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Abstract: In this paper, we analyze the Schwarzschild-like wormhole in the Asymptotically Safe
Gravity(ASG) scenario. The ASG corrections are implemented via renormalization group methods,
which, as consequence, provides a new tensor Xµν as a source to improved field equations, and
promotes the Newton’s constant into a running coupling constant. In particular, we check whether
the radial energy conditions are satisfied and compare with the results obtained from the usual theory.
We show that only in the particular case of the wormhole being asymptotically flat(Schwarzschild
Wormholes) that the radial energy conditions are satisfied at the throat, depending on the chosen
values for its radius r0. In contrast, in the general Schwarzschild-like case, there is no possibility of
the energy conditions being satisfied nearby the throat, as in the usual case. After that, we calculate
the radial state parameter, ω(r), in r0, in order to verify what type of cosmologic matter is allowed at
the wormhole throat, and we show that in both cases there is the possibility of the presence of exotic
matter, phantom or quintessence-like matter. Finally, we give the ω(r) solutions for all regions of
space. Interestingly, we find that Schwarzschild-like Wormholes with excess of solid angle of the
sphere in the asymptotic limit have the possibility of having non-exotic matter as source for certain
values of the radial coordinate r. Furthermore, it was observed that quantum gravity corrections
due the ASG necessarily imply regions with phantom-like matter, both for Schwarzschild and for
Schwarzschild-like wormholes. This reinforces the supposition that a phantom fluid is always present
for wormholes in this context.

Keywords: asymptotically safe gravity; general relativity; Schwarzschild-like wormhole

1. Introduction

The Einstein’s theory of general relativity predicts the existence of interesting objects
that serve as tunnels connecting regions of spacetime that are asymptotically flat. This type
of solution was first found by Einstein and Rosen [1], which were later called Wormholes
by Misner and Wheeler [2]. However, the first traversable Wormhole solution was given by
Morris-Thorne solution [3], which is represented by a static spherical symmetric solution
of the form:

ds2 = e2Φ(r)dt2 − dr2

1− b(r)/r
− r2dΩ2, (1)

where dΩ2 is the 2-sphere line element, e2Φ(r) is the redshift function and b(r) the shape
function. In order to ensure traversability, some restrictions are imposed on these functions [3,4],
such as the non-existence of an event horizon, the existence of a minimum value for b(r),
which is for some r = r0, with b(r0) = r0, characterizing the wormhole throat region, and
the flare-out condition, represented by the relation b′(r0) < 1, where ’ is the differentiation
with respect to radial coordinate r. However, it can be shown that for a wormhole to
be traversable, at least in the context of General Relativity, it must necessarily contain
matter that violates at least one of the the energy conditions [5–9], being possible to have
wormholes with phantom energy as a source [10,11] or even Casimir energy [12–16].
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Wormholes that have geometries that are asymptotically flat are of particular inter-
est [3], although more general cases have already been studied in the literature [17–19].
The Schwarzschild’s solution can be thought of as an example of an asymptotically flat
wormhole, with the shape-function b(r) = r0 = constant and the redshift function with the
form e2Φ(r) = 1− r0/r. However, this would not be a traversable wormhole, as it would
have an event horizon in r = r0. In order to construct a traversable Schwarzschild Worm-
hole we must maintain the radial component of the metric and require that the redshift
function has no horizons. We can also construct a generalized version of the Schwarzschild
Wormhole, considering a linear shape function with the form b(r) = (1− β)r0 + βr, where
β is a constant parameter and the β = 0 being the particular case of the Schwarzschild
wormhole, also being considered a particular case of a self-dual wormhole with a null
energy density [20,21]. A consequence of the β parameter is the presence of a increase or
deficit of the solid angle at the asymptotic limit, depending on whether β is positive or
negative. This wormhole was called Schwarzschild-like and their properties was studied
in [22]. Although Schwarzschild-like Wormholes are traversable, the necessity for exotic
matter is again seen.

We can question whether, when considering quantum effects, there is the possibility of
a wormhole being formed with non-exotic matter obeying the energy conditions. However,
a quantum theory of gravity has not yet been well established. One of the methods
found in the literature to consider quantum effects is to treat the gravitational field as
a quantum field that is asymptotically safe. This method is particularly interesting as it
is UV complete [23–26]. The guarantee of the existence of a fixed point for the gravity
renormalization group flow is confirmed by various methods that have been applied in
different models [27–53]. This method is based on solving the exact group renormalization
equation [54] in order to obtain the effective average action Γk

k∂kΓk =
1
2

Tr
[
(Γ(2)

k +Rk)
−1k∂kRk

]
, (2)

where Γ(2)
k is the Hessian of Γk and the Rk is the IR-cutoff, which is required to be a

quadratic function of the momentum k [27].
In the case of the gravitational field, the effective average action is a functional which

depends on the metric and the parameter k, a variable responsible for introducing the
infrared (IR) cutoff. The functional Γk[gµν] describes the quantum fluctuations in the
gravitational field for momentum scales of the order of k. The issue with this method is the
difficult to solve the exact renormalization group Equation (2). However, what we can do
is consider the “Einstein-Hilbert truncation” [27,28,55–59], which consists to consider the
projection of the renormalization group flow on a subspace with finite dimension which
that takes into account the essential physics, and so, an expansion of Γk in the basis of
this spanned space,

