al. [24], Garriga and Mukhanov [25]) and shortly after applied to describe DE
(Armendariz-Picon et al. [55], Erickson et al. [56]). A cosmological model with k-essence is
described by the following action

S =
∫

d4x
√
−g
[
− R

2κ2 + L(X, ϕ)

]
+ Sm , (16)

where κ2 = 8πG, R is the Ricci scalar, X = − 1
2 gµν∂µ ϕ∂µ ϕ, Sm is the action for matter

fields (photons, neutrinos, baryons, and dark matter), and L(X, ϕ) is the Lagrangian for
the k-essence field, ϕ. The k-essence energy-momentum tensor is given by

Tµν = L,X∇µ ϕ∇ν ϕ−Lgµν , (17)

where subscript , X represents the derivative with respect to X. Comparing it to the perfect
fluid energy momentum tensor (2), we find that

ρ = 2XL,X −L , p = L and uµ =
∇µ ϕ√

2X
. (18)
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The sound speed of k-essence perturbations is given by Garriga and Mukhanov [25]

c2
s =

p,X

ρ,X
. (19)

In this framework, it is clear that one has the freedom to choose the functions w and cs.
Next, let us have a look at some specific popular realizations of DE models.

3.1. Quintessence

In the k-essence language, quintessence is defined by L = X − V(ϕ); then, its EoS
parameter, defined by p/ρ given by (18), and sound speed, given by (19), read

w =
X−V
X + V

and c2
s = 1 . (20)

If the kinetic energy of the field dominates its potential energy, we have w ' 1. In the
opposite case, w ' −1. Its sound speed, however, is always the same. Hence, although w
can be far from −1, the sound speed of quintessence does not allow for large perturbations
on small scales.

This fact can also be understood via the Klein–Gordon equation for quintessence
perturbations, which can be written as Hwang and Noh [57]

δϕ̈ + 3Hδϕ̇ +

(
c2

s k2 +
d2V
dϕ2

)
δϕ = ϕ̇δm , (21)

where we explicitly introduced the the parameter cs. Quintessence models must have
V ∼ H2

0 in order to accelerate the Universe expansion recently, where H0 = H(t0) is the
Hubble constant. Thus, for scales well bellow the Hubble radius, c2

s k2 � d2V
dϕ2 , and the field

perturbations are strongly suppressed on these scales.
Since quintessence was initially the most popular alternative model to Λ, initially,

many cosmologists considered DE perturbations were effectively negligible on small
scales. This picture started to change with the appearance of new DE models, which
can have cs < 1.

3.2. Tachyon

A well-known model for DE that makes use of non-canonical scalar field is the tachyon
field. It was introduced in the context of string theory Sen [21,58] but can also be understood
as a generalization of the relativistic particle lagrangian, Padmanabhan and Choudhury
[59]. The tachyon model is defined by the following lagrangian

L = −V(ϕ)
√

1− 2X , (22)

Comological studies of this model include Padmanabhan [22], Bagla et al. [23], Pad-
manabhan and Choudhury [59], Abramo and Finelli [60]. The EoS parameter and its sound
speed are given by

w = 2X− 1 and c2
s = −w (23)

The accelerated expansion occurs when X � 1; thus, w ' −1 and c2
s ' 1. In this case,

the behaviour is very similar to quintessence. However, earlier in the cosmological history,
the kinetic term can be larger, which yields a smaller cs. In this case, both w and cs provide
the conditions for large DE perturbations.

Considering a power-law potential, V(ϕ) ∝ ϕ−α, the actual impact of tachyon pertur-
bations on CMB is small because the accelerated expansion requires α ' 0, which, in turn,
suppresses the field perturbations Abramo et al. [61]. Nevertheless, this model clearly
shows that DE perturbations are not necessarily small on scales below the Hubble radius.
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For a constant potential, the tachyon model is equivalent to the Chaplygin gas Kamen-
shchik et al. [62], with equation of state

p = −A
ρ

, (24)

where A is a constant. This model and its generalized version was studied by many authors,
e.g., Bento et al. [63], Sandvik et al. [64], Makler et al. [65], Bento et al. [66], Amendola et al. [67],
Reis et al. [68]. Both the tachyon and Chaplygin models gave rise to a scenario in which DE
and dark matter can be considered manifestations of a single component, which became
known as quartessence or unified dark energy (Sahni and Wang [69], Bilic et al. [70]); for a
review of these ideas, see Bertacca et al. [71].

3.3. Clustering DE

It is possible to construct DE models with negligible sound speed. In the context of
k-essence, a model with a constant arbitrary cs is given by Kunz et al. [72]

L = M4
(

X
M4

) 1+c2
s

2c2
s + V(ϕ) , (25)

where M is a constant mass scale. In the context of quartessence, Scherrer [73] proposed
a model with very low cs. A possible issue when building such models is that distinct
lagrangians can have the same w and cs, Unnikrishnan [74].

In effective field theory, models with c2
s ∼ −10−30 were described by Creminelli et al. [48].

Although negative c2
s yields gradient instabilities, this value is so small that no relevant

effect on cosmological scales is expected. This work also concludes that no pathological be-
haviour is present for phantom models, w < −1. However, as we will show later on, in the
nonlinear regime, it is possible that phantom DE with negligible sound speed can present
δde < −1, i.e., a pathological situation with negative energy density, ρde = ρ̄de(1 + δde).

Models with identically zero sound speed using two scalar fields were proposed by
Lim et al. [75]. In Horndeski theories, there are even more possible realizations of DE with
low sound speed, which can be chosen as a function of four physical parameters Bellini
and Sawicki [27].

Given the variety of possible CDE models, the phenomenological implementation of
parametrizations of w and cs is valuable to explore the possible impact of DE perturbations
on structure formation. As already mentioned, we will show examples using w = w0 +
wa(1− a) and constant cs.

4. The Spherical Collapse Model

Once we know the basic behaviour of DE linear perturbations, we may ask how they
impact the structure formation on small scales. The SCM is an analytical approach first
proposed to study the nonlinear evolution of matter perturbations in the Universe. It can
be used in connection with analytic and semi-analytic halo mass functions to determine
the abundance of matter halos, which we will describe in Section 7. In this section, we
will review the classic formulation of the SCM and the main quantities of cosmological
interest. We also discuss some generalizations capable of treating homogeneous DE, and
the first proposed model that considers the nonlinear evolution of DE fluctuations. Later
on, we will present a more general framework for the SCM, and a detailed discussion about
threshold density, which is an important quantity that determines the abundance of halos.

4.1. Einstein-de-Sitter Universe

The SCM was first proposed by Gunn and Gott [76]. The important conclusions
for our porpouses are described in Padmanabhan [77] and Sahni and Coles [78]. This
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model describes the dynamics of spherical shell of radius R that encloses a mass Mm.
The dynamical equation for the shell radius is

R̈ = −GMm

R2 , (26)

where the dot indicates derivative with respect to time. The mass is given by

Mm =
4π

3
R3ρ̄m(1 + δm) , (27)

where δm is assumed to be the averaged density contrast inside the sphere of radius R,
which can also be understood as a top-hat profile for the matter fluctuation. The total mass
is supposed to be conserved, dMm/dt = 0, which yields the following equation for the
matter contrast

δ̇m + 3
(

Ṙ
R
− ȧ

a

)
(1 + δm) = 0 , (28)

which has the solution

δm + 1 = (δmi + 1)
(

a
ai

Ri
R

)3
, (29)

where the subscripts i indicate the initial values.
The first integral of (26) is given by

1
2

Ṙ2 − GMm

R
= E , (30)

where E is a constant of integration identified as the total energy of the shell—the kinetic
energy (K = Ṙ2/2) plus the potential energy per unit of mass (U = −GMm/R). Note that,
in the derivation of (30), the fact that Mm is constant was used. As we will see later on,
in the presence of DE, the effective mass inside the shell is not conserved anymore.

Assuming that the shell initially expands with the background, R ∝ a, we have
Ṙi = HiRi. Using (27), the total energy can be expressed as

E =
(HiRi)

2

2

[
1

Ωmi
− (1 + δmi)

]
, (31)

where Ωmi = Ωm(ai). For 1+ δmi > 1/Ωmi, the total energy of the shell is negative. Thus, it
is expected that the initially expanding dust cloud will grow to a maximum radius, contract,
and eventually form a bounded structure. In EdS Universe, Ωm = 1, and any region with
positive δmi will eventually collapse. As we will see next, this is indeed the behaviour given
by solving for the time evolution of R, which will describe the formation of a matter halo.
On the other hand, if 1+ δmi < 1/Ωmi, the total energy of the shell is positive and the cloud
will expand forever, forming a void with −1 < δm < 0.

The maximum shell radius is given by Ṙ = 0 and is called the turn-around radius,
given by

Rta = Ri
1 + δmi

1 + δmi − 1/Ωmi
. (32)

This is indeed a maximum radius because Equation (26) indicates that R̈ < 0. This fact
also implies that no solution of a minimal radius exists in the usual SCM, and consequently,
the model can not describe an equilibrium configuration. This shortcoming is usually
circumvented by assuming that the system achieves virial equilibrium at some point of its
evolution and that this state represents the final bounded structure. There were efforts in
implementing virialization in the dynamics of the SCM, see Engineer et al. [79], Shaw and
Mota [80].
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Equation (26) can be solved analytically with the following parametrization

R = A(1− cos x) and t = B(θ − sin x) , (33)

where A = Rta/2, B = tta/π. Substituting these expressions in (26) one gets the relation
A3 = GMmB2.

As can be seen from (33), the shell radius is maximum at θ = π (turn-around) and then
begins to shrink. Formally, as x → 2π; R→ 0; and, from (29), δm → ∞. This is identified
as the moment of collapse. In reality, these values are not achieved because, for a given
shell approaching collapse, other inner shells containing collisionless matter have already
crossed each other. Thus, the total mass within a specific radius is not conserved anymore,
signalling the break down of the model. Nevertheless, the collapse time is used to define
quantities used to estimate the abundance of halos.

Using conservation of mass, given by Equation (27), and the background density
evolution in EdS ρ̄m =

(
6πGt2)−1, the nonlinear evolution of matter fluctuations is given by

ρm

ρ̄m
= 1 + δNL

m =
9
2
(x− sin x)2

(1− cos x)3 , (34)

where the superscript NL indicates the nonlinear value of the density constrast. Expanding
for small x, we get the linear evolution

δL
m =

3
5

(
3
4

)2/3

(x− sin x)2/3 , (35)

where the superscript L indicates the linear value of the density contrast. At turn-around,
we have

δNL
m (x = π) =

9π2

16
− 1 ' 4.552 (36)

and

δL
m(x = π) =

3
5

(
3π

4

)2/3
' 1.062 . (37)

As can be seen, at this time, the linear evolution gives a density contrast of order one,
indicating the transition from linear to nonlinear regime.

The collapse threshold (or critical density contrast) is the extrapolated linear over-
density value above which a bound structure is considered formed, a halo. Usually, it is
defined at the collapse time

δc ≡ δL
m(x = 2π) =

3
5

(
3π

2

)2/3
' 1.686 . (38)

As we will see later, the value δc is of great importance in structure formation studies
that make use of analytic or semi-analytic mass functions. This quantity is modified in the
presence of homogeneous and inhomogeneous DE.

It is also important to describe the state of equilibrium of the halo, which is as-
sumed to obey the virial theorem for non-relativistic particles. Virialization occurs when
U(Rv) = −2K(Rv), were Rv is the virialization radius. At turn-around, E = U(Rta) =
U(Rv) + K(Rv); then, we get the relation

Rv =
Rm

2
. (39)

From this, we can compute the virialization time (x = 3π/2)

tv =

(
3
2
+

1
π

)
tta ' 1.818tta . (40)
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The collapse time (x = 2π) is
tcoll = 2tm . (41)

With these quantities, two definitions of virialization overdensity are usually found in
the literature. One possibility is to define the virialization overdensity with respect to the
matter background density

∆cm ≡
ρm(tv)

ρ̄m(tc)
= 18π2 ' 177.7 . (42)

Another common choice uses the critical density as reference

∆cc ≡
ρm(tv)

ρ̄c(tc)
. (43)

Of course, ∆cm and ∆cc give essentially the same results in a matter-dominated Uni-
verse, but they differ when DE becomes important, see Figure 1.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

z

100

150

200

250

300

350

∆

ΛCDM, Ωm 0 = 0.3

∆cc

∆cm

∆v

Figure 1. Redshift evolution of three virial overdensities definitions, Equations (42)–(44) for the
ΛCDM model with Ωm0 = 0.3. In this plot, ∆v is determined using the method summarized by
Equation (78), while ∆cm and ∆cc are determined by the proper numerical method discussed in
Section 6.1.

The overdensity ∆ ≈ 178 became a reference value used in N-body simulations in
order to identify halos, but many other definitions can be used, see Despali et al. [81] for
an analysis of several such choices. Interestingly, this paper has shown that the use of
the quantity ∆cc yields more universal mass functions, in the sense of its dependence on
redshift and cosmological parameters. We will return to this discussion when dealing with
the impact of CDE on halo mass functions.

