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Abstract: In this note, I review a recent approach to quantum gravity that “gravitizes” quantum me-
chanics by emerging geometry and gravity from complex quantum states. Drawing further insights
from tensor network toy models in AdS/CFT, I propose that approximate quantum error correction
codes, when re-adapted into the aforementioned framework, also have promise in emerging gravity
in near-flat geometries.
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1. Introduction

Many familiar approaches to understanding the quantum world begin with theories
of classical objects. These classical theories are then quantized to produce their quantum
counterparts. Physicists are no strangers to the textbook approaches that take us from a
mass on a spring to a quantum harmonic oscillator, or from unassuming spring mattresses
to mind-boggling quantum field theories. Given its impressive record of success, it is
natural that we also apply the same line of thinking to quantum gravity (QG). This has
undoubtedly brought about remarkable insight into the heart of QG [1–4], but we have
also encountered daunting challenges and picked up various technical baggage along the
way. However, if we believe that nature is fundamentally quantum, then applying our
classical-centric mindset to the study of an entirely different quantum “ecosystem” would
be a rather roundabout way to understand the culture of a quantum universe.

In this note, we will try to let go of the classical ideals we know and love and embark
on a “quantum-centric” journey to QG. Instead of beginning with a classical theory and
quantizing it, we take quantum mechanics (QM) as the fundamental theory and obtain
semiclassical spacetime descriptions from it. By quantum mechanics, we are referring to
the bare-bones quantum theory described by a Hamiltonian Ĥ and an abstract state vector
living in a finite dimensional Hilbert space. While the state contains kinematic information,
the Hamiltonian generates dynamics and traverses the Hilbert space in some trajectory
Equivalently, one can describe a quantum theory as a von Neumann algebra M whereby a
state ρ describes the status of the system. See [5–7] for a summary of this approach, which
we refer to as the “gravitize QM” proposal, and [8,9] for related ideas.

Let us divide the full gravitize QM problem into 2 parts. (1) From an abstract quantum
state, the following emerge: (1a) the semi-classical notion of quantum matter fields on a
classical background geometry and (1b) the spatial projection of the Einstein’s equations
(the Hamiltonian constraint). (2) With additional information from the Hamiltonian Ĥ,
spacetime metric, dynamics, Lorentz invariance, and the full Einstein’s equation emerge.

Here, we focus on the kinematic problem and provide a partial roadmap for how
one can achieve part (1) when given an abstract state vector |ψ〉. In Section 2, we first
review the approaches that geometrize a quantum state, addressing problem (1a). We then
propose that quantum error correction codes can be used as explicit “emergence maps [10]”
that allow us to separate the emergent matter field degrees of freedom from the emergent
background spacetime. In Section 3, addressing problem (1b), we examine an additional
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constraint on the quantum error correction code that is necessary to emerge linearized
Einstein gravity. We will then explain how approximate quantum error correction codes
can help us construct such systems. Finally, we briefly comment on open problems in (2)
and provide possible directions to pursue in Section 4.

2. Geometrizing Quantum Mechanics

The first core problem we tackle is how one can obtain the familiar semi-classical
notions of effective field theory (EFT) on a classical background knowing only a state in
the Hilbert space.

Recall from [6] that by having a sufficiently “nice” state, also known as a redundancy-
constrained state, which is roughly a graph generalization of an area-law state in a Hilbert
space with known factorizationH =

⊗
iHi, one can convert the state |ψ〉 ∈ H into a graph

where the vertices of the graph (Figure 1) correspond to the tensor factors and their edges
are weighted by the mutual information

I(i : j) = S(i) + S(j)− S(i ∪ j). (1)

Here, S(i) is the von Neumann entropy of the reduced state on tensor factor i.
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Figure 1. A weighted “information graph” created from a quantum state living in a factorizable
Hilbert space.

If we assume that the parts with high mutual information are closer together and the
parts with low mutual information are farther apart, one can define a notion of distance
and recover the best-fit dimensionality of the emergent geometry. We can also rearrange the
tensor factors in a geometrical fashion (Figure 2) using multi-dimensional scaling [11,12].
If these vertices can be (near)-isometrically embedded in a Riemannian manifold, then we
declare the target manifold as the (approximate) emergent spatial geometry. For emergent
geometries that are perturbatively close to flat manifolds, it is also possible to recover the
full spatial metric gij using inverse tensor Radon transform [7,13–15].

Although this method allows us to reconstruct the (approximate) emergent geometry,
it does not tell us how to separate a quantum field on this geometry from the background
itself. To do so, we require an emergence map [10] that can distinguish the matter, or ef-
fective field theory (EFT), degrees of freedom from those that build up the background
geometry. Here, we claim that the encoding map of a quantum error correction code can
act as such an emergence map and can also provide practically useful relations for our
purposes. Note that this does not modify the bulk entanglement gravity framework [7] but
simply provides a more concrete implementation.
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Figure 2. For each quantum state, one can try to determine the emergent geometry using multi-
dimensional scaling, which rearranges the vertices of the “information graph” according to their
relative distances. Two resulting reconstructions from the algorithm are shown, where each blue dot
is a graph vertex.