√
g,
√

gR, is done. The coefficients of the expansion of Γk contains the
running coupling constant G(k) which is a solution of the β-function [27,60–62].

Numerical solutions of this β-function in the infrared limit and near the fixed point
provides the following form of the running coupling constant [63–67]

G(k) =
G(k0)

1 + ωqG(k0)(k2 − k2
0)

, (3)

where k is a moment scale introduced in the average effect action to implement the infrared
(IR) cutoff, k0 is a reference scale and ωq = 4

π (1−
π2

144 ). It can be shown that for a suitable
choice of the reference scale we have k0 = 0 with GN = G(k0 → 0) = G0 being the
Newton’s constant. It can be seen that in models with flat background, the cutoff moment
k can be written as a function of the position with an inverse length dimension. However,
this dependence on coordinates can spoil the analysis in curved spaces. To eliminate this
dependence on coordinates, we can consider a improvement of the form ωk2 = ξ f (χ) in
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curved spaces, where χ is a function of the curvature invariants and ξ is a small scaling
constant [67]. With this, the improved coupling constant (3) can be written as:

G(χ) =
G0

1 + f (χ)
, (4)

where f (χ) = ξ/χ is called the anti-screening function. Therefore, the quantum correc-
tions due the ASG theory modify the Einstein-Hilbert Action just replacing the Newton’s
constant into a function of the curvature invariants given by the Equation (4), providing
the following modified action [67]

S =
1

16π

ˆ
d4x
√−g
G(χ)

R +

ˆ
d4x
√
−gLm. (5)

By varying the above action with respect to the metric and using the principle of least
action we obtain the quantum improved field equations [67]

Gµν = 8πG(χ)Tµν + G(χ)Xµν(χ) , (6)

where Tµν is the classical energy-moment tensor, and Xµν is a covariant tensor that arises
due the derivation of G(χ) when we vary the modified action with respect to the metric.
This tensor dictates the dynamics of the scalar field G(χ), and is defined as:

Xµν(χ) =
(
∇µ∇ν − gµν�

)
G(χ)−1 − 1

2

(
RK(χ) δχ

δgµν +

∂κ

(
RK(χ) ∂χ

∂(∂κ gµν)

)
+ ∂κ∂λ

(
RK(χ) ∂χ

∂(∂λ∂κ gµν)

))
, (7)

with K(χ) ≡ 2∂G(χ)/∂χ
G(χ)2 [68]. This tensor can be thought of as the energy-moment tensor

that describes the 4-momentum of the field G(χ).
The tensor Xµν depends on the parameter χ, and expanding up to first order leads [67]

Xµν ' ∇µ∇νG(χ)−1 − gµν�G(χ)−1 . (8)

As already mentioned, the parameter χ is defined in terms of curvature invariants con-
structed from the components of the Riemann tensor, such as R, RαβRαβ, RαβκλRαβκλ, · · · [67].
Evidently, there are several possible choices for the parameter χ [69]. However, working
with non-vacuum solutions suggests some simple choices such as χ = R−1

or χ = (RαβRαβ)1/2 [68].
In this direction, the traversability conditions for wormholes using the quantum im-

provement due to Asymptotically Safety in Quantum Gravity(ASQG) was investigated
in [70]. Considering a linear equation of state they found that the Morris-Thorne solu-
tion is still traversable in this context depending on the parameter values, and, beyond
that, the possibility of traversable wormholes with nonexotic matter, as long as they are
pseudospherical. However, a linear equation of state rules out a large number of possible
models. Furthermore, the authors restricted themselves to regions close to the throat and,
therefore, did not provide information about the distribution of matter along the spacetime
generated by the wormhole. In order to test this, the authors of Ref. [71] studied the
quantum improvement of the Ellis-Bronnikov wormhole due to ASQG. They found that,
despite of the fact that nonexotic matter is possible at the wormhole throat, in other regions
of spacetime a Phantom matter is necessary. With this, they speculate if Phantons are
always necessary in such scenarios.

