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Abstract: We derive a correspondence between the Hawking radiation spectra emitted from general
classes of Taub-NUT black holes with that induced by the relativistic motion of an accelerated
Dirichlet boundary condition (i.e., a perfectly reflecting mirror) in (1+1)-dimensional flat spacetime.
We demonstrate that the particle and energy spectra is thermal at late times and that particle
production is suppressed by the NUT parameter. We also compute the radiation spectrum in the
rotating, electrically charged (Kerr–Newman) Taub-NUT scenario, and the extremal case, showing,
explicitly, how these parameters affect the outgoing particle and energy fluxes.

Keywords: moving mirrors; QFT in curved spacetime; Hawking radiation

1. Introduction

Taub-NUT black holes are a simple yet instructive electrovacuum solution to the
Einstein–Maxwell field equations [1,2]. The Taub-NUT metric is a generalisation of the
Schwarzschild metric with the addition of the so-called NUT parameter, l, and has played
an important role in our understanding of the AdS/CFT correspondence [3–6]. Its initial
discovery by Taub [1] and the subsequent coordinate extension applied to it by Newman,
Unti and Tamburino (NUT) [2], led to the eventual discovery of the well-known rotating
Kerr black hole solution [7].

In this paper, we propose a simple, (1+1)-dimensional model describing the Hawking
radiation [8] properties of general classes of Lorentzian Taub-NUT black holes, known as
the accelerated boundary correspondence (ABC). The model associates the origin of the
black hole coordinates in (3+1)-dimensions with the trajectory of an accelerated mirror
(i.e., a perfectly reflecting boundary) in (1+1)-dimensional Minkowski spacetime [9–11].
The relativistic trajectory of the mirror, which rapidly changes the boundary conditions
of incoming field modes, induces particle production from the quantum vacuum [12,13].
Recently, this model has been applied to the well-known Schwarzschild [14], Reissner–
Nordström (RN) [15], Kerr [16] and Kerr–Newman metrics [17], where analytic expressions
for the spectra and the late-time thermal emission were derived.

We extend upon the aforementioned studies by considering general classes of Taub-
NUT black holes, including those with a non-zero angular momentum and charge. Moti-
vated by prior insights gleaned regarding the effect of spin and charge on the radiation,
here, we ask how the presence of the NUT charge affects particle production and energy
emission. Our results show that, in general, the presence of the NUT charge inhibits particle
production for non-extremal black holes. Meanwhile, for the extremal (rotating, electrically
and NUT charged) case, we find that the particle and energy spectrum is non-monotonic
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with an increasing l. The utility of the ABC approach lies in its ability to elicit simple, closed-
form expressions for the aforementioned quantities without relying on approximations
which have been known to breakdown in certain regimes [18].

Our paper is organised as follows: In Section 2, we introduce the field-theoretic
details for the Taub-NUT metric and the associated mirror trajectory in (1+1)-dimensional
Minkowski spacetime. We, then, calculate the energy and particle spectrum of the outgoing
radiation, demonstrating its thermal character at late times. In Section 3, we extend our
analysis to the rotating, electrically charged version of the Taub-NUT spacetime (Kerr–
Newman Taub-NUT, or KNTN). We conclude with some final remarks in Section 5. In the
Appendices A–C, we derive a new class of mirror trajectories associated with a Taub-NUT
spacetime with a vanishing two-space curvature, ε = 0, where we discover a thermal
spectrum at early times. We conjecture that the mirror trajectory and ensuing particle
creation reflects black hole dynamics with a reversal of time, since in the ε = 0 case, time
becomes a space-like coordinate and vice versa. Throughout this paper, we utilise natural
units, G = c = } = kB = 1.

2. Accelerated Boundary Correspondence
2.1. Taub-NUT Metric

The Taub-NUT metric is often expressed in the form:

ds2 = − f (r)
(
dt̄− 2l cos θdφ

)2
+

dr2

f (r)
+ (r2 + l2)dΘ2, (1)

where dΘ2 = dθ2 + sin2 θdφ2 and:

f (r) =
r2 − 2Mr− l2

r2 + l2 . (2)

In the limit l → 0, the metric reduces to the well-known Schwarzschild solution and
M takes on the interpretation of the mass of the source. The metric Equation (1) has two
Killing horizons but no curvature singularity. The physical meaning of the NUT parameter,
l, remains an open question; it is commonly interpreted as a magnetic mass parameter [18];
however, other investigations have associated it with the twisting parameter of the source-
free electromagnetic field within which a Schwarzschild black hole resides [19]. The
parameter l relaxes global asymptotic flatness (e.g., singularity at θ = π) despite the
Riemann tensor scaling at r−3 at infinity [20].

Associated with the NUT charge l is a singularity on the polar axis known as a Misner
string (an analogue of the Dirac string singularity in electromagnetism) and regions of
spacetime in its vicinity having closed time-like curves. Traditionally, these issues have
been avoided by imposing the periodicity of the time coordinate [21], rendering the string
unobservable. This, consequently, leads not only to the existence of closed time-like curves
everywhere, but additionally makes the maximal extension of the spacetime problem-
atic [21,22]. However, it has recently been shown that the spacetime described by the
metric Equation (1) is geodesically complete and free from causal pathologies for freely
falling observers if time periodicity is not imposed [23,24]. Indeed, the Misner string is
transparent to geodesics, and the spacetime has no closed time-like or null geodesics,
provided some restrictions are imposed on the parameters of the NUT solution. Further-
more, the Kruskal extension through both horizons can be carried out if there is no time
periodicity [25], and it is possible to formulate a consistent thermodynamics of Taub-NUT
spacetime with Misner strings present [26–29].