Yet another possibility is to compute both the total and background densities at the
virialization time, as suggested by Lee and Ng [82]. In this case, the virialization overdensity
is given by

∆v ≡
ρm(tv)

ρ̄m(tv)
=

9
2

(
3π

2
+ 1
)2
' 146.8 . (44)
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The value of ∆v is slightly smaller than ∆cc. Later on, will show that in the pres-
ence of DE these two quantities decay with redshift, whereas ∆cm grows (see Figure 1).
Analogously, we can define the threshold density at virialization

δv ≡ δL
m

(
x =

3π

2

)
=

3
5

(
3
4

)2/3(3π

2
+ 1
)2/3

' 1.583 . (45)

4.2. Spherical Collapse Model with Homogeneous Dark Energy

In the presence of homogeneous DE, the SCM has to be modified to include the effects
of this new component on the dynamics of the shell radius. Now, we have

R̈ = − G
R2 (Mm + Mde) , (46)

where
Mde =

4π

3
R3ρ̄de(1 + 3w) (47)

is the effective mass associated with homogeneous DE. This definition can be understood
via the Poisson equation in the presence of a relativistic fluid

∇2Φ = 4πG(ρ + 3p) . (48)

The first study of the Equation (46) was done by Lahav et al. [83] considering Λ as a
DE component. It was found that the ratio of virial to turn-around radius is smaller in the
presence of Λ, given by the following expression

Rv

Rta
' 1− η/2

2− η/2
, (49)

where η = Λ/4πGρ̄m(tta). Thus, in the presence of Λ, the halo has to contract more
with respect to EdS to achieve the virial equilibrium. This indicates that halos formed
in the late Universe have a distinct structure than those formed at high-z, when DE was
very subdominant.

Other authors have studied the SCM in the presence of Λ, e.g., Lacey and Cole [84],
Kitayama and Suto [85]. Although analytical solutions for δc and ∆cc were found, the fol-
lowing fits presented by Kitayama and Suto [85] became popular:

δc '
3(12π)2/3

20
(
1 + 0.0123 log10 Ωm(z)

)
(50)

and
∆cm ' 18π2

(
1 + 0.4093w0.9052

f (z)
)

, (51)

where w f (z) = 1/Ωm(z)− 1. Expression (50) shows that the the influence of Λ on the
critical threshold is very small, giving δc(z = 0) ' 1.676 for Ωm0 = 0.3 (only 0.64% different
than the EdS value). However, the change in virialization overdensity is much larger. We
have ∆cm(z = 0) ' 334.2 for Ωm0 = 0.3, about two times EdS value.

Studies of DE with constant w were done by Wang and Steinhardt [86], Weinberg and
Kamionkowski [87]. The fitting functions proposed in the latter show variations of δc(z)
bellow 0.56% for −1 < w < −0.8 with respect to the ΛCDM fit. For ∆cm, the differences
are lower than 17%. The differences can be slightly larger in some quintessence models
(Mainini et al. [88]).

In Figure 1, we show a plot of these three different definitions of virial overdensity.
As discussed, the variations in δc due to homogeneous DE are very small and will be shown
together with the case of CDE in Figure 2.
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Figure 2. Collapse threshold as a function of redshift for various combinations of wa and cs indicted
in the plot legend. For all models, we set w0 = −1 and Ωm0 = 0.3. As can be seen, the impact of wa

and CDE in this quantity is very small, below 1% for the examples shown in this plot.

4.3. Spherical Collapse Model with Inhomogeneous Dark Energy

The first study of SCM in the presence of CDE was done by Mota and van de Bruck [36].
DE was modeled as quintessence field, whose equation of motion in background is given by

ϕ̈ + 3H ϕ̇ +
dV
dϕ

= 0 . (52)

Remember that, in the context of quintessence models, the fluctuations of such field
must be tiny on small scales because cs = 1. The authors have considered, however, that
the field can cluster on small scales, assuming that, inside the collapsing region, it obeys
the following equation

ϕ̈c + 3
Ṙ
R

ϕ̇c +
dV
dϕc

=
Γ
ϕ̇c

, (53)

where

Γ = 3αϕ̇2
c

(
Ṙ
R
− H

)
(54)

is a quantity that describes the flux of DE in the collapsing region. If α = 1 DE evolves in the
same way inside and outside the collapsing region, then DE is homogeneous and ϕc = ϕ.
On the other hand, if α = 0 the field can evolve differently than in the background,
allowing for DE fluctuations. The impact on δc was computed in Nunes and Mota [89],
where differences of a few per cent with respect to ΛCDM and redshift-dependent features
associated with the evolution of w were found.

Although this model was a breakthrough regarding the possibility of nonlinear fluc-
tuations of DE, the implementation of Equation (53) is ad doc and formally inconsis-
tent with the Klein–Gordon equation, (21). Equation (53) can be interpreted as (21) with
cs = 0, where the the gravitational coupling is encoded in the dynamics of R. Later, it was
shown that the canonical scalar field indeed has negligible perturbations on small scales
Mota et al. [90], Wang and Fan [91]. However, its perturbations can be more important on
voids, which are much larger than halos.

Despite this inconsistency, this model presented some of the important impacts of
DE fluctuations on the nonlinear regime, which were later confirmed by other studies.
In particular, the following findings can be highlighted:
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1. The number DE fluctuations strongly depends on the evolution of w.
2. DE fluctuations impact the nonlinear evolution of δm and virialization of halos.
3. The local EoS of DE can be distinct from w due to DE fluctuations.

4.4. Other Generalizations of the Spherical Collapse Model

Many other generalizations of the SCM were developed in the literature, including
modifications due to coupled DE Manera and Mota [92], Wintergerst and Pettorino [93],
modified gravity Martino et al. [94], Schaefer and Koyama [95], Schmidt et al. [96],
Brax et al. [97], Borisov et al. [98], Barreira et al. [99], Kopp et al. [100], Lopes et al. [101,102],
Frusciante and Pace [103], varying vacuum models Basilakos et al. [104], shear and rotation
Del Popolo et al. [105], Pace et al. [106], Mehrabi et al. [107], and bulk viscosity Velten et al.
[108]. In the next section, we will present a framework that can describe the nonlinear
evolution in the CDE model.

5. Spherical Collapse Model in the Pseudo-Newtonian Cosmology

General Relativity is the standard theory to study gravitational phenomena of fluids
with relativistic pressure, p ∼ c2ρ. In the context of structure formation, the gravitational
fields are small and the weak field limit can be used. Therefore, one can consider using the
Newtonian theory, taking into account the effects of relativistic pressure. This approach
was indeed used in McCrea [109], Harrison [110] to study the background evolution of
the Universe. It was shown that Newtonian equations with the correction for relativistic
pressure reproduce the Friedman equations.

However, the application of these modified Newtonian equations for the study of
cosmological perturbations is more controversial. Sachs and Wolfe [111] showed that per-
turbations in fluids with p 6= 0 do not agree with the relativistic treatment. For about three
decades, the use of Newtonian equation for cosmology was halted until the origin of the
discrepancy reported in 1967 by Sachs and Wolfe was found and treated in Lima et al. [112].

According to Lima et al. [112], the system of equations (the subscript ` identifies the
different fluids under consideration), which we call Pseudo-Newtonian Cosmology (PNC),

∂ρ`
∂t

+ ~∇ · (ρ`~u`) +
p`
c2

~∇ · (~u`) = 0 (55)

∂~u`

∂t
+
(
~u` · ~∇

)
~u` = −~∇Φ−

~∇p`
ρ` +

p`
c2

(56)

∇2Φ = 4πG ∑
`

(
ρ` +

3p`
c2

)
(57)

provides the correct growing modes for linear perturbations of fluids with relativistic
pressure. The PNC was extensively studied and applied in the context of cosmological
perturbations Abramo et al. [46], Reis et al. [68], Reis [113], chan Hwang and Noh [114],
Fabris et al. [115], Velten et al. [116], Hwang et al. [117]. In particular, it was shown that PNC
growing modes for DE perturbations agrees with the relativistic analysis Abramo et al. [46].

The PNC can also be used to generalize the SCM Abramo et al. [37,46]. The perturbed
equations in comoving coordinates with background are given by

δ̇` + 3H
(

c2
s ` − w`

)
δ` +

[
1 + w` +

(
1 + c2

s `

)
δ`

] ~∇ ·~v`
a

+
~v` · ~∇δ`

a
= 0 , (58)

~̇v` + H~v` +
~v` · ~∇

a
~v` = −

~∇Φ
a
− c2

s `
~∇δ`

a
[
1 + w` +

(
1 + c2

s `
)
δ`
] , (59)

∇2Φ
a2 = 4πG ∑

`

ρ̄`δ`

(
1 + 3c2

s `

)
, (60)
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where ~v is the peculiar velocity of the fluid. Clearly, these equations are more general then
those of the usual SCM. Let us consider the simplifying assumptions that will yield the
correspondence between them.

Remember that the SCM assumes a top-hat profile; thus, we need ~∇δ = 0 inside the
shell. The other quantities must be consistent with this assumption. Equation (58) must
depend only on time, thus ~∇ ·~v = θ(t). Taking the divergence of (59), we get

θ̇` + Hθ` +
θ2
`

3a
= −4πGa ∑

`

ρ̄`δ`

(
1 + 3c2

s `

)
(61)

Now, let us turn our attention to the parameter cs. At first glance, assuming that
~∇δ = 0 and ~∇ ·~v = θ(t) seems compatible to any choice cs = cs(t). However, considering
two distinct fluids, say pressureless matter (wm = cs m = 0) and DE (wde = wde(t) and
cs de = cs de(t)), implies that each fluid has its own dynamical equation, (61). This indi-
cates that there is no unique spherical shell radius because the two fluids can flow with
distinct velocities.

Another problem about using a generic function cs(t) arises when extending the
analysis to regions outside the shell. For a top-hat profile, δ is discontinuous at the edge
of the shell; then, ~∇δ is ill-defined at this point. A more realistic realization is to assume
a smooth decay of δ around the edge. In this case, its gradient is well-defined and there
exists a non-null pressure gradient, c2

s
~∇δ, around the shell radius. This, again, would

make the two fluids flow with distinct velocities and, more drastically, disrupt the original
homogeneous top-hat-like profile.

Therefore, regarding the value of cs, the equivalence of Equations (58)–(60) with the
usual SCM is achieved only for cs = 0. In this case, all fluids share the same dynamical
equation, and the evolution of the system is described by

δ̇` − 3Hw`δ` + (1 + w` + δ`)
θ

a
= 0 (62)

θ̇ + Hθ +
θ2

3a
= −4πGa ∑

`

ρ̄`δ` (63)

For pressureless matter, Equation (58) yields

δ̇m + (1 + δm)
θ

a
= 0 , (64)

Comparing it with Equation (28), we identify that the divergence of the peculiar
velocity is given by

θ

a
= 3

(
Ṙ
R
− ȧ

a

)
. (65)

Inserting this relation in (63), one obtains

R̈
R

= −4πG
3 ∑

`

ρ̄`δ` +
ä
a

. (66)

For the EdS model, we recover the usual spherical collapse equation, (26), (here as a
function of the density contrast)

R̈
R

= −4πG
3

ρ̄m(1 + δm) . (67)

In the presence of CDE, we get

R̈
R

= −4πG
3

[ρ̄m(1 + δm) + ρ̄de(1 + 3w + δde)] . (68)
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Particularizing to homogeneous DE models, δde = 0, we recover the SC equation in
Wang and Steinhardt [86].

The system of Equations (62) and (63) was also derived in Creminelli et al. [38] using
Fermi coordinates in a relativistic framework. The consistency of Equation (63) with
k-essence equation of motion was also verified in this work.

Summarizing, the SCM can be generalized to include other fluids with zero pressure
perturbation, allowing for non-zero background pressure. This is just the case of CDE with
EoS parameter w. The equations governing the nonlinear evolution of the fluids are then
given by:

δ̇m + (1 + δm)
θ

a
= 0 (69)

δ̇de − 3Hwδde + (1 + w + δde)
θ

a
= 0 , (70)

θ̇ + Hθ +
θ2

3a
= −4πGa(ρ̄mδm + ρ̄deδde) . (71)

Note that, generic values of cs can be considered in the system of Equations (58)–(60).
However, the differential equations become partial in this case, and the correspondence
with the orginal SCM is lost. We stress that the system (69)–(71) is valid only in the limit
cs → 0.

A slightly different approach to treat DE perturbations in the SCM was proposed
in Basse et al. [39]. In this work, DE perturbations were described in the linear regime,
allowing for non-null sound speed. Then, as discussed previously, DE perturbations can
not maintain the top-hat profile. The new idea in Basse et al. [39] was to consider the
spherical region with a DE perturbation given by

δth
de(t) =

1
2π2

∫
dkk2W(kR)δL

de(k, t) , (72)

where W(kR) is the top-hat window function in Fourier space, given by (83), and δL
de(k, t)

obeys the linearized Equations (58) and (59) in Fourier space. This approach has the
advantage to allow the use of arbitrary sound speed up to values that do not break the
linear approximation for DE perturbations. However, it can not be used in the full clustering
regime, cs → 0, when DE fluctuations can become nonlinear. Nevertheless, the approach
of Basse et al. [39] is essential to understand the impact of cs in the nonlinear evolution
of matter fluctuations, showing that δc and ∆v become mass-dependent, which can be an
observational signature of DE fluctuations in the abundance of galaxy clusters.