Therefore, in this work we put forward the study of wormhole corrections due to
ASQG. We consider the zero-tidal Schwarzschild-like wormholes in the context of the
quantum improvement of gravity theory due to functional renormalization group methods
to describe asymptotic safe quantum gravity. In Section 2, we will present the zero-
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tidal Schwarzschild-like wormhole spacetime and their modified state equations due
the corrections above, considering Ricci scalar, squared Ricci tensor and Kretschmann
scalar as anti-screening functions, and we analyze these quantum effects for the case of
Schwarzschild wormholes. We will find that in the Schwarzschild wormhole case the radial
energy conditions can be satisfied at the throat, depending on its radius value r0, but, we
necessarily have the presence of exotic matter, as phantom or quintessence energies. In
Section 3 we have considered the same corrections but in the Schwarzschild-like wormhole
case. We see that in the case of an excess of solid angle (β < 0), we have the possibility of
having a region with nonexotic matter depending on the values of r0 and β, but, the energy
conditions can not be satisfied in this case. In Section 4, we conclude the paper and we give
the final considerations.

2. Schwarzschild Wormhole Solution in ASG

Every wormhole solution that is static and spherically symmetric can be described by
the Morris-Thorne metric:

ds2 = e2Φ(r)dt2 − dr2

1− b(r)/r
− r2dΩ2 , (9)

where dΩ2 = dθ2 + sin2 θdϕ2 is the line element of a 2-sphere, e2Φ(r) is the redshift function
and b(r) the shape function.

Considering an anisotropic fluid as source to generate the wormhole spacetime
Tµ

ν = Diag[ρ(r),−pr(r),−pl(r),−pl(r)] , the improved field Equation (6) lead to [70]

κρ = (1 + f ) b
′

r2 − (1− b
r )( f ′′ + 2

r f ′) + b
′
r−b

2r2 f ′ , (10)

κpr = −(1 + f )
(

b
r3 − 2Φ

′

r (1− b
r )
)
+ (1− b

r )
(

Φ
′
+ 2

r

)
f ′ , (11)

κpl = −(1 + f )
(

b′r−b
2r2 (Φ′ + 1

r )− (1− b
r )(Φ

′′ + Φ′2 + Φ′
r )
)

+(1− b
r )
(
(Φ
′
+ 1

r ) f ′ + f ′′
)
− b

′
r−b

2r2 f ′ , (12)

where the prime denotes differentiation with respect to r, κ = 8πG0, ρ is the energy density
and pr and pl are the radial and lateral pressures, respectively.

In this paper we consider the case of a zero-tidal Schwarzschild-like wormhole space-
time, which is the particular case where the redshift function is equal to unity, that is,
Φ(r) = 0, and the shape function is linear in r, b(r) = α + βr, where α and β are constants.
The condition of minimum at the throat, b(r0) = r0, implies that α = (1− β)r0, leading to
b(r) = (1− β)r0 + βr. With this, our metric becomes:

ds2 = dt2 − dr2

(1− β)
(
1− r0

r
) − r2dΩ2. (13)

where r0 is the throat radius and β is a constant. The flare-out condition, b′(r0) ≤ 1, implies
that β ≤ 1. Therefore, we must have β < 1 in order to ensure that the radial component of
the metric will not diverge. The particular case β = 0 provides the zero-tidal Schwarzschild
wormhole solution, which is asymptotically flat. The case where β 6= 0 characterizes the
zero-tidal Schwarzschild-like Wormhole, which were studied in the context of General
Relativity in [22]. One of the consequences of the parameter β is that the new asymptotic
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form of the metric will have a solid angle deficit, if 0 < β < 1, or an excess of solid angle if
β < 0. With the metric (13), our equations becomes

κρ = (1 + f )
β

r2 − (1− β)
(

1− r0

r

)(
f ′′ +

2
r

f ′
)
− (1− β)r0

2r2 f ′, (14)

κpr = −(1 + f )
[(1− β)r0 + βr]

r3 +
2
r
(1− β)

(
1− r0

r

)
f ′ , (15)

κpl = (1 + f )
(1− β)r0

2r3 + (1− β)
(

1− r0

r

)(1
r

f ′ + f ′′
)
+

(1− β)r0

2r2 f ′ . (16)

Now we must choose the function f = ξ/χ. As noted earlier, the parameter ξ is a
scaling constant, that in the limit ξ → 0 provides the usual case of General Relativity, and
χ is written in terms of the curvature invariants. We will consider models with the Ricci
scalar, squared Ricci tensor and Kretschmann scalar. These models for the anti-screening
function were used by the authors in [70] to investigate the traversability conditions of
the Morris-Thorne wormhole solution in the context of Asymptotically Safe Gravity. They
found that depending on the parameter values, the improved solution remains traversable
but still in the presence of exotic matter. In this sense, we will use the same improvement
to check if the presence of exotic matter is again seen for Schwarzschild-like wormholes in
this quantum context. For the metric (13) these quantities are given respectively by

R =
2β

r2

RµνRµν =
2r2

0(1− β)2 + [(1− β)r0 + 2βr]2

2r6

RµνκλRµνκλ =
2(1− β)2r2

0 + 4[(1− β)r0 + βr]2

r6 .

