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Abstract: The governing equations of Maxwell electrodynamics in multi-dimensional spaces are
derived from the variational principle of least action, which is applied to the action function of the
electromagnetic field. The Hamiltonian approach for the electromagnetic field in multi-dimensional
pseudo-Euclidean (flat) spaces has also been developed and investigated. Based on the two arising
first-class constraints, we have generalized to multi-dimensional spaces a number of different gauges
known for the three-dimensional electromagnetic field. For multi-dimensional spaces of non-zero
curvature the governing equations for the multi-dimensional electromagnetic field are written in
a manifestly covariant form. Multi-dimensional Einstein’s equations of metric gravity in the pres-
ence of an electromagnetic field have been re-written in the true tensor form. Methods of scalar
electrodynamics are applied to analyze Maxwell equations in the two and one-dimensional spaces.
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1. Introduction

The main goal of this communication is to develop the logically closed and non-
contradictory version of electrodynamics in the multi-dimensional (or n-dimensional)
space. Right now, such a development can be considered as a pure theoretical (or model)
task, but originally, our plan was to include the multi-dimensional electromagnetic fields
in our Hamiltonian analysis of the metric gravity [1]. Note that all Hamiltonian approaches
that are based on the Γ− Γ Lagrangian (see, e.g., [1] and earlier references therein) have
been derived in the manifestly covariant form and can be applied to multi-dimensional
(or n-dimensional, where n (≥3) is an arbitrary integer) Riemannian spaces without any
modification. On the other hand, our current Maxwell theory of electromagnetic fields and
corresponding Hamiltonian approach can be used only for three-dimensional (geometrical)
spaces. This contradiction creates numerous problems for the development of any united
theory of the coupled electromagnetic and gravitational fields. Furthermore, it is hard to
believe that in reality one can smoothly combine two theories that have different properties
with respect to their extensions on multi-dimensional spaces.

After our investigations began, it did not take long to understand that such a theory of
the free electromagnetic fields in multi-dimensions simply does not exist even in the first-
order approximation (in contrast with metric gravity). There are quite a few reasons why
a similar generalization of the classical electrodynamics to multi-dimensional spaces has
not been developed earlier. For instance, the explicit expression for the action integral and
therefore for the Lagrangian of the electromagnetic field in multi-dimensions is unknown.
However, if we do not know the Lagrangian of the multi-dimensional electromagnetic field,
then it is impossible to construct any valuable Hamiltonian. There have been a number
of smaller problems which have substantially complicated any direct generalization of
Maxwell theory to n-dimensional spaces. One of them is the lack of a reliable and practically
valuable definition of a curl−operator (or rot-operator) in multi-dimensional spaces, where
n ≥ 4. In general, it is difficult to develop multi-dimensional electrodynamics without such
an operator. Finally, we have decided to investigate this problem and derive some useful
results which are of great interest for the Hamiltonian formulation of the metric gravity
combined with electromagnetic field(s) in multi-dimensional spaces.
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First, let us briefly discuss the classical Maxwell equations known for the three-
dimensional electromagnetic fields. The Maxwell equations were first written by J.C.
Maxwell in 1862 (published in 1865 [2] (see also [3,4])) for the intensities of electric E and
magnetic H fields (or for the electric and magnetic field strengths):

divE = 4πρ, curlE = −1
c

∂H
∂t

,

divH = 0, curlH =
1
c

∂E
∂t

+
4π

c
j, (1)

where ρ and j = ρv are the electric charge density (scalar) and electric current density
(vector), respectively. In this study, the charge density and current are defined exactly as
in $ 29 from [5]. Later, it was noticed by Hertz and others that these four equations from
Equation (1) can be re-written in a simple form if we can introduce the four-dimensional
potential Ā = (ϕ, A), where ϕ is the scalar potential and A is the vector potential of the
electromagnetic field. Note that the scalar potential ϕ can equally be considered as the
0-component (A0) of the four-dimensional vector potential Ā of the electromagnetic field.
The ϕ and A potentials are simply related to the intensities of electric E and magnetic H
fields: H = curlA and E = − ∂A

∂t − gradϕ. By using these relations between the potentials
(ϕ, A) and intensities (E, H) of electromagnetic field, one finds that the second equation in
the first line and first equation in the second line of Equation (1) hold identically. The two
remaining equations from Equation (1) lead to the following non-homogeneous equations:

1
c2

∂2A
∂t2 − ∆A + grad

(
divA +

1
c

∂ϕ

∂t

)
=

4π

c
j (2)

− ∆ϕ− 1
c

div
(∂A

∂t

)
= 4πρ (3)

where ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the three-dimensional Laplace operator. By applying the

“gauge condition” ∂ϕ
∂t + divA = 0 for the four-dimensional potential, one reduces the two

last equations to the form

1
c2

∂2A
∂t2 − ∆A =

4π

c
ρv, (4)

1
c2

∂2 ϕ

∂t2 − ∆ϕ = 4πρ, (5)

where the operator 1
c2

∂2

∂t2 −∆ is the four-dimensional Laplace operator in pseudo-Euclidean
space, which is often called the d’Alembertian operator.

It is interesting that all equations mentioned above can be derived by varying the
action functional S which is written for a system of particles and electromagnetic fields
interacting with these particles. In Gauss units, the explicit form of this action function (or
action, for short) S is

S = Sp + S f p + S f = −∑
k

∫
mkcdsk −∑

k

∫ ek
c

Aα(k)dxα − 1
16π

∫
FαβFαβdΩ, (6)

where the two sums are taken over particles, s =
√

xµxµ =
√

gµνxµxµ is the interval, Sp is
the action for the particles (k = 1, 2, . . .), and S f p is the action which describes the interaction
between particles and electromagnetic field, while S f is the action for the electromagnetic
field itself. The notation ek stands for the electric charge of the k-th particle, while mk means
the mass of the same particle, and Aα is the covariant component of the four-dimensional
vector potential Ā of the electromagnetic field. This formula, Equation (6), is written for the
four-dimensional pseudo-Euclidean (flat) space-time. This fact drastically simplifies the
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analysis and derivation of the Maxwell and other equations in classical three-dimensional
electrodynamics.

In this study, we discuss a possibility to generalize the usual (or three-dimensional)
Maxwell equations to spaces of larger dimensions. In respect to this, below, we shall
consider n-dimensional, pure geometrical spaces and (n + 1)-dimensional space-time man-
ifolds. Our main goal is to derive the correct form of multi-dimensional Maxwell equations
and investigate their basic properties. In particular, we want to understand how many
and what kind of changes we can expect in the multi-dimensional Hamiltonian of the free
electromagnetic field and in a number of arising first-class constraints. A separate but
closely related problem is the gauge invariance of the free electromagnetic field. Another
interesting problem is to investigate the explicit form of multi-dimensional Maxwell equa-
tions in the presence of multi-dimensional gravitational fields. A brief discussion of scalar
electrodynamics can be found in Appendix A. All new results obtained in the course of our
current analysis will be used later to develop the modern united theory of electromagnetic
and gravitational fields.

2. Scalar and Vector Potentials of the Electromagnetic Field

Let us derive the closed system of Maxwell equations for the n-dimensional (geomet-
rical) space, where n ≥ 3. The time t is always considered as an independent scalar and
special (n + 1)-st variable. This means that we are dealing with manifolds of variables
defined in (n + 1)-dimensional space-time. First, we need to define the vector potential
Ā in this (n + 1)-dimensional space-time. Based on experimental facts known for actual
electromagnetic systems considered in one, two, and three dimensions, below, we assume
that the interaction of a point particle with the electromagnetic field is determined by a
single, scalar parameter e, which is the electric charge of this particle. The parameter e
can be positive, negative, or equal to zero. The properties of the electromagnetic field
are described by the (n + 1)-dimensional vector potential Ā. The notation Aµ (or Āµ)
stands for the covariant µ−component of this (n + 1)-dimensional vector potential Ā. In
this study, we also deal with the n-dimensional space-like vector potential A. Co- and
contravariant components of this vector are designated by Latin indexes; e.g., Ak and Ak,
where k = 1, 2, . . . , n. The same rule is applied to all vectors and tensors mentioned in this
study: components of (n + 1)-vectors are labeled by Greek indices (each of which varies
between 0 and n), while spatial components of these n-dimensional vectors (each varying
between 1 and n) are denoted by Latin indices. The generalization of this rule to the tensors
of arbitrary ranks is straightforward and simple. Note also that in all formulas below, the
following “summation rule” is applied: a repeated suffix (or index) in any formula means
summations over all values of this suffix (or index).

