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Abstract: We analyze the Hamiltonian equivalence between Jordan and Einstein frames considering
a mini-superspace model of the flat Friedmann–Lemaître–Robertson–Walker (FLRW) Universe in
the Brans–Dicke theory. Hamiltonian equations of motion are derived in the Jordan, Einstein,
and anti-gravity (or anti-Newtonian) frames. We show that, when applying the Weyl (conformal)
transformations to the equations of motion in the Einstein frame, we did not obtain the equations of
motion in the Jordan frame. Vice-versa, we re-obtain the equations of motion in the Jordan frame by
applying the anti-gravity inverse transformation to the equations of motion in the anti-gravity frame.

Keywords: Jordan–Einstein frame; Hamiltonian formalism; Brans–Dicke theory; Dirac’s constraint
theory; canonical transformations; quantum gravity

1. Introduction

The Brans–Dicke theory [1] is a special case of scalar-tensor theory [2]:

S =
∫

M
d4x
√
−g
(

φ 4R− ω

φ
gµν∂µφ∂νφ−U(φ)

)
+ 2

∫
∂M

d3x
√

hφK . (1)

The equations of motion for the metric tensor gµν are:

Rµν −
1
2

gµνR =
ω

φ2

[
∂µφ∂νφ− 1

2
gµνgαβ∂αφ∂βφ)

]
+

+
1
φ

[
∇µ∇νφ− gµν�φ− 1

2
gµνU(φ)

]
, (2)

whereas the equation of motion for φ is:

(3 + 2ω)�φ = φ
dU
dφ
− 2U(φ) . (3)

In two papers [3,4], we have studied in detail the Hamiltonian theory related to the
action (1), where we focused on the issue of canonical transformations. Here, we remind
that a transformation (Qi(q, p), Pi(q, p)) between two sets of variables (qi, pi) and (Qi, Pi)
is canonical if the “symplectic two form ”ω = dqi ∧ dpi is invariant; that is, ω = dQi ∧ dPi.
This is equivalent to stating that the Poisson brackets fulfill the following conditions:

{Qi(q, p), Pj(q, p)}q,p = δi
j , (4)

{Qi(q, p), Qj(q, p)}q,p = {Pi(q, p), Pj(q, p)}q,p = 0 .
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This implies that the equations of motion are: Q̇i =
{

Qi, H
}

and Ṗi = {Pi, H}, where
H(Qi, Pi) is the Hamiltonian function transformed in the new set of canonical variables
(Qi(q, p), Pi(q, p)) [5].

We have introduced Jordan and Einstein frames [2,6,7] that are defined starting from
the Brans–Dicke theory and the Hamiltonian transformations between the two frames, both
for the case of ω 6= − 3

2 and ω = − 3
2 [8]. We have found that these transformations are

not Hamiltonian canonical transformations. Hamiltonian canonical transformations exist;
they are the anti-gravity or anti-Newtonian transformations [9–12], but they are not Weyl
(conformal) transformations of the metric tensor. Therefore, the solutions of the equations
of motion in one frame are not necessarily the solutions of the equations of motion in the
other frame. Here, we show this in an even clearer way by considering, in the Brans–Dicke
theory, a flat FLRW minisuperspace model. We will study both the cases of ω 6= − 3

2 and
ω = − 3

2 . For each case, we derive the Hamiltonian functions and the equations of motion in
the Jordan frame and in the Einstein frame. We apply the transformations from the Jordan
to the Einstein frames on the equations of motion; that is, we apply the transformations
on the equations of motion in the Einstein frame to go back to the Jordan frame. We see
that we do not obtain the original equations of motion in the Jordan frame, which means
that the transformations from the Jordan frame to the Einstein frame are not canonical
transformations. We notice that only if we employ the anti-gravity (or anti-Newtonian)
transformations that the previous procedure reproduces, in the Jordan frame, do we derive
the same equations of motion as those from the original Hamiltonian.

We consider the high symmetrical case of the flat FLRW universe with spatial curvature
k = 0:

ds2 = −N2(t)dt2 + a2(t)dx3. (5)

We derive the Lagrangian function L of this mini-superspace model by substituting
this metric in the action (1) (cf. [13]):

L = −6aȧ2

N
φ− 6a2 ȧ

N
φ̇ +

ωa3

Nφ
(φ̇)2 − Na3U(φ) . (6)

The “configuration”variables are: the lapse N = N(t), the scale factor of the universe
a(t) of the FLRW metric, and the field φ = φ(t), which now depends only on time t for
symmetry reasons.