(17)

Therefore, in order to guarantee the positivity of the function f , we must choose one
of the following forms for f :

f1 = ξR =
2ξβ

r2 , (18)

f2 = ξ(RµνRµν)
1/2 =

ξ
√

2r2
0(1− β)2 + [(1− β)r0 + 2βr]2

√
2r3

, (19)

f3 = ξ(RµνκλRµνκλ)1/2 =
ξ
√

2(1− β)2r2
0 + 4[(1− β)r0 + βr]2

r3 . (20)

We will first consider the case of Schwarzschild wormholes, that is, β = 0. As we can
see f1 = 0 in this case, and so we will just consider f2 and f3 providing for β = 0:

f2 = ξ

√
3
2

r0

r3 , (21)

f3 = ξ
√

6
r0

r3 . (22)

We can easily see that f3 = 2 f2, and therefore, these cases must have similar behaviors.
We first consider f2 to get some conclusions and in the end we plot the graphics for
the f3 case.
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In order to verify if the radial energy conditions are satisfied for the Schwarzschild
Wormhole, we use f2 in the equations for the state parameters, (14)–(16), providing for the
β = 0 case

κρ =
λr0

r6

[
15r0

2
− 6r

]
, (23)

κpr =
r0

r6 [5λr0 − 6λr− r3], (24)

κ(ρ + pr) =
r0

r6

[
25λr0

2
− 12λr− r3

]
, (25)

where just for convenience we define λ = ξ
√

3
2 . As the multiplicative factor of the above

equations are always positive, what will determine the signal of ρ, pr and ρ + pr are the
terms in parentheses. Interestingly, these terms for the energy density ρ is a decreasing
linear function of r, that is positive for r < 15

12 r0, while the radial pressure pr and the sum
ρ + pr are cubic equations having similar behaviors, that is, they are always decreasing
functions, starting with positive values and changing sign at their roots.

Let us analyze the behavior of these functions in the wormhole throat. In r = r0 we
obtain for the state parameters:

κρ =
3λ

2r4
0

, (26)

κpr = − 1
r4

0
(λ + r2

0), (27)

κ(ρ + pr) =
1
r4

0

(
λ

2
− r2

0

)
. (28)

We can see that in the throat of a Schwarzschild wormhole the energy density is a

positive constant, therefore ρ > 0 for all r0 > 0. The sum ρ + pr is positive for r0 <
√

λ
2

and therefore the Null Energy Condition (NEC) and the Weak Energy Condition (WEC)
are satisfied for these values of r0. Furthermore, the radial pressure pr is always negative
and crescent, becoming null in the limit r0 → ∞, and it is easy to show that we have

ρ > |pr| for r0 <
√

λ
2 . Therefore, the Dominant Energy Condition (DEC) is also satisfied

for these values of r0. Thus, the radial energy conditions are satisfied on the throat of a
Schwarzschild wormhole, depending on the relation between r0 and λ:

Null: ρ + pr > 0 if r0 <
√

λ
2 ,

Weak: ρ ≥ 0, ρ + pr ≥ 0 if r0 <
√

λ
2 ,

Dominant:ρ ≥ 0, ρ ≥ |pr| if r0 <
√

λ
2 .

So, we see that for the Schwarzschild wormhole the Null,Weak and Dominant energy

conditions are satisfied nearby the throat in the ASG context for r0 <
√

λ
2 . This is in

contrast to the results predicted by the usual theory, as we can see taking the limit ξ → 0,
where none of these conditions are satisfied. Now, we analyze what kind of matter source
threading the wormhole is allowed in order to ensure that the energy conditions are

satisfied nearby the throat, that is, considering r0 <
√

λ
2 .



Universe 2021, 7, 332 7 of 16

Let us start by analyzing what kind of cosmological matter we should have at the
throat of a Schwarzschild wormhole if all the energy conditions satisfied. We do this
calculating the state parameter ω(r) = pr/ρ. Evaluating ω in r = r0 provides:

ω = −2
3

(
1 +

r2
0

λ

)
, (29)

and we analyze this as a function of r0. Note that the term in parenthenses is always
positive, and therefore we always have ω < 0. This feature is quite remarkable because
ω → ∞ for a Schwarzschild wormhole in the General Relativity context, while in the ASG

scenario we obtained a finite ω in r0. Furthermore we can easily show that for r0 <
√

λ
2

we obtain −1 < ω < −1/3. We get:Quintessence:− 1 < ω < −1/3 if r0 <
√

λ
2 ,

Phantom: ω < −1 if r0 >
√

λ
2 .