2.1. A Primer for Quantum Error Correction Codes

Let us first review some basic properties of quantum error correction codes (QECC) [16,17]
that will be essential for the rest of our discussion. Generally, we define a quantum code as
a Hilbert subspace

C ⊂ H, (2)

whereH is the “physical” Hilbert space, which intuitively can be understood as a tensor
product of qubits that one manipulates in a laboratory setting. C is called the code subspace;
states in this subspace usually satisfy certain desirable properties such that the quantum
information (or logical information) they encode is protected against errors that may
occur on the physical qubits. On a more abstract level, the physical qubits, which are
tensor factors of dimension 2, can be replaced by the more general tensor factorsHi in the
previous section.

More conveniently, one can keep track of the code subspace by defining a quantum
code as a linear map V : Hlogical → H that smears the logical information inHlogical over a
larger physical Hilbert space, whereHlogical is isomorphic to C. If we assume the encoding
process to be unitary, then V is also an isometry. We refer to V as the encoding map of
a code.

Similar to classical error correction codes where 0 and 1 are encoded as bit strings over
multiple bits, the quantum code has encoded quantum states as entangled states over many
qubits. For a simple example, consider a 4-qubit code (Figure 3) defined by the following
encoding isometry

V ∝ |0000〉〈0|+ |1111〉〈0|+ |1100〉〈1|+ |0011〉〈1|. (3)

This map smears the logical information of a single qubit onto 4 qubits entangled in
a GHZ state, where we may encode a single qubit state |ψ〉 = a|0〉+ b|1〉 as an encoded
states |ψ̃〉 over 4 qubits.

|ψ̃〉 = a|0̃〉+ b|1̃〉, where |0̃〉 ∝ |0000〉+ |1111〉, |1̃〉 ∝ |1100〉+ |0011〉. (4)

We will distinguish all encoded states with tilde throughout the note. A tensor network
representation of this simple code is shown in Figure 3.
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Figure 3. Tensor network representations of the 4-qubit code. The red dangling leg represents the
single qubit input degree of freedom, while the 4 in-plane legs represent the 4 physical qubits in the
output Hilbert space. An equivalent figure on the right uses a red dot to denote the logical qubit
when the tensor is viewed from top down.

Although it is easy to define a quantum code, it is much harder to find a good quantum
code that protects encoded information against errors. A quantum code is also an error
correction code when the effects of certain errors can be undone.

In the 4-qubit code example, consider an erasure error where one qubit is “lost”.
Assume, without loss of generality, that the 4th qubit is lost, and we can only perform
operations on qubits 1 through 3 to recover the encoded information. Here, it is easy to
show that there is an explicit unitary U123 independent of the state |ψ̃〉 such that

U123 ⊗ I4|ψ̃〉 = |ψ〉1|0〉2|χ〉34 (5)

where |χ〉34 is a Bell state [18]. In this case, the erasure error of a single qubit is correctable
because the encoded information |ψ〉 is undamaged by the erasure. Therefore, the 4-qubit
code is a QECC that corrects single qubit erasure errors.

The existence of such a decoding unitary or, more generally, a recovery map is a
defining feature of QECCs at large. The authors of [19] showed that for any code where
the physical Hilbert space can be factorized as H = HB ⊗HB̄ and that the erasure of
subsystem B̄ is correctable, there exists decoding unitary UB such that

UBρ̃BU†
B = ρB1 ⊗ χB2 (6)

whereHB1 ⊗HB2
∼= HB, and ρ̃B = TrB̄[|ψ̃〉〈ψ̃|].

Assuming the existence of recovery procedures provided by such unitaries UB, which
is expected for generic QECCs. By generic, we mean that something like this is typically
true up to small corrections for a QECC whose code subspace is small compared to the
physical Hilbert space and that the encoding unitary is drawn from the Haar measure [20].
We can naturally split an encoded state ρ̃ into two parts—one containing the encoded
information that we wish to recover and the other capturing the underlying entanglement
necessary a code to have non-trivial error correction properties. One can extract an entropic
relation from these pieces of information by computing the von Neumann entropies of the
quantities on both sides of the equation. Note that the entropy is invariant under unitary
conjugation, therefore