Because of the string singularity at θ = π, one can perform the transformation
t̄ = t + 2lφ to obtain the modified line element [20],

ds2 = − f (r)
(

dt + 4l sin2 θ

2
dφ

)2
+

dr2

f (r)
+ (r2 + l2)dΘ2. (3)
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There are two horizons, occurring at r± = M±
√

M2 + l2, which define the so-called
NUT regions, NUT− and NUT+. Consider the simplified (1+1)-dimensional metric in a
plane of θ = φ = const., yielding the simplified metric,

ds2 = − f (r)dt2 +
dr2

f (r)
. (4)

The thermal radiation emitted from the Taub-NUT black hole and detected by an
inertial observer at infinity has the temperature:

TTN =
κ+
2π

, (5)

where

κ+ =
1
2

d f (r)
dr

∣∣∣∣
r=r+

=
1
2
(

M +
√

M2 + l2
)−1, (6)

is the usual surface gravity at the outer horizon. From Equation (5), we saw, explicitly, that
the temperature of the black hole decreases with increasing l. This is reminiscent of the
cooling effect that both charge and angular momentum have on the temperature of the RN
and Kerr black holes, respectively. We introduced a tortoise coordinate, obtained via:

r? =
∫ dr

f (r)
, (7)

which yields:

r? = r +
√

M2 + l2 ln
∣∣∣∣ r− r+
r− r−

∣∣∣∣+ M ln
∣∣∣∣ (r− r+)(r− r−)

r2
S

∣∣∣∣, (8)

where rS ≡ 2M is the usual Schwarzschild radius, and an integration constant is chosen so
that our results coincide with the Schwarzschild limit derived in [14], as l → 0.

2.2. Taub-NUT Mirror

The tortoise coordinate Equation (8) can be used to define a double null coordinate
system, (u, v), where u = t− r? and v = t + r?, for the exterior geometry of the black hole,
which allows the line element to be written in the form:

ds2 = − f dudv. (9)

One then employs a matching condition (see [13]) with the flat interior geometry,
which is described by the interior coordinates:

U = T − r, V = T + r, (10)

and associates this condition with the mirror trajectory, corresponding to the r = 0 coordi-
nate. The matching condition expresses the exterior function, u(U), in terms of the interior
coordinate U. To perform this, we set r = r?, and took r?(r = (v0 −U)/2) = (v0 − u)/2
along a light ray, v0. Using this condition, we obtained two possible conditions for v0,
namely, v0 − 2r± = vH where vH is the null coordinate of the horizon. Anticipating a
transition to the (1+1)-dimensional mirror system, we could neglect the inner horizon
solution, which occurs at r < 0; the trajectory of the mirror (i.e., the reflecting point for
incoming field modes) models the r = 0 coordinate in the black hole coordinate system.
More specifically, the particular choice of the light ray v0 − 2r± = vH gave us the analog to
the outer horizon of the black hole. Since the field modes are lost to the left after t = −x (the
acceleration horizon of the mirror, see Figures 1 and 2), the inner horizon has a negligible
role to play in determining the spectrum as seen by an observer on the right.
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Figure 1. Penrose conformal diagram of the analog Taub-NUT mirror trajectories, with l = 0.5 and
M = 0.125, 0.25, 0.5, 1, ranging from dark blue to orange. Recall that we utilised natural units, setting
G = c = } = kB = 1.

Figure 2. Spacetime diagram of the trajectories shown in Figure 1. These trajectories highlight the
late-time acceleration horizon that mimics the formation of the black hole event horizon.

Applying these conditions to the tortoise coordinate, we obtained the exterior coordi-
nate, u(U), given by:

u(U) = U − 1
κ+

ln
∣∣∣∣ U
4M

∣∣∣∣− 1
κ−

ln
∣∣∣∣U − 4

√
M2 + l2

4M

∣∣∣∣, (11)

where

1
κ±

= 2M± 2
√

M2 + l2, (12)

are the inverse surface gravities of the outer and inner horizons, respectively.
As already mentioned, the accelerated boundary correspondence associates the origin

of the black hole geometry with the trajectory of a perfectly reflecting point in (1+1)-
dimensional Minkowski spacetime (i.e., our accelerated Dirichlet boundary condition).
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Making the identification f (v) ⇔ u(U) (where f (v) is commonly known as the
ray-tracing function [12], i.e., it is the EoM trajectory of the mirror), we obtained:

f (v) = v− 1
κ+

ln |κSv| − 1
κ−

ln |κS(v− 4ψ)|, (13)

where κS = 1/4M is the surface gravity of the Schwarzschild black hole and we defined
ψ =
√

M2 + l2. These black hole parameters retain their usual interpretation in the (1+1)-
dimensional system, and their effect is to modify the spacetime trajectory of the mirror. It is
straightforward to verify that this reduces to the Schwarzschild mirror trajectory in the limit
l → 0 [14]. The rapidity η(v) as a function of advanced time is given by −2η(v) = ln f ′(v).
For the Taub-NUT analog mirror, we obtained:

η(v) = −1
2

ln
∣∣∣∣1− 1

κ+v
+

1
4κ−(ψ− v)

∣∣∣∣, (14)

which approaches the speed of light near the horizon, v→ 0−. To the leading order in v,
the late-time proper acceleration, α(v) = eη(v)η′(v), is given by:

lim
v→0−

α(v) = − κ+√
−4κ+v

. (15)

which is divergent. At early times, v → −∞, the mirror is static, as can be seen in the
conformal Penrose diagram of Figure 1.

2.3. Energy Flux and Particle Spectrum

Having analysed the (1+1)-dimensional trajectory of the Taub-NUT analog mirror,
we now considered the properties of outgoing particle and energy fluxes induced by its
motion. The radiated energy flux, F(v), can be calculated from the quantum stress-energy
tensor using the simple expression [30],

F(v) =
1

24π

{
f (v), v

}
f ′(v)−2, (16)

where the Schwarzian brackets are defined as:

{
f (v), v

}
=

f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

. (17)

To the leading order in v, near v→ 0−, we discovered a constant energy flux:

F(v) =
κ2
+

48π
+O(v2). (18)

This behaviour is comparable to the analog mirror trajectories for the Kerr and Kerr–
Newman black holes [16,17], and is indicative of late-time thermal behaviour.