6. Density Threshold Definitions

Now that we have described the governing equations for the nonlinear evolution of
matter and DE fluctuations, let us turn our attention to the determination of the threshold
density that will be used in the Halo Mass Functions (HMF) in Section 7. Although this
determination is analytic in the in the ΛCDM model, in the presence of DE with general w
and its possible fluctuations, a numerical computation is necessary, which may introduce
some issues.

We will first discuss the calculation of the usual collapse threshold, δc, and then the
alternative virialization threshold, δv. While the former is historically the most used one,
the latter seems to be more consistent with the actual contribution of DE fluctuations in the
collapsing region and in better accordance with results from simulations.

6.1. Collapse Threshold, δc

In order to determine δc for CDE models, one has to solve numerically the system of
Equations (69)–(71) and its linearized version. The initial conditions for matter assume the
EdS linear solution, δm ∝ a, and the corresponding value for θ; for CDE, the solution (14)
can be used.
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Having solved the system, one has to determine a criterion to find the moment
of collapse. In the standard SCM, the collapse threshold can be found analytically by
computing the value of the linearly evolved density contrast (35) at the time of collapse,
R → 0 or δNL

m → ∞. This suggests that, in general, the determination of δc can be done
by defining a numerical threshold value for δNL

m , above which the halo is considered to
be formed.

However, this implementation can introduce a small error in the determination of
δc. From Equations (34) and (35), we can see that, for small x, the linear and nonlinear
values of matter contrast differ by O

(
x4). Thus, their initial values are slightly different.

In the analytical solution for δc, Equation (38), this difference is naturally taken into account.
If one neglects this difference in the initial conditions, the resulting δc(z) presents a small
spurious increase with redshift, moving away from the EdS value at high-z. This problem
was noted in Herrera et al. [118] and further discussed in Pace et al. [119].

The approach presented in Pace et al. [119] is twofold: initiate the numerical inte-
gration at very high-z (z ∼ 105) and make a change of variable, δm → 1/ f . The first
measure diminishes the difference between δNL

m and δL
m at the beginning and, consequently,

the spurious increase of δc. The change of variable minimizes the numerical error in the
determination of the moment of collapse.

Although this implementation gives good results, the proper approach to accurately
determine δc numerically is to use the analytical solutions (34) and (35) to determine the
linear and nonlinear initial conditions Batista and Marra [120]. These analytical solutions
assume that the peculiar velocity is zero initially, but more general expressions can be
found in Padmanabhan [77]. This method, however, might not be appliable to cosmologies
in which Ωm is not very close to 1 at the beginning of the integration of the equations, such
as in early DE models.

As we saw, the impact of homogeneous and CDE on δc is small, see also Figure 2.
This suggests that the impact of DE fluctuations on structure formation occurs mainly via
modifications on the matter growth function. This is somewhat unexpected because, as we
will show later, at virialization, DE fluctuations can account for up to 10% of the total halo
mass, whereas the change in δc is below 1%. For possible contributions of DE fluctuations
to the halo mass, see Creminelli et al. [38], Batista and Pace [49], Basse et al. [121].

This insensitivity of the collapse threshold on DE fluctuations can be understood as
follows. First, δc is defined at the collapse time, which numerically is implemented as a
high value for δNL

m . Although δNL
de also grows, given the nature of the nonlinear evolution,

the higher value of δNL
m will grow exponentially faster, thus making the DE contribution

much less important at the collapse time. Second, the collapse threshold is given solely by
the linear matter perturbation, which, although is impacted by DE perturbations, does not
consider the direct contribution of DE linear perturbations.

6.2. Virialization Threshold, δ v

It is important to note that, implicitly in the determination of δc just described, lies
the assumption that DE fluctuations are not directly included in the quantities that define
the collapse time and density threshold, namely, δNL

m and δL
m. In the ΛCDM model, baryon

and dark matter fluctuations are the only relevant ones, besides a small contribution of
massive neutrinos. For the impact about massive neutrinos in the SCM, seeIchiki and
Takada [122], LoVerde [123]. Note that, since massive neutrinos can impact both the growth
function and the collapse threshold, their effect can be degenerate with that from CDE
models. Thus, the gravitational potential, which, for instance, will deflect light rays of
background galaxies or set up the potential well that traps the hot intracluster gas, is
entirely determined by the fluctuations in dark matter and baryon components. In the
presence of DE fluctuations, the gravitational potential also depends on this new type of
inhomogeneity. Therefore, it would be natural to redefine the threshold density, virial
overdensity, and growth function to take the contribution of DE fluctuations into account
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properly. For instance, Equation (68) already suggests that the effective mass inside a shell
of radius R includes DE fluctuations.

Then, let us define effective quantities that include DE fluctuations. The total mass
inside a shell of radius R is given by

Mtot = Mm + Mde , (73)

where Mde =
4π
3 R3ρ̄deδde. Usually, the background density of DE is not included in this

mass definition, e.g, Creminelli et al. [48], Batista and Marra [120], Basse et al. [121]. In the
case of CDE, its local EoS parameter

wc =
pde
ρde

=
w

1 + δde
(74)

gets less negative during the collapse. Consequently, locally, DE becomes more similar to
pressureless matter (Mota and van de Bruck [36], Abramo et al. [124]). Such variations of
the EoS may also be associated with soft-matter properties Saridakis [125].

The fraction of DE mass in the halo at the virialization time is

ε =
Mde
Mm

. (75)

Some authors have computed the values of ε with slightly different approaches to
determine the virialization time (Creminelli et al. [38], Basse et al. [39], Batista and Pace [49],
Batista and Marra [120], Heneka et al. [126]). In particular, using the approach summarized
in Equation (78), which assumes that CDE fluctuations behave as nonrelativistic particles,
Batista and Marra [120] showed that |ε| can be up to 0.1, depending on w. In the case of
phantom DE, this contribution is negative and positive for non-phantom. These values of ε
raise an interesting question: if CDE can contribute up to 10% to the total halo mass, why is
its impact on the critical threshold below 1%?

One can also account for DE energy fluctuations in the density contrast, defined by

δtot(z) = δm(z) +
Ωde(z)
Ωm(z)

δde(z) . (76)

This quantity was also used in nonlinear perturbation theory studies of CDE by
Sefusatti and Vernizzi [127]. When defining the growth function as

Dtot(z) =
δL

tot(z)
δL

tot(0)
, (77)

the change between clustering and homogeneous DE models with the same background
can be about 3–7%, while the usual definition with δm only differs by about 1% (Batista and
Marra [120]). Moreover, this work showed that Dtot and Dm(1 + ε), where Dm includes
only the matter perturbation, are very similar, indicating consistency between the linear
and nonlinear impact of CDE when using total quantities.

It is important to note that, due to the DE contribution, the total mass inside the shell
is not conserved during the evolution. After virialization, however, it has been argued that
this contribution should be stable (Creminelli et al. [38]). In Basse et al. [121], this effect was
taken into account in the virial theorem for non-relativistic particles, yielding the following
equation for virialization

1
2Mtot

d2Mtot

dt2 +
2

MtotR
dMtot

dt
dR
dt

+
1

R2

(
dR
dt

)2
+

1
R

d2R
dt2 = 0 . (78)

Once the equations of the SCM are solved and δNL
m (z) and δNL

de (z) are known, the virial-
ization time is determined when (78) is satisfied. For further discussion about virialization
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in the presence of DE, see Maor and Lahav [128], and for relativistic corrections in the
virialization, Meyer et al. [129].

Having found the virialization redshift, one can compute the virialization threshold,
including the contribution of DE fluctuations

δv(zv) = δL
tot(zv) . (79)

As can be seen in Figure 3, the impact of CDE is larger than in δc, reaching 4%. It
is interesting to note that the magnitude of these differences is more consistent with the
amount of DE fluctuations in halos described by ε than those observed in δc.
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Figure 3. Virialization threshold, δv, for homogenous and CDE models, with w0 = −1, Ωm0 = 0.3,
and different values of wa and cs indicated in the legend. The black solid line represents the ΛCDM
values and is barely distinguishable from the cases with homogeneousDE.

It is also important to highlight the behaviour of DE fluctuations. In Figure 4, we show
δNL

de (zv). As can be seen, DE fluctuation can become nonlinear and have a mild decay at
low-z, when the EoS of our examples approach −1. Clearly, the larger |wa| is, the more
significant the DE fluctuations are. We can also see in this plot the pathological case of
δNL

de < −1 for phantom DE.
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Figure 4. Nonlinear DE fluctuation in the clustering case as a function of the virialization redshift
for three values of wa shown in the plot legend; w0 = −1 and Ωm0 = 0.3 for all models. Note that,
for wa = −0.2, we have the pathological values δNL

de < −1.

In the presence of CDE, the virialization overdensity, defined in (44), is given by

∆v(zv) = Ωm(zv)
[
1 + δNL

m (zv)
]
+ Ωde(zv)δ

NL
de (zv) . (80)

In Figure 5, we show the relative difference of ∆v with respect to the ΛCDM one. Note
that CDE makes ∆v more similar to the ΛCDM values.
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Figure 5. Ratio of ∆v of a given model indicated in the legend to the corresponding ΛCDM value.
In these examples, w0 = −1 and Ωm0 = 0.3 are assumed.

7. Halo Mass Functions

Now let us see how to use the findings of the SCM to estimate the observational
impact of DE fluctuations on structure formation. The computation of the abundance of
galaxy clusters relies on the Halo Mass Function (HMF), which gives the number density
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of halos per comoving volume. There are several developments for the HFM, including an
analytic model based on the spherical collapse by Press and Schechter [130] and a semi-
analytic approach based on ellipsoidal collapse Sheth and Tormen [131]. More recently,
N-body numerical simulations were used to determine fitting functions for the HMF,
e.g., Warren et al. [132], Tinker et al. [133]. Besides determining the abundance of galaxy
clusters, the HMF can be used to compute the nonlinear power spectrum, Cooray and
Sheth [134].

The proper approach to study the impact of CDE on the abundance of galaxy clus-
ters would be to include its dynamical effects in the numerical simulations of structure
formation. Codes with this capability have been developed only quite recently but without
determining the associated HMF. Let us first discuss developments based on analytic and
semi-analytic HMF and then some relevant results from simulations.

We anticipate that there is no consensus of how to implement the impact of CDE
in HMF. As a consequence, the predictions also vary, and the dection of DE fluctuations
also depend on the particular implementation used to include the effects of CDE on
halo abundances.

The Press–Schechter (PS) HMF Press and Schechter [130] assumes that the matter
density field, δ, smoothed on some scale, has a Gaussian probability distribution

p(δ) =
1√
2πσ

exp
(
− δ2

2σ2

)
, (81)

The variance of the smoothed field is given by

σ2(R) =
∫ dk

k
k3P(k)

2π2 |W(kR)| , (82)

where P(k) = |δk|2 is the linear matter power spectrum,

W(kR) =
3

(kR)3 [sin(kR)− kR cos(kR)] (83)

is a top-hat window function with mass-scale relation given by

R =

(
3M

4πρ̄m0

)1/3
(84)

and ρ̄m0 the background matter density now.
Assuming that regions with δ > δc form bound structures, where δc is a certain

threshold value to be defined, the fraction of such objects with mass greater than M is
given by

P(δ > δc) =
∫ ∞

δc
p(δ)dσ =

1
2

[
1− erf

(
δc√
2σ

)]
. (85)

The comoving number density of halos per mass interval is then given by

dn(M, z)
dM

=
ρ̄m0

M
fPS(M, z) , (86)

where

fPS(M, z) ≡ 2
∣∣∣∣ ∂P
∂M

∣∣∣∣ (87)

is the PS multiplicity function. The factor 2 was first introduced in an ad hoc manner,
to guarantee the normalization of the HMF Press and Schechter [130],∫ ∞

0

dn(M, z)
dM

dM = 1 (88)
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but it can be formally determined (Peacock and Heavens [135], Bond et al. [136]).
Assuming that only σ is mass-dependent, we have the usual form of the PS multiplicity

function:

fPS(M, z) =

√
2
π

1
M

δc(z)
σ(M, z)

∣∣∣∣∂ ln σ(M, z)
∂ ln M

∣∣∣∣ exp
(
− δ2

c (z)
2σ2(M, z)

)
. (89)

In the first studies with the PS-HMF, the values of δc assumed varied in the range
(1, 10), e.g., Press and Schechter [130], Efstathiou et al. [137], Colafrancesco et al. [138], Gelb
and Bertschinger [139]. Later, it became usual to use the constant EdS collapse threshold
value δc ' 1.69, e.g., Peacock and Heavens [135], Narayan and White [140]. In the presence
of Λ (for open, flat, and closed models), Lilje [141] reported 1.64 < δc < 1.73 at low-z.
As we saw in Section 4.2, other works also determined fitting functions for these quantities
for homogeneous DE models Kitayama and Suto [85], Weinberg and Kamionkowski [87],
also finding a small deviation from the EdS value, of less than 1%.