We have organized this essay in four sections. Section 2 deals with the Dirac’s con-
straint analysis in the Jordan frame for ω 6= − 3

2 and ω = − 3
2 . The anti-gravity (or

anti-Newtonian) transformations are introduced in Section 3. The Hamiltonian transforma-
tions from the Jordan frame to the Einstein frame are discussed in Section 4. Section 5 ends
with conclusions.

2. Constraint Analysis and Equations of Motion in the Jordan Frame

Given the mini-superspace Lagrangian L (6), we can define the ADM Hamiltonian [14]
HADM, as has been extensively shown in [3,4]. We start with the definition of the canonical
momenta [15–17]:

πN ≡ ∂L
∂Ṅ
≈ 0 , (7)

πa ≡ ∂L
∂ȧ

= − 12aȧ
N(t)

φ(t)− 6a2

N(t)
φ̇(t) , (8)

πφ ≡ ∂L
∂φ̇

= − 6a2 ȧ
N(t)

+
2ωa3

Nφ(t)
φ̇(t) . (9)
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The determinant of the Hessian matrix ∂2L
∂q̇i∂q̇j has a zero due to definition of the

momentum πN conjugated to N. It can have another zero for ω = − 3
2 , as it is easy to check

if we compute the determinant of the sub-Hessian matrix associated to the variable ȧ and φ̇:

det(ȧφ̇)

∣∣∣∣ ∂2L
∂q̇i∂q̇j

∣∣∣∣ = −12(2ω + 3)a4

N2 . (10)

Therefore, we discuss the two cases of ω 6= −3/2 and ω = −3/2 separately.

2.1. ω 6= −3/2 Case

The canonical Hamiltonian is:

HC ≡ pi q̇i −L = N
[
− ωπ2

a
12aφ(2ω + 3)

−
πaπφ

2a2(2ω + 3)
+

φπ2
φ

2a3(2ω + 3)
+ a3U(φ)

]
, (11)

the Hamiltonian constraint H is the quantity under square brackets.
We introduce an effective Hamiltonian defined as:

HE ≡ NH + λNπN (12)

where λN(qi, pi) is a Lagrange multiplier. In order to preserve the primary constraint
πN ≈ 0, we require:

π̇N = {πN , HE} = −H ≈ 0 (13)

and obtain a secondary constraint, which is the usual Hamiltonian constraint H.
This constraint is preserved since:

Ḣ = {H, HE} ≈ 0 . (14)

One can easily see that the two constraints πN ≈ 0 and H ≈ 0 are first class, since
{πN , H} = 0.

The total Hamiltonian is:

HT ≡ HE + λH H = NH + λNπN + λH H (15)

since λH and N are two arbitrary multipliers, we can write this in a more simple way:

HT = NH + λNπN = HE (16)

We found, in this ω 6= −3/2 case, a primary constraint (πN ≈ 0) and a secondary
constraint (H ≈ 0); they are both first class constraints, since {πN , H} = 0.

The equations of motion, q̇i =
{

qi, HT
}

and ṗi = {pi, HT}, in the Jordan frame for
ω 6= −3/2 are:

Ṅ ≈ λN , (17)

π̇N = −H ≈ 0 , (18)

ȧ ≈ − N
2a(2ω + 3)

(
ωπa

3φ
+

πφ

a

)
, (19)

π̇a ≈ −
N

2a2(2ω + 3)

(
ωπ2

a
6φ

+
2πaπφ

a
−

3φπ2
φ

a2

)
− 3Na2U(φ) , (20)

φ̇ ≈ N
2a2(2ω + 3)

(
−πa +

2φπφ

a

)
, (21)

π̇φ ≈ −
N

2a(2ω + 3)

(
ωπ2

a
6φ2 +

π2
φ

a2

)
− Na3 dU

dφ
(22)
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2.2. ω = −3/2 Case

Note that, in this case, the determinant (10) vanishes. The two definitions for πa and
πφ are not independent; therefore, there is an additionally primary constraint:

Cφ ≡
1
2

aπa − φπφ . (23)

The canonical Hamiltonian is:

H(−3/2)
C ≡ pi q̇i −L = N

[
− π2

a
24aφ

+ a3U(φ)

]
. (24)

the Hamiltonian constraint H(−3/2) is the quantity under square brackets. We use the
superscript · · ·(−3/2) in order to emphasize when a quantity is evaluated in the case of
ω = − 3

2 ; see also, [4,11,18]. We introduce an effective Hamiltonian defined as:

H(−3/2)
E ≡ NH(−3/2) + λNπN + λφCφ , (25)

where λN(qi, pi) and λφ are Lagrange multipliers.
In order to preserve the primary constraints πN ≈ 0 and Cφ ≈ 0, we require:

π̇N =
{

πN , H(−3/2)
E

}
= −H(−3/2) ≈ 0 , (26)

Ċφ =
{

Cφ, H(−3/2)
E

}
= −N

[
π2

a
48aφ

− φa3 dU(φ)

dφ
+

3
2

a3U(φ)

]
=

N
2

[
− π2

a
24aφ

+ a3U(φ)

]
=

1
2

NH(−3/2) ≈ 0 , (27)

where we have used the condition φ
dU(φ)

dφ = 2U(φ); see Equation (3) for ω = − 3
2 . The

Hamiltonian constraint H(−3/2) is easily preserved:

Ḣ(−3/2) =
{

H(−3/2), H(−3/2)
E

}
≈ 0 . (28)

this closes the constraint analysis and there are no further constraints. Employing all
previous calculations, it is quite evident that:{

πN , H(−3/2)
}
= 0 ,

{
πN , Cφ

}
= 0 ,

{
Cφ, H(−3/2)

}
=

1
2

H(−3/2) ≈ 0 , (29)

therefore, all constraints are first class.
The total Hamiltonian is:

H(−3/2)
T ≡ H(−3/2)

E + λH H(−3/2) = NH(−3/2) + λNπN + λφCφ + λH H(−3/2) (30)

since λH and N are two arbitrary multipliers, we can write this in a more simple way:

H(−3/2)
T = NH(−3/2) + λNπN + λφCφ = H(−3/2)

E (31)
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The equations of motion in the Jordan frame for ω = −3/2 are:

Ṅ ≈ λN , (32)

π̇N = −H(−3/2) ≈ 0 (33)

ȧ ≈ − Nπa

12aφ
+

λφa
2

, (34)

π̇a ≈ −
Nπ2

a
24φa2 − 3Na2U(φ)−

λφπa

2
, (35)

φ̇ ≈ −λφφ , (36)

π̇φ ≈ −N
π2

a
24aφ2 − Na3 dU

dφ
+ λφπφ = −N

π2
a

24aφ2 −
2Na3U

φ
+ λφπφ . (37)

in the last equation, we have used the condition φ
dU(φ)

dφ = 2U(φ); see Equation (3) for

ω = − 3
2 .

3. Anti-Gravity Transformations

Following [3,4,9–12], we consider the following anti-gravity (or anti-Newtonian)
transformations:

Ñ∗ = N ; π̃∗N = πN ; ã = (16πGφ)
1
2 a;

π̃a =
πa

(16πGφ)
1
2

; φ̃ = φ; π̃φ =
1
φ
(φπφ −

1
2

aπa), (38)

These transformations correspond to conformal transformations implemented only on
the spatial metric (gij 7→ λ2gij). For large values of λ, these transformations emulate a large
Newton constant and also enhance spacelike distances compared to timelike ones [9].

One can easily verify that, applying the definition (4), this set of transformations
is canonical: {

Ñ∗, π̃∗N

}
= {ã, π̃a} =

{
φ̃, π̃φ

}
= 1 (39)

and all of the other Poisson brackets vanish.
If we apply these transformations to the Lagrangian (6), we obtain:

L̃ = − 1

Ñ∗(16πGφ̃)
3
2

6ã ˙̃a2
φ̃− (2ω + 3)ã3 ˙̃φ

2

2φ̃

− (16πGφ̃)
1
2 Ñ∗ ã3V(φ̃) (40)

where we have introduced:

V(φ̃) ≡ U(φ̃)

(16πGφ)2 . (41)

3.1. ω 6= −3/2 Case

In the case of ω 6= −3/2, the canonical Hamiltonian is:

H̃∗C = Ñ∗ ã3

(16πGφ̃)
3
2

[
− π̃2

a 2πG(16πGφ̃)2

3ã4 +
π̃2

φφ̃28πG(16πGφ̃)2

(2ω+3)ã6 + U(φ̃)

]
= Ñ∗ ã3(16πGφ̃)

1
2

[
− 2πGπ̃2

a
3ã4 +

8πGπ̃2
φφ̃2

(2ω+3)ã6 + V(φ̃)

]
.