(30)

Therefore, in order to have all the energy conditions satisfied, the throat must be
sourced by a Quintessencial fluid.

Now, considering r0 <
√

λ
2 , that is, the case where the throat is sourced by quintessen-

cial fluid, we analyze what kind of matter we must have region by region, analyzing the
signal of the ω(r) = pr/ρ:

ω(r) =
5λr0 − 6λr− r3

15λr0
2 − 6λr

, (31)

where λ = ξ
√

3
2 and r0 <

√
λ
2 . This function has an asymptote in r = 15r0

12 and we can see

that for the region r > 15r0
12 we always have exotic matter with ω > 1. For r− < r < 15r0

12 ,
we have ω < −1, a region with Phantom-like exotic matter, where r = r− is the value of

r whose ω = −1, or equivalently, when ρ + pr = 0, and in terms of λ and r0 <
√

λ
2 is

given by:

r− =
6.3496λ

3

√√
625r2

0λ2 + 1024λ3 − 25r0λ

− 0.629961 3

√√
625r2

0λ2 + 1024λ3 − 25r0λ. (32)

Finally, for r0 < r < r− we can have a region with quintessencial fluid, that is, a exotic
matter with −1 < ω < −1/3. Therefore, we have for the solutions region by region for the
Schwarzschild Wormhole:

Quintessence:− 1 < ω < −1/3 if r0 < r < r−,
Phantom: ω < −1 if r− < r < 15r0

12 ,
Other Exotic Matter: ω > 1 if r > 15r0

12 .

(33)

As we can see, the quantum improvement leads to the inevitable presence of phantom-
like matter regions as source to generate the wormhole spacetime. These results are
very similar with the Ellis-Bronnikov wormhole [72–74] case, which was studied by
Alencar et al. [71]. They found that for the ASG context the radial energy conditions
are satisfied in the throat for a range of values of r0, and for this is necessary a exotic matter,
like quintessencial fluid threading the wormhole throat. Furthermore, we also necessarily
have the presence of regions with phantom-like matter. This is exactly what happens with
Schwarzschild wormholes in the ASG scenario.

The behavior of ω for λ = 1 and r2
0 = 1/3 can be seen in the Figure 1. In this case

we have a small region containing quintessencial fluid for r > r0 = 1/
√

3 and becomes a
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Phantom region in r = r− ≈ 0.587 until the moment when ω diverges in r ≈ 0.721, and for
r > 0.721 we have exotic matter with ω > 1.

0.5 1.0 1.5 2.0
r

-2

2

4

ω

Figure 1. Plot of ω(r) for a zero-tidal Schwarzschild wormhole (β = 0) in the ASG context for
λ = 1(ξ =

√
2/3) and r2

0 = 1/3.

As the case of the Kretschmann scalar has basically the same behavior as the squared
ricci tensor case, we only show the plot of the expression for ω, which can be seen in the
Figure 2, where we have essentially the same behavior as in the previous case.

0.5 1.0 1.5 2.0
r

-2

-1

1

2

3

4

ω

Figure 2. Plot of ω(r) for a zero-tidal Schwarzschild wormhole (β = 0) using the Kretschmann scalar
for anti-screening function with λ = 1(ξ =

√
2/3) and r2

0 = 1/3.

3. Schwarzschild-like Wormhole Solution in ASG

Now we turn our attention to the Schwarzschild-like wormhole case, that is, consid-
ering β 6= 0. For this, we consider the Ricci scalar model to the anti-screening function
f = f1 = ξR. In order to ensure the condition f1 > 0 we have to separate f1 in two forms
depending on the signal of β:

f1 =

{
−2ξβ/r2 if β < 0

2ξβ/r2 if 0 < β < 1,
(34)



Universe 2021, 7, 332 9 of 16

that is, we consider the minus sign when β < 0 and the plus sign when 0 < β < 1 to
guarantee the positivity of the anti-screening function. Therefore, once we get the modified
state equations for one of the cases, just do the prescription ξ → −ξ to obtain these
quantities for the other case.