The matter power spectrum can be numerically determined by codes like CAMB
Lewis et al. [142] or CLASS Lesgourgues [143]. It can also be given by fitting functions,
which, in most cases, can be separated in the following form

P(k) = Pp(k)T2(k)D2
m(z) , (90)

where Pp(k) is the primordial power spectrum associated to matter perturbations given by
the inflationary model, T(k) is the transfer function (for instance, given by Eisenstein and
Hu [144]), and

Dm(z) =
δm(z)

δm(z = 0)
(91)

is the linear growth function of matter perturbations. Since the amount of DE is very
small around the recombination time, the transfer function is essentially unaffected by DE.
The main impact of DE, either smooth or inhomogeneous, is on the growth function, which
strongly depends on the cosmological evolution at low-z.

In this context, for homogeneous DE models, the only relevant modification on the HMF
occurs via the modifications on the growth function caused by different evolutions of w. Then,
it is expected that either analytic or numerical HMF can directly incorporate the impact of DE
via the modifications of the growth function. Several works have studied homogeneous DE
in such scenario, either with analytic approaches (Percival [145], Le Delliou [146], Horellou
and Berge [147], Liberato and Rosenfeld [148], Bartelmann et al. [149], Pace et al. [150,151])
or numerical simulations (Linder and Jenkins [152], Grossi and Springel [153]).

For DE models with arbitrary cs, both δc and Dm become mass-dependent because DE
fluctuations are enhanced above the sound horizon scale and impact matter perturbations
in a scale-dependent manner. This case is studied in Basse et al. [39,121,154]. Given that
δc(z)→ δc(M, z), the PS multiplicity function acquires an extra mass-dependent term

fPS(M, z) =

√
2
π

1
M

δc(M, z)
σ(M, z)

∣∣∣∣∂ ln σ(M, z)
∂ ln M

− ∂ ln δc(M, z)
∂ ln M

∣∣∣∣ exp
(
− δ2

c (M, z)
2σ2(M, z)

)
. (92)

Although this new mass dependence is a feature of CDE if cs is associated with some mass
scale that can be probed by the observed abundance of galaxy clusters, it is much smaller
than the mass dependence on σ.

In the limit of CDE, cs → 0, the growth of δde has the same scale dependence of matter
perturbations. Then, both δc and Dm remain scale-independent. In this case, the scale-
dependent feature due to CDE in the HMF vanishes, but its impact can be larger. Several
papers have studied this scenario: Abramo et al. [37], Creminelli et al. [38], Batista and
Pace [49], Nunes and Mota [89], Manera and Mota [92], Pace et al. [106], Batista and Marra
[120], Heneka et al. [126], Abramo et al. [155].
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Now, let us consider the Sheth–Tormen HMF Sheth and Tormen [131] and how it can
be modified to include the effects of DE fluctuations. Since it provides a better description of
cluster abundances given by numerical simulations, we expect it to provide better estimates
of the impact of DE fluctuations on clusters abundances. The original ST-HMF is given by

dnST
dM

= −A

√
2a
π

[
1 +

(
aδ2

c (z)
σ2(M, z)

)−p]
ρm0

M2
δc(z)

σ(M, z)
∂ ln σ(M, z)

∂ ln M
exp

(
− aδ2

c (z)
2σ2(M, z)

)
(93)

where A = 0.2162, p = 0.3, and a = 0.707. As in the case of PS theory, it is usual to use
δc ' 1.69. Interestingly, in the context of EdS model, the parameter a reduces the effective
threshold δc eff =

√
aδc ' 1.42, indicating that δv ' 1.52, (45) gives a better description

than δc ' 1.69. This fact can be interpreted as an indication that the spherical collapse
quantities defined at virialization time provide a more natural description of the threshold
and virialization density.

Despali et al. [81] have used several overdensities criteria to detect halos in simulations
and fit the three parameters of ST-HMF. It was found that when halos are identified with the
viral overdensity ∆cc, defined in (43), the ST-HMF is nearly universal with respect to redshift
and Ωm0 variations. These parameters can also be constrained by future observations, see
Castro et al. [156].

Following these ideas, Batista and Marra [120] proposed that the proper threshold
density for halo formation in the presence of CDE should be modified to include the contri-
bution of DE fluctuations at virialization time, and used virial threshold, (45). However,
in order to make a more conservative estimate, the usual parameter a was rescaled by
a → ã = aδ2

c /δ2
v. Due to this choice, the ST-HMF remained unchanged in the EdS limit.

In Figure 3, the evolution of δv is shown for some homogenous and CDE models.
In practice, for a given mass scale, the abundance of massive halos strongly depends

on the quantities

µc =
δc(z)

Dm(z)
and µv =

δv(z)
Dtot(z)

. (94)

In Figure 6, we show the ratio of these functions with respect to the corresponding val-
ues in the ΛCDM model. The impact of CDE is larger in µv and is nearly constant with red-
shift. Although δde(z) decays at lower z, when w→ −1, the quantity δde(z)Ωde(z)/Ωm(z),
which impacts both δv and Dtot, is nearly constant. Thus, the behaviour of νv seems more
consistent with the effective contribution of DE fluctuation in the dynamics of the collapse
shown in Figure 4.

Another important point regarding the impact of CDE on HMFs is that they are
not calibrated by numerical simulations. A possible approach to this issue, also used
in the context of non-gaussianities LoVerde et al. [157] and baryonic feedback Velliscig
et al. [158], is to multiply the more accurate numerically calibrated HMF by a factor that
encodes the relative impact of DE fluctuations with respect to the usual homogeneous
model Creminelli et al. [38], Batista and Marra [120], Heneka et al. [126],

(dn/dM)cs=0

(dn/dM)cs=1
. (95)

Moreover, one has to take into account how CDE affects the cluster mass. It is
expected that the contribution of DE to mass shifts HMF according to M → M(1− ε)
Creminelli et al. [38], Batista and Pace [49], Batista and Marra [120]. Batista and Marra [120]
also analyzed modifications on the mass-scale relation, Equation (84), and normalization
condition. Whereas the former can be safely neglected, the latter is of the order of ε, possibly
modifying HMF by about a few per cent on all mass scales. These studies have shown that,
depending on the evolution of w, the abundance of massive halos can change by 10–30%
with respect to homogeneous DE models. However, this change can be even larger with
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massive halos, M > 1015M�, whose abundance is very sensitive to modifications on the
exponential tail of HMF.
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Figure 6. Evolution of µc (left panel) and µv (right panel) with redshift, defined in Equation (94),
divided by the corresponding function in the ΛCDM model for homogenous and CDE models, with
w0 = −1 and different values wa and cs indicated in the legends. Due to the small impact of distinct
DE models on δc, the differences in µc with respect to the case with Λ are very small at z ' 0, but can
reach about 2% at z ' 2. In the case of CDE, the differences in µv are larger and also present at low z.

Numerical Simulations

Recently, numerical simulations capable of treating CDE were developed. The first
approach proposed was to include DE linear perturbations given by Einstein–Boltzmann
solvers as a new source of the gravitational potential in N-Body simulations Dakin et al. [33].
Of course, this implementation cannot deal with nonlinear DE fluctuations but was crucial
in confirming that linear and mildly nonlinear DE perturbations have a non-negligible
impact on structure formation.

Hassani et al. [34] developed a code capable of describing nonlinear DE fluctuations.
They showed that models with w = −0.9 and cs = 10−3.5 impact matter fluctuations
and the gravitational potential on small scales. They also found that DE and matter
fluctuations are correlated, as indicated by the solution (14). However, HMF was not
computed. Hassani et al. [35] also studied the imprint of CDE on observables associated
with the gravitational potential. They confirmed the tendency of CDE to compensate for the
changes in the background and found modifications of 2− 5% on the observables studied.
It is important to note that, due to the choice w = −0.9, the imprints of DE fluctuations
found in these works are not as large as in models in which w is smaller at intermediate
redshifts.

Although these numerical studies have confirmed several results from perturbation
theory and the SCM, the distinct proposals to implement the impact of CDE on HMF were
not yet tested by simulations. Unfortunately the results vary between these implementa-
tions, and there is no definitive prediction about the actual impact of CDE on the abundance
of galaxy clusters. See also the discussion in Basse et al. [154]

8. Cosmological Observables

As we saw, DE fluctuations can potentially impact the linear and nonlinear evolution
of matter fluctuations and the gravitational potential. Thus, many observables such as CMB
anisotropies, linear and nonlinear matter power spectrum, and growth rate can change
due to the presence of a new clustering component. We have already discussed some of
those effects, especially regarding HMF. Next, we summarize some observational strategies
discussed in the literature that can possibly detect CDE. The grouping of observables shown
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below is somewhat arbitrary because most of the works presented discuss and analyze
combinations of them.

8.1. CMB and Large Scale Structure

Weller and Lewis [159] attempted to constrain the value of cs using the first WMAP
data release and found that cs is unconstrained. In a similar analysis, Bean and Dore [42]
reported a 1σ constraint cs < 0.2. Later, Hannestad [160] included Large-Scale Structure
data in the analysis, showing that cs remains essentially unconstrained. de Putter et al. [161]
also reached the same conclusion but showed that chances of detection of CDE are larger in
Early DE models.

Takada [162] showed that a 2000deg2 galaxy redshift survey at z ' 1, together with
CMB information from Planck, can distinguish between smooth (cs = 1) and CDE, with
cs < 0.02 and w = −0.95.

Analyzing Early DE models and using CMB and LSS data, Bhattacharyya and Pal [163]
reported cs = 0.37 and Ωde(arec) = 0.02. It was shown that, when cs is allowed to vary,
the contribution of DE in the early Universe can be more significant.

It has also been shown that the cross-correlation between galaxy survey and the
Integrated Sachs–Wolf effect is a promising technique to detect cs Hu and Scranton [164].
This idea was further explored in Ballesteros and Lesgourgues [45], Corasaniti et al. [165],
Pietrobon et al. [166], Li and Xia [167].

The most recent analysis of CDE by the Planck team Ade et al. [54] indicates that cs
is unconstrained. However, w was assumed constant. Since at late times we must have
w ' −1, DE fluctuations are very small in this scenario, and the impact of cs on observables
is negligible. Only models with time-varying w can present relevant DE fluctuations, as in
the case o Early DE.

8.2. Higher Order Perturbation Theory

CDE has also been studied in the framework of higher-order perturbation theory by
Sefusatti and Vernizzi [127], D’Amico and Sefusatti [168], Anselmi et al. [169,170]. These
works found an impact of a few per cent on nonlinear corrections to the linear power
spectrum. These authors also understand that, in CDE models, the total perturbation is the
relevant one to be considered, not only matter perturbations.

8.3. Weak Lensing

Sapone et al. [171] investigated how tomographic weak lensing and galaxy red-
shift surveys can constrain DE sound speed. Considering w = −0.8, they found that,
if cs < 0.01, the sound speed can be constrained. More studies in this direction include
Ayaita et al. [172], Majerotto et al. [173].

8.4. Cluster Abundances

Abramo et al. [155] have forecasted the constraining power of galaxy clusters surveys
on cs. Although the implementation used is not entirely consistent with SCM in the sense of
how cs is varied, which artificially enhances the dependence of cluster abundances on this
parameter, some interesting conclusions were drawn. It was shown that future experiments
such as Euclid can play a decisive role in detecting DE fluctuations, and that they impact
the constraints on w0 and wa at 10–30% level.

Basse et al. [154] has also forecasted how cs can be constrained by data from cluster
abundances, CMB, cosmic shear, and galaxy clustering correlations. It was found that,
considering w0 = −0.83 and wa = 0, future Euclid data can distinguish between cs = 1 and
cs = 0. However, this result strongly depends on how the impact of CDE is implemented
on HMF. In particular, it was found that, when considering the DE contribution to the
cluster mass, the sensitivity on cs significantly degrades.

Appleby et al. [174] showed that, using the Euclid satellite cluster survey together with
Planck data, Early DE models with cs < 0.1 and Ωde(arec) = 0.009 can be distinguished from
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models with cs = 1. In such models, DE is not negligible at high-z and the EoS parameter
can be larger than−1 at high-z. Hence, the impact of DE perturbations is strongly enhanced.
The authors noted that cs is mainly constrained by CMB data. Although this work used
the Tinker HMF Tinker et al. [133], which does not take into account the nonlinear effects
of DE fluctuations, the reported insensitiveness of cluster abundance on clustering Early
DE model is in accordance with Batista and Pace [49]. The reason for this is the following:
whereas Early DE has a strong impact on the background evolution, decreasing the matter
growth, if it clusters, the perturbations partially compensate for this change. Note, however,
that this result was obtained using δc and Dm. When using δv and Dtot in HMF, it is
expected that more pronounced changes due to CDE will be present.

Heneka et al. [126] used cluster data from several experiments plus CMB, Barion
Acoustic Oscillations (BAO), and Supernova Ia (SNIa) observations to constraint cosmolog-
ical parameters with cs = 1, cs = 0, and constant w. It was shown that the allowed regions
in the σ8 −Ωm0 plane change due to CDE. It was found that w < −1 is preferred by data
and that σ8 is reduced when cs = 0. This impact of CDE can alleviate the tension in cluster
data found by Planck Ade et al. [175].

It is important to note that a possible issue regarding constraints of CDE models with
cluster data is associated with the observable-mass scaling relations, see Mantz et al. [176],
Kravtsov and Borgani [177]. So far, no analytical or numerical study has been conducted to
explore the impact of DE fluctuation on these relations. As discussed before, DE fluctuations
certainly impact the gravitational potential; thus, lensing signals, X-ray, and SZ luminosities
relations with the cluster mass can be affected.