Next, we considered the particle spectrum of the outgoing modes. This can be derived
from the Bogoliubov coefficients,

βωω′ =
1

2π

√
ω′

ω

∫ vH

−∞
dv e−iω′v−iω f (v), (19)

where ω, ω′ are the frequencies of the outgoing and incoming modes, respectively. This
is a simplified form of the inner product integral in, e.g., [30] where integration by parts
neglects non-contributing surface terms. The particle spectrum can be obtained by taking
the modulus square, NTN

ωω′ := |βωω′ |2 which yields:
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NTN
ωω′ =

ω′

2πκ+ω2
+

e−πω/κ−

e2πω/κ+ − 1
|U|2, (20)

where we defined ω+ = ω + ω′, and:

U ≡ U
(

iω
κ−

,
iω
κS

,
iω+

κ̄

)
, (21)

is a confluent hypergeometric Kummer function of the second kind, with κS = 1/4M
the usual surface gravity associated with the Schwarzschild event horizon. Here, κ̄−1 =
2(r+ − r−) = 4ψ = 4

√
M2 + l2. This is analogous to the Kerr–Newman case with a

replacement of the angular momentum and charge with the NUT parameter (with a sign
difference between them; see Section 3 for a discussion of the rotating, charged scenario).

As shown in Figure 3, Nωω′ approaches thermality in the late-time regime, associated
with ω′ � ω [8]. This limit describes the extreme Doppler shift experienced by the
incoming plane wave modes, induced by the mirror trajectory. The main contribution
to the Bogoliubov coefficients comes from these high-frequency modes. One can also
demonstrate this thermal property analytically; that is,

lim
ω′�ω

NTN
ωω′ = NCW

ωω′ =
1

2πκ+ω′
1

e2πω/κ+ − 1
, (22)

which is also the eternal Planckian spectral form obtained for the Carlitz–Willey mirror
trajectory [31] with temperature T = κ+/(2π) (i.e., associating κ+ ↔ κ, where κ is the
analog surface gravity of the eternal black hole).

Figure 3. Mode-mode particle spectrum, Equation (20) emitted by the Taub-NUT (uncharged, non-
rotating) analog mirror system, as a function of the outgoing frequency ω (main) and NUT parameter
l (inset). In the main plot, we have used l = 0, 1, 2, 4 (dark blue to orange) while in the inset, ω = 0.1,
0.5, 1, 2. In all cases, we have fixed M = 1 and ω′ = 1 for illustration.

It is also straightforward to verify that as the NUT parameter vanishes; the particle
spectrum becomes:

lim
l→0

NTN
ωω′ = NS

ωω′ =
ω′

2πκSω2
+

1
e2πω/κS − 1

, (23)

which is the result found in [14] for the particle spectrum of the Schwarzschild analog
mirror trajectory [32–34]. This limiting result, Equation (23), is valid for all times, not just
late times, demonstrating the consistency of our approach with the canonical case.

From Figure 3, we also found that the introduction of the NUT parameter generally
inhibits particle production, most clearly seen in the early-time limit (i.e., ω′ ∼ ω) in
Figure 3. This is primarily due to the exponential suppression factor in Equation (20),
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which, even for a small l, dramatically reduces Nωω′ by many orders of magnitude. From
Equation (12), it can also be seen that the NUT parameter has a similar effect on the black
hole surface gravity and, hence, the temperature and particle production, as the mass (i.e.,
heavier black holes radiate fewer particles). Since the temperature has an inverse square-
root dependence on l—Equation (6)—, the particle production is likewise suppressed for
larger l in the late-time thermal regime (however, this effect is barely visible in Figure 3).

3. Kerr–Newman Taub-NUT Mirror

Thus far, we considered a static, uncharged Taub-NUT spacetime and its analog
mirror trajectory. Extension is warranted to the more general rotating, electrically charged
Taub-NUT black hole. We note in passing that our analysis focused on the pure (analog)
Hawking radiation emitted by the mirror–absent scattering effects [13]. A limitation of the
accelerated boundary correspondence is the neglect of higher-dimensional effects; in the
rotating scenario, this includes super-radiance, produced by incoming wave amplification
due to the scattering off the rotating black hole. However, the influence of this effect
primarily lies in the amplitude, rather than the frequency of the scattered modes. Hence,
in the following, we restricted our focus to the s-wave pure (analog) Hawking radiation
emitted.

3.1. Kerr–Newman Taub-NUT Metric

The Kerr–Newman Taub-NUT (KNTN) metric is given by:

ds2 = − ∆
ρ2

(
dt− Pdφ

)2
+

ρ2

∆
(
dr2 + ∆dθ2)

+
sin2 θ

ρ2

(
(r2 + a2 + l2)dφ2 − adt

)2, (24)

where

P = a sin2 θ − 2l cos θ, (25)

∆ = r2 − 2Mr + a2 + Q2 − l2, (26)

ρ2 = r2 + (l + a cos θ)2. (27)

Here, a = J/M is the mass-normalised angular momentum and Q is the charge.
Following [16,17], we further restricted our analysis to a plane of constant θ, φ which yields
the simplified (1+1)-dimensional metric:

ds2 = − f (r)dt2 +
dr2

f (r)
, (28)

where

f (r) =
r2 − 2Mr + a2 + Q2 − l2

r2 + (l + a cos θ)2 . (29)