(42)

In a similar way, as discussed before, we recognize that the the total Hamiltonian
now is:

H̃∗T = Ñ∗H̃∗ + λ̃∗Nπ̃∗N (43)
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where the new Hamiltonian constraint is:

H̃∗ ≡ ã3(16πGφ̃)
1
2

[
− (2πG)π̃2

a
3ã4 +

(8πG)π̃2
φφ̃2

(2ω + 3)ã6 + V(φ̃)

]
(44)

Therefore, the equations of motion in the anti-gravity frame for ω 6= −3/2 are:

˙̃N
∗
≈ λ̃∗N , (45)

˙̃πN = −H̃∗ ≈ 0 , (46)

˙̃a ≈ −Ñ∗(16πGφ̃)
1
2

4πGπ̃a

3ã
, (47)

˙̃πa ≈ Ñ∗(16πGφ̃)
1
2

[
− (2πG)π̃2

a
3ã2 +

3(8πG)π̃2
φφ̃2

(2ω + 3)ã4 − 3ã2V(φ̃)

]
, (48)

˙̃φ ≈ Ñ∗(16πGφ̃)
1
2
(16πGφ̃)π̃φφ̃2

(2ω + 3)ã3 , (49)

˙̃πφ ≈ Ñ∗(16πGφ̃)
1
2

[
πGπ̃2

a

3ãφ̃
−

20πGπ̃2
φφ̃

(2ω + 3)ã3 −
ã3

2φ̃
V(φ̃)− ã3 dV(φ̃)

dφ̃

]
(50)

Once we apply the inverse anti-gravity transformations, defined in Equation (38), we
pass from one set of equations of motion, Equations (45)–(50), to the other, Equations (17)–(22).
This straightforwardly verifies that the anti-gravity transformations are canonical.

3.2. ω = −3/2 Case

In the ω = −3/2 case, if we apply the anti-gravity transformations to the canonical
Hamiltonian (24), we obtain:

H̃∗(−3/2)
C =

Ñ∗ ã3

(16πGφ̃)
3
2

[
− π̃2

a2πG(16πGφ̃)2

3ã4 + U(φ̃)

]
= Ñ∗ ã3(16πGφ̃)

1
2

[
−2πGπ̃2

a
3ã4 + V(φ̃)

]
. (51)

where we have used the definition of V(φ̃); see Equation (41).
Looking at the transformed Lagrangian defined in Equation (40) for ω = −3/2, it is

clear that the extra primary constraint is now π̃φ ≈ 0. Since we have introduced, according
to the common definition in literature [8,18], Cφ ≡ 1

2 aπa − φπφ—see Equation (23)—we
have:

π̃φ =
1
φ
(φπφ −

1
2

aπa) = −
Cφ

φ
≈ 0 (52)

where we have used the anti-gravity transformations (38). Therefore the primary constraint
Cφ ≈ 0 maps into C̃φ ≡ −φ̃π̃φ ≈ 0. The other primary constraint πN ≈ 0 by the anti-gravity
transformations maps into π̃N ≈ 0.

The total Hamiltonian H̃∗(−3/2)
T is:

H̃∗(−3/2)
T = Ñ∗H̃∗(−3/2) + λ̃∗Nπ̃∗N + λφC̃φ (53)
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The equations of motion in the anti-gravity frame for ω = −3/2 are:

˙̃N
∗
≈ λ̃∗N , ˙̃πN = −H̃∗(−3/2) ≈ 0 , (54)

˙̃a ≈ −Ñ∗(16πGφ̃)
1
2

4πGπ̃a

3ã
, (55)

˙̃πa ≈ Ñ∗(16πGφ̃)
1
2

[
− (2πG)π̃2

a
3ã2 − 3ã2V(φ̃)

]
, (56)

˙̃φ ≈ −λφφ̃ , (57)

˙̃πφ ≈ Ñ∗(16πGφ̃)
1
2

[
πGπ̃2

a

3ãφ̃
− ã3

2φ̃
V(φ̃)− ã3 dV(φ̃)

dφ̃

]
+ λφπ̃φ

= Ñ∗(16πGφ̃)
1
2

[
πGπ̃2

a

3ãφ̃
− ã3

2φ̃
V(φ̃)

]
+ λφπ̃φ (58)

where, in the last equation, we have used the condition φ
dU(φ)

dφ = 2U(φ) or φ̃2 dV(φ̃)

dφ̃
= 0;

see Equation (3) for ω = − 3
2 .