8.5. Internal Structure of Galaxy Clusters

The impact of CDE on the internal structure of halos was studied in Mota [178],
Basilakos et al. [179]. As would be expected from the results that Rta/Rv < 0.5 in the
presence of DE and its possible perturbations, the concentration parameter of galaxies
clusters increases. Basilakos et al. [179] have analyzed the mass-concentration relation of
four massive clusters, showing that the data are better described by CDE models.

8.6. S8 Tension and Growth Rate

Clustering DE models can be used to reduce the value of σ8, Kunz et al. [72]. The pa-
rameter S8 = σ8

√
Ωm0/0.3 inferred by CMB observations using the ΛCDM model, Aghanim

et al. [3], is about 3σ in tension with the values determined by weak lensing observa-
tions (Abbott et al. [4], Asgari et al. [5]), see also Di Valentino et al. [12] and references
therein. To explore the impact of CDE, we will focus on the variation of σ8 only. We fix
σ8mod(z) = σ8modDmod(z), for a given model “mod”, to have the same value as in the ΛCDM
model at zrec

σ8mod =
DΛ(zrec)

Dmod(zrec)
σ8Λ , (96)

where σ8Λ = 0.8111 for Ωm0 = 0.3153 Aghanim et al. [3].
As can be seen in the left panel of Figure 7, in the case where only matter perturbations

contribute to the growth function, CDE make the evolution of σ8(z) more similar to ΛCDM.
In the right panel, when DE perturbations are included in the growth function, we see that
the impact of CDE is much larger. In this case, for wa > 0 (wa < 0), DE perturbations can
make σ8(z) larger (smaller) than in ΛCDM.
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Figure 7. Redshift evolution of σ8(z) for various DE models indicated in the legends. In the left panel:
the growth function is given only by the matter perturbation. Right panel: the growth function is
computed including the CDE contribution given by (76).

Homogeneous phantom DE increase σ8 because Ωde(z) grows rapidly at low-z, de-
laying the suppression of matter perturbations when compared to ΛCDM. When DE
perturbations are allowed, given that δde < 0, matter growth is suppressed. Considering
the total growth function, this effect can potentially alleviate the S8 tension.

On the other hand, homogeneous non-phantom DE decrease σ8 because Ωde(z) starts
to grow earlier than in ΛCDM model. Clustering DE now partially compensates for this
decay in the growth of matter perturbations, enhancing σ8. For the case of the total growth
function, CDE can potentially worsen the S8 tension.

An analysis of CDE using cluster, CMB, BAO, and SNIa data was done by Heneka et al. [126].
It was found that the σ8 is reduced for cs = 0 with slight increase in Ωm0. Considering the
best fit values, the overall effect is a reduction of S8 in CDE models. The results also show
that, assuming constant w, phantom values are prefered by data.

Clustering DE also affects the growth rate of matter Batista [180], Mehrabi et al. [181,182],
given by

f (z) =
d ln δm

d ln a
(97)

In particular, Mehrabi et al. [183] reported that CDE models can fit f (z)σ8(z) data
better than ΛCDM.

9. Discussion

The variety of models that try to explain the cosmic acceleration is enormous. The most
studied and tested ones either do not present DE fluctuations (Λ) or have negligible
fluctuations on scales well below the horizon (quintessence). However, many other models
can present a low cs value and relevant DE fluctuations on small scales. Nevertheless,
the actual amount of DE fluctuations also depends on the evolution of EoS. If w ' −1
throughout the cosmic evolution, DE fluctuations are very small, regardless of the value of
cs.

Hence, the prospects to detect DE fluctuations on small scales, which would rule out
Λ and quintessence as possible drivers of cosmic acceleration, strongly depend on how far
from −1 the EoS can be in the past. Although Λ is in excellent agreement with almost all
cosmological data available, there are no strong constraints on how much w can deviate
from −1 at intermediate redshifts. For instance, the allowed parameter space for w0 and wa
for the case of cs = 1 is still very large Ade et al. [54]. As we reviewed, for constant EoS, DE
models with w ' −0.9 and cs < 10−2 leave a detectable impact on several cosmological
observables. Being more conservative with the value of w now, we showed that, even
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with w0 = −1, DE fluctuations become nonlinear when assuming |wa| > 0.2 and cs = 0,
and influence structure formation.

The linear evolution and the corresponding impact of DE perturbations is well un-
derstood and implemented in numerical codes such as CAMB and CLASS. The nonlinear
evolution in the presence of CDE is, however, more complicated and much less developed.
First efforts in this direction used the SCM, and only recently numerical codes for the
nonlinear evolution were developed. The early findings about the phenomenology of CDE
are in agreement with those found by recent numerical results. These studies have shown
that DE fluctuations can become nonlinear and impact matter fluctuations, the formation
of halos, and the gravitational potential.

The abundance of massive galaxy clusters is certainly one of the most affected observ-
ables. However, up to now, no numerical simulations have modelled the impact of CDE in
HMF. The analytical motivated proposals for HMF in the presence of CDM are divided into
two main groups: one in which the impact of CDE enters only via the matter quantities (δc,
Dm, σ8m) and another based on the total weighted fluctuations (δv, Dtot, σ8tot). Naturally,
the impact of CDE is enhanced in the latter type of modifications. Moreover, these different
recipes can be combined with mass rescalings due to DE contribution, M→ M(1 + ε). Up
to now, there is no consensus in the literature on which is the accurate implementation to
compute the effect of CDE on halo abundances.

An important theoretical issue with CDE models is associated with phantom models.
For cs → 0, one can have δde < −1 in the nonlinear regime. At first glance, this indicates
that these models are inconsistent. A possible realization of phantom clustering models
may include imperfect fluids Sawicki et al. [184].

Although CDE is the natural minimal generalization to quintessence, it is still not well
explored in the literature. Studies that consider parametrizations of w are very common
but rarely consider cs < 1. As discussed, CDE can play a role in alleviating the S8 tension.
From another perspective, there is no indication that DE cannot present relevant fluctua-
tions on small scales. Therefore, these kinds of models deserve more attention from the
cosmology community.

Besides these difficulties, preliminary forecast studies indicate that future experiments
such as Euclid will be able to discriminate between homogeneous and CDE. The challenges
to achieve this goal are significant. Most of the constraining power of Euclid will come
from nonlinear scales, and a good understanding of the nonlinear effects of CDE will
be mandatory.
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4. Abbott, T.M.C.; Abdalla, F.B.; Alarcon, A.; Aleksić, J.; Allam, S.; Allen, S.; Amara, A.; Annis, J.; Asorey, J.; Avila, S.; et al.
Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing. Phys. Rev. D 2021,
98, 043526.

5. Asgari, M.; Lin, C.A.; Joachimi, B.; Giblin, B.; Heymans, C.; Hildebrandt, H.; Kannawadi, A.; Stölzner, B.; Tröster, T.; van den
Busch, J.L.; et al. KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics. Astron. Astrophys.
2021, 645, A104. [CrossRef]

6. Weinberg, S. The Cosmological Constant Problem. Rev.Mod.Phys. 1989, 61, 1–23. [CrossRef]
7. Carroll, S.M. The cosmological constant. Living Rev. Rel. 2001, 4, 1. [CrossRef] [PubMed]
8. Zlatev, I.; Wang, L.M.; Steinhardt, P.J. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1999,

82, 896–899. [CrossRef]
9. Verde, L.; Treu, T.; Riess, A.G. Tensions between the Early and the Late Universe. Nat. Astron. 2019, 3, 891. [CrossRef]
10. Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble

tension—A review of solutions. Class. Quant. Grav. 2021, 38, 153001. [CrossRef]
11. Perivolaropoulos, L.; Skara, F. Challenges for ΛCDM: An update. arXiv 2021, arXiv:2105.05208.
12. Di Valentino, E.; Anchordoqui, L.A.; Akarsu, Ö; Ali-Haimoud, Y.; Amendola, L.; Arendse, N.; Asgari, M.; Ballardini, M.; Basilakos,

S.; Battistelli, E.; et al. Cosmology intertwined III: f σ8 and S8. Astropart. Phys. 2021, 131, 102604. [CrossRef]
13. Schöneberg, N.; Franco Abellán, G.; Pérez Sánchez, A.; Witte, S.J.; Poulin, V.; Lesgourgues, J. The H0 Olympics: A fair ranking of

proposed models. arXiv 2021, arXiv:2107.10291.
14. Peebles, P.J.E.; Ratra, B. Cosmology with a Time Variable Cosmological ’Constant’. Astrophys. J. 1988, 325, L17. [CrossRef]
15. Wetterich, C. Cosmology and the Fate of Dilatation Symmetry. Nucl. Phys. 1988, B302, 668. [CrossRef]
16. Caldwell, R.R.; Dave, R.; Steinhardt, P.J. Cosmological Imprint of an Energy Component with General Equation-of-State. Phys.

Rev. Lett. 1998, 80, 1582–1585. [CrossRef]
17. Steinhardt, P.J.; Wang, L.M.; Zlatev, I. Cosmological tracking solutions. Phys. Rev. D 1999, 59, 123504. [CrossRef]
18. Ma, C.P.; Caldwell, R.R.; Bode, P.; Wang, L.M. The mass power spectrum in quintessence cosmological models. Astrophys. J. 1999,

521, L1–L4. [CrossRef]
19. Brax, P.; Martin, J.; Riazuelo, A. Exhaustive study of cosmic microwave background anisotropies in quintessential scenarios.

Phys. Rev. D 2000, 62, 103505. [CrossRef]
20. DeDeo, S.; Caldwell, R.R.; Steinhardt, P.J. Effects of the sound speed of quintessence on the microwave background and large

scale structure. Phys. Rev. D 2003, 67, 103509. [CrossRef]
21. Sen, A. Field theory of tachyon matter. Mod. Phys. Lett. A 2002, 17, 1797–1804. [CrossRef]
22. Padmanabhan, T. Accelerated expansion of the universe driven by tachyonic matter. Phys. Rev. D 2002, 66, 021301. [CrossRef]
23. Bagla, J.S.; Jassal, H.K.; Padmanabhan, T. Cosmology with tachyon field as dark energy. Phys. Rev. D 2003, 67, 063504. [CrossRef]
24. Armendariz-Picon, C.; Damour, T.; Mukhanov, V.F. k-inflation. Phys. Lett. B 1999, 458, 209–218. [CrossRef]
25. Garriga, J.; Mukhanov, V.F. Perturbations in k-inflation. Phys. Lett. B 1999, 458, 219–225. [CrossRef]
26. Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 1974, 10, 363–384.

[CrossRef]
27. Bellini, E.; Sawicki, I. Maximal freedom at minimum cost: Linear large-scale structure in general modifications of gravity.

J. Cosmol. Astropart. Phys. 2014, 2014, 050. [CrossRef]
28. Gubitosi, G.; Piazza, F.; Vernizzi, F. The Effective Field Theory of Dark Energy. J. Cosmol. Astropart. Phys. 2013, 2013, 032,

[CrossRef]
29. Amendola, L.; Appleby, S.; Bacon, D.; Baker, T.; Baldi, M.; Bartolo, N.; Blanchard, A.; Bonvin, C.; Borgani, S.; Branchini, E.; et al.

Cosmology and fundamental physics with the Euclid satellite. Living Rev. Rel. 2018, 21, 2. [CrossRef]
30. Kodama, H.; Sasaki, M. Cosmological Perturbation Theory. Prog. Theor. Phys. Suppl. 1984, 78, 1–166. [CrossRef]
31. Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of cosmological perturbations. Part 1. Classical perturbations. Part

2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep. 1992, 215, 203–333. [CrossRef]
32. Ma, C.P.; Bertschinger, E. Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. Astrophys. J.

1995, 455, 7–25. [CrossRef]
33. Dakin, J.; Hannestad, S.; Tram, T.; Knabenhans, M.; Stadel, J. Dark energy perturbations in N-body simulations. J. Cosmol.

Astropart. Phys. 2019, 2019, 013. [CrossRef]
34. Hassani, F.; Adamek, J.; Kunz, M.; Vernizzi, F. k-evolution: A relativistic N-body code for clustering dark energy. J. Cosmol.

Astropart. Phys. 2019, 2019, 011. [CrossRef]
35. Hassani, F.; Adamek, J.; Kunz, M. Clustering dark energy imprints on cosmological observables of the gravitational field. Mon.

Not. R. Astron. Soc. 2020, 500, 4514–4529. [CrossRef]
36. Mota, D.F.; van de Bruck, C. On the spherical collapse model in dark energy cosmologies. Astron. Astrophys. 2004, 421, 71–81.

[CrossRef]
37. Abramo, L.; Batista, R.; Liberato, L.; Rosenfeld, R. Structure formation in the presence of dark energy perturbations. J. Cosmol.