In general, the vector potential Ā can be written in the form Ā = (ϕ, A), which includes
the scalar potential ϕ(= A0) and n-dimensional vector potential A = (A1, A2, . . . , An). For
arbitrary scalar Φ and vector V functions in n-dimensional space, we can determine the
first-order differential operators: the (a) gradient operator ∇ (or grad) and (b) divergence
operator div. They are defined as follows:

∇Φ = grad Φ =
( ∂Φ

∂x1
,

∂Φ
∂x2

, . . . ,
∂Φ
∂xn

)
and div V =

∂V1

∂x1
+

∂V2

∂x2
+ . . . +

∂Vn

∂x1
(7)

Analogous definitions of these two operators can easily be generalized and applied
to the scalar and vector functions defined in (n + 1)-dimensional space. By using these
definitions, we can discuss the gradient of the scalar potential ∇ϕ(= ∇A0) (vector) and
divergence of vector potential divA (scalar) in the n-dimensional space.
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The (n + 1)-dimensional vector potential Ā = (A0, A1, . . . , An) allows us to define the
truly antisymmetric (n + 1)× (n + 1) electromagnetic field tensor Fαβ(= −Fβα) by using
the relation

Fαβ =
∂Aβ

∂xα
− ∂Aα

∂xβ
= −Fβα, and Fαβ =

∂Aβ

∂xα
− ∂Aα

∂xβ
= −Fβα, (8)

which formally coincides with the analogous definition of this tensor known in the four-
dimensional space-time. For the (n + 1)-dimensional space-time manifold, this tensor has
zero-diagonal matrix elements (or components); i.e., Fαα = 0. Therefore, in n-dimensional
space, each of the antisymmetric Fαβ and Fαβ tensors have n(n−1)

2 different and independent
components. The double sum FαβFαβ is the first (or main) invariant of the electromagnetic
field defined in the (n + 1)-dimensional space. Now, let us write the following explicit
formula for the action S for the system, which includes the particles and electromagnetic
field itself. This action takes the following form (see, e.g., [5]):

S = Sp + S f p + S f = −∑
k

∫
mkcds−∑

k

∫ ek
c

Aα(k)dxα − a
∫

FαβFαβdΩ, (9)

where s =
√

xµxµ =
√

gµνxµxµ is the interval, Sp is the action function for the particles,
S f p is the action function which describes the interaction between particles and the elec-
tromagnetic field, and S f is the action function for the electromagnetic field itself. In this
equation, the summation is performed over all particles (index k). The notation Aα(k)
shows that the α−component of the vector potential must be determined at the point of
location of k−th particle. Note that the formula, Equation (9), is applicable in the flat
pseudo-Euclidean and/or Euclidean spaces only. Its generalization to multi-dimensional
Riemannian spaces (spaces of non-zero curvature) is considered below. In the next step,
we need to determine the constant a in Equation (9). This can be achieved by considering
Coulomb’s law in multi-dimensions (see the next section).

As a conclusion of this section, we want to emphasize the fact that our action function,
which is chosen in the form of Equation (9), allows one to derive the equations of motion
for a system of electrically charged, point particles which move in the electromagnetic field.
For instance, for one electrically charged particle, by varying the coordinates of this particle
(i.e., the xµ and xα variables) in the action function, Equation (9), one finds the following
equation of motion for one electrically charged, point particle which moves in the non-flat
multi-dimensional space:

d2xα

ds2 + Γα
βγ

dxβ

ds
dxγ

ds
− e

c
Fαβgβγ

dxγ

ds
= 0, or

d2xα

ds2 + Γα
βγ

dxβ

ds
dxγ

ds
− e

mc2 Fα
β

dxβ

ds
= 0, (10)

where Γα
βγ are the Cristoffel symbols of the second kind [6,7] which equal zero identically

in any flat space. It is clear that the last term in the action function S is not varied, and we
do not know the exact numerical value of the constant a in Equation (9). In addition, for
the non-flat spaces, in the last term, we have to replace dΩ→ √−gdΩ.

3. Coulomb’s Law in Multi-Dimensions

The explicit form of the Coulomb interaction between two point, electrically charged
particles is of crucial importance for our present purposes. In Gauss units, which are
used almost everywhere in this study, the Coulomb’s law for three-dimensional space
has a very simple form: V(r21) = q1q2

r21
, where V(r21) is the Coulomb potential, q1 and

q2 are the electric charges of the two point particles (1 and 2), and r21 is the interparticle
distance, which equals r =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2, where (x1, y1, z1) and

(x2, y2, z2) are the Cartesian coordinates of the two interacting particles. Note that the
Coulomb interaction potential does not contain the factor 4π. Furthermore, the Coulomb
potential essentially coincides with the singular part of the Green’s function for the three-
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dimensional Laplace operator; i.e., V(r21) = q1q2G(r1, r2) = q1q2G(| r1− r2 |) = q1q2
|r2−r1|

and

∆
(

1
|r2−r1|

)
= ∇2

(
1

|r2−r1|

)
= ∇

(
r1−r2
|r2−r1|3

)
= −4πδ(r2 − r1). The last equation can also be

re-written for the intensity of electric field E, which is the negative gradient of the potential

ϕ. This equation takes the familiar form divE = −∇
[(

q1q2
r21

)]
= q1q2∇

(
r21
r3

21

)
= 4πρ(r21),

where ρ(x) is a continuous charge density. The derived expression coincides with the well-
known differential form of Gauss’s law of electrostatic and one of the Maxwell equations.
These two properties (or two criteria) of three-dimensional Coulomb potential plays a
crucial role in our definition of the multi-dimensional Coulomb potential (see below).

Now, we need to define the Coulomb potential in multi-dimensional (or n-dimensional)
space. This is a crucial moment for the Maxwell electrodynamics in multi-dimensional
spaces which we try to develop in this study. Any mistake in such a definition will cost too
much for our present purposes. In this sense, this section was the most difficult part of our
analysis and it was re-written quite a few times. Indeed, we cannot send someone to the
four-dimensional (geometrical) space to repeat the well known Coulomb and Cavendish
experiments; therefore, we need to find a way to make an analytical generalization of the
Coulomb potential to multi-dimensional spaces. In respect to our first criterion formulated
above, the Coulomb potential in the n-dimensional space must coincide with the singular
part of the Green’s function defined for the multi-dimensional (or n-dimensional) Laplace
operator ∆ = ∆n = ∂2

∂x2
1
+ ∂2

∂x2
2
+ . . . + ∂2

∂x2
n

. This leads [8] to the following general expression

for the Coulomb potential in n-dimensional space: V(r) = b q1q2
rn−2

21
= b q1q2

rn−2 , where b is some

numerical factor, n ≥ 3, and the explicit expression for the interparticle distance r21 = r

takes the multi-dimensional form r =
√
[x(1)2 − x(1)1 ]2 + [x(2)2 − x(2)1 ]2 + . . . + [x(n)2 − x(n)1 ]2.

Here (x(1)1 , x(2)1 , . . . , x(n)1 ) and (x(1)2 , x(2)2 , . . . , x(n)2 ) are the Cartesian coordinates of the two
interacting particles in n-dimensional Euclidean space. The n-dimensional radius r =√
[x(1)]2 + [x(2)]2 + . . . + [x(n)]2 is, in fact, the hyper-radius of this point particle. To derive

the explicit formula for the Coulomb potential in n-dimensional space, we have applied
the method developed by A. Sokolov (see, e.g., [8,9] and earlier references therein) which
allows one to determine the Green’s functions for an arbitrary linear differential operator.