Now we will analyze the radial conditions of energy of the Schwarzschild-like Wormhole.
Those conditions are verified from the substitution of Equation (34) into Equations (14) and (15).
We get for the 0 < β < 1 case:

κρ =
β

r5

[
r3 − 2ξ(2− 3β)r + 6ξr0(1− β)

]
, (35)

κpr =
β

r5

[
−r3 + r0(1− 1/β)r2 − 2ξ(4− 3β)r + 6ξr0(1− β)

]
, (36)

κ(ρ + pr) =
β

r5

[
r0(1− 1/β)r2 − 12ξ(1− β)r + 12ξr0(1− β)

]
, (37)

and the case β < 0 is reached making the prescription ξ → −ξ providing:

κρ =
β

r5

[
r3 + 2ξ(2− 3β)r− 6ξr0(1− β)

]
, (38)

κpr =
β

r5

[
−r3 + r0(1− 1/β)r2 + 2ξ(4− 3β)r− 6ξr0(1− β)

]
, (39)

κ(ρ + pr) =
β

r5

[
r0(1− 1/β)r2 + 12ξ(1− β)r− 12ξr0(1− β)

]
. (40)

What will determine the signal of the ρ, pr and ρ + pr are the terms between parenthe-
ses. The terms in ρ and pr are cubic equations that have just one real root and the term for
ρ + pr is a quadratic equation. We can readily see that these expressions are all positive for
r = 0 if 0 < β < 1 and are all negative if β < 0. Therefore, close to r = 0 we can say that
they are all positive, satisfying the energy conditions for both conditions of β.

However, as in the β = 0 case, we will first analyze the signal of the quantities ρ,
pr, and ρ + pr, in order to verify if the null (ρ + pr ≥ 0), weak (ρ ≥ 0, ρ + pr ≥ 0) and
dominant (ρ ≥ 0, ρ ≥ |pr|) energy conditions are satisfied nearby the throat. For this, we
consider the Equations (35)–(37) in r = r0 providing for the 0 < β < 1 case:

κρ =
β

r4
0

(
2ξ + r2

0

)
, (41)

κpr = − β

r4
0

(
r2

0
β
+ 2ξ

)
, (42)

κ(ρ + pr) =
(β− 1)

r2
0

. (43)

Therefore we arrive at some general conclusions in this case. We see that pr must be a
crescent function of r0 and it is always negative, such that pr → 0 in the limit r0 → ∞. On
other hand, we have ρ > 0 for all r0 > 0 since ρ is formed only for positive terms. Finally,
note that ρ + pr < 0 for all r0 > 0 because of the condition β < 1. Due to the β−1 term in pr
we can note that ρ ≤ |pr|. Thus, we see that none of the Energy Conditions are not satisfied
for r0 > 0 in the 0 < β < 1 case.
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Doing ξ → −ξ we obtain the equations for the state parameters nearby the wormhole
throat for the case β < 0 providing:

κρ =
β

r4
0

(
−2ξ + r2

0

)
, (44)

κpr =
β

r4
0

(
−

r2
0
β
+ 2ξ

)
, (45)

κ(ρ + pr) =
(β− 1)

r2
0

. (46)

As we can see ρ + pr remains negative for all r0 > 0 and therefore the Null and Weak
conditions are not satisfied. For ρ > 0 we must have r0 <

√
2ξ and we can note that pr < 0

for all r0 > 0. However, ρ ≤ |pr| in r0 <
√

2ξ and therefore the radial energy conditions
are still not satisfied in β < 0 case.

The results of General Relativity can be readily recovered by doing the limit ξ → 0, as
we can see in the Ref [22]. In the usual case the radial energy conditions are not satisfied in
the wormhole throat and this feature remains in the context of ASG theory, at least for the
Ricci scalar case.

Now, we will investigate the presence of cosmologic matter in the Schwarzschild-like
wormhole in ASG theory by evaluating the state parameter ω(r) = pr/ρ. Let us first see
what kind of matter is allowed at our wormhole throat. For this we have that for the
0 < β < 1 case:

ω =
−r2

0/β− 2ξ

r2
0 + 2ξ

,

and we can analyze this as a function of r0. We can see immediately that the ω is always
negative in this case, and therefore the throat can not be formed by ordinary matter
(0 < ω < 1) or other exotic Matter with ω > 1. Furthermore it is easy to note that ω < −1
for all r0 > 0 and we conclude that nearby the throat we must necessarily have a Phantom
fluid, if 0 < β < 1. Again, this is the same result found in the usual case, as we can see
performing the limit ξ → 0, providing ω = −1/β.

Doing ξ → −ξ we obtain the state parameter in r = r0 for the β < 0 case:

ω =
−r2

0/β + 2ξ

r2
0 − 2ξ

.