Astropart. Phys. 2007, 2007, 012. [CrossRef]
38. Creminelli, P.; D’Amico, G.; Norena, J.; Senatore, L.; Vernizzi, F. Spherical collapse in quintessence models with zero speed of

sound. J. Cosmol. Astropart. Phys. 2010, 2010, 027. [CrossRef]

http://dx.doi.org/10.1051/0004-6361/202039070
http://dx.doi.org/10.1103/RevModPhys.61.1
http://dx.doi.org/10.12942/lrr-2001-1
http://www.ncbi.nlm.nih.gov/pubmed/28179856
http://dx.doi.org/10.1103/PhysRevLett.82.896
http://dx.doi.org/10.1038/s41550-019-0902-0
http://dx.doi.org/10.1088/1361-6382/ac086d
http://dx.doi.org/10.1016/j.astropartphys.2021.102604
http://dx.doi.org/10.1086/185100
http://dx.doi.org/10.1016/0550-3213(88)90193-9
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevD.59.123504
http://dx.doi.org/10.1086/312183
http://dx.doi.org/10.1103/PhysRevD.62.103505
http://dx.doi.org/10.1103/PhysRevD.67.103509
http://dx.doi.org/10.1142/S0217732302008071
http://dx.doi.org/10.1103/PhysRevD.66.021301
http://dx.doi.org/10.1103/PhysRevD.67.063504
http://dx.doi.org/10.1016/S0370-2693(99)00603-6
http://dx.doi.org/10.1016/S0370-2693(99)00602-4
http://dx.doi.org/10.1007/BF01807638
http://dx.doi.org/10.1088/1475-7516/2014/07/050
http://dx.doi.org/10.1088/1475-7516/2013/02/032
http://dx.doi.org/10.1007/s41114-017-0010-3
http://dx.doi.org/10.1143/PTPS.78.1
http://dx.doi.org/10.1016/0370-1573(92)90044-Z
http://dx.doi.org/10.1086/176550
http://dx.doi.org/10.1088/1475-7516/2019/08/013
http://dx.doi.org/10.1088/1475-7516/2019/12/011
http://dx.doi.org/10.1093/mnras/staa3589
http://dx.doi.org/10.1051/0004-6361:20041090
http://dx.doi.org/10.1088/1475-7516/2007/11/012
http://dx.doi.org/10.1088/1475-7516/2010/03/027


Universe 2022, 8, 22 29 of 33

39. Basse, T.; Bjaelde, O.E.; Wong, Y.Y.Y. Spherical collapse of dark energy with an arbitrary sound speed. J. Cosmol. Astropart. Phys.
2011, 2011, 038. [CrossRef]

40. Chevallier, M.; Polarski, D. Accelerating universes with scaling dark matter. Int. J. Mod. Phys. 2001, D10, 213–224. [CrossRef]
41. Linder, E.V. Exploring the expansion history of the universe. Phys. Rev. Lett. 2003, 90, 091301. [CrossRef]
42. Bean, R.; Dore, O. Probing dark energy perturbations: The dark energy equation of state and speed of sound as measured by

WMAP. Phys. Rev. D 2004, 69, 083503. [CrossRef]
43. Linder, E.V.; Scherrer, R.J. Aetherizing Lambda: Barotropic Fluids as Dark Energy. Phys. Rev. D 2009, 80, 023008. [CrossRef]
44. Unnikrishnan, S.; Sriramkumar, L. A note on perfect scalar fields. Phys. Rev. D 2010, 81, 103511. [CrossRef]
45. Ballesteros, G.; Lesgourgues, J. Dark energy with non-adiabatic sound speed: Initial conditions and detectability. J. Cosmol.

Astropart. Phys. 2010, 2010, 014. [CrossRef]
46. Abramo, L.; Batista, R.; Liberato, L.; Rosenfeld, R. Physical approximations for the nonlinear evolution of perturbations in

inhomogeneous dark energy scenarios. Phys. Rev. D 2009, 79, 023516. [CrossRef]
47. Sapone, D.; Kunz, M.; Kunz, M. Fingerprinting Dark Energy. Phys. Rev. D 2009, 80, 083519. [CrossRef]
48. Creminelli, P.; D’Amico, G.; Norena, J.; Vernizzi, F. The Effective Theory of Quintessence: The w<-1 Side Unveiled. J. Cosmol.

Astropart. Phys. 2009, 2009, 018. [CrossRef]
49. Batista, R.; Pace, F. Structure formation in inhomogeneous Early Dark Energy models. J. Cosmol. Astropart. Phys. 2013, 2013, 044.

[CrossRef]
50. Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1936. [CrossRef]
51. Amendola, L.; Tsujikawa, S. Dark Energy: Theory and Observations; Cambridge University Press: Cambridge, UK, 2010.
52. Yoo, J.; Watanabe, Y. Theoretical Models of Dark Energy. Int. J. Mod. Phys. D 2012, 21, 1230002. [CrossRef]
53. Tsujikawa, S. Quintessence: A Review. Class. Quant. Grav. 2013, 30, 214003. [CrossRef]
54. Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.;

Battaner, E.; et al. Planck 2015 results. XIV. Dark energy and modified gravity. Astron. Astrophys. 2016, 594, A14. [CrossRef]
55. Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. Essentials of k-essence. Phys. Rev. D 2001, 63, 103510. [CrossRef]
56. Erickson, J.K.; Caldwell, R.; Steinhardt, P.J.; Armendariz-Picon, C.; Mukhanov, V.F. Measuring the speed of sound of quintessence.

Phys. Rev. Lett. 2002, 88, 121301. [CrossRef] [PubMed]
57. Chan Hwang, J.; Noh, H. Quintessential perturbations during scaling regime. Phys. Rev. D 2001, 64, 103509. [CrossRef]
58. Sen, A. Rolling tachyon. J. High Energy Phys. 2002, 04, 048. [CrossRef]
59. Padmanabhan, T.; Choudhury, T.R. Can the clustered dark matter and the smooth dark energy arise from the same scalar field?

Phys. Rev. D 2002, 66, 081301. [CrossRef]
60. Abramo, L.R.W.; Finelli, F. Cosmological dynamics of the tachyon with an inverse power- law potential. Phys. Lett. B 2003,

575, 165–171. [CrossRef]
61. Abramo, L.R.; Finelli, F.; Pereira, T.S. Constraining Born-Infeld models of dark energy with CMB anisotropies. Phys. Rev. D 2004,

70, 063517.
62. Kamenshchik, A.Y.; Moschella, U.; Pasquier, V. An alternative to quintessence. Phys. Lett. B 2001, 511, 265–268. [CrossRef]
63. Bento, M.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin gas, accelerated expansion and dark energy-matter unification.

Phys. Rev. D 2002, 66, 043507. [CrossRef]
64. Sandvik, H.; Tegmark, M.; Zaldarriaga, M.; Waga, I. The end of unified dark matter? Phys. Rev. D 2004, 69, 123524. [CrossRef]
65. Makler, M.; Quinet de Oliveira, S.; Waga, I. Constraints on the generalized Chaplygin gas from supernovae observations. Phys.

Lett. B 2003, 555, 1. [CrossRef]
66. Bento, M.d.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin gas and CMBR constraints. Phys. Rev. D 2003, 67, 063003.

[CrossRef]
67. Amendola, L.; Finelli, F.; Burigana, C.; Carturan, D. WMAP and the generalized Chaplygin gas. J. Cosmol. Astropart. Phys. 2003,

2003, 005. [CrossRef]
68. Reis, R.R.R.; Makler, M.; Waga, I. Skewness as a test for quartessence. Phys. Rev. D 2004, 69, 101301. [CrossRef]
69. Sahni, V.; Wang, L.M. A New cosmological model of quintessence and dark matter. Phys. Rev. D 2000, 62, 103517. [CrossRef]
70. Bilic, N.; Tupper, G.B.; Viollier, R.D. Unification of dark matter and dark energy: The inhomogeneous Chaplygin gas. Phys. Lett.

B 2002, 535, 17–21. [CrossRef]
71. Bertacca, D.; Bartolo, N.; Matarrese, S. Unified Dark Matter Scalar Field Models. Adv. Astron. 2010, 2010, 1–29. [CrossRef]
72. Kunz, M.; Nesseris, S.; Sawicki, I. Using dark energy to suppress power at small scales. Phys. Rev. D 2015, 92, 063006. [CrossRef]
73. Scherrer, R.J. Purely kinetic k-essence as unified dark matter. Phys. Rev. Lett. 2004, 93, 011301. [CrossRef]
74. Unnikrishnan, S. Can cosmological observations uniquely determine the nature of dark energy? Phys. Rev. D 2008, 78, 063007.

[CrossRef]
75. Lim, E.A.; Sawicki, I.; Vikman, A. Dust of Dark Energy. J. Cosmol. Astropart. Phys. 2010, 2010, 012. [CrossRef]
76. Gunn, J.E.; Gott, J.R.I. On the infall of matter into cluster of galaxies and some effects on their evolution. Astrophys. J. 1972,

176, 1–19. [CrossRef]
77. Padmanabhan, T. Structure Formation in the Universe; Cambridge University Press: Cambridge, UK, 1993.
78. Sahni, V.; Coles, P. Approximation methods for nonlinear gravitational clustering. Phys. Rep. 1995, 262, 1–135. [CrossRef]

http://dx.doi.org/10.1088/1475-7516/2011/10/038
http://dx.doi.org/10.1142/S0218271801000822
http://dx.doi.org/10.1103/PhysRevLett.90.091301
http://dx.doi.org/10.1103/PhysRevD.69.083503
http://dx.doi.org/10.1103/PhysRevD.80.023008
http://dx.doi.org/10.1103/PhysRevD.81.103511
http://dx.doi.org/10.1088/1475-7516/2010/10/014
http://dx.doi.org/10.1103/PhysRevD.79.023516
http://dx.doi.org/10.1103/PhysRevD.80.083519
http://dx.doi.org/10.1088/1475-7516/2009/02/018
http://dx.doi.org/10.1088/1475-7516/2013/06/044
http://dx.doi.org/10.1142/S021827180600942X
http://dx.doi.org/10.1142/S0218271812300029
http://dx.doi.org/10.1088/0264-9381/30/21/214003
http://dx.doi.org/10.1051/0004-6361/201525814
http://dx.doi.org/10.1103/PhysRevD.63.103510
http://dx.doi.org/10.1103/PhysRevLett.88.121301
http://www.ncbi.nlm.nih.gov/pubmed/11909442
http://dx.doi.org/10.1103/PhysRevD.64.103509
http://dx.doi.org/10.1088/1126-6708/2002/04/048
http://dx.doi.org/10.1103/PhysRevD.66.081301
http://dx.doi.org/10.1016/j.physletb.2003.09.065
http://dx.doi.org/10.1016/S0370-2693(01)00571-8
http://dx.doi.org/10.1103/PhysRevD.66.043507
http://dx.doi.org/10.1103/PhysRevD.69.123524
http://dx.doi.org/10.1016/S0370-2693(03)00038-8
http://dx.doi.org/10.1103/PhysRevD.67.063003
http://dx.doi.org/10.1088/1475-7516/2003/07/005
http://dx.doi.org/10.1103/PhysRevD.69.101301
http://dx.doi.org/10.1103/PhysRevD.62.103517
http://dx.doi.org/10.1016/S0370-2693(02)01716-1
http://dx.doi.org/10.1155/2010/904379
http://dx.doi.org/10.1103/PhysRevD.92.063006
http://dx.doi.org/10.1103/PhysRevLett.93.011301
http://dx.doi.org/10.1103/PhysRevD.78.063007
http://dx.doi.org/10.1088/1475-7516/2010/05/012
http://dx.doi.org/10.1086/151605
http://dx.doi.org/10.1016/0370-1573(95)00014-8


Universe 2022, 8, 22 30 of 33

79. Engineer, S.; Kanekar, N.; Padmanabhan, T. Nonlinear density evolution from an improved spherical collapse model. Mon. Not.
R. Astron. Soc. 2000, 314, 279. [CrossRef]

80. Shaw, D.J.; Mota, D.F. An Improved Semi-Analytical Spherical Collapse Model for Non-linear Density Evolution. Astrophys. J.
Suppl. 2008, 174, 277. [CrossRef]

81. Despali, G.; Giocoli, C.; Angulo, R.E.; Tormen, G.; Sheth, R.K.; Baso, G.; Moscardini, L. The universality of the virial halo mass
function and models for non-universality of other halo definitions. Mon. Not. R. Astron. Soc. 2016, 456, 2486–2504. [CrossRef]

82. Lee, S.; Ng, K.W. Spherical collapse model with non-clustering dark energy. J. Cosmol. Astropart. Phys. 2010, 2010, 028. [CrossRef]
83. Lahav, O.; Lilje, P.B.; Primack, J.R.; Rees, M.J. Dynamical effects of the cosmological constant. Mon. Not. R. Astron. Soc. 1991,

251, 128–136. [CrossRef]
84. Lacey, C.; Cole, S. Merger rates in hierarchical models of galaxy formation. Mon. Not. R. Astron. Soc. 1993, 262, 627–649.

[CrossRef]
85. Kitayama, T.; Suto, Y. Semianalytical predictions for statistical properties of X-ray clusters of galaxies in cold dark matter

universes. Astrophys. J. 1996, 469, 480. [CrossRef]
86. Wang, L.M.; Steinhardt, P.J. Cluster Abundance Constraints on Quintessence Models. Astrophys. J. 1998, 508, 483–490. [CrossRef]
87. Weinberg, N.N.; Kamionkowski, M. Constraining dark energy from the abundance of weak gravitational lenses. Mon. Not. R.