In order to determine the factor b(n), we apply the second criterion (see above),
which states that Gauss’s law must be written in the form ∇E = f (n)q1q2, where f (n) is
a pure angular (or hyper-angular for n ≥ 4) factor. From here, one finds that b = 1

n−2
and the explicit formula for Coulomb’s law in n-dimensional space takes the final form
V(r) = q1q2

(n−2)rn−2
21

. Now, let us consider a slightly different problem. Suppose that we have

to determine the static multi-dimensional Coulomb potential ϕ(r) and the corresponding
intensity of electric field E, which are generated by a point particle with the electric charge
Q. For this problem, we write the following formulas for the potential ϕ and for the field
strength E: ϕ = Q

(n−2)rn−2 and E = −∇ϕ = Qnr
rn−1 , where nr is the unit vector nr =

r
r which

is directed from the electric charge Q to an observation point. To write Gauss’s law in
multi-dimensional space, let us assume that a point electrical charge Q is located inside
(and outside) of a closed (n− 1) dimensional hyper-surface. In this case, r is the distance
from the charge to a point on the hyper-surface, n is outwardly directed normal n = r

r to
the surface at that point, and da is the element of the surface area. Then, for the normal
component of E times the area element, we can write

(E · n)da = Q
cosΘ
rn−1 da = Q

rn−1dΩ
rn−1 = QdΩ, (11)

where dΩ is the element of the solid hyper-angle (in n-dimensional space) subtended by da
at the position of the charge. It is important here that the E is directed along the line from
the hyper-surface element to the charge Q. This means that we have found no contradiction
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here between out two criteria and and Equation (11), since the following hyper-angular
integration over Ω produces only an additional pure hyper-angular factor f (n).

Now, by integrating the normal component of E over the whole hyper-surface, it is
easy to find that

∮
(E · n)da = Q

∮
dΩ = Q

nπ

(
n
2

)
Γ
(

1 + n
2

) = f (n)Q, (12)

where f (n) = nπ

(
n
2

)
Γ
(

1+ n
2

) is the geometrical (or hyper-angular) factor. In this equation, the

symbol Γ(x) stands for the Euler’s gamma function (or Euler’s integral of the second

kind). It can be shown (see, e.g., [10]) that Γ(1 + x) = xΓ(x) and Γ
(

1
2

)
=
√

π. The
formula, Equation (12), is true if the charge Q lies inside of the n-dimensional hyper-surface.
However, if this charge lies outside of this hyper-surface, the expression on the right-hand
side of Equation (12) equals zero identically. Thus, we have reproduced Gauss’s law in
multi-dimensional spaces for a single point charge Q. For a discrete set of point charges
and for a continuous charge density ρ(r), Gauss’s law becomes

∮
(E · n)da =

nπ

(
n
2

)
Γ
(

1 + n
2

) K

∑
k=1

Qk = f (n)
K

∑
k=1

Qk (13)

and ∮
(E · n)da =

nπ

(
n
2

)
Γ
(

1 + n
2

) ∫
V

ρ(r)dnr = f (n)
∫

V
ρ(r)dnr (14)

respectively. In Equation (13), the sum is over only those charges inside of the hyper-surface
S, while in Equation (14), the sum is over the volume (or hyper-volume) enclosed by S.

The differential form of these equations in n-dimensional Euclidean space is

divE = −div
(

grad ϕ
)
= −∆ϕ =

nπ

(
n
2

)
Γ
(

1 + n
2

) ρ(r) = f (n)ρ(r), (15)

where f (n) = nπ

(
n
2

)
Γ
(

1+ n
2

) is the geometrical (or hyper-angular) factor, which is the volume

Vn of the n-dimensional unit ball times the dimension n of geometrical space. In other
words, the factor f (n) is the surface area Sn of the n-dimensional unit ball, since the equality
Sn = nVn is always obeyed for the n-dimensional unit ball [11] and n is an integer positive
number. The physical sense of this factor f (n) is simple: it is the total hyper-angle defined
for a single point (central) particle located in the n-dimensional space. For a system of a
few discrete charges, one has to replace ρ(r)→ ∑K

k=1 Qk, etc.
The n-dimensional hyper-angular factor f (n) from Equation (12) plays a central role

in our development of Maxwell electrodynamics in multi-dimensional spaces. In particular,
the knowledge of this factor allows one to write the explicit formula for the action function
(or action integral) of the electrically charged particles that move in the multi-dimensional
(or n-dimensional) electromagnetic field. This problem is considered below.
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4. Action Function and Maxwell Equations in Multi-Dimensional Flat Spaces

In this section, we consider Maxwell’s equation in multi-dimensional flat spaces; e.g.,
in pseudo-Euclidean spaces. The results derived below are extensively used in the following
sections of this study. First of all, by using the factor f (n) obtained in Equation (12), we
can write the final expression for the action function S in Gauss units:

S = Sp + S f p + S f = −∑
k

∫
mkcds− 1

c2

∫
Aα jαdxα − 1

4c f (n)

∫
FαβFαβdΩ, (16)

where 1
4 (or − 1

4 ) is the Heaviside constant, c is the speed of light in a vacuum, while jα

is the electric current (or simply, current) in (n + 1)-dimensional space. By varying all
components of the Ā vector in this action integral, Equation (16), we derive the second
group of Maxwell’s equations, Equation (19), which contains, in the general case, the
non-homogeneous differential equations. By omitting some obvious details, we can write
the complete set of Maxwell’s equations in the following tensor form:

∂Fγλ

∂xβ
+

∂Fλβ

∂xγ
+

∂Fβγ

∂xλ
= 0 (17)

and

∂Fαβ

∂xβ
= − nπ

(
n
2

)
cΓ
(

1 + n
2

) jα = − f (n)
c

jα, (18)

where jα is the (n + 1)-dimensional current-vector (or current, for short) defined above. All
equations from the both groups of these equations, Equations (17)–(19), are the first-order
differential equations upon spatial coordinates and time t (or temporal coordinate). From
Equation (17) one finds the following condition for the current:

∂2Fαβ

∂xα∂xβ
= − f (n)

c
∂jα

∂xα
= 0 . (19)

This result is obvious, since the application of any symmetric operator (upon α↔ β

permutation)—e.g., the ∂2

∂xα∂xβ operator—to the truly antisymmetric Fαβ tensor always

gives zero. Thus, the equality ∂jα
∂xα = 0 derived here is a necessary condition for any actual

electric current. Note also that this equation is written in the form of (n + 1)-dimensional
divergence. In respect to Noether’s second theorem, this equation ∂jα

∂xα = 0 means some
conservation law. It is easy to understand that this law describes the conservation of the
total electric charge.

A very close similarity between the Maxwell equations derived for multi-dimensional
spaces, where n ≥ 3, and analogous Maxwell equations known in three-dimensional space
is obvious. However, in some cases, this leads to fundamental mistakes, and most of such
mistakes originate from Equation (17). Note here that in n-dimensional geometrical space,
we have exactly n components of the intensity of electric field E and n(n+1)

2 intensities of
magnetic field H. For n = 3 (and only in this case), we have equal numbers of components
in both E and H vectors. This leads to the well-known vector form of Maxwell electro-
dynamics. However, even for n = 4, the electric field has four components, while the
magnetic field has six components. When n increases, then the total number of components
of the magnetic field grows rapidly (quadratically) and significantly exceeds the analogous
number of components of the electric field. This fact substantially complicates the deriva-
tion of Maxwell equations written in terms of the intensities of electric and magnetic fields
in multi-dimensional spaces. Plus, we have a certain problem with the general definition of
the curl (or rot) operator in such cases.
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Another interesting result follows from the analysis of tensor equations, Equation (17).
If one of the indexes in this equation equals zero, then this group of equations gives
us Faraday’s law in multi-dimensional space, which describes the time-evolution of the
magnetic field and is written in the form of n equations. This is good, but what about other
n(n−1)(n−2)

6 equations that are also included in tensor equations Equation (17)? After some
transformations, one finds that these additional equations are written in a form whereby
three-dimensional divergences of some three-dimensional pure-magnetic vectors equal zero.
By pure magnetic vectors, we mean vectors assembled from the space-like components of
the field tensor Fpq (or Fpq) only (for flat spaces, it is always possible). Based on ideas by
Dirac [12], we can formulate this result in the following form: the magnetic field can have
sources neither in our three-dimensional space nor in any three-dimensional subspace of multi-
dimensional spaces. This fundamental statement is directly and very closely related to the
discrete nature of electric charge. Furthermore, the correctness of Maxwell electrodynamics
(in any space) is essentially based on this statement. By taking into account arguments
from [13], we can re-formulate our statement in the followingform: the existence of magnetic
monopoles in our three-dimensional space and, in general, in any three-dimensional subspace of
multi-dimensional spaces is strictly prohibited. Otherwise, the Maxwell electrodynamics will
not be correct and must be replaced by a different approach.