It is easy to show that for r0 <
√

2ξ we have always ω < −1, for all β < 0, character-
izing a wormhole with phantom-like matter on your throat. But, this time, we have the
possibility of finding ordinary matter (0 < ω < 1) in the throat, as long as the values of β
are also restricted to β < −1. We get easily:

Phantom: ω < −1 if r0 <
√

2ξ for all β < 0

Other Exotic Matter: ω > 1
if
√

2ξ < r0 with −1 < β < 0

√
2ξ < r0 <

√
4ξ

1+1/β with β < −1

Ordinary Matter: 0 < ω < 1 if r0 >
√

4ξ
1+1/β with β < −1

Therefore, in the β < 0 case we have the possibility of the throat being formed by
exotic matter of the Phantom-type (ω < −1), ordinary Matter (0 < ω < 1) or other exotic
Matter with ω > 1 depending of the values of r0 and β. This result differs from the usual
case because there is the possibility of the throat be formed by a exotic matter Phantom-like,
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while in General Relativity we always have ω = −1/β > 0 in r = r0, that is, ordinary
matter (0 < ω < 1) if β < −1 or exotic matter with ω > 1 if −1 < β < 0 nearby the throat.

Finally, we analyze what type of matter we must have for all the Schwarzschild-like
wormhole spacetime. For this we have for the 0 < β < 1 case:

ω(r) =
pr(r)
ρ(r)

=
−r3 + r0(1− 1/β)r2 − 2ξ(4− 3β)r + 6ξr0(1− β)

r3 − 2ξ(2− 3β)r + 6ξr0(1− β)
.

As noted earlier, in this case we always have Phantom fluid at the wormhole throat
for all r0 > 0. Note that the denominator is always a crescent and positive function for
r > r0 > 0, and therefore, what will determine the signal of the expression above is the
numerator. It can be shown that the numerator is a decrescent function, starting positive
and changing its sign at its root. However, whatever the value of r0, its root will always be
smaller than r0. Therefore, we can not have regions with ordinary Matter (0 < ω < 1) or
other exotic matter with ω > 1. Furthermore, as long as r0 < r, we always have ρ ≤ |pr|,
and so ω < −1 for all 0 < r0 < r. Therefore, for Schwarzschild-like wormholes with a
lack of solid angle (0 < β < 1) we have necessarily a Phantom wormhole. We show this
features in Figure 3, where we can see that the entire region of the wormhole must be filled
with phantom-like matter, with ω → −1 when r → ∞.

2 3 4 5 6 7 8
r

-2.0

-1.8

-1.6

-1.4

-1.2

ω

Figure 3. Plot of ω(r) for a zero-tidal Schwarzschild-like wormhole for r0 = 1 < r, ξ = 1 and
β = 1/2, in Planckian units.

Doing the exchange ξ → −ξ, we have the state parameter ω(r) for the β < 0 case:

ω(r) =
−r3 + r0(1− 1/β)r2 + 2ξ(4− 3β)r− 6ξr0(1− β)

r3 + 2ξ(2− 3β)r− 6ξr0(1− β)
.

Let us consider the case where the throat is sourced by phantom fluid, that is, r0 <
√

2ξ
for all β < 0. In this case the denominator is a crescent function, starting negative for
0 < r0 < r and changing its signal in r = a, where a is the root of the denominator, which
in terms of ξ and r0 <

√
2ξ is given by:

a =
2 3
√

3(−2 + 3β)ξ +
[
27(1− β)ξr0 +

√
24(2− 3β)3ξ3 + 729(1− β)2ξr2

0

]2/3

32/3
[
27(1− β)ξr0 +

√
24(2− 3β)3ξ3 + 729(1− β)2ξr2

0

]1/3 . (47)

Therefore, the state parameter has an asymptote in this case, separating ω in two
regions. Furthermore, the numerator has a positive region for r0 < r < b, where r = b is
the value of its root and becomes negative for r > b.
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It is easy to show that we have ω < −1 for r0 < r < a, more Phantom matter after the
throat region. When r > a there is a smooth decay of ω, with ω > 1 for a < r < r+, where
r = r+ is the value of the radial coordinate when ω = 1, given by:

r+ =
r0(1− 1/β) +

√
r2

0(1− 1/β)2 + 32ξ

4
. (48)

Therefore we must have 0 < ω < 1 for r+ < r < b, where ω = 0 in r = b. Interestingly,
if the throat of a Schwarzschild-like wormhole with excess of solid angle (β < 0) is formed
by Phantom matter we have the possibility of a region with nonexotic matter (0 < ω < 1).
Next, ω becomes negative again for r > b and keeps decaying until reach −1/3 for some
r = c, and tending to −1 for r0 → ∞. Therefore, we must have a large presence of
quintessencial fluid for r > c, and we easily get:

Phantom: ω < −1 if , r0 < r < a,
Other exotic matter: ω > 1 if a < r < r+,
Ordinary Matter: 0 < ω < 1 if r+ < r < b,
Quintessence: − 1/3 < ω < −1 if r > c.