Astron. Soc. 2003, 341, 251. [CrossRef]
88. Mainini, R.; Maccio, A.V.; Bonometto, S.A. Non-linear predictions from linear theories on models with dark energy. New Astron.

2003, 8, 173–178. [CrossRef]
89. Nunes, N.J.; Mota, D.F. Structure Formation in Inhomogeneous Dark Energy Models. Mon. Not. R. Astron. Soc. 2006, 368, 751–758.

[CrossRef]
90. Mota, D.F.; Shaw, D.J.; Silk, J. On the Magnitude of Dark Energy Voids and Overdensities. Astrophys. J. 2007, 675, 29.
91. Wang, Q.; Fan, Z. Dynamical evolutin of quintessence dark energy in collapsing dark matter halos. Phys. Rev. D 2009, 79, 123012.

[CrossRef]
92. Manera, M.; Mota, D.F. Cluster number counts dependence on dark energy inhomogeneities and coupling to dark matter. Mon.

Not. R. Astron. Soc. 2006, 371, 1373. [CrossRef]
93. Wintergerst, N.; Pettorino, V. Clarifying spherical collapse in coupled dark energy cosmologies. Phys. Rev. D 2010, 82, 103516.

[CrossRef]
94. Martino, M.C.; Stabenau, H.F.; Sheth, R.K. Spherical Collapse and Modified Gravity. Phys. Rev. D 2009, 79, 084013. [CrossRef]
95. Schaefer, B.M.; Koyama, K. Spherical collapse in modified gravity with the Birkhoff-theorem. Mon. Not. R. Astron. Soc. 2008,

385, 411–422. [CrossRef]
96. Schmidt, F.; Hu, W.; Lima, M. Spherical Collapse and the Halo Model in Braneworld Gravity. Phys. Rev. D 2010, 81, 063005.

[CrossRef]
97. Brax, P.; Rosenfeld, R.; Steer, D.A. Spherical Collapse in Chameleon Models. J. Cosmol. Astropart. Phys. 2010, 2010, 033. [CrossRef]
98. Borisov, A.; Jain, B.; Zhang, P. Spherical Collapse in f(R) Gravity. Phys. Rev. D 2012, 85, 063518. [CrossRef]
99. Barreira, A.; Li, B.; Baugh, C.M.; Pascoli, S. Spherical collapse in Galileon gravity: Fifth force solutions, halo mass function and

halo bias. J. Cosmol. Astropart. Phys. 2013, 2013, 056. [CrossRef]
100. Kopp, M.; Appleby, S.A.; Achitouv, I.; Weller, J. Spherical collapse and halo mass function in f (R) theories. Phys. Rev. D 2013,

88, 084015. [CrossRef]
101. Lopes, R.C.C.; Voivodic, R.; Abramo, L.R.; Sodré, L., Jr. Turnaround radius in f(R) model. J. Cosmol. Astropart. Phys. 2018,

2018, 010. [CrossRef]
102. Lopes, R.C.C.; Voivodic, R.; Abramo, L.R.; Sodré, L. Relation between the Turnaround radius and virial mass in f(R) model.

J. Cosmol. Astropart. Phys. 2019, 2019, 026. [CrossRef]
103. Frusciante, N.; Pace, F. Growth of non-linear structures and spherical collapse in the Galileon Ghost Condensate model. Phys.

Dark Univ. 2020, 30, 100686. [CrossRef]
104. Basilakos, S.; Plionis, M.; Sola, J. The spherical collapse model in time varying vacuum cosmologies. Phys. Rev. D 2010, 82, 083512.

[CrossRef]
105. Del Popolo, A.; Pace, F.; Lima, J.A.S. Spherical collapse model with shear and angular momentum in dark energy cosmologies.

Mon. Not. R. Astron. Soc. 2013, 430, 628–637. [CrossRef]
106. Pace, F.; Batista, R.C.; Del Popolo, A. Effects of shear and rotation on the spherical collapse model for clustering dark energy.

Mon. Not. R. Astron. Soc. 2014, 445, 648. [CrossRef]
107. Mehrabi, A.; Pace, F.; Malekjani, M.; Del Popolo, A. Constraints on shear and rotation with massive galaxy clusters. Mon. Not. R.

Astron. Soc. 2017, 465, 2687–2697. [CrossRef]
108. Velten, H.; Caramês, T.R.P.; Fabris, J.C.; Casarini, L.; Batista, R.C. Structure formation in a Λ viscous CDM universe. Phys. Rev. D

2014, 90, 123526. [CrossRef]
109. McCrea, W.H. Relativity Theory and the Creation of Matter. R. Soc. Lond. Proc. Ser. A 1951, 206, 562–575.
110. Harrison, E.R. Cosmology without general relativity. Ann. Phys. 1965, 35, 437–446. [CrossRef]
111. Sachs, R.K.; Wolfe, A.M. Perturbations of a cosmological model and angular variations of the microwave background. Astrophys.

J. 1967, 147, 73–90. [CrossRef]

http://dx.doi.org/10.1046/j.1365-8711.2000.03275.x
http://dx.doi.org/10.1086/522339
http://dx.doi.org/10.1093/mnras/stv2842
http://dx.doi.org/10.1088/1475-7516/2010/10/028
http://dx.doi.org/10.1093/mnras/251.1.128
http://dx.doi.org/10.1093/mnras/262.3.627
http://dx.doi.org/10.1086/177797
http://dx.doi.org/10.1086/306436
http://dx.doi.org/10.1046/j.1365-8711.2003.06421.x
http://dx.doi.org/10.1016/S1384-1076(02)00226-9
http://dx.doi.org/10.1111/j.1365-2966.2006.10166.x
http://dx.doi.org/10.1103/PhysRevD.79.123012
http://dx.doi.org/10.1111/j.1365-2966.2006.10774.x
http://dx.doi.org/10.1103/PhysRevD.82.103516
http://dx.doi.org/10.1103/PhysRevD.79.084013
http://dx.doi.org/10.1111/j.1365-2966.2008.12841.x
http://dx.doi.org/10.1103/PhysRevD.81.063005
http://dx.doi.org/10.1088/1475-7516/2010/08/033
http://dx.doi.org/10.1103/PhysRevD.85.063518
http://dx.doi.org/10.1088/1475-7516/2013/11/056
http://dx.doi.org/10.1103/PhysRevD.88.084015
http://dx.doi.org/10.1088/1475-7516/2018/09/010
http://dx.doi.org/10.1088/1475-7516/2019/07/026
http://dx.doi.org/10.1016/j.dark.2020.100686
http://dx.doi.org/10.1103/PhysRevD.82.083512
http://dx.doi.org/10.1093/mnras/sts669
http://dx.doi.org/10.1093/mnras/stu1782
http://dx.doi.org/10.1093/mnras/stw2927
http://dx.doi.org/10.1103/PhysRevD.90.123526
http://dx.doi.org/10.1016/0003-4916(65)90249-6
http://dx.doi.org/10.1086/148982


Universe 2022, 8, 22 31 of 33

112. Lima, J.A.S.; Zanchin, V.; Brandenberger, R.H. On the Newtonian cosmology equations with pressure. Mon. Not. R. Astron. Soc.
1997, 291, L1–L4. [CrossRef]

113. Reis, R.R.R. Domain of validity of the evolution of perturbations in Newtonian cosmology with pressure. Phys. Rev. D 2003,
67, 087301. [CrossRef]

114. Chan Hwang, J.; Noh, H. Newtonian versus relativistic nonlinear cosmology. Gen. Rel. Grav. 2006, 38, 703–710.
115. Fabris, J.C.; Goncalves, S.V.B.; Velten, H.E.S.; Zimdahl, W. Matter Power Spectrum for the Generalized Chaplygin Gas Model:

The Newtonian Approach. Phys. Rev. D 2008, 78, 103523. [CrossRef]
116. Velten, H.; Schwarz, D.; Fabris, J.; Zimdahl, W. Viscous dark matter growth in (neo-)Newtonian cosmology. Phys. Rev. D 2013,

88, 103522. [CrossRef]
117. Hwang, J.C.; Noh, H.; Fabris, J.; Piattella, O.F.; Zimdahl, W. Newtonian hydrodynamic equations with relativistic pressure and

velocity. J. Cosmol. Astropart. Phys. 2016, 2016, 046.
118. Herrera, D.; Waga, I.; Jorás, S.E. Calculation of the critical overdensity in the spherical-collapse approximation. Phys. Rev. D 2017,

95, 064029. [CrossRef]
119. Pace, F.; Meyer, S.; Bartelmann, M. On the implementation of the spherical collapse model for dark energy models. J. Cosmol.

Astropart. Phys. 2017, 2017, 040. [CrossRef]
120. Batista, R.C.; Marra, V. Clustering dark energy and halo abundances. J. Cosmol. Astropart. Phys. 2017, 2017, 048. [CrossRef]
121. Basse, T.; Bjaelde, O.E.; Hannestad, S.; Wong, Y.Y.Y. Confronting the sound speed of dark energy with future cluster surveys.

arXiv 2012, arXiv:1205.0548.
122. Ichiki, K.; Takada, M. The impact of massive neutrinos on the abundance of massive clusters. Phys. Rev. D 2012, 85, 063521.

[CrossRef]
123. LoVerde, M. Spherical collapse in νΛCDM. Phys. Rev. D 2014, 90, 083518. [CrossRef]
124. Abramo, L.R.W.; Batista, R.; Liberato, L.; Rosenfeld, R. Dynamical Mutation of Dark Energy. Phys. Rev. D 2008, 77, 067301.

[CrossRef]
125. Saridakis, E.N. Do we need soft cosmology? Phys. Lett. B 2021, 822, 136649. [CrossRef]
126. Heneka, C.; Rapetti, D.; Cataneo, M.; Mantz, A.B.; Allen, S.W.; von der Linden, A. Cold dark energy constraints from the

abundance of galaxy clusters. Mon. Not. R. Astron. Soc. 2018, 473, 3882–3894. [CrossRef]
127. Sefusatti, E.; Vernizzi, F. Cosmological structure formation with clustering quintessence. J. Cosmol. Astropart. Phys. 2011, 2011, 047.

[CrossRef]
128. Maor, I.; Lahav, O. On Virialization with Dark Energy. J. Cosmol. Astropart. Phys. 2005, 2005, 003. [CrossRef]
129. Meyer, S.; Pace, F.; Bartelmann, M. Relativistic virialization in the Spherical Collapse model for Einstein-de Sitter and ΛCDM

cosmologies. Phys. Rev. D 2012, 86, 103002. [CrossRef]
130. Press, W.H.; Schechter, P. Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation. Astrophys. J.

1974, 187, 425–438. [CrossRef]
131. Sheth, R.K.; Tormen, G. Large-scale bias and the peak background split. Mon. Not. R. Astron. Soc. 1999, 308, 119–126. [CrossRef]
132. Warren, M.S.; Abazajian, K.; Holz, D.E.; Teodoro, L. Precision determination of the mass function of dark matter halos. Astrophys.

J. 2006, 646, 881–885. [CrossRef]
133. Tinker, J.L.; Kravtsov, A.V.; Klypin, A.; Abazajian, K.; Warren, M.S.; Yepes, G.; Gottlober, S.; Holz, D.E. Toward a halo mass

function for precision cosmology: The Limits of universality. Astrophys. J. 2008, 688, 709–728. [CrossRef]
134. Cooray, A.; Sheth, R.K. Halo Models of Large Scale Structure. Phys. Rep. 2002, 372, 1–129. [CrossRef]
135. Peacock, J.A.; Heavens, A.F. Alternatives to the Press-Schechter cosmological mass function. Mon. Not. R. Astron. Soc. 1990,

243, 133–143. [CrossRef]
136. Bond, J.R.; Cole, S.; Efstathiou, G.; Kaiser, N. Excursion set mass functions for hierarchical Gaussian fluctuations. Astrophys. J.

1991, 379, 440. [CrossRef]
137. Efstathiou, G.; Fall, S.M.; Hogan, C. Self-similar gravitational clustering. Mon. Not. R. Astron. Soc. 1979, 189, 203–220. [CrossRef]
138. Colafrancesco, S.; Lucchin, F.; Matarrese, S. The Mass function from local density maxima. Groups and clusters of galaxies.

Astrophys. J. 1989, 345, 3–11. [CrossRef]
139. Gelb, J.M.; Bertschinger, E. Cold dark matter. 1: The Formation of dark halos. Astrophys. J. 1994, 436, 467. [CrossRef]
140. Narayan, R.; White, S.D.M. Gravitational lensing in a cold dark matter universe. Mon. Not. R. Astron. Soc. 1988, 231, 97–103.

[CrossRef]
141. Lilje, P.B. Abundance of Rich Clusters of Galaxies: A Test for Cosmological Parameters. Astrophys. J. Lett. 1992, 386, L33.

[CrossRef]
142. Lewis, A.; Challinor, A.; Lasenby, A. Efficient computation of CMB anisotropies in closed FRW models. Astrophys. J. 2000,

538, 473–476. [CrossRef]
143. Lesgourgues, J. The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview. arXiv 2011, arXiv:1104.2932.
144. Eisenstein, D.J.; Hu, W. Baryonic features in the matter transfer function. Astrophys. J. 1998, 496, 605. [CrossRef]
145. Percival, W.J. Cosmological structure formation in a homogeneous dark energy background. Astron. Astrophys. 2005, 443, 819.