To conclude this section, let us present the explicit formula for the energy momentum
tensor in multi-dimensional space. The definition of this tensor and all details of its
calculations are well described in [5]. Therefore, we can only present a few basic formulas
here, which will be used below in Section 6. The explicit formula for the non-symmetrized
energy momentum tensor is

Tβ
α =

1
f (n)

(∂Aγ

∂xα
Fγβ +

1
4

gβ
α FγρFγρ

)
, (20)

where the factor f (n) is the hyper-angular (or geometrical) factor mentioned above. After
symmetrization, this tensor takes the form

Tβ
α =

1
f (n)

(
FαγFβγ +

1
4

gβ
α FγρFγρ

)
, (21)

where gβ
α = δ

β
α is the substitution tensor [6]. The corresponding co- and contravariant

tensors are

Tαβ =
1

f (n)

(
FαγFγ

β +
1
4

gαβFγρFγρ
)

and Tαβ =
1

f (n)

(
gα

γFβγFβγ +
1
4

gαβFγρFγρ
)

, (22)

where f (n) = nπ
n
2

Γ
(

1+ n
2

) is the geometrical (or hyper-angular) factor.

5. Hamiltonian of the Electromagnetic Field in Multi-Dimensional Flat Spaces

The second goal of this study is to develop the Hamiltonian formulation of the multi-
dimensional electrodynamics. First, let us obtain the explicit formula for the Hamiltonian
H of the free electromagnetic field in multi-dimensional flat spaces. By using the for-
mula, Equation (16), for the action integral, we can write the Lagrangian L of the free
electromagnetic field in multi-dimensional pseudo-Euclidean space (in Heaviside units)

L = −1
4

∫
FαβFαβ dnx = −1

4

∫
FαβFαβ dnx , (23)
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where Fµν = Aν,µ − Aµ,ν is the electromagnetic field tensor which is antisymmetric Fµν =
−Fνµ. From here, one finds the following equality Aµ,ν = −Fµν + Aν,µ = Fνµ + Aν,µ.
Variations of this Lagrangian are written in the following general form:

δL = −1
2

∫
FαβδFαβdnx = −1

2

∫
FαβδFαβdnx, (24)

where dnx means dx1dx2 . . . dxn and the integration is over n-dimensional space. Note that
all integrals considered in this section are the spatial integrals that contain no integration
over the temporal (or time) variable. Furthermore, in this section, we shall apply only the
Heaviside units. The use of Gauss units complicates all formulas below, including the
expressions for the momenta.

In order to develop the Hamiltonian approach for the electromagnetic field, we need
to consider all variations of the velocities for each component of the (n + 1)-dimensional
vector potential Ā. In other words, below, we deal with variations of the Aµ,0 derivatives
only, where µ = 0, 1, . . . , n. In other words, in our Hamiltonian formulation, all components
of the (n + 1)-dimensional vector potential Ā—i.e., A0, A1, . . . , An components—are the
generalized coordinates of our problem. For variations of the velocities Aµ,0, our formula,
Equation (24), for δL is written in the form

δL =
∫

Fα0δAα,0 dnx =
∫

BαδAα,0 dnx, (25)

where Bα = Fα0 are the contravariant components of the (n + 1)-dimensional vector
momenta B̄. In fact, this equation must be considered as the explicit definition of momenta.
However, from this definition and the antisymmetry of the electromagnetic field tensor, one
finds B0 = F00 = 0. This means that the 0-component of momenta B̄ of the electromagnetic
field—i.e., B0—must be equal to zero at all times. According to Dirac [14], all similar
equations derived at this stage of the Hamiltonian procedure are the primary constraints.
In our current case, this constraint is better to write in the form of a weak identity B0 ≈ 0.

By using our momenta Bα, we can introduce the Hamiltonian of the free electromag-
netic field in multi-dimensional pseudo-Euclidean (flat) space:

H =
∫

Bα Aα,0 dnx− L =
∫ (

Fq0 Aq,0 +
1
4

FpqFpq +
1
4

Fp0Fp0 +
1
4

F0pF0p

)
dnx

=
∫ (

Fq0 Aq,0 +
1
4

FpqFpq +
1
2

Fp0Fp0

)
dnx =

∫
Hdnx, (26)

whereH is the Hamiltonian space-like density (scalar), which is

H = Fq0 Aq,0 +
1
4

FpqFpq +
1
2

Fp0Fp0 (27)

For the Aq,0 derivative, we substitute its equivalent expression Aq,0 = −Fq0 + A0,q
(see above) and obtain

H =
∫ (1

4
FpqFpq −

1
2

Fp0Fp0 + Fq0 A0,q

)
dnx =

∫ (1
4

FpqFpq +
1
2

BpBp + Bq A0,q

)
dnx. (28)

In the last term of this Hamiltonian, we can perform a partial integration, which
actually leads to the following replacement: Fq0 A0,q → −A0

∂Fq0

∂xq
= −A0(Bq)q = −A0Bp

,p.
This reduces our Hamiltonian, Equation (28), to the form

H =
∫ (1

4
FpqFpq −

1
2

Fp0Fp0 + Fq0 A0,q

)
dnx =

∫ (1
4

FpqFpq +
1
2

BpBp − A0Bp
,p

)
dnx . (29)
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This is the Hamiltonian of the free electromagnetic field written in the closed analytical
form. The corresponding Hamiltonian space-like density takes the form

H =
1
4

FpqFpq +
1
2

BpBp − A0Bp
,p. (30)

Note that by performing these transformations and deriving the Hamiltonian, Equation (29),
we have gained even more than we wanted at the beginning of our procedure. In fact, the
development of any Hamiltonian approach means that we have a simplectic structure, which
is defined by the Poisson brackets between basic dynamical (Hamiltonian) variables: (n + 1)
coordinates Aµ and (n + 1) momenta Bµ. These Poisson brackets are defined as follows:

[Aµ(x̄1), Bν(x̄2)] = gν
µδ(n)(x1 − x2), [Aµ(x1), Aν(x2)] = 0, [Bµ(x1), Bν(x2)] = 0, (31)

where gν
µ = δν

µ is the Kronecker delta-function, while µ = 0, 1, . . . , n, and ν = 0, 1, . . . , n.
In general, the Poisson brackets are used as the main working tool in any Hamiltonian

approach developed for a given physical system. Moreover, these brackets allow one to
introduce a simplectic (2n + 2)-dimensional phase space of the Hamiltonian variables
{Aα, Bβ} which are defined in each point x̄ of the (n + 1)-dimensional space-time manifold.
The original configuration space of this problem is the direct sum of the (n+ 1)-dimensional
subspace of Aµ−coordinates and (n + 1)-dimensional subspace of Aµ,0−velocities. In turn,
this allows one to consider and apply various canonical transformations of the Hamiltonian
canonical variables. Furthermore, by using the Poisson brackets in Equation (31), we can
complete our Hamiltonian approach for the classical electrodynamics and perform its
quantization.

To illustrate this fact, let us go back to the primary constraint B0 ≈ 0 mentioned above.
This constraint must remain satisfied at all times. This means that its time derivative dB0

dt ,
which in our Hamiltonian approach equals the Poisson bracket [B0, H], must be zero at all
times. This Poisson bracket is easily determined, since in the Hamiltonian, Equation (29),
there is only one term (the last term) that does not commute with the momentum (or
primary constraint) B0:

[B0,
1
4

FpqFpq −
1
2

Fp0Fp0 − A0Bq
q ] = −[B0, A0]B

p
,p = [A0, B0]Bp

,p = Bp
,p (32)

In other words, we have found another weak equality Bp
,p ≈ 0 that must be obeyed

at all times. According to Dirac [14,15], this condition is the secondary constraint of our
Hamiltonian formulation of the multi-dimensional Maxwell theory of radiation. The next
Poisson bracket [Bp

,p, H] (or [Bp
,p,H]) equals zero identically, which indicates clearly that the

chain of first-class constraints is closed, and our Hamiltonian formulation does not lead
to any tertiary and/or other constraints of higher order. Briefly, this means the complete
closure (or Dirac closure) of the Hamiltonian procedure for the free electromagnetic field in
multi-dimensional space.