(49)

The features above for ω in this case, for ξ = 1, r0 = 1 and β = −1, is plotted in Figure 4.
We have phantom-like matter for r0 = 1 < r < 1.08 followed by a region with exotic matter
with ω > 1 until reaches the region where there is non-exotic matter (0 < ω < 1) for
2 < r < 4.51. Finally, the final region is sourced by quintessence-like matter for r > 6.45.

2 4 6 8 10
r

-2

-1

1

2

ω

Figure 4. Plot of ω(r) for a zero-tidal Schwarzschild-like wormhole with an excess of solid angle
(β < 0) for ξ = 1, r0 = 1, and β = −1.

4. Conclusions

In this paper, we have considered zero-tidal Schwarzschild-like wormholes in the
Asymptotically Safety Gravity (ASG) scenario to improve quantum mechanically the
General Relativity. For this, it was considered models that use Ricci scalar, squared Ricci
tensor and Kretschmann scalar to make functional renormalization group improvement to
describe ASG.

In this context, we have first analyzed the particular case of a Schwarzschild wormhole,
which is asymptotically flat, using the squared Ricci tensor and the Kretschmann scalar.
Both models provide identical improvement in this case, since they are proportional. In
this case we have shown that the radial energy conditions are satisfied nearby its throat, as

long as we have r0 <
√

λ
2 , where we defined λ =

√
3
2 ξ. Furthermore, analyzing the signal
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of the state parameter ω = pr/ρ as a function of r0, we have determined that the quantum
corrections imply that regions nearby the throat must be sourced by quintessence-like

matter (−1 < ω < −1/3) if r0 <
√

λ
2 or phantom-like matter (ω < −1) if r0 >

√
λ
2 ,

where we see that if the radial energy conditions are satisfied the throat must necessarily be
formed by quintessence-like matter. These results are quite different from those obtained
by General Relativity, since ω(r0) must diverge in the usual case.

Next, we studied the types of sources allowed along the spacetime generated by the
Schwarzschild wormhole in this quantum modified gravity, if the energy conditions are
satisfied in the wormhole throat. With these considerations, we show that the wormhole
can be separated in three regions, as we move away from the throat region. First, we found
a small extension containing quintessence-like matter. Proceeding, we enter in a region
that is sourced by phantom-like matter, finishing with a region sourced by exotic matter
with ω > 1. These features have been shown in Figure 1 for the squared Ricci tensor model,
and in Figure 2 for the Kretschmann model, where we basically have the same behavior.
These results are analogous to those found for other asymptotically flat wormholes, such as
Ellis-Bronnikov one, studied in [71], where the authors showed that is the possible that the
radial energy conditions are satisfied nearby the throat, but the presence of exotic matter,
such as phantom or quintessence, is always necessary.

Thereafter, we repeat the same procedure described above for the more general case
of Schwarzschild-like wormholes, whose new asymptotic form is deformed by an increase
or decrease in the solid angle of the sphere, depending on the sign of a constant β. We
have seen that, just as in the context of General Relativity, the radial energy conditions are
not satisfied nearby the throat in both cases. When analyzing the state parameter ω as
a function of r0, we shown that, when there is a lack of solid angle, we necessarily have
phantom-like matter for regions close to the throat, and when there is an excess of solid
angle, the throat can be formed by exotic matter with ω > 1, ordinary matter (0 < ω < 1) or
phantom-like matter, depending on the values of r0 and β. These results are also obtained
in the usual case, except for the latter, where the possibility of the throat being formed by
phantom-like matter arises due to the quantum effects considered here.

Finally, we study the types of matter allowed along the spacetime determined by the
Schwarzschild-like wormhole. We shown that for a lack of solid angle, beyond its throat,
we necessarily have phantom-like matter for all the wormhole extension, characterizing a
Phantom wormhole, as we saw in Figure 3. For an excess of a solid angle, we considered
that the throat is formed by phantom-like matter, induced by quantum corrections, and we
see that in this case the wormhole can be divided into four regions. First we have a small
extension containing phantom-like matter followed by a region with exotic matter with
ω > 1. Then, we come into a region sourced by ordinary matter, and the final region is
formed by quintessence-like matter.

Therefore, we can conclude that the quantum improvement provided the possibility of
matter satisfying the radial energy conditions nearby the throat only in the asymptotically
flat case, although in this case it is necessary quintessence-like matter. This implies the
presence of very exotic matter throughout the modified space-time, such as phantom-like
matter. In case that have a deformation in the asymptotic form of the metric the radial
energy conditions are not satisfied nearby the throat, but, the quantum corrections imply
one more time the possibility of having regions with phantom-like matter, as was found
for other wormholes in the ASG context, such as Ellis-Bronnikov wormhole. These results
supports the idea that the presence of a phantom fluid are unavoidable in the context of
Asymptotically Safe Gravity, and perhaps in other quantum gravity models.
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