Once we apply the inverse anti-gravity transformations, we pass from this set of
equations of motion, Equations (54)–(58), to the set of equations studied in Section 2,
Equations (32)–(37). This straightforwardly verifies that the anti-gravity transformations
are also canonical for the case of ω = −3/2.

4. Transformations from Jordan Frame to the Einstein Frame

We consider in this section the Weyl (conformal) transformations from the Jordan
frame to the Einstein Frame [2–4,19]:

Ñ = N(16πGφ)
1
2 ; π̃N =

πN

(16πGφ)
1
2

; ã = (16πGφ)
1
2 a ;

π̃a =
πa

(16πGφ)
1
2

; φ̃ = φ ; π̃φ =
1
φ
(φπφ −

1
2

aπa) , (59)

We easily verify that, applying the definition (4), this set of transformations is not
canonical, since: {

Ñ, π̃φ

}
=

8πGN

(16πGφ)
1
2
6= 0 . (60)

If we apply these transformations to the Lagrangian (6), we obtain:

L̃ = − 1
Ñ(16πGφ̃)

6ã ˙̃a2
φ̃− (2ω + 3)ã3 ˙̃φ

2

2φ̃

− Ñã3V(φ̃) . (61)

4.1. ω 6= −3/2 Case

When we apply Weyl (conformal) transformations for the canonical Hamiltonian,
we obtain:

H̃C = Ñã3

(16πGφ̃)2

[
− π̃2

a 2πG(16πGφ̃)2

3ã4 +
π̃2

φφ̃28πG(16πGφ̃)2

(2ω+3)ã6 + U(φ̃)

]
= Ñã3

[
− 2πGπ̃2

a
3ã4 +

8πGπ̃2
φφ̃2

(2ω+3)ã6 + V(φ̃)

]
.

(62)

In a similar way, as discussed before, we recognize that the the total Hamiltonian
is now:

H̃T = ÑH̃ + λ̃Nπ̃N (63)
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where the new Hamiltonian constraint is:

H̃ ≡ ã3

[
− (2πG)π̃2

a
3ã4 +

(8πG)π̃2
φφ̃2

(2ω + 3)ã6 + V(φ̃)

]
(64)

The equations of motion in the Einstein frame for ω 6= −3/2 are:

˙̃N ≈ λ̃N , (65)
˙̃πN = −H̃ ≈ 0 , (66)

˙̃a ≈ −Ñ
4πGπ̃a

3ã
, (67)

˙̃πa ≈ Ñ

[
− (2πG)π̃2

a
3ã2 +

3(8πG)π̃2
φφ̃2

(2ω + 3)ã4 − 3ã2V(φ̃)

]
, (68)

˙̃φ ≈ Ñ
(16πG)π̃φφ̃2

(2ω + 3)ã3 , (69)

˙̃πφ ≈ −Ñ

[
16πGπ̃2

φφ̃

(2ω + 3)ã3 + ã3 dV(φ̃)

dφ̃

]
. (70)

Once we apply the inverse Weyl (conformal) transformations from the Einstein frame
to the Jordan frame, we obtain:

Ṅ ≈ λ̃N

(16πGφ)
1
2
− N2

2a2(2ω + 3)

(
πφ

a
− πa

2φ

)
, (71)

π̇N ≈ −H +
NπN

2a2(2ω + 3)

(
πφ

a
− πa

2φ

)
, (72)

ȧ ≈ − N
2a(2ω + 3)

(
ωπa

3φ
+

πφ

a

)
, (73)

π̇a ≈ −
N

2a2(2ω + 3)

(
ωπ2

a
6φ

+
2πaπφ

a
−

3φπ2
φ

a2

)
− 3Na2U(φ) , (74)

φ̇ ≈ N
2a2(2ω + 3)

(
−πa +

2φπφ

a

)
, (75)

π̇φ ≈ −
N

2a(2ω + 3)

(
ωπ2

a
4φ2 −

7π2
φ

2a2 +
πaπφ

2aφ

)
− Na3 dU

dφ
+

Na3

2φ
U(φ) . (76)

Note that Equations (71), (72), and (76) (in red colour) do not coincide with the
corresponding equations in the Jordan frame, as in Section 2.1. This is a consequence of the
Hamiltonian non-canonicity of the transformations from the Jordan to Einstein frames.