S(ρ̃B) = S(ρB1) + S(χB2), (7)

where S(ρB1) corresponds to the entropy of the encoded information that is recoverable on
B. This can be nonzero even when one encodes a pure state because generally a QECC can
encode multiple logical degrees of freedom from which operations on B can only recover
a fraction of them. Therefore, when the encoded state is entangled, S(ρB1) represents
the entanglement entropy of the reduced state recovered from B. S(χB2) is the leftover
entanglement that is essential in building a non-trivial quantum error correction code.
In our 4-qubit example (5), if we take B to be the union of qubits 1 through 3 and B̄ to be
the erased 4th qubit, then ρB1 = |ψ〉〈ψ| is the information we extracted on qubit 1 after
decoding (5). We obtain χB2 by tracing out the 4th qubit from the state |0〉2|χ〉34, such that
χB2 = |0〉〈0| ⊗ I/2 is supported on qubits 2 and 3. In this case, S(ρB1) = 0, S(χB2) = 1.
For typical QECCs, when log dimH � log dim C, S(χB1)� S(ρB1).

Note that expressions like the above entropy formula holds more generally as long as
such “decoding unitary” exists. For instance, they hold for certain approximate erasure
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correction codes [21] in a state-dependent fashion. More recently, this is made precise
by [22] in a more comprehensive statement, which further extended the theorem by [19] to
a wider class of quantum codes. There may be added benefits in requiring the code to have
complementary recovery properties (defined in [19]), but it is unclear at this point whether
that is necessary for our goals in this note.

2.2. What Does It All Mean for Quantum Gravity?

So how does QECC function as an emergence map that separates matter from the
background geometry? For pedagogical reasons, let us first acquire some intuitions from
the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence where concrete
connections have been made. We will find that (7) is analogous to the familiar notion of
generalized entropy, where S(ρB1) is the matter entropy contribution, while S(χB2) comes
from the area of some surface.

The AdS/CFT correspondence can be understood as a model of “quantum gravity in
a box”. It describes a duality between a bulk theory in d + 2 dimensional asymptotically
anti-de Sitter space (AdS) and a boundary conformal field theory (CFT) that lives on the
d + 1 dimensional flat asymptotic boundary of AdS [23]. Formally, the bulk theory is a
theory of quantum gravity with a string theory description. However, the boundary CFT
is not manifestly gravitational as it is simply a quantum field theory on flat spacetime.
Because of the duality, the Hilbert space of the two theories are isomorphic. Here, we
mostly deal with a timeslice of AdS. When d = 1, it is described by a Poincaré disk in
Figure 4a. The interior of the disk is what we call the “bulk” with hyperbolic geometry,
while the boundary of the disk is where the CFT resides.

Recently, [24] showed that AdS/CFT has a strong resemblance with (approximate)
quantum erasure correction codes, where the code subspace C is defined as the bulk low
energy subspace of the theory. The physical processes in this low energy regime can be
approximated by an effective field theory that lives on the AdS background in the bulk.
See [25] for a detailed review of the subject.

The physical Hilbert space H in this context corresponds to the boundary (CFT)
degrees of freedom. The code subspace is spanned by a comparatively small number of
low energy states of the EFT that do not cause significant gravitational backreactions. If we
limit ourselves to the regime where the approximation of quantum field theory on curved
spacetime is valid, then the encoded “logical qubits” in the code subspace correspond to
the matter field degrees of freedom floating on top of a fixed background geometry while
choosing a code subspace amounts to picking the said common background geometry on
which the matter field lives.

If we select some physical subsystem inHB (Figure 4a) that corresponds to a boundary
subregion B, this is analogous to choosing a subset of physical qubits in a QECC where B̄
have been erased. One can then extract the encoded information from the reduced state
on B. The entropy of the recoverable logical information S(ρB1) now takes on a specific
meaning—it is the entropy of the matter (fields) in a subregion of the bulk AdS known
as the entanglement wedge. More precisely, we are referring to the vacuum-subtracted
entropy of the matter field in a subregion [26–28]. The entanglement wedge of B is shown
in Figure 4a as the shaded region in the bulk, which is bounded by the boundary segment
of B and a bulk spacelike geodesic γ∗B that is anchored on the endpoints of B. As a QECC,
the bulk/logical degrees of freedom in the EFT in Σ is recoverable via operations that only
have support on B.
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Figure 4. (a) A time slice of AdS. Shaded region represents an entanglement wedge of B. The bulk
or encoded degrees of freedom in the entanglement wedge of B can be recovered from B. (b) An
analogous picture of (a) in terms of a holographic tensor network, which is a graphical representation
of an encoding map. The shaded entanglement wedge of B can be similarly defined through decoding
operations. A “geodesic” γ∗B is defined as the boundary of that wedge. (c) A “noisy” version of the
holographic code to the left, where each of the 4-qubit codes that made up of the tensor network are
replaced by the skewed, approximate QECC counterparts.