[CrossRef]
146. Le Delliou, M. Dynamical quintessence fields Press-Schechter mass function: Detectability and effect on dark haloes. J. Cosmol.

Astropart. Phys. 2006, 2006, 021. [CrossRef]

http://dx.doi.org/10.1093/mnras/291.1.L1
http://dx.doi.org/10.1103/PhysRevD.67.087301
http://dx.doi.org/10.1103/PhysRevD.78.103523
http://dx.doi.org/10.1103/PhysRevD.88.103522
http://dx.doi.org/10.1103/PhysRevD.95.064029
http://dx.doi.org/10.1088/1475-7516/2017/10/040
http://dx.doi.org/10.1088/1475-7516/2017/11/048
http://dx.doi.org/10.1103/PhysRevD.85.063521
http://dx.doi.org/10.1103/PhysRevD.90.083518
http://dx.doi.org/10.1103/PhysRevD.77.067301
http://dx.doi.org/10.1016/j.physletb.2021.136649
http://dx.doi.org/10.1093/mnras/stx2549
http://dx.doi.org/10.1088/1475-7516/2011/03/047
http://dx.doi.org/10.1088/1475-7516/2005/07/003
http://dx.doi.org/10.1103/PhysRevD.86.103002
http://dx.doi.org/10.1086/152650
http://dx.doi.org/10.1046/j.1365-8711.1999.02692.x
http://dx.doi.org/10.1086/504962
http://dx.doi.org/10.1086/591439
http://dx.doi.org/10.1016/S0370-1573(02)00276-4
http://dx.doi.org/10.1093/mnras/243.1.133
http://dx.doi.org/10.1086/170520
http://dx.doi.org/10.1093/mnras/189.2.203
http://dx.doi.org/10.1086/167875
http://dx.doi.org/10.1086/174922
http://dx.doi.org/10.1093/mnras/231.1.97P
http://dx.doi.org/10.1086/186286
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1086/305424
http://dx.doi.org/10.1051/0004-6361:20053637
http://dx.doi.org/10.1088/1475-7516/2006/01/021


Universe 2022, 8, 22 32 of 33

147. Horellou, C.; Berge, J. Dark energy and the evolution of spherical overdensities. Mon. Not. R. Astron. Soc. 2005, 360, 1393–1400.
[CrossRef]

148. Liberato, L.; Rosenfeld, R. Dark energy parameterizations and their effect on dark halos. J. Cosmol. Astropart. Phys. 2006, 2006, 009.
[CrossRef]

149. Bartelmann, M.; Doran, M.; Wetterich, C. Non-linear Structure Formation in Cosmologies with Early Dark Energy. Astron.
Astrophys. 2006, 454, 27–36. [CrossRef]

150. Pace, F.; Waizmann, J.C.; Bartelmann, M. Spherical collapse model in dark energy cosmologies. Mon. Not. R. Astron. Soc. 2010,
406, 1865. [CrossRef]

151. Pace, F.; Fedeli, C.; Moscardini, L.; Bartelmann, M. Structure formation in cosmologies with oscillating dark energy. Mon. Not. R.
Astron. Soc. 2012, 422, 1186–1202. [CrossRef]

152. Linder, E.V.; Jenkins, A. Cosmic Structure and Dark Energy. Mon. Not. R. Astron. Soc. 2003, 346, 573. [CrossRef]
153. Grossi, M.; Springel, V. The impact of Early Dark Energy on non-linear structure formation. Mon. Not. R. Astron. Soc. 2009,

394, 1559–1574. [CrossRef]
154. Basse, T.; Bjaelde, O.E.; Hamann, J.; Hannestad, S.; Wong, Y.Y.Y. Dark energy properties from large future galaxy surveys.

J. Cosmol. Astropart. Phys. 2014, 2014, 021. [CrossRef]
155. Abramo, L.R.; Batista, R.C.; Rosenfeld, R. The signature of dark energy perturbations in galaxy cluster surveys. J. Cosmol.

Astropart. Phys. 2009, 2009, 040. [CrossRef]
156. Castro, T.; Marra, V.; Quartin, M. Constraining the halo mass function with observations. Mon. Not. R. Astron. Soc. 2016,

463, 1666–1677. [CrossRef]
157. LoVerde, M.; Miller, A.; Shandera, S.; Verde, L. Effects of Scale-Dependent Non-Gaussianity on Cosmological Structures. J. Cosmol.

Astropart. Phys. 2008, 2008, 014. [CrossRef]
158. Velliscig, M.; van Daalen, M.P.; Schaye, J.; McCarthy, I.G.; Cacciato, M.; Le Brun, A.M.C.; Vecchia, C.D. The impact of galaxy

formation on the total mass, mass profile and abundance of haloes. Mon. Not. R. Astron. Soc. 2014, 442, 2641–2658. [CrossRef]
159. Weller, J.; Lewis, A.M. Large scale cosmic microwave background anisotropies and dark energy. Mon. Not. R. Astron. Soc. 2003,

346, 987–993. [CrossRef]
160. Hannestad, S. Constraints on the sound speed of dark energy. Phys. Rev. D 2005, 71, 103519. [CrossRef]
161. de Putter, R.; Huterer, D.; Linder, E.V. Measuring the Speed of Dark: Detecting Dark Energy Perturbations. Phys. Rev. D 2010,

81, 103513. [CrossRef]
162. Takada, M. Can A Galaxy Redshift Survey Measure Dark Energy Clustering? Phys. Rev. D 2006, 74, 043505. [CrossRef]
163. Bhattacharyya, A.; Pal, S. Constraining Dark Energy Perturbations: The Role of Early Dark Energy. arXiv 2019, arXiv:1907.10946.
164. Hu, W.; Scranton, R. Measuring dark energy clustering with CMB-galaxy correlations. Phys. Rev. D 2004, 70, 123002. [CrossRef]
165. Corasaniti, P.S.; Giannantonio, T.; Melchiorri, A. Constraining dark energy with cross-correlated CMB and large scale structure

data. Phys. Rev. D 2005, 71, 123521. [CrossRef]
166. Pietrobon, D.; Balbi, A.; Marinucci, D. Integrated Sachs-Wolfe effect from the cross-correlation of WMAP 3 year and NVSS: New

results and constraints on dark energy. Phys. Rev. D 2006, 74, 043524. [CrossRef]
167. Li, H.; Xia, J.Q. Constraints on Dark Energy Parameters from Correlations of CMB with LSS. J. Cosmol. Astropart. Phys. 2010,

2010, 026. [CrossRef]
168. D’Amico, G.; Sefusatti, E. The nonlinear power spectrum in clustering quintessence cosmologies. J. Cosmol. Astropart. Phys. 2011,

2011, 013. [CrossRef]
169. Anselmi, S.; Ballesteros, G.; Pietroni, M. Non-linear dark energy clustering. J. Cosmol. Astropart. Phys. 2011, 2011, 014. [CrossRef]
170. Anselmi, S.; López Nacir, D.; Sefusatti, E. Nonlinear effects of dark energy clustering beyond the acoustic scales. J. Cosmol.

Astropart. Phys. 2014, 2014, 013. [CrossRef]
171. Sapone, D.; Kunz, M.; Amendola, L. Fingerprinting Dark Energy II: Weak lensing and galaxy clustering tests. Phys. Rev. D 2010,

82, 103535. [CrossRef]
172. Ayaita, Y.; Schaefer, B.M.; Weber, M. Investigating clustering dark energy with 3d weak cosmic shear. Mon. Not. R. Astron. Soc.

2012, 422, 3056–3066. [CrossRef]
173. Majerotto, E.; Sapone, D.; Schäfer, B.M. Combined constraints on deviations of dark energy from an ideal fluid from Euclid and

Planck. Mon. Not. R. Astron. Soc. 2016, 456, 109–118. [CrossRef]
174. Appleby, S.A.; Linder, E.V.; Weller, J. Cluster Probes of Dark Energy Clustering. Phys. Rev. D 2013, 88, 043526. [CrossRef]
175. Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.;

Bartolo, N.; et al. Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts. Astron. Astrophys. 2015,
594, A24.

176. Mantz, A.; Allen, S.W.; Rapetti, D.; Ebeling, H. The observed growth of massive galaxy clusters—I. Statistical methods and
cosmological constraints. Mon. Not. R. Astron. Soc. 2010, 406, 1759–1772. [CrossRef]

177. Kravtsov, A.; Borgani, S. Formation of Galaxy Clusters. Ann. Rev. Astron. Astrophys. 2012, 50, 353–409. [CrossRef]
178. Mota, D.F. Probing Dark Energy at Galactic and Cluster Scales. J. Cosmol. Astropart. Phys. 2008, 2008, 006. [CrossRef]
179. Basilakos, S.; Bueno Sanchez, J.C.; Perivolaropoulos, L. The spherical collapse model and cluster formation beyond the Λ

cosmology: Indications for a clustered dark energy? Phys. Rev. D 2009, 80, 043530. [CrossRef]
180. Batista, R.C. Impact of dark energy perturbations on the growth index. Phys. Rev. D 2014, 89, 123508. [CrossRef]

http://dx.doi.org/10.1111/j.1365-2966.2005.09140.x
http://dx.doi.org/10.1088/1475-7516/2006/07/009
http://dx.doi.org/10.1051/0004-6361:20053922
http://dx.doi.org/10.1111/j.1365-2966.2010.16841.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20692.x
http://dx.doi.org/10.1046/j.1365-2966.2003.07112.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14432.x
http://dx.doi.org/10.1088/1475-7516/2014/05/021
http://dx.doi.org/10.1088/1475-7516/2009/07/040
http://dx.doi.org/10.1093/mnras/stw2072
http://dx.doi.org/10.1088/1475-7516/2008/04/014
http://dx.doi.org/10.1093/mnras/stu1044
http://dx.doi.org/10.1111/j.1365-2966.2003.07144.x
http://dx.doi.org/10.1103/PhysRevD.71.103519
http://dx.doi.org/10.1103/PhysRevD.81.103513
http://dx.doi.org/10.1103/PhysRevD.74.043505
http://dx.doi.org/10.1103/PhysRevD.70.123002
http://dx.doi.org/10.1103/PhysRevD.71.123521
http://dx.doi.org/10.1103/PhysRevD.74.043524
http://dx.doi.org/10.1088/1475-7516/2010/04/026
http://dx.doi.org/10.1088/1475-7516/2011/11/013
http://dx.doi.org/10.1088/1475-7516/2011/11/014
http://dx.doi.org/10.1088/1475-7516/2014/07/013
http://dx.doi.org/10.1103/PhysRevD.82.103535
http://dx.doi.org/10.1111/j.1365-2966.2012.20822.x
http://dx.doi.org/10.1093/mnras/stv2640
http://dx.doi.org/10.1103/PhysRevD.88.043526
http://dx.doi.org/10.1111/j.1365-2966.2010.16992.x
http://dx.doi.org/10.1146/annurev-astro-081811-125502
http://dx.doi.org/10.1088/1475-7516/2008/09/006
http://dx.doi.org/10.1103/PhysRevD.80.043530
http://dx.doi.org/10.1103/PhysRevD.89.123508


Universe 2022, 8, 22 33 of 33

181. Mehrabi, A.; Basilakos, S.; Pace, F. How clustering dark energy affects matter perturbations. Mon. Not. R. Astron. Soc. 2015,
452, 2930–2939. [CrossRef]

182. Mehrabi, A.; Basilakos, S.; Malekjani, M.; Davari, Z. Growth of matter perturbations in clustered holographic dark energy
cosmologies. Phys. Rev. D 2015, 92, 123513. [CrossRef]

183. Mehrabi, A.; Malekjani, M.; Pace, F. Can observational growth rate data favor the clustering dark energy models? Astrophys.
Space Sci. 2015, 356, 129–135. [CrossRef]

184. Sawicki, I.; Saltas, I.D.; Amendola, L.; Kunz, M. Consistent perturbations in an imperfect fluid. J. Cosmol. Astropart. Phys. 2013,
2013, 004. [CrossRef]

http://dx.doi.org/10.1093/mnras/stv1478
http://dx.doi.org/10.1103/PhysRevD.92.123513
http://dx.doi.org/10.1007/s10509-014-2185-3
http://dx.doi.org/10.1088/1475-7516/2013/01/004

	Introduction
	Linear Perturbations
	Dark Energy Models
	Quintessence
	Tachyon
	Clustering DE

	The Spherical Collapse Model
	Einstein-de-Sitter Universe
	Spherical Collapse Model with Homogeneous Dark Energy
	Spherical Collapse Model with Inhomogeneous Dark Energy
	Other Generalizations of the Spherical Collapse Model

	Spherical Collapse Model in the Pseudo-Newtonian Cosmology
	Density Threshold Definitions
	Collapse Threshold, c
	Virialization Threshold,  v

	Halo Mass Functions
	Cosmological Observables
	CMB and Large Scale Structure
	Higher Order Perturbation Theory
	Weak Lensing
	Cluster Abundances
	Internal Structure of Galaxy Clusters
	S8 Tension and Growth Rate

	Discussion
	References