5.1. Further Transformations of the Hamiltonian

The first term in the Hamiltonian of the free electromagnetic field in multi-dimensional
space, Equation (29), includes a number of different terms, but it does not contain any of the
canonical variables. It is difficult to use such a Hamiltonian for the analysis and solution
of actual problems in classical and/or quantum electrodynamics. Therefore, we have to
transform this Hamiltonian to a form that explicitly contains canonical variables in each
term. Then, our newly derived Hamiltonian H and/or the corresponding Hamiltonian
densityH can be applied for the solution of many actual problems. For convenience, below,
we shall deal with the Hamiltonian density H. The partial integration of the first term
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in the Hamiltonian, Equation (29), leads to the following expression for the Hamiltonian
density Equation (30):

H =
(

Fqp
)

q
Ap +

1
2

BpBp − A0Bp
,p =

( ∂2 Ap

∂xq∂xq −
∂2 Aq

∂xq∂xp

)
Ap +

1
2

BpBp − A0Bp
,p, (33)

where p = 1, 2, . . . , n and q = 1, 2, . . . , n. For this Hamiltonian density, we can write the
following system of canonical equations:

dAp

dt
= [Ap,H] =

1
2
(2Bp) = Bp (34)

and

dBp

dt
= [Bp,H] = −

( ∂2 Ap

∂xq∂xq −
∂2 Aq

∂xq∂xp

)
=

∂2 Ap

∂xq∂xq −
∂2 Aq

∂xq∂xp
. (35)

Combining these two equations, one finds

d2 Ap

dt2 =
∂2 Ap

∂xq∂xq −
∂2 Aq

∂xq∂xp
. (36)

Taking into account the gauge condition ∂Aq
∂xq

= 0 (see below), we reduce the last
equation to the form

∂2 Ap

∂t2 −
∂2 Ap

∂xq∂xq = 0, or
∂2A
∂t2 − ∆A = 0, (37)

which is the wave equations written in the (n + 1)-dimensional space-time. The n-dimensional
Laplace operator ∆ in this equation is

∆ =
∂2

∂xq∂xq = gqr ∂2

∂xq∂xr = gqr
∂2

∂xq∂xr
. (38)

Thus, in our Hamiltonian approach, the multi-dimensional wave equation for the free
electromagnetic field is derived as a direct consequence of the canonical Hamilton equations
obtained for this field. Such a derivation of the wave equation for a free electromagnetic field
described here is, probably, the most direct, fast, and logically clear of all known (alternative)
methods. In addition to this, we have rigorously derived the two additional conditions for
the momenta of the free electromagnetic filed: B0 ≈ 0 and Bp

,p ≈ 0. In our Hamiltonian
formulation, these two weak equations are called the primary and secondary constraints,
respectively. It is easy to show that these two constraints are first-class [14]. In the four-
dimensional case, Dirac has suggested [14] that these two constraints are the generators (or
generating functions) for infinitesimal contact transformations which do not change the actual
physical state of the free electromagnetic field; i.e., they are two independent generators
of internal symmetry. Twenty years later, this statement has rigorously been proven by
L. Castellani [16]. All these results are the great and obvious advantages of the Dirac’s
(Hamiltonian) formulation of the Maxwell theory. Now, by using all first-class constraints
that have been derived during the Hamiltonian formulation, one can determine the true
symmetry of any given physical field. For the free electromagnetic field, such a symmetry
group coincides with the Lorentz SO(3, 1)-group. In general, by operating with the first-class
constraints only, it is impossible to restore the so-called hidden (or additional) symmetries of
the free electromagnetic field. For instance, for the free electromagnetic field considered in
three-dimensional space, the complete group of point symmetry is the SO(4, 2)-group, which
has 15 generators [17], while the Lorentz SO(3, 1)-group has only 6 generators. The powerful
method of Bessel–Hagen [17] is based on applications of Noether’s second theorem, which
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is applied to the Lagrangian of the free electromagnetic field. In this short paper, we cannot
discuss all details of this interesting problem.

5.2. First-Class Constraints and Gauge Invariance

In this section, we consider a different symmetry (or invariance) of Maxwell equations
that is directly and closely related to the primary and secondary first-class constraints. This
invariance is the well-known gauge invariance (or symmetry) of the Maxwell equations.
The gauge invariance of three-dimensional Maxwell equations has been studied by many
famous authors, including Heitler [18], Jackson [19,20], Gelfand and Fomin [21], and others
(see, e.g., [22]). Briefly, the gauge invariance means that we can impose some additional
conditions upon the physical fields, or some of their components, and these additional
conditions do not change solutions of the original problem (but they can change equations).
The gauge conditions are often used to simplify the Hamiltonian equations of motion,
either by reducing the total number of variable fields or by vanishing some terms (or
combinations of terms) in these equations. Let us discuss the gauge invariance of the free
electromagnetic field (or “pure radiation field” [18]) by using the two first-class constraints
which we have derived above: B0 ≈ 0 and Bp

,p ≈ 0. By re-writing these two constraints in
terms of the components of the (d + 1)-dimensional vector potential Ā = (ϕ, A) and their
temporal derivatives, one finds

B0 ≈ 0⇒ ∂ϕ

∂t
= 0 and Bp

,p ≈ 0⇒ ∂

∂t

(
divA

)
= 0 (39)

where we gave used the traditional sign of actual equality “=” instead of the weak equality
“≈”, which has been used above in the Dirac’s Hamiltonian approach. The two equalities in
the right-hand side of Equation (39) lead us to the two following equations: ϕ = ϕ(r) and
divA = C(r), where the scalars ϕ(r) and C(r) are the functions of n spatial coordinates only,
and they do not change with time; i.e., they are time-independent scalar functions. It is
clear that these two time-independent scalars are not related in any way to the Hamiltonian
formulation of the Maxwell theory of electromagnetic fields. Indeed, the Hamiltonian
approaches describe only the time-evolution of the Hamiltonian dynamical variables. For
static problems, there are other different methods. Therefore, without loss of generality, we
can assume that these time-independent scalars ϕ(r) and C(r) equal zero identically at all
times.

Based on these arguments, we can write the four following equations for the field
dynamical variables (or Hamiltonian variables):

ϕ = 0,
∂ϕ

∂t
= 0, divA = 0 and

∂

∂t

(
divA

)
= 0, (40)

which can be considered as the four independent “basis vectors”. In general, the set of Ng
gauge conditions ψi is represented as a linear combination of the four basis vectors from
Equation (40):

ψi = αi ϕ + βi
∂ϕ

∂t
+ γi divA + δi

∂

∂t

(
divA

)
= 0, (41)

where i = 1, 2, 3, 4, while αi, βi, γi, and δi are some numerical constants. Let us discuss the
principal question about the number Ng, which is the number of sufficient (or essential)
gauge equations. For the free electromagnetic field, Ng equals two, since exactly this
number of conditions has been found in the Hamiltonian formulation of electrodynamics

developed by Dirac (see above). The two equations ∂ϕ
∂t = 0 and ∂

∂t

(
divA

)
= 0 define the

so-called Dirac gauge, which is discussed above. Formally, for the Dirac gauge, we can
introduce the third gauge condition ϕ = 0 and completely exclude the pair of variables

(ϕ, ∂ϕ
∂t

)
from the list of our dynamical variables. However, this follows not from some

general principle but from the explicit form of Dirac’s Hamiltonian density, Equation (30),
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for the pure radiation field (see above), where the only term that includes the scalar potential
ϕ is written as a product of ϕ (or A0) and secondary constraint Bp

,p. This term equals zero
on the shell of the first-class constraints.

An alternative choice of two gauge equations ∂ϕ
∂t = 0 and divA = 0 corresponds to the

famous Coulomb gauge, which provides the best choice for many three-dimensional QED
problems in atomic and molecular physics. In the Coulomb gauge, the scalar potential
ϕ(= A0) is always a static potential, while the n-dimensional vector potential A is always
transverse. The Coulomb gauge and other gauges discussed here are easily generalized
for n-dimensional spaces. Another choice of the basic gauge equations defines the Lorentz
gauge. Formally, this gauge is defined by one (Fermi’s) equation ∂ϕ

∂t + divA = 0. In
respect to the Dirac theory, this set of gauge conditions is not complete and a second
gauge equation can be added. For instance, one can choose the second condition in the
form ∂ϕ

∂t − divA = 0, which is a relativistic invariant for the electromagnetic wave that
propagates from the present to the past. A different choice of the second equation for
the Lorentz gauge corresponds to the so-called Heitler’s gauge, which is based on the

two equations ∂ϕ
∂t + divA = 0 and ∂

∂t

(
divA

)
= 0 for the free electromagnetic field [18].