As we mentioned, choosing the code subspace effectively selects the background
geometry. Once we have extracted the encoded information ρB1 from a recovery map with
support on B, the remaining information that goes into defining the code, and hence the
geometry, is captured by the state χB2 . The entropy S(χB2) generally holds the most of the
entanglement between subsystems B and B̄ when log dim C � log dimH. Intuitively, this
entropy contribution is the part that is responsible for emerging the space-time geometry.

For a more concrete example, consider a toy model of AdS/CFT approximated by
a tensor network (Figure 4b), which may be thought of as a discrete analog of Figure 4a.
Compared to the 4-qubit code (Figure 3), this is a graphical representation of a far more
sophisticated encoding map that maps the input logical degrees of freedom (red dots) into
the output physical qubits (dangling legs on the boundary). The graphical objects in the
network give a concise and complete description of the encoding map. See [18,29] for a
more comprehensive introduction of holographic tensor networks. In this case, it also takes
on a hyperbolic geometry, just like what one expects from the AdS/CFT correspondence.
The logical input of this tensor network corresponds to the bulk degrees of freedom, while
the physical qubits correspond to the boundary CFT degrees of freedom. If we were to
choose a subset of boundary qubits as B, then the entropy S(χB2) describes the underlying
emergent hyperbolic geometry as it is roughly given by the number of graph edges the
geodesic γ∗B cuts through in the bulk (Figure 4b). This defines a notion of area of a minimal
surface (or length of a geodesic in the 2 dimensional picture) that separates one spatial
region subtended by B from an adjacent region subtended by B̄.

Indeed, in the “continuum limit” where we have the actual AdS/CFT correspondence
instead of a discrete toy model; this second entropy term becomes the area of the minimal
surface, where the precise the holographic counterpart [30] of (7) reads

S(B) = Smatter + Sgeom = S(Σ) +
AB

4GN
. (8)

In the regime where gravity is weakly coupled, the dominant contribution to S(B) is
Sgeom ∝ A, the area of the minimal surface separating B from B̄ (or Σ from its complement
in the bulk), which contains the geometric information of the background. This is again
analogous to what we found in the generic QECC story above when the code subspace is
much smaller than the physical Hilbert space. In Figure 4a, A is simply the length of γ∗B.
The matter entropy Smatter, coming from the bulk fields in the region Σ, is a subleading
contribution in the large N expansion [30].
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2.3. Roadmap for General Code Geometrization

If we think of AdS/CFT as a special implementation of a QECC that happens to have
an emergent near-hyperbolic geometry, then we can also imagine constructing a QECC
with other emergent geometries that are not AdS, where it would be similarly reasonable
to identify ρB1 with the state of the matter field in a spatial subregion and S(χB2) with the
interface area of two adjacent regions in that emergent geometry.

More specifically, let us conjecture that for any quantum code where the entropy
formula (7) can be defined via a recovery map induced by the decoding unitary, the
generalized entropy is given by the von Neumann entropy of a subsystem B in the physical
Hilbert space. The matter entropy is given by that of the encoded information, and the
entropy that goes into defining the “background geometry” is the entropy required for
building up a non-trivial code,

Sgen := S(B), Smatter := S(ρB1), and Sgeom := S(χB2). (9)

Furthermore, the “geometric” portion of the entropy Sgeom can take on the meaning of
the area of a spacelike surface [7,31] that separates two adjacent regions when the quantum
state admits an emergent geometry, i.e.,

Sgeom ∝
AB

4GN
. (10)

Let us summarize the minimal assumptions for the partial roadmap we have just built
for (1a). For this part, we assume that

1. The Hilbert space is factorizable

H =
⊗

i
Hi. (11)

2. We are given a preferred subspace

C ⊂ H (12)

that defines a quantum code. Equivalently, we can be given a linear encoding map V
that identifies the code subspace.

3. For any state |ψ̃〉 ∈ C and for some choices of subsystem B, the quantum code admits
a decoding unitary UB that induces the decomposition of the von Neumann entropy

S(ρ̃B) = S(ρB1) + S(χB2) (13)

4. The geometric mutual information

IG(B : B̄) := S(χB) + S(χB̄)− S(χB∪B̄) (14)

of subsystems B and B̄ is proportional to the interface area of two adjacent regions in
the emergent geometry, if it exists

A(B, B̄) ∝ IG(B : B̄). (15)

5. The logical information |ψ〉 ∈ Hlogical corresponds to the state of the emergent matter
field on a fixed background geometry consistent with the area data {A}. This implies
that S(ρB1) is contributed to by the matter field.

Let us briefly examine how these assumptions may be derived or justified. A finite
dimensional Hilbert space is often factorizable. Even if it is not, one can consider de-
compositions in which a subspace of it is [32]. Strictly speaking, we do not even need
to assume a factorization as long as the relevant entropic quantities are known because
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the techniques in [7] only truly make use of the entropies. Nevertheless, we will leave
this generalization for future discussion as long as the Hilbert space does not have prime
dimensionality. Note that the tensor factorization may not be unique, and often there is a
preferred factorization for a quantum system. Different approaches may be deployed in
finding this decomposition, which involves detailed information of Ĥ or von Neumann
algebra M such that the emergent dynamics is “quasi-classical” [33]. In some cases, there
can be multiple valid factorizations that satisfy this requirement. Although such systems
exist, e.g., systems with dualities [34,35], they are exceedingly rare [36].