4.2. ω = −3/2 Case

When we apply Weyl (conformal) transformations defined in Equation (59) for the
canonical Hamiltonian, we obtain:

H̃(−3/2)
C =

Ñã3

(16πGφ̃)2

[
− π̃2

a2πG(16πGφ̃)2

3ã4 + U(φ̃)

]
= Ñã3

[
−2πGπ̃2

a
3ã4 + V(φ̃)

]
. (77)

In a similar way, as discussed in the previous section, we recognize that the the total
Hamiltonian now is:

H̃(−3/2)
T = ÑH̃(−3/2) + λ̃Nπ̃N + λφC̃φ , (78)
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where the new Hamiltonian constraint is:

H̃(−3/2) ≡ ã3
[
− (2πG)π̃2

a
3ã4 + V(φ̃)

]
. (79)

The equations of motion in the Einstein frame for ω = −3/2 are:

˙̃N ≈ λ̃N , (80)
˙̃πN = −H̃ ≈ 0 , (81)

˙̃a ≈ −Ñ
4πGπ̃a

3ã
, (82)

˙̃πa ≈ Ñ
[
− (2πG)π̃2

a
3ã2 − 3ã2V(φ̃)

]
, (83)

˙̃φ ≈ −λφφ̃ , (84)

˙̃πφ ≈ −Ñã3 dV(φ̃)

dφ̃
+ λφπ̃φ = λφπ̃φ . (85)

where, in the last equation, we have used the condition φ
dU(φ)

dφ = 2U(φ) or φ̃2 dV(φ)

dφ̃
= 0;

see Eq. for ω = − 3
2 .

Once we apply the inverse Weyl (conformal) transformations from the Jordan frame
to the Einstein frame, we obtain:

Ṅ ≈ λ̃N

(16πGφ)
1
2
+

λφN
2

, (86)

π̇N ≈ −
(
− π2

a
24aφ

+ a3U(φ)

)
−

λφπN

2
= −H(−3/2) −

λφπN

2
, (87)

ȧ ≈ − Nπa

12aφ
+

λφa
2

, (88)

π̇a ≈ −
Nπ2

a
24φa2 − 3Na2U(φ)−

λφπa

2
, (89)

φ̇ ≈ −λφφ , (90)

π̇φ ≈ −N
π2

a
16aφ2 −

3Na3U
2φ

+ λφπφ =
3
4

(
−N

π2
a

12aφ2 −
2Na3U

φ

)
+ λφπφ . (91)

Again, we denote in red colour the equations of motion (86), (87), and (91), not coin-
ciding with the corresponding equations in Section 2.2 as a consequence of the Hamiltonian
non-canonicity of the transformations from the Jordan to Einstein frame.

5. Conclusions

We have carried out a detailed analysis of a flat mini-superspace model of the FLRW
Universe in the Brans–Dicke theory for both cases of ω 6= − 3

2 and ω = − 3
2 . The entire anal-

ysis highlights, quite clearly, that the Hamiltonian equations of motion in the Jordan frame
and in the Einstein frame are not equivalent. In particular, the Hamiltonian transformations
from the Jordan to the Einstein frames are not Hamiltonian canonical transformations. Of
course, this in-equivalence, at the Hamiltonian level, poses the same question at the La-
grangian level: are the equations of motion in the Jordan frame equivalent to the analogous
ones in the Einstein frame? The answer, driven by all considerations that we have made,
would be no. Therefore, a further detailed analysis of the Lagrangian equations of motion
of the FLRW mini-superspace model in the Brans–Dicke theory appears to be a plausible
future project. Tightly connected to it, there is the question of whether Jordan and Einstein
frames are really physically equivalent. In fact, in the literature, there exist articles claiming
their physical equivalence [20–22], as well as their in-equivalence [23–25].
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