The advantage of this useful gauge is obvious: if these equations hold at t = 0, then the
equation ∂ϕ

∂t + divA = 0 is always satisfied. These simple examples of different gauges are
mentioned here only to illustrate the ultimate power of Dirac’s approach, which simplifies
the internal analysis of various gauges.

Let us discuss the general source of gauges which often arise in different field theories;
e.g., in Maxwell theory of radiation, metric gravity, tetrad gravity, etc. Here, we want to
investigate this problem from the Hamiltonian point of view. First, let us assume that we
have imposed all four conditions from Equation (40) on our dynamical variables. What
does this mean for these variables? The first two equations ϕ = 0 and ∂ϕ

∂t = 0 mean that the

variable ϕ and corresponding momentum B0 (or velocity ∂ϕ
∂t ) are not dynamic (Lagrange)

variables of our problem. In other words, we have to exclude these two variables before
the application of our Hamiltonian procedure. The same statement is true for the two

equations divA = 0 and ∂
∂t

(
divA

)
= 0, but divA is not a regular dynamic variable of

the original problem. In reality, the function divA appears in the secondary constraint in
Dirac’s Hamiltonian formulation developed for the pure radiation filed. This function is
a linear combination of the first-order derivatives of covariant components of the multi-
dimensional vector potential A. The Hamiltonian canonical variables do not include any
sum of the space-like derivatives of this potential. Therefore, it is not clear how we can
exclude the scalar divA and its time-derivative from the list of our canonical variables.
However, the main obstacle to the exclusion of the four variables, Equation (40), follows
from the fact that we have only two gauge equations (not four). This means that we cannot
correctly exclude all four variables and have to keep them in our procedure. These “extra”
variables survive our Hamiltonian procedure only in the form of additional equations
for the Hamiltonian dynamical variables. In other words, the gauge conditions are the
integral parts of any Hamiltonian approach developed for an arbitrary physical field. This
is the general principle that explains why different field theories with first-class constraints
always have some number of non-trivial gauge conditions (or equations).

However, this is not the end of the story. Let us look at the constraints in multi-
dimensional electrodynamics from a different point of view. Consider the following
two-parametric (α, β)-family of the Hamiltonian densities:

H(α, β) =
1
4

FpqFpq +
1
2

BpBp − A0Bp
,p +

(
αB0 + βBp

,p

)2
. (42)

where B0 and Bp
,p are the functions of the canonical variables of the problem. At this

moment, we cannot assume that there are some restrictions on these two quantities. In
other words, for now, the B0 and Bp

,p values are not yet constraints.
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In general, to operate with the two-parametric family of Hamiltonian densitiesH(α, β)
in some constructive way, we have to formulate the following variational principle: the
actual (or true) Hamiltonian density coincides with the minimal Hamiltonian density
H(α, β), Equation (42), in respect to possible variations of the two numerical parameters α
and β. This principle immediately leads to the two following weak identities:(

αB0 + βBp
,p

)
B0 ≈ 0 and

(
αB0 + βBp

,p

)
Bp

,p ≈ 0. (43)

One obvious solution of this system gives us the two Dirac’s constraints B0 ≈ 0 and
Bp

,p ≈ 0 which have been derived above. In general, there are other solutions of the system
Equation (43), and one of them can be written in the form

α1B0 + β1Bp
,p ≈ 0 and α2B0 + β2Bp

,p ≈ 0. (44)

where the coefficients α1, β1, α2 and β2 form a regular (i.e., invertible) 2× 2 matrix. The
principle formulated above is called the optimal principle for the constrained motions,
since in actual physical systems, the motion along first-class constraints is optimal, or it can
be considered as optimal.

6. Multi-Dimensional Maxwell Equations in Non-Flat Spaces

The Maxwell equations can be written in the covariant form, which is more appropriate
in applications to the metric gravity (or general relativity) in multi-dimensional Riemannian
spaces. In this and the next sections, we deal with the multi-dimensional Riemannian spaces
only. These spaces are not flat, and they are often called the spaces of non-zero curvature.
Indeed, the corresponding equations, Equations (17) and (19), for the flat multi-dimensional
spaces have already been written in the tensor (or covariant) form. Furthermore, the
electromagnetic field tensor Fαβ, which has been defined by Equation (8), is truly skew-
symmetric with respect to permutations of its indexes; i.e., Fαβ = −Fβα and Fαβ = −Fβα.
These two facts simplify the process of derivation of the Maxwell equations in the covariant
form. In fact, to derive the covariant form of Maxwell equations, one needs to replace all
usual derivatives written in Cartesian coordinates by the tensor derivatives. After such a
replacement, the first group of Maxwell equations in multi-dimensional Riemannian spaces
takes the form

∇βFγλ +∇λFβγ +∇γFλβ = 0 (or ∇βFγλ = ∇γFβλ −∇λFβγ), (45)

where ∇β is the tensor (or covariant) derivative; i.e.,

∇βFγλ =
∂Fγλ

∂xβ
− Γµ

γβFµλ − Γµ
λβFγµ (46)

where Γγ
αβ = 1

2

(
∂gγβ

∂xα +
∂gαγ

∂xγ −
∂gαβ

∂xγ

)
= Γγ

βα are the Cristoffel symbols of the second kind.
It is interesting to note that the form of Equation (45) does not depend explicitly upon
the parameter n, which defines the dimension of Riemann space. By performing a few
simple transformations, we can reduce the formula, Equation (46), to a form that exactly
coincides with Equation (17). This has been noticed in many textbooks on three-dimensional
electrodynamics (see, e.g., [5]).

The second group of Maxwell equations for multi-dimensional spaces of non-zero
curvature is written in the form (in Gauss units)

∇βFαβ =
1√−g

(
∂
√−gFαβ

)
∂xβ

= − nπ

(
n
2

)
cΓ
(

1 + n
2

) jα = − f (n)
c

jα, (47)
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since the tensor Fαβ is antisymmetric. In this equation, g is the determinant of the funda-
mental tensor, which is always negative in the metric gravity. By applying the operator ∇α

to the last formula, one finds

∇α∇βFαβ = − f (n)
c
∇α jα =⇒ − f (n)

c
∇β jβ = ∇β∇αFβα = −∇β∇αFαβ. (48)

In other words, the expression on the left-hand side of these equations can be re-written
in the following form:

1
2

(
∇α∇β +∇β∇α

)
Fαβ. (49)

which equals zero identically, since here the truly symmetric tensor operator (upon α↔ β
permutation) is applied to an antisymmetric tensor (upon the same permutations). Finally,
one finds that ∇α jα = 0; i.e., the conservation law for electric charge written in the (n + 1)-
dimensional Riemannian space.

In many books and textbooks, the electrodynamic derivation of Maxwell equations
in the manifestly covariant form is traditionally considered as the final step. A similar
approach, however, ignores an additional group of governing equations that is obeyed for
the electromagnetic field in the presence of actual gravitational fields. These additional
equations determine the general properties, time evolution, and propagation of electromag-
netic fields in the metric gravitational fields. The explicit derivation of these additional
governing equations for the electromagnetic field tensor is straightforward. Indeed, if
the electromagnetic field tensor Fαβ is considered in the metric gravity, then the following
equations must be obeyed:

∇λ∇σFβ
α −∇σ∇λFβ

α = Fµ
α Rβ

σλµ − Fβ
µ Rµ

σλα, (50)

or in a slightly different form:

∇λ∇σFαβ −∇σ∇λFαβ = −FµβRµ
σλα − FαµRµ

σλβ = FαµRµ
λσβ + FµβRµ

λσα, (51)

where the notation Rσ
αβγ = gσµRαβγµ is the Riemann-.Cristoffel tensor of the fourth rank,

which is three times covariant and once contravariant (see, e.g., [6,7]). In turn, the Rαβγσ is
the Riemann curvature tensor (or Riemann–Cristoffel tensor):

Rαβγσ =
1
2

[ ∂2gασ

∂xβ∂xγ
+

∂2gβγ

∂xα∂xσ
−

∂2gαγ

∂xβ∂xσ
−

∂2gβσ

∂xα∂xγ

]
+ Γρ,ασΓρ

βγ − Γρ,βσΓρ
αγ , (52)

where Γγ,µν = 1
2

(
∂gγα

∂xβ +
∂gγβ

∂xα −
∂gαβ

∂xγ

)
are the Cristoffel symbols of the first kind. The

Riemann–Cristoffel tensor defined in Equation (52) is a covariant tensor of the fourth rank.
Note that similar problems have been extensively studied since the 1920s in numerous
papers and books on General Relativity (see, e.g., [23,24] and references therein). As follows
from these equations, Equations (50) and (51), the propagation and other properties of the
“free” electromagnetic fields in multi-dimensional spaces of non-zero curvature (or in non-
flat spaces) are always affected by the gravitational fields. For relatively small gravitational
fields, Equations (50) and (51) can be considered as small perturbations to the Maxwell

equations. However, in strong gravitational fields, where some of the | ∂gαβ

∂xγ | derivatives are
very large, the laws of propagation and other properties of the electromagnetic fields can
significantly be changed by the gravity. Briefly, we can say say that in similar non-flat spaces,
the actual properties of electromagnetic fields cannot be described by the Maxwell equations
only. Furthermore, in more complex “combined” theories of gravity and radiation—e.g.,
in the well known Born–Infeld theory (see, e.g., [25])—the total fundamental tensor is
represented as a function—e.g., as a sum—of the gravitational gαβ and electromagnetic Fαβ
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tensors, while the time-evolution and propagation of electromagnetic fields is described by
the non-linear, well-coupled equations.