Building a non-trivial quantum code that admits reasonable decoding from different
subsystems B and B̄ is of both theoretical and practical importance. Nevertheless, the re-
quired property (c.f. Assumption 3) is still sufficiently generic and can be found in many
popular constructions like (approximate) stabilizer codes. In fact, from the analysis of
random codes [37], which can be understood as characterizing the typical behaviours of
quantum codes, there is reason to believe that it should hold for most QECCs whose code
subspace is much smaller than the physical Hilbert space.

The identification of the matter and geometric entropies are motivated from AdS/CFT.
For pure states, which we focus on in this note, it is equivalent to define the interface
area as S(χB) or mutual information as the two quantities are identical up to a factor of 2.
There is also reason to expect that codes roughly satisfying such assumptions or emergent
geometries exist. For instance, one can easily construct such (approximate) QECCs using
random tensor networks [37]. An exact construction for a code with flat geometry is also
possible [38].

Using assumptions (2), (3) and (5), we can now easily isolate the EFT degrees of
freedom from the background via decoding and recovering the logical state. Because |ψ〉
as a logical state over a number of logical qubits corresponds to the quantum state of the
EFT, ideally it should reflect the low energy state entanglement patterns of a quantum field
theory on a particular background.

To obtain the background geometry itself, we note that much of these techniques,
which we reviewed earlier on, have already been developed for near-flat geometries.
The only difference is that the generalized entropy S(ρ̃B) was used to obtain an approximate
emergent geometry. With the information given by assumptions (1), (3) and (4), we can
perform a more careful reconstruction using the actual geometric contribution S(χB2)
given by the QECC emergence map. Then, we simply replace S(ρ̃B) by S(χB2) in all of
the computations in [6,7]. Note that under the typical expectation where log dim C �
log dimH, this replacement does not significantly alter the resulting geometry as S(χB2) is
dominant and S(ρB1) is subleading. However, we can expect the newer reconstruction to
be better, especially when the matter field |ψ〉 contains entanglement that is non-local with
respect to the background geometry. By repeating the procedures in [6], we can again obtain
the full spatial metric tensor gij. Note that the set of entropy data {S(χB2), ∀B} need not be
always be consistent with a classical Riemannian geometry with metric gij. However, this
non-geometricity may be quantified with the range characterization of the tensor Radon
transform [13–15], which has recently been implemented in the context of AdS/CFT [18].
The problem is even easier for near-flat backgrounds since both the reconstruction formula
and the range characterization have been known for quite some time now.

3. Gravitizing Quantum Mechanics
3.1. Constraints for Linearized Gravity

The roadmap has thus far covered how one can go from a set of abstract, amorphous
quantum states to a semi-classical picture where quantum matter is living on top of a
background geometry. In practice, the explicit process is most well-understood when the
emergent geometry is also near-flat. However, more is needed to emerge gravity as we
have not explained how the emergent matter and emergent geometry should interact with
each other in the picture so far.
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Suppose we have a QECC with encoded state |ψ̃〉 from which we have obtained an
emergent flat geometry with quantum matter in the vacuum of some EFT. Now consider
perturbing the state |ψ̃〉 → |σ̃〉 ∈ C. Intuitively, if |ψ̃〉 is the vacuum state, then we have
changed the encoded state to an excited state with a different matter distribution in the
emergent geometry. Now from gravitational intuitions, we also expect the matter excitation
to back-react and alter the background geometry. Such behaviour is made precise by
Einstein’s equations.

Because we are dealing with spatial geometries in this note, let us recast Einstein’s
equations in a form that can be related to our current discussion. Consider Einstein’s
linearized equations on flat spacetime; we can project them onto a single timeslice with a
timelike unit normal tµ, which produces a linearized Hamiltonian constraint (LHC). Note
that if the system satisfies the LHC for all tµ and is Lorentz-invariant, then it will also
satisfy the full linearized Einstein’s equations. Therefore, reproducing these constraints
will be a key step towards emerging gravity. It was shown in [7] that the LHC against flat
background can be translated into an entropic constraint

δR = 16πGNδTtt ⇐⇒ δSgeom[δgij] + δSmatter[δTtt] = 0, (16)

whereR is the spatial curvature, Ttt is the tt-component of the stress-energy tensor, and GN
is the gravitational constant. This implies that linearized gravity imposes an additional
constraint on the QECC, which is expected. This relation also makes intuitive sense because
changes in the matter field excitations lead to changes in δTtt, which then cause changes in
δSmatter[δTtt]. Through the above entropic relation, they incur perturbations in δSgeom that
can be related to changes in the area of the interface δA through our Assumption 4. δA can
then be converted to changes in the background metric gij by solving an inverse problem
in the tensor Radon transform.