From Equation (29), we found that the metric function, f (r), is independent of φ;
hence, the temperature of the Hawking radiation will likewise be unaffected by changes in
φ. However, we also noticed the presence of the angular coordinate θ, which if left general,
will leave an angular dependence in the temperature itself. To understand this, our model
generated a correspondence between the (3+1)-dimensional black hole coordinates and
the (1+1)-dimensional flat spacetime mirror trajectory by flattening out the two additional
spatial dimensions defined by θ, φ. To date, this was achieved simply assuming a plane of
constant θ, φ with arbitrary values, which has, likewise, yielded a valid tortoise coordinate
which is independent of these parameters. However, the rotational degree of freedom in
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the full KNTN metric, Equation (24), leads to the existence of an ergosphere outside the
black hole defined by r+ < r < re+, where:

re+ = M +
√

M2 + l2 −Q2 − a2 cos2 θ. (30)

Notice in particular that re+ = r+ (the outer horizon) when θ = 0. In deriving the
accelerated boundary correspondence between the black hole and the flat spacetime mirror
trajectory, we required a tortoise coordinate defined with respect to the outer horizon, r+,
of the black hole. Thus, taking θ = 0 yields a physically meaningful tortoise coordinate
and, likewise, the correct outer horizon surface gravity. From this, we expected that the
Hawking temperature of the outgoing radiation is the correct one, corresponding to that
derived from other approaches, for example Equation (6). If θ 6= 0, then one has an ill-
defined tortoise coordinate which does not actually correspond to radial coordinate of the
outer horizon.

With this in mind, we specialised to the plane of θ = 0 and φ = const. which yields
the tortoise coordinate:

r? = r +
γ

2ρ
ln
∣∣∣∣ r− r+
r− r−

∣∣∣∣+ M ln
∣∣∣∣ (r− r−)(r− r+)

r2
S

∣∣∣∣, (31)

where we defined:

γ = 2al + 2l2 + 2M2 −Q2, (32)

ρ =
√

M2 + l2 − a2 −Q2. (33)

The spacetime also possesses two horizons at the radial coordinates:

r± = M±
√

M2 + l2 − a2 −Q2. (34)

3.2. Kerr–Newman Taub-NUT Mirror

To obtain the exterior coordinate as a function of U, we performed the same matching
condition analysis as before. The existence of two horizons for r > 0 allows for the choice
of v0 − 2r+ ≡ vH or v0 − 2r− ≡ vH , since u→ ∞ at U = vH . When l2 < a2 + Q2, the inner
horizon, r−, occurs at a r > 0, in contrast to the uncharged, non-rotating scenario. Without
loss of generality, we set vH = 0 and neglected the inner horizon solution so that v0 = 2r+.
This choice is justified since it reduces to the correct Schwarzschild limit, wherein r− = 0
represents the curvature singularity. Alternatively, one understands that the incoming
modes are reflected off the centre of the black hole coordinate system, r = 0. The outer
radius is chosen for the shell position since r+ > r−; the modes from the shell v0 = 2r+
will reach the observer at I +

R first in both the mirror and black hole system, having already
reflected off the mirror.

The exterior coordinate is then,

u(U) = U − 1
κ+

ln
∣∣∣∣ U
4M

∣∣∣∣− 1
κ−

ln
∣∣∣∣U − 4ρ

4M

∣∣∣∣, (35)

where the inverse surface gravities of the inner and outer horizons are given by:

1
κ±

= 2M± 2al + 2l2 + 2M2 −Q2√
M2 + l2 − a2 −Q2

. (36)

As before, we associated u(U)⇔ f (v) to obtain the trajectory of the mirror in (1+1)-
dimensional Minkowski spacetime, given by:

f (v) = v− 1
κ+

ln
∣∣κSν

∣∣− 1
κ−

ln
∣∣κS(v− 4ρ)

∣∣. (37)
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The motion of the mirror is comparable to that found for the non-rotating, uncharged
spacetime (see Figures 1 and 2); the parameters, M and Q, a only produce minor pertur-
bations to the uncharged, non-rotating analog trajectory. The energy flux at late times is
given by:

F(v) =
κ2
+

48π
+O(v2), (38)

which is constant, and dependent on M, Q, a and l.
As before, the mode–mode particle spectrum can be obtained via the Bogoliubov

coefficients, and is given by:

NKNTN
ωω′ =

ω′

2πκ+ω2
+

e−πω/κ−

e2πω/κ+ − 1
|U|2, (39)

where ω+ = ω + ω′ and again:

U ≡ U
(

iω
κ−

,
iω
κS

,
iω+

κ̄

)
(40)

is a confluent hypergeometric Kummer function of the second kind, where κS = 1/(4M) as
before. Here, κ̄−1 = 2(r+ − r−) = 4

√
M2 + l2 − a2 −Q2, which reduces straightforwardly

to the Kerr–Newman case as l → 0, i.e., [17]:

lim
ω′�ω

lim
l→0

NKNTN
ωω′ = lim

ω′�ω
NKN

ωω′ =
ω′

2πκ+ω2
+

1
e2πω/κ+ − 1

(41)

(where the surface gravities are those of the Kerr–Newman case).
In general, the spectrum is similar to the Taub-NUT case shown in Figure 3 (hence, we

left out a comparable graph for the KNTN case for brevity). In the high-frequency limit,
the outgoing particle flux is thermal,

lim
ω′�ω

NKNTN
ωω′ = NCW

ωω′ =
1

2πκ+ω′
1

e2πω/κ+ − 1
, (42)

as expected. In the l2 − a2 −Q2 = 0 limit, the results reduce to the familiar Schwarzschild
case, e.g., [14].