6.1. Multi-Dimensional Electromagnetic Field in Metric Gravity

Now, we are ready to vary the sum of action integrals for the gravitational Sg and
electromagnetic S f fields; i.e., to vary the δ(Sg + S f ) action. The both fields are considered
as free; i.e., there are no masses, no free electric charges and no electric currents in the
area of our interest. Our goal in this section is to derive (variationally) the governing
Einstein equations (in multi-dimensions) in the presence of electromagnetic fields. To
achieve this goal, we have to vary the gravitational field only; i.e., the components of the
metric tensor gαβ (or gαβ). The variation of the gravitational action Sg is written in the form
(see, e.g., [5,24]):

δSg = − c
f (n)K

∫ (
Rαβ −

1
2

gαβR
)

δgαβ
√
−gdΩ, (53)

where Rαβ is the Ricci tensor. In older works [6], authors used the the Einstein tensor, which
is Gαβ = −Rαβ. The explicit form of the Ricci tensor is

Rαβ =
∂Γγ

αβ

∂xγ
−

∂Γγ
αγ

∂xβ
+ Γγ

αβΓλ
γλ − Γλ

αγΓγ
βλ, or Rαβ = gµνRµαβν = gνµRνβαµ = Rβα (54)

and R = gαβRαβ is the scalar (or Gauss) curvature of space. In addition, in this equation,
the notation K = k

c2 = 7.4259155× 10−29 cm · s−1 denotes the universal (or n-independent)
gravitational constant. A similar variation of the electromagnetic action S f is

δS f =
2
c

∫
Tαβδgαβ

√
−gdΩ =

2
c f (n)

∫ (
FαγFγ

β +
1
4

gαβFγρFγρ
)

δgαβ
√
−gdΩ. (55)

Therefore, for the variation of the sum of these two actions, we can write

δ(Sg + S f ) =
c

f (n)K

∫ (
−Rαβ +

1
2

gαβR +
2 f (n)K

c2 Tαβ

)
δgαβ

√
−gdΩ. (56)

Since variations of the gravitational field are arbitrary, then from this equation, one
finds

Rαβ −
1
2

gαβR =
2K
c2

(
FαγFγ

β +
1
4

gαβFγρFγρ
)
=

2K
c2 T̃αβ, (57)

where T̃αβ = FαγFγ
β + 1

4 gαβFγρFγρ is the reduced (or universal) energy–momentum tensor
of the electromagnetic field, which does not include the hyper-angular f (n) factor. The
last equation, Equation (57), is the well known Einstein equation for the gravitational
and electromagnetic field. This equation is a true tensor equation, since both parts of this
equation do not include the geometrical (or hyper-angular) factor f (n). In other words, by
looking at this equation, one cannot say what the actual dimension of our working space
is. For this reason, Flanders [11] and others have criticized classical tensor analysis: “In
classical tensor analysis, one never knows what the range of applicability is simply because
one is never told what the space is”. However, for the purposes of this study, this fact
is an obvious advantage. Any of the true tensor equations that appear in fundamental
physics cannot include factors that explicitly depend upon the dimension n (or n + 1)
of the working Riemann space. Moreover, this is a simple criterion that can be used to
separate the true (also universal, or absolute) tensor equations from similar tensor-like
equations that can be correct only for some selected Riemannian spaces. As follows from
the arguments presented above, both Einstein equations of the metric gravity for the free



Universe 2022, 8, 20 17 of 21

gravitational field, when T̃αβ = 0 in Equation (57), and Einstein equations of metric gravity
in the presence of electromagnetic field, Equation (57), are the true tensor equations.

6.2. Radiation from a Rapidly Moving Electric Charge

As is well known (see, e.g., [5,19]), any electric charge that accelerates in the electro-
magnetic field always emits EM radiation. Nowadays, this statement is repeated so often
that a large number of students and researchers sincerely believe that EM radiation can only
be emitted in the presence of an electromagnetic field. In general, this is not an absolute
truth, and the emission of EM radiation is also possible in the presence of a strong (or rapidly
varying) gravitational field. Below, we want to prove this statement and, for simplicity, here
we restrict our analysis to the three-dimensional space only. However, all our formulas are
written in the explicitly covariant form. This means that all these formulas can be generalized
to describe the actual situation in multi-dimensional spaces as well. In General Relativity, the
formula for the radiated four-momentum dPκ is written in the form (see, e.g., [5]):

dPκ = −2e2

3c
gαµ

(d2xα

ds2

)(d2xµ

ds2

)
dxκ = −2e2

3c
gαµ

(duα

ds

)(duµ

ds

)
uκds, (58)

where uβ = dxβ

ds is the corresponding “velocity”. Now, by taking the expression for the
acceleration from Equation (10), one finds

dPκ = −2e2

3c
gαµ

(
Γα

βγuβuγ − e
mc2 Fα

β uβ
)(

Γµ
λσuλuσ − e

mc2 Fµ
σ uσ

)
uκds = −2e2

3c
×(

gαµΓα
βγΓµ

λσuβuγuλuσuκ − 2e
mc2 gαµΓα

βγFµ
σ uβuγuσuκ +

e2

m2c4 gαµFα
β Fµ

σ uβuσuκ
)

(59)

= Tκ
2 + Tκ

2 + Tκ
3 = −2e2

3c
Γα

βγΓα,λσuβuγuλuσuκ +
4e3

3mc3 Γα
βγFασuβuγuσuκ

− 2e4

3m2c5 Fα
β Fασuβuσuκ ,

where the last term (vector) Tκ
3 = − 2e4

3m2c5 Fα
β Fασuβuσuκ . This term describes the emission of

EM radiation by a single electrical charge that is rapidly moving in some electromagnetic
field. This was extensively discussed in numerous books on classical electrodynamics
(see, e.g., [5,19]), and we do not want to repeat these discussions below. The first term in
Equation (59) Tκ

1 = − 2e2

3c Γα
βγΓα,λσuβuγuλuσuκ is also a vector. This vector represents the

emission of EM radiation by a point electric charge that rapidly moves in the gravitational
field. The second term (vector) in Equation (59) describes the interference between gravita-
tional and electromagnetic emissions of the EM field. The explicit formula for this term is
Tκ

2 = 4e3

3mc3 Γα
βγFασuβuγuσuκ .

There are a number of interesting observations that directly follow from the three for-
mulas for the Tκ

1 , Tκ
2 , and Tκ

3 terms in Equation (59). First, let us note that the Tκ
1 term does

not contain any particle mass. This means that one fast electron and/or one fast proton,
which move with the equal velocities in a pure gravitational field, will always emit an equal
amount of radiation. This the main distinguishing feature of the gravitation emission of
EM radiation. Second, this term is a fifth-order power function of the velocities. Therefore,
it is clear that overall contribution of this term will rapidly increase for relativistic particles
that move with velocities close to the speed of light in a vacuum c. It is also clear that
usually in Equation (59), the third term Tκ

3 is substantially larger than two other terms.
In other words, the gravitational emission of EM radiation is hard to observe at “normal”
gravitational conditions. However, in strong gravitational fields, where the absolute values

of Cristoffel symbols are very large (or the | ∂gαβ

∂xγ | derivatives are very large), the situation
can be different. The second condition is simple: the rapidly moving particle must be truly
relativistic; i.e., it must move with a velocity which is close to the speed of light v ≥ 0.9 c
with respect to the system where the rapidly changing gravitational field originated. If these
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two conditions are obeyed, then one can see a relatively intense gravitational EM radiation
which is emitted by a single relativistic particle which has non-zero electric charge e.