3.2. The Need for Approximate QECC

However, (16) is not satisfied by any known stabilizer QECC models. For example,
in the stabilizer tensor network toy models for holography [21,29], it is easy to check that
δSgeom = 0 for any δSmatter. At a first glance, this is expected of any code that can correct
erasure errors perfectly because if S(χB2) depends on the logical information, then one
can learn something about the encoded information on B by measurements. Here we are
simply stating what appears to be a reasonable observation, rather than a theorem. In fact,
if the code subalgebra supported on B has a non-trivial center, then both B and B̄ can have
some degree of access to the same classical information. In that case, the erasure of B̄ does
not damage the encoded information on B because classical information can be cloned,
e.g., Renyi entropies, from B̄. It would then appear that the encoded information is not
robust against erasure errors on B̄. As such, existing holographic QECC models, such as
the one shown in Figure 4, best correspond to the picture of quantum field theory on a
fixed background, where matter is decoupled from gravity.

Therefore, to find a code with the above property of “gravitational backreactions”,
we now look to quantum codes whose encoded information is less robust against errors.
These approximate QECCs (AQECC) are usually less desirable for the purpose of building
fault-tolerant quantum computers but are very useful here. This is unsurprising for experts
in AdS/CFT because the holographic QECC has long been expected to be an approximate
erasure error correction code once gravitational effects are included [24].

We can easily construct some of these approximate QECCs—they are still very much
quantum codes by our earlier definition, except some errors can now only be corrected
approximately. Consider a “skewed” version of the 4-qubit code we saw earlier,

|0̃〉 = 1√
2
(|0000〉+ |1111〉), |1̃〉 = α|1100〉+ β|0011〉. (17)
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It corresponds to the 4-qubit code when α = β, which corrects any single qubit erasure
exactly. However, that erasure correction is only approximate if α ≈ β. We can end up with
such a code if the quantum computer suffers from correlated coherent noise that acts as a
global unitary on all 4 qubits during the encoding process.

More generally, we can express these approximate or skewed codes as a linear encod-
ing map Vε : Hlogical → H where we perturb a good QECC, defined by the encoding map
V0, with some “noise” terms Vi 6=0 such that

Vε = Λ0V0 + ∑
i 6=0

ΛiVi, ∑
i
|Λi| < ε, (18)

where each Vi is an encoding map of a QECC different from V0. For instance, the 4-qubit
approximate code above can be broken down as a superposition of encoding isometries
shown in Figure 5 with some choice of Λi(α). This decomposition into a superposition of
encoding maps is highly non-unique. However, when the perturbations are small, it is most
natural to identify the “noiseless” QECC encoding map V0 that has the largest overlap with
Vε as the “reference code”. This term is a “good” encoding map because it best corrects
any single qubit erasure errors exactly. It is also a natural choice for the reference code
when α ≈ β as it is guaranteed to have the largest overlap with Vε. Intuitively, we can think
of this reference code as the QFT-on-curved-background approximation of a gravitating
theory when we ignore the subleading effects of GN . For the sake of concreteness, we have
chosen each Vi in Figure 5 to be an encoding isometry of a stabilizer code.

Figure 5. Tensor of a noisy 4-qubit code and how it breaks down as a superposition of different
stabilizer codes. The corresponding encoding maps are given below each figure.

Lessons from Holographic Toy Models

Although we do not yet have an explicit AQECC example with emergent flat geometry,
one can distill a number of useful lessons from a known AQECC with emergent hyperbolic
geometry, which also serves as a toy model for AdS/CFT.

To construct such a model, let us replace the exact erasure correction codes (the yellow
4-qubit code tensors) in Figure 4b by the approximate codes in Figure 5; then, one obtains a
new encoding map (Figure 4c) for an approximate quantum error correction code. This
tensor network again represents a linear encoding map that maps the bulk inputs (red dots)
into output physical qubits on the boundary. One can verify that the entropic relation now
indeed becomes state-dependent where this dependence is controlled by the size of ε [21].
Generically,

|ψ̃〉 → |σ̃〉 =⇒ F(δSgeom) = δSmatter 6= 0 (19)

for some function F.
In addition to getting us closer to our needed entropic relation (16), the approximate

code construction also seems to give rise to other features of gravity. One remarkable
observation is that the logical degrees of freedoms that appear to be living in independent
tensor factors are not truly independent—instead, bulk operators acting on one region
can impact another region that is spacelike separated [39]. In particular, one can conclude
that for two spacelike separated sites x1 6= x2 in the emergent tensor network geometry,
the physical representation of logical operators Q̃x1 , Q̃′x2

do not generally commute but can
have non-commutativity controlled by the “noise” parameter ε, i.e., [Q̃x1 , Q̃′x2