To understand the dependence of particle production on the black hole parameters
(Q, a, l), it is instructive to plot the early-time spectrum, as shown in Figure 4. This is
because the early-time regime more explicitly unveils these dependences; the late-time
regime yields the constant thermal production of the Carlitz-Willey trajectory. Figure 4
shows the early-time spectrum for the (a) Kerr Taub-NUT and (b) Reissner-Nordström
Taub-NUT analog mirrors. In Figure 4a, we find that for Kerr Taub-NUT black holes, the
NUT parameter inhibits particle production, and at a faster rate than an equal increase in
the black hole’s rotation. Interestingly for Reissner-Nordström Taub-NUT black holes –
Figure 4b–the effect of the charge, Q, upon the radiated particle spectrum is nearly identical
to that of the NUT parameter, l. That is, the early-time spectrum is nearly symmetric in Q, l.
Further demonstration of the suppression of particle production by the presence of the
NUT parameter is shown in Figure 5, which plots the early-time mode-mode spectrum of
the Kerr-Newman Taub-NUT analog mirror. Figure 6 shows that the particle spectrum does
not exhibit any special behaviour as l2 − a2 −Q2 crosses from negative to positive values.
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Figure 4. Mode-mode particle spectrum for the analog Kerr-Newman Taub-NUT mirror as a function
(a) a, l with Q = 0 and (b) Q, l, with a = 0. In all plots, we have assumed an early-time regime,
ω ∼ ω′ (i.e. ω = ω′ = 1).

Figure 5. Mode-mode particle spectrum, Equation (39) for the Kerr-Newman Taub-NUT analog
mirror. The main plot shows Nωω′ as a function of the NUT parameter, for different values of the
charge; namely Q = 0.1, 0.4, 0.7 ranging from dark blue to orange, and the angular momentum,
(solid) a = 0.1, and (dashed) a = 0.7. We have also taken M = 1 and the early-time limit, ω = ω′ = 1.
In the inset plot, Nωω′ is shown as a function of ω, for l = 0.0, 0.5, 1.0 with M = ω′ = 1, a = 0.1,
Q = 0.7 fixed. Note in particular that the inset plot is shown on a log-log scale for clarity.
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Figure 6. Nωω′ plotted against l2 − a2 − Q2. The three lines correspond to (KNTN) a = Q = 1/4,
(KTN) a = 1/8, Q = 0, and (RNTN) a = 0, Q = 1/4. We have also fixed M = ω = ω′ = 1. Notably,
Nωω′ exhibits no unusual behaviour as l2 − a2 −Q2 crosses from negative to positive values. This
behaviour occurs consistently across different incoming-outgoing frequency regimes.

4. Extremal Kerr–Newman Taub-NUT Mirror

The extremal limit occurs for M2 = a2 + Q2 − l2, describing the minimum possible
mass compatible with the other free parameters which characterise the Kerr–Newman Taub-
NUT black hole. Extremal black holes have been crucial in developing an understanding
of the statistical origin of black hole entropy [35], making them relevant cases for studying
quantum aspects of gravity.

In this limit, the metric function becomes:

f (r) =
r2 − 2

√
a2 + Q2 − l2r + a2 + Q2 − l2

r2 + (l + a)2 , (43)

taking the positive root of M. The tortoise coordinate is given by:

r? = r− 2a(a + l) + Q2

r−M
+ 2M ln

∣∣∣∣ r−M
2M

∣∣∣∣. (44)

In Equation (44), we restored the mass parameter M = +
√

a2 + Q2 − l2 where possi-
ble, bearing in mind that the extremal case is really characterised by three free parameters,
rather than four. Performing the matching condition between the interior and exterior
geometries of the black hole, we found that the exterior coordinate, as a function of U, is
given by:

u(U) = U − 4(2a(2a + l) + Q2)

U
− 4M ln

∣∣∣∣ U
4M

∣∣∣∣, (45)

with the associated mirror trajectory given by:

f (v) = v− 1
A2v

− 1
κS

ln
∣∣κSv

∣∣, (46)

where A is defined in Equation (48). The rapidity is:

η(v) = −1
2

ln
∣∣∣∣1 + 1

A2v2 −
1

κSv

∣∣∣∣, (47)

where we anticipated the introduction of the asymptotic uniform acceleration,A, defined as:

lim
v→0−

α(v) = − 1

2
√

2a2 + 2al + Q2
≡ −A. (48)
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Using the usual definition for the total energy flux, one obtains the following expres-
sion for the energy flux as a function of v,

F(v) =
κ2

SA6v3(A2v(1− 4κSv) + 4κS(3κSv− 1)
)

48π(A2v(κSv− 1) + κS)
4 . (49)

As was found for the extremal Kerr-Newman analog mirror trajectory, the energy flux
emitted by the extremal Kerr-Newman Taub-NUT mirror, Figure 7a, vanishes at late times,
v→ 0, and reduces to the result derived in [17] as l → 0.

Figure 7. (a) Time-dependent energy flux, F(v) (normalised by 10−4), plotted as a function of v for
the different extremal black hole solutions. The values of a, Q, l are either 0 or +1, corresponding to
the relevant solution. (b) The total energy (normalised by 10−3) emitted by the KNTN black hole as a
function of the NUT parameter.

The total energy radiated by the mirror is given by:

E =
∫ vH=0

−∞
F(v)

d f (v)
dv

dv

= − AκS
48πζ3

[
Aζ + µ

(
π − 2 tan−1

(
A
ζ

))]
, (50)

with

ζ =
√

4κ2
S −A2, (51)

µ = A2 − 6κ2
S. (52)

Analogous to other recent extremal black hole results (Kerr, Reissner–Nordström and
Kerr–Newman mirrors), we found that the total energy radiated by the extremal Kerr–
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Newman Taub-NUT mirror is finite and reduces to the appropriate limits for a vanishing
NUT parameter.