7. Conclusions

We have generalized the three-dimensional Maxwell theory of radiation to multi-
dimensional flat and curved spaces. Some equations derived in three-dimensional Maxwell
electrodynamics do not change their form in multi-dimensional space. In other equations,
we have to make a number of changes. In fact, all properties of the electromagnetic field
are described by the (n + 1)-dimensional vector potential Ā = (φ, A), while the interaction
between any particle and electromagnetic field is described by one experimental parameter,
which is the electric charge e of this particle. The governing Maxwell equations for the multi-
dimensional electromagnetic field have been derived and written in the covariant (or tensor)

form. These equations include the geometrical (or hyper-angular) factor f (n) = nπ
n
2

Γ
(

1+ n
2

) ,

which explicitly depend upon the dimension of space n.
The Hamiltonian formulation of the Maxwell radiation field in multi-dimensional

spaces is developed and investigated. We have found that the total number of first-class
constraints in this Hamiltonian formulation equals two (one primary and one secondary
constraints). This number exactly coincides with the number of first-class constraints in the
analogous Hamiltonian formulation developed earlier by Dirac [14] for the pure radiation
field in three-dimensional space. In other words, the total number of first-class constraints
in any Hamiltonian formulation developed for the free radiation field does not depend
upon the dimension of space n. To understand how lucky we are with the Hamiltonian
formulations of electrodynamics, let us note that in the (n + 1)-dimensional metric gravity,
we always have (n + 1) primary and (n + 1) secondary first-class constraints. In addition
to this, in many sets of canonical variables, the explicit form of all arising secondary
constraints are very cumbersome (see, e.g., [26–29]), and this substantially complicates all
operations with these values. By using these primary and secondary first-class constraints,
we have investigated the gauge conditions in multi-dimensional electrodynamics.

In addition, in the last section, the Maxwell equations in multi-dimensional non-flat
spaces are written in the manifestly covariant form. It is shown that any gravitation field
changes the actual properties, time-evolution and space-time propagation of electromag-
netic fields. For gravitation fields with large and very large connectivity coefficients Γα

βγ,
the “pure” radiation field cannot be described by the Maxwell equations only. Additional
equations for the antisymmetric tensor of the electromagnetic field Fαβ (and Fβ

α ) have been
derived in this study (see Equations (50) and (51)). An analogous equation for the reduced
energy-momentum tensor of electromagnetic field is now written in the true tensor form
(see Equation (57)), which does not contain any n-dependent factor.

In conclusion, we wish to note that the investigation of multi-dimensional Maxwell
equations is not a purely academic problem. In fact, there are a number of advantages
that one can gain by performing such an investigation. First, it helps to clarify additional
and interesting features of Maxwell’s equations in the usual three-dimensional space (or
in four-dimensional space-time). By working only with the three-dimensional Maxwell
equations in our everyday life, we simply do not pay attention to some fundamental
and amazing facts. Second, if we have a complete and correct formulation for Maxwell’s
electrodynamics in multi-dimensional spaces, then it possible to develop the so-called
unified theories of various fields, which include the electromagnetic field. In particular, the
correct unified theory of the gravitational and electromagnetic fields in multi-dimensional
spaces is of great interest in modern theoretical physics. Third, in experiments in high-
energy physics, it has recently been noted that at very high collision energies, many results
can be represented to very good numerical accuracy and with higher symmetry if we
introduce multi-dimensional spaces at the intermediate stages of calculations. This fact
is not completely unexpected, but we need to understand the internal nature of such a
phenomenon. If multi-dimensional spaces do play a significant role during such processes,
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then this can change a great deal in modern physics and natural philosophy. Note that some
of the problems mentioned in this study have been considered earlier (see, e.g., [30–33]).
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Appendix A. Scalar Electrodynamics

In this study, our analysis of electrodynamics in multi-dimensional spaces was re-
stricted to spaces which have geometrical dimension n ≥ 3. For the sake of completeness,
we now want to consider the one and two-dimensional spaces. To investigate these small-
dimensional cases, we shall apply one effective method which is based on the so-called
scalar electrodynamics. This “pre-Maxwell” method was described and briefly discussed
in [4]. Scalar electrodynamics can be introduced in three-dimensional space, where one can
compare the arising equations with the usual Maxwell equations. The foundation of scalar
electrodynamics is the well-known theorem from vector calculus (see, e.g., [6]) which states
that an arbitrary vector B in three-dimensional space can be represented in the following
two− gradient form:

B = Ψ1∇Ψ2 +∇Ψ3, (A1)

where Ψ1, Ψ2, and Ψ3 are three arbitrary analytical functions of three spatial coordinates
and one temporal coordinate. In general, each of these functions can be real or complex.
This formula can directly be applied to the vector potential of the electromagnetic field A.
The four-dimensional vector potential (ϕ, A) and intensities of electric E and magnetic H
field are also represented in terms of the four Ψ1, Ψ2, Ψ3, and ϕ scalar functions. For two
and one-dimensional (geometrical) spaces, the total numbers of such scalar functions equal
three and two, respectively.

To derive the explicit expressions and obtain the governing equations of electrody-
namics, one needs to use the two following formulas which play a central role in scalar
electrodynamics:

curlA = ∇Ψ1 ×∇Ψ2 and divA = Ψ1∆Ψ2 +∇Ψ1 · ∇Ψ2 + ∆Ψ3 (A2)

As follows from Equation (A2), in scalar electrodynamics, there are a number of
advantages to choose some of the Ψ1, Ψ2 and Ψ3 functions (where it is possible) as harmonic
functions for which ∆Ψk = 0, where k = 1, 2, 3. Such a choice of functions reduces the
total number of terms in Maxwell equations and gauge conditions. In turn, this simplifies
the analysis and solutions of many problems in scalar electrodynamics. In fact, in three-
dimensional spaces, the scalar electrodynamics cannot compete with the traditional vector
approach. The main reason is obvious, since the regular Maxwell equations are linear for
all components of the electromagnetic field. However, some selected three-dimensional
problems can be solved (completely and accurately) if we apply the method of scalar
electrodynamics.

The equation for two-dimensional spaces, Equation (A1), takes the form A = Ψ1∇Ψ2,
since in this case we can assume that Ψ3 = 0. The equality A · curlA = 0 is a necessary and
sufficient condition to represent the vector A in such a form [6] (it does obey in this case).
This leads to the following equations:

H = curlA = ∇Ψ1 ×∇Ψ2 and divA = Ψ1∆Ψ2 +∇Ψ1 · ∇Ψ2. (A3)
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We also need the explicit expression for the curlH

curlH = ∇Ψ1∆Ψ2 −∇Ψ2∆Ψ1 + (∇Ψ1 · ∇)Ψ2 − (∇Ψ2 · ∇)Ψ1 = ∇Ψ1∆Ψ2 −∇Ψ2∆Ψ1

One should also note that if Ψ2 is chosen as a harmonic function—i.e., ∆Ψ2 = 0,
and ∇Ψ1 ⊥ ∇Ψ2—then the gauge condition is obeyed automatically, and solutions of
a large number of problems known in two-dimensional electrodynamics are simplified
significantly. In general, it can be shown that the both two-dimensional electrodynamics
and two-dimensional electrostatics include a number of operations with the harmonic
functions (see, e.g., [34–36]. In turn, this leads to numerous successful applications of
conformal mapping methods to describe the two-dimensional electromagnetic waves and
determine solutions of numerous problems in two-dimensional electrostatics.

In the equation for the one-dimensional case, Equation (A1), one finds A = ∇Ψ2 =
∇Ψ. Therefore, the curl of the vector potential equals zero identically. This means that
there is no classical magnetic field in one-dimensional space. Moreover, any time-variations
of the electric field cannot generate any magnetic field; i.e., we have no Faraday’s law in
one-dimensional (geometrical) space. In other words, the one-dimensional electrodynamics
does not exist. On the other hand, many one-dimensional electrostatic problems that
include the potential and intensity of the electric field only can still be formulated and
solved correctly.
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