] ∼ G(ε).
Here, we take G to be some function that satisfies G(x → 0)→ 0.
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The quantum information theoretic reason behind this is simple—although the bulk
or logical qubits appear as independent degrees of freedom, as shown by the red dots
in Figure 4, they actually overlap [40] with each other by an amount related to the noise
parameter ε [18]. We can also understand it from the perspective that the mapping (18)
is generically non-isometric as the superpositions of isometries need not be isometric.
Therefore, orthogonal states in the logical subspace are not mapped to orthogonal states in
the physical Hilbert space, i.e.,

〈ĩ| j̃〉 = 〈i|V†
ε Vε|j〉 ∝ 〈i|(I + O(ε))|j〉 = δij + Oij(ε), (20)

where O(ε) denotes the correction terms that depend on the detailed structures of Vε and
vanishes as ε → 0. Similarly, even though [Qx1 , Qx2 ] = 0, their commutator under the
non-isometric mapping [Q̃x1 , Q̃x2 ] = [VεQx1 V†

ε , VεQx2 V†
ε ] need not vanish because of the

extra terms involving O(ε). Qualitatively, this is indeed what we expect to see in gravity
as well. It is well-known that the Hilbert space for perturbative quantum gravity is not
factorizable [39,41]. For matter coupled to gravitons, the gauge-invariant dressed operators
have non-vanishing commutators proportional to GN . Here, with the AQECC, we find a
similar situation with GN ↔ ε, where these tiny overlaps are created by skewing the codes.

The following graphically intuitive observation is more specific to the particular tensor
network model constructed for AdS/CFT. Nevertheless, we include it in our discussion to
provide a more geometric perspective. In the holographic model (Figure 4c) introduced
in [21], one can also see the apparent similarity between gravitational backreaction and
dependence on the logical state. For example, consider the “vacuum” all zero logical
state represented by the yellow squares in Figure 6 (left). The emergent geodesics γ0

B, γ0
B̄

anchored on two points on the boundary can be found through a Greedy decoding process.
They correspond to the dash line that marks the boundary of the entanglement wedges
coloured in blue and pink. In this case, the two geodesics from the two wedges coincide,
which is consistent with our expectation when the background geometry is pure AdS
(hyperbolic).

Figure 6. Changes in the bulk state induce changes in the emergent geometry as defined by the
entanglement wedge and the Greedy geodesic. Geodesics γB, γB̄ are anchored on the same two
boundary points.

However, when the state at the center is changed to a superposition |ψ̃〉 = a|0̃〉+ b|1̃〉,
then the same decoding procedure produces different wedges that are now demarcated
by two non-coincidental geodesics, skirting around the central region. This is similar to a
geometry where a massive object is inserted at the center of AdS. Also note the difference
between this exercise and general expectations in AdS/CFT. Here, the computational basis
states |0̃〉, |1̃〉 encoding the classical bit of information is playing the role of pure states
in holography, as the recovery is complementary. However, a state in a superposition
is playing the role of a mixed state because any subsystem can only access the Z code
subalgebra. This reduces |ψ̃〉 to a mixed state when expressed as a state in that subalgebra.
(Figure 6 right).
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Finally, we also see that the noise parameter ε is somewhat analogous to GN , which
controls the emergence of these “gravitational effects”. Similar to recovering EFT on curved
background by taking GN → 0, we recover an exact stabilizer QECC model (Figure 4b) in
the ε → 0 limit, where the “emergent gravitational effects” also vanish. In addition, if ε
is large, supposedly analogous to the scenario in which GN is large and gravity is highly
quantum, then we find that we can not identify a dominant “reference code” like V0 in (18).
Since the reference code can be thought of as a particular background (network) geometry,
here we have a highly quantum geometry that is a macroscopic superposition of potentially
different network geometries each defined by a different encoding map. In this case, there
is no obvious way for us to recover a “semi-classical” picture as there is no unique choice
of a dominant reference code V0.

3.3. Generalizations and Ways forward

In summary, in order to also produce the spatial part of linearized Einstein’s equations
around flat space, one needs the additional constraint,

6. (Modified Entanglement Equilibrium Condition)

δSgeom(χB2) + δSmatter(ρB1) = 0 (21)

for certain bipartitions of the Hilbert space factors into B and B̄, which is described in
detail in [7].

However, this constraint is not satisfied by any existing exact erasure correction codes.
There is also suspicion concerning whether it could be satisfied at all by any stabilizer codes,
which are popular for building practical QECCs [42]. However, we showed that by making
these nice codes a little worse through coherent noise injection, we obtain approximate
QECCs that are non-stabilizer codes that can satisfy condition F(δSgeom) = δSmatter.