In Figure 7b, we have plotted the total energy radiated by the mirror as a function of
the NUT parameter. Intriguingly, for small l, the energy decreases, before increasing as
l →

√
a2 + Q2 – that is, in the limit where the mass of the extremal black hole vanishes. It

has been conjectured that tiny mass black holes were present in high densities in the early
universe [36]. The effect of this dominant energy contribution from primordial (i.e. tiny
mass) Taub-NUT black holes upon the evolution of matter and energy densities in the early
universe would be an interesting problem to pursue in future studies.

In Figure 8a, we have plotted the total energy emitted by the mirror as a function
of the angular momentum parameter, a. In general, we see that the total energy decays
with increasing a, which corresponds to an increasing extremal black hole mass. Notably,
we find that for small values of a, the presence of a non-zero (and larger) NUT parameter
amplifies the total energy. This result corroborates the findings of Figure 7b. At a threshold
value of a, the energy of the l = 0 mirror (i.e. the extremal Kerr-Newman analog) intersects
that of the l 6= 0 mirrors; above this threshold, the presence of the NUT charge inhibits the
total energy radiated compared with the l = 0 case.

Figure 8. (a) Total energy, E, radiated by the extremal KNTN mirror as a function of the angular
momentum for different values of the NUT parameter, with Q = 1 fixed. (b) Total energy, E, as a
function of the charge, Q, with a = 1 fixed. Both plots have been normalised by 10−3.

In Figure 8b, we have plotted the total energy emitted by the mirror as a function
of the charge, Q, with fixed a and different values of l. The plot complements Figure 8a,
which shows that there is a specific value of l for each set of (Q, a) which minimizes the
total energy radiated.
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To derive the mode–mode particle spectrum, Nωω′ , we performed the usual procedure
and calculated the Bogoliubov coefficients between the incoming and outgoing modes.
Performing this calculation yields,

NKNTN
ωω′ :=

∣∣βKNTN
ωω′

∣∣2 =
e−πω/κS ω′

π2A2ω+

∣∣∣∣Kn

(
2
A
√

ωω+

)∣∣∣∣2 (53)

where Kn(x) is the modified Bessel function of the second kind, where n = 1− iω/κS, and
we defined ω+ = ω + ω′. This spectrum is characteristically non-thermal, and accords
with the results found in [17,37] in the appropriate limits. It is important to note that the
corresponding trajectory dynamics of the analog extremal mirror completely differ from
the non-extremal case. This reflects the uniqueness of extremal black hole solutions, which
possess vanishing surface gravity and, hence, an undefined temperature. Likewise, the
non-thermal particle spectrum, Equation (53), should not be considered to be a limiting
case of the non-extremal spectrum.

In Figure 9, we plotted the early-time particle spectrum, Nωω′ , for the extremal Kerr–
Newman Taub-NUT analog mirror, as a function of the NUT parameter, l. We discovered
that the particle spectrum initially decreases with increasing l (i.e., as the mass of the extremal
black hole decreases). As the mass approaches zero, the particle number begins to increase
and diverges as l →

√
a2 + Q2. In the late-time regime, ω′ � ω, the radiation exhibits

similar behaviour. One can understand this as a competition between the increasing NUT
parameter (which we found for non-extremal black holes, inhibits particle production) with
a decreasing black hole mass (which typically makes non-extremal black holes hotter; of
course, here, we could not meaningfully assign a temperature to the radiation, since it is
non-thermal). The particle spectrum Equation (53) is in agreement with the energy flux of
the quantum stress tensor, Equation (49). Numerical checks confirm that the method of
quantum summing,

E =
∫ ∞

0

∫ ∞

0
ω NKNTN

ωω′ dω dω′, (54)

yields the total energy Equation (50), confirming the mathematical consistency of the
spectral results. The physical interpretation is that the particles carry the energy; we
concluded that the non-monotonic effect on the particle radiation as a function of the NUT
parameter is a reliable result.

Figure 9. Log-log plot of the particle spectrum, Nωω′ , radiated by the extremal KNTN mirror as a
function of the NUT parameter, l. We have taken ω = ω′ = 1, however we also verified that the
non-monotonicity is robust to arbitrary choices of ω, ω′.
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5. Conclusions

In this paper, we investigated an accelerated boundary correspondence which mimics
the outgoing Hawking radiation produced by a general class of Taub-NUT black holes. The
solution is thermal at late times, approaching the Schwarzschild and Carlitz–Willey limits
in the appropriate regimes. In the rotating, electrically charged case, we found that the
presence of the NUT parameter, l, generally suppresses particle production. Moreover, we
found no indication that the ABC form of the Hawking radiation spectrum responds to the
type of singularity in the Taub-NUT metric that results in an absence of global asymptotic
flatness. The extremal Kerr–Newman Taub-NUT case is a particularly interesting result,
whereby the particle and energy spectrum are shown to be non-monotonic as a function of
the NUT parameter, in contrast to the non-extremal case.

As in other recent works, the aim of this paper was to communicate the utility of the
ABC method in extracting physically meaningful insights into the Hawking radiation prop-
erties of different kinds of black holes. This approach has the advantage of yielding analytic
expressions for quantities such as the particle spectrum and energy flux. We envision it will
continue to be utilised as a tool for analysing complex and exotic cosmological spacetimes.
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Appendix A. Vanishing Two-Space Curvature (ε = 0)

In our prior analysis, we assumed a NUT solution with a positive two-space curvature,
ε = 1. More generally, the line element takes the form:

ds2 = − f (r)
[

dt +
il
(
ζdζ̄ − ζ̄dζ

)
1 + εζζ̄/2

]2

+
dr2

f (r)

+ (r2 + l2)
2dζdζ̄

(1 + εζζ̄/2)2 , (A1)

where

f (r) =
ε(r2 − l2)− 2Mr

r2 + l2 , (A2)

and ε is the discrete, two-space curvature which takes on the values ε ∈ {−1, 0, 1}. When
ε = +1, one can set ζ =

√
2 tan(θ/2)eiφ and the line element reduces to the form of

Equation (3). In the following, we studied the ε = 0 case, which corresponds to a new class
of mirror trajectories possessing an early-time thermal spectrum.

Appendix B. Taub-NUT Mirror (ε = 0)

For ε = 0, the metric is:

ds2 = − f (r)
(
dt + lρ2dφ

)2
+

dr2

f (r)
+ (r2 + l2)dΘ2, (A3)

where
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f (r) = − 2Mr
r2 + l2 (A4)

and dΘ2 = dρ2 + ρ2dφ2. To obtain Equation (A3), we set ζ = ρeiφ/
√

2 in Equation (A1);
in Equation (A1), ρ = 0 behaves such as an axis for which φ is the associated periodic
coordinate [20]. Conformal diagrams for sections of the maximally extended spaces with
metric Equation (A3) were given by Siklos [38]. These correspond to the two-space with
ρ, φ = const., yielding the line element:

ds2 =
2Mr

r2 + l2 dt2 − r2 + l2

2Mr
dr2. (A5)

In this section, we derived the accelerated boundary correspondence for Equation (A5).
Notice that the surfaces of constant r have time-like normals for r < 0 and space-like
normals for r > 0. The usual ansatz assumed in the accelerated mirror model is that r > 0,
which accords with the regularity condition imposed on incoming modes. That is, the
reflecting point of the modes is the r = 0 centre of the black hole itself. Such a system (i.e.,
with time-like r) has not been studied in the context of accelerating mirrors and, hence, the
physical interpretation is not entirely clear. Curiously, if one makes the simple replacement
r → −r (so that r becomes the usual space-like radial quantity), yielding the metric:

ds2 = − 2Mr
r2 + l2 dt2 +

r2 + l2

2Mr
dr2 (A6)

the corresponding mirror trajectory becomes space-like (admits faster-than-light trajecto-
ries), which is unphysical.

Furthermore, adopting Equation (A5) as stated leads to a valid spacetime trajectory
possessing an early-time acceleration horizon, i.e., begins light-like in the asymptotic past
(see the trajectory diagrams in Figures A1 and A2). Hence, we expected the spectrum
to be thermal at early times, rather than at late times as is usually the case for mirrors
which approach the speed of light with an acceleration horizon in the asymptotic future.
Tentatively, we suggest that the reversal in the sign of the time coordinate in the metric
leads to an overall time reversal in the usual particle production dynamics of the mirror
trajectory, leading to the early-time thermal result (as we derived below). Therefore, this
mirror trajectory, and the ensuing spectrum, cannot have a direct physical correspondence
to the behaviour of a typical black hole formed via a gravitational collapse. Nevertheless,
we are interested in the effects induced by this new class of mirror trajectories, which, as
we demonstrated, yield an entirely new particle and energy spectrum. Note that, despite
the swapped roles of t and r at the level of the metric (A3), once we determined the relevant
associations between u(U) and the flat spacetime trajectory f (v), these details are flattened
out; t and z take on their usual interpretations and temporal and spatial coordinates.

For the ε = 0 metric, the horizon occurred at r = 0 and is asymptotically flat as
r → ±∞. As mentioned, we considered r ≥ 0, where, as usual, r = 0 functions as the
reflecting point of incoming modes.

As before, we specialised to (1+1)-dimensions by considering a plane where θ = φ =
const., so that:

ds2 = − f (r)dt2 +
dr2

f (r)
. (A7)

The tortoise coordinate (which is really a temporal tortoise coordinate [39]) is:

r? = − r2

4M
− l2

2M
ln
∣∣∣∣ r
r2

S

∣∣∣∣, (A8)

where we included an appropriately chosen integration constant in the denominator of
the logarithm. Note that swapping r → −r at the level of the tortoise coordinate does not
actually change r?; hence, the mirror trajectory remains identical. Furthermore, r? → +∞
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as r → 0+. As before, we applied the usual matching condition to the exterior (u) and
interior (U) coordinates. Noting the single horizon at r = 0 and taking v0 = 0 without the
loss of generality, we obtained:

u(U) =
U2

8M
+

l2

M
ln
∣∣∣∣ U
2r2

S

∣∣∣∣. (A9)

Figure A1. Conformal Penrose diagram for the analog Taub-NUT mirror trajectory, with vanishing
2-space curvature ε = 0. The trajectories shown correspond to l = 0.5, 1.0, 1.5, 2.0, from dark blue to
orange.

Figure A2. Corresponding spacetime trajectories for the Taub-NUT analog mirror, clearly illustrating
the early-time horizon. We have used the same settings as Figure A1.

The mirror trajectory can be obtained by associating u(U) = f (v) so that:

f (v) =
κSv2

2
+

1
κ

ln
∣∣∣∣ v
2r2

S

∣∣∣∣ (A10)
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where κS is the usual Schwarzschild surface gravity and κ = M/l2. We note here that the
trajectory Equation (A10) represents a novel class of mirror trajectories that has not yet
been studied. The rapidity is:

η(v) = −1
2

ln
∣∣∣∣ 1
κv

+ κSv
∣∣∣∣. (A11)

The mirror is asymptotically null in the infinite past and future, as shown in Figure A1.
In Figure A2, we saw that the trajectories diverge from null infinity, I−R , and converge to
time-like future infinity i+. That is, even though both asymptotic regimes approach the
speed of light, only the early-time regime possesses a null horizon. The late-time regime is
asymptotically inertial.