Therefore, to build up a better model with emergent near-flat geometry that satisfies
the linearized Hamiltonian constraint, it remains to (i) identify codes for which F(δSgeom) =
−δSgeom; and (ii) construct explicit examples that have emergent flat geometry, as opposed
to the hyperbolic one we have seen so far. Since Einstein gravity may be modified to
incorporate higher order terms, it is also important to identify a code for which F has a
Taylor expansion whose leading linear contribution is −δSgeom. Fortunately, because the
QECC themselves are not tied to any pre-existing notion of background geometries, there
is no obvious obstacle for generalizations beyond emergent AdS geometries. A possible
candidate for such an exact QECC can be constructed using 5-qubit codes in [38]. Then,
by skewing the 5-qubit code tensors, one can attempt a construction for AQECCs with
near-flat geometry. Alternatively, one can directly construct an AQECC with near-flat
emergent geometry using random tensor networks [37] in the large bond dimension limit.

4. Discussion
4.1. Towards Emergent Einstein Gravity in Minkowski Spacetime

Once we can reproduce the linearized Hamiltonian constraint following the steps
above, we need the following additional ingredients to recover the fully linearized Einstein
equations on Minkowski background.

7. There exists a consistent dynamical theory, e.g., a Hamiltonian or quantum circuit,
that can generate a sequence of states each admitting an emergent spatial geometry,
which can be organized to create a spacetime geometry.

8. The overall theory is Lorentz-invariant in the appropriate limit and assumes that
the above conditions hold for all constant time slices in the emergent background
spacetime.

Let us briefly discuss how the last two conditions can be met. One possible avenue
to incorporate dynamics involves picking a Hamiltonian. Some quantum codes such
as stabilizer codes [16] admit natural constructions of stabilizer Hamiltonians for which
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states in the code subspace live in the ground space. There are also numerous quantum
manybody models whose low-energy subspace naturally corresponds to approximate
QECCs [43–45]. Alternatively, time may be emergent. Some proposals have suggested the
modular flow as a possible substitute for proper time [46]. It has also been made more
concrete recently in the context of AdS/CFT [47]. Other possibilities may involve tensor
networks or quantum circuits generated based on some background spacetime [48–51].

General understanding of how Lorentz symmetries may emerge is still lacking. Tra-
ditionally, there are known obstacles in emerging Lorentz symmetries from the kind of
systems we consider as there is no finite dimensional unitary irreducible representation
of the Lorentz group. Although one might have hoped that Lorentz symmetry is only
approximate and breaks down in some high-energy regimes, the lack of observational
signature also renders this line of thinking difficult. However, it may be possible to identify
a class or sequence of finite groups of increasing order that approximates the Lorentz
group with increasingly better accuracy in the large size limit. A potentially relevant work
has been explored by [52] in the context of recovering conformal symmetries using finite
dimensional systems.

Finally, we need to move beyond linearized gravity. A few works by [53,54] are able
to attain the non-linear Einstein’s equations with different techniques and assumptions,
which are worth further exploration.

4.2. Summary

In this paper, we reviewed the recent gravitize QM proposal in light of using QECCs
as concrete implementations of emergence maps. By identifying the right class of (ap-
proximate) QECCs, we hope to derive from first principles not only emergent geometry
beyond AdS but also gravity from quantum information constraints. We showed that
many desirable properties needed for the gravitize QM proposal can be naturally found
in QECCs that are sufficiently generic. Combined with techniques introduced in [6,7], we
provided a cursory guide that takes us from quantum states in Hilbert spaces to emergent
matter field on fixed background geometries.

However, in order for gravitational effects to emerge, we further restrict ourselves
to approximate QECCs. Interestingly, such systems can be easily constructed when we
subject our existing QECC models to coherent noise. These codes are the opposite of
what one typically wants for fault-tolerant quantum computing but are more natural
to implement on noisy quantum devices such as the ones being constructed in the near
term [55]. By studying an AQECC model developed for holography, we learned that
the level of noise is analogous to the strength of the gravitational coupling. Furthermore,
the injected noise introduces the necessary entropic relations for gravitational backreactions
and renders bulk operators weakly non-local, consistent with our intuitions from quantum
gravity. We hope to generalize these lessons to a class of codes that have emergent near-flat
geometry and satisfy the modified entanglement equilibrium condition (21).

Notably, quantum noise here plays an essential role for introducing some desirable
features of gravity. Instead of treating noise as a bug that we wish to remove in quantum
computing, we may use the quantum noise in near-term quantum devices to our advan-
tage. One possibility would be to implement such “noisy” quantum codes with emergent
geometries on devices dominated by coherent noise and to simulate certain aspects of
quantum gravity. Further work is needed to establish a more robust experimental direction
for studying quantum gravity in realistic quantum devices.
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