One can also obtain the proper acceleration, which to the leading order in v near
v→ 0− is:

α(v) = −
√

κSv
2κSv2 +O(v3). (A12)

In the asymptotic past, the mirror possesses infinite acceleration (in the direction
opposite to its motion) and coasts at the speed of light in the asymptotic future (and, hence,
does not possess an acceleration horizon). As long as acceleration is asymptotically zero,
even in the presence of a divergent rapidity (the mirror attains the speed of light), the
mirror will be asymptotically inertial and its evolution will be toward an asymptotic drift
at a constant velocity. Coasting trajectories [30,40–44] have been studied as models for
black hole remnants [45].

Appendix C. Energy Flux and Particle Spectrum (ε = 0)

The time-dependent energy flux, calculated using the usual Schwarzian derivative, is
given by:

F(v) =
κ2

48π

[
1 + 10κκSv2 − 3κ2κ2

Sv4

(1 + κκSv2)4

]
. (A13)

At early times v→ 0+, the energy flux to the leading order in v is constant, and given
by:

F(v) =
κ2

48π
+O(v2). (A14)

The constancy of F(v) at early times is indicative of thermality, which is corroborated
by the early-time spectrum for the particle production of the mirror, discussed below.
Meanwhile for late times, v → ∞, the energy flux is negative and asymptotes to zero
from below,

F(v) = − 1
16πκ2

Sv4
+O(λ5). (A15)

Figure A3 displays the energy flux, F(v), as a function of the advanced time coordinate
v. The spectrum possesses two turning points at finite v, occurring at:

v± =

√
3± 2

√
2

κκS
. (A16)

After the initial burst of thermal particles, the flux increases towards a maximum
at v+, before decreasing and becoming negative and reaching a minimum at v−. After
this point, the energy emitted is negative into the asymptotic future. Negative energy
emission from accelerated mirrors has been studied in [46–51] and, more pertinently, has
been shown in settings where the trajectories are asymptotically coasting [52,53]. The
unitary evolution of conformal black holes evaporating non-monotonically require some
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transient period of a negative energy flux [54,55]. The presence of a negative energy flux
can also be understood in terms of outgoing modes whose quadratures are squeezed below
the quantum shot-noise limit [56]. Note that as we already mentioned, our results for the
trajectory dynamics of the mirror and the corresponding particle and energy production
made sense as a black hole analogy when time runs backwards.

Figure A3. A plot of the energy flux as a function of the advanced time, with M = 1 fixed. The inset
shows the region of negative energy flux.

We could also calculate the Bogoliubov coefficients and, hence, the particle spectrum,
analytically. The Bogoliubov coefficients are:

βωω′ =
1

2π

√
ω′

ω

∫ ∞

0
dv e−iω′v−iω f (v) (A17)

noting that the integration domain is now v ∈ [0, ∞). The particle number is given by:

N(ε=0)
ωω′ :=

∣∣βωω′
∣∣2 =

ω′e−πω/2κ

8π2κ2
Sω3

|F |2 (A18)

where F ≡ F (ω, ω′) is defined as:

F = i
√

iκSωΓ
(

κ − iω
2κ

)
1F1

(
κ − iω

2κ
,

1
2

,
iω′2

2κSω

)
+
√

2ω′Γ
(

1− iω
2κ

)
1F1

(
1− iω

2κ
,

3
2

,
iω′2

2κSω

)
(A19)

and 1F1(a, b, z) are confluent hypergeometric functions of the first kind, and Γ(z) is the
Gamma function. The result Equation (A18) has radiated particles in a Planck distribution
at early times to an observer on the right I +

R ,

lim
ω′�ω

N(ε=0)
ωω′ = NCW

ωω′ =
1

2πκω′
1

e2πω/κ − 1
, (A20)

which can be found by the usual Hawking approximation [8] ω′ � ω on Equation (A18).
This limit is complementary to the late-time approximation taken for a mirror starting the
past time-like infinity and receding to I +

L , for example, the ε = +1 trajectory. Since there
is a steady-state energy flux emitted at early times, Equation (A14), one can see by using
Equation (A20) that the particles have temperature at T = κ/(2π) at asymptotic early
retarded times.

Figure A4 displays the mode–mode particle spectrum of the mirror for increasing
(from dark blue to orange) values of the NUT parameter. From the values of l for which we
plotted Nωω′ , one might naively conclude that particle production is generally inhibited
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for larger NUT parameters. However we discovered that Nωω′ is actually a non-monotonic
function of the NUT parameter, as displayed in Figure A5. The dashed lines correspond to
the ε = +1 particle number, which decays monotonically with l, for all values of M, ω and
ω′.

Figure A4. Mode-mode particle spectrum, Equation (A18), for the Taub-NUT (ε = 0) analog mirror
as a function of ω with ω′ = 1 fixed with M = 1 fixed.

Figure A5. Plot of the particle number as a function of the NUT parameter, l, for different values of
M. We have used (a) ω = 1 and (b) ω = 0.01, with ω′ = 1 in both plots. The dashed lines correspond
to Nωω′ for the ε = +1 mirror, while the solid lines represent Nωω′ for the ε = 0 mirror. The colours
(dark blue to orange) represent different black hole masses, M = 0.1, 0.15, 0.2, 0.25 respectively.
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The solid lines, corresponding to ε = 0, show that the particle number vanishes in
the limit of small l, a limit which was also verified analytically. For intermediate values of
l, the particle number grows towards a maximum, the peak value of which depends on
the mass of the black hole. Beyond this peak, the particle number decays to zero for large
values of l. This behaviour is present for both the ω ∼ ω′ and ω � ω′ regimes.

The results shown in this Appendix were motivated by the existence of a viable mirror
trajectory obtained by the usual method from the metric of the ε = 0 Taub-NUT black hole.
Our interest in this solution is primarily in the features of the derived mirror trajectory. The
extent to which our result connects with the properties of a physical black hole remains
an interesting direction for future research. Moreover, it would be interesting to study
other systems in which t and r swap roles, and whether corresponding mirror trajectories
generally give such a behaviour.
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