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Abstract: In this review, we provide a short outlook of some of the current most popular pictures and
promising approaches to non-perturbative physics and confinement in gauge theories. A qualitative
and by no means exhaustive discussion presented here covers such key topics as the phases of
QCD matter, the order parameters for confinement, the central vortex and monopole pictures of the
QCD vacuum structure, fundamental properties of the string tension, confinement realisations in
gauge-Higgs and Yang–Mills theories, magnetic order/disorder phase transition, among others.
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1. Introduction

Quantum Chromodynamics (QCD) based upon the SU(3)c gauge theory of colour
represents a real-world example of a fundamental Yang–Mills (YM) theory applied to the
description of strong interactions and is an organic part of the Standard Model (SM) of
particle physics. This theory is extremely successful in predicting various measurable
phenomena at particle colliders. The class of phenomena that originate from (or driven
by) strong interactions is extremely wide and covers such areas as nuclear physics, hadron
physics, physics of quark-gluon plasma, high-temperature and high-density QCD, high-
energy particle production and hadronisation. Depending on characteristic length scales,
QCD behaves very differently. At short space-time separations, e.g., once we zoom into dis-
tances much shorter than the proton radius, QCD appears as a weakly coupled theory that
enables a precise Perturbation Theory (PT) analysis. Much of its success has been achieved
in this asymptotic freedom or ultraviolet (UV) regime where the quark-gluon interaction
strength recedes. Thus, success highlights the QCD theory as the correct theory of strong
interactions at the fundamental level, precisely matching all the existing observations up
to very high momentum transfers reached by the Large Hadron Collider (LHC) so far.
However, on the opposite side of length-scales in the infrared (IR) limit, QCD enters entirely
different, strongly coupled domain, rendering the PT inapplicable and creating substantial
problems for making reliable predictions at intermediate and low momentum transfers,
i.e., at large distances. While it is conventionally believed that QCD should remain the
correct theory of strong interactions also at large distances, in the so-called confined regime,
deriving reliable predictions remains a big theoretical challenge. For one of the broadest
and comprehensive overviews of many phenomenological and theoretical aspects of QCD
and QCD-like gauge theories spanning from IR to UV, from dilute to dense regimes, see
Ref. [1].

The problem of confinement concerns the strongly coupled sector of QCD composed
of interacting coloured partons (quarks and gluons). In virtue of colour confinement,
the coloured particles appear to always be trapped (confined) inside colourless composites.
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The latter emerges as asymptotic states, thus rendering the long-distance regime of hadron
physics described by Effective Field Theory (EFT) approaches, such as the chiral PT, as well
as a variety of non-perturbative techniques realised in numerical simulations on the lattice.
Much of the discussion in the current review is devoted to highlighting main ideas and
possible existing ways to address the confinement problem that is known as the main un-
solved problem in the SM framework. Despite the major efforts of the research community
and tremendous progress made over last few decades, it does not appear to be fully and
consistently resolved yet. There are several important subtleties in the formulation of this
problem to be discussed in what follows. One of the standard ways of formulating the
problem is that there is no complete understanding of why these fundamental degrees
of freedom (DoFs) of QCD (or, generically, of any strongly coupled YM theory) do not
emerge in the physical spectrum of asymptotic states and how the composite hadrons
are dynamically produced starting from the fundamental DoFs in the initial state. In a
phenomenological sense, there is a fundamental mismatch between the underlined DoFs
of QCD in its short- and long-distance regimes manifest in experimental measurements,
and there is not a single consistent theoretical framework that goes beyond the framework
of PT and treats both weakly and strongly coupled regimes on the same footing.

For practical purposes, various phenomenological approaches have been proposed
that characterise the long-distance effects of QCD absorbing them into universal elements
of a given scattering process, such as non-perturbative matrix elements, fragmentation func-
tions or parton distributions. As a commonly adopted picture, a colour-electric flux tube
(also known as a colour string) is stretched among the partons produced in a high-energy
collision. A string-like picture emerges in the limit of large number of colours already
in D = 1 + 1 dimensions as has been advocated by t’Hooft back in early 1970s—see,
e.g., Ref. [2]. As produced partons move away from each other at large enough distances,
those flux tubes fragment into composite particles, such as mesons and baryons, where
initial (anti)quarks and gluons get necessarily combined with newly emerged ones from
the vacuum into colour-neutral configurations. In a nutshell, the basic problem concerns
a first-principle derivation of the long-distance hadron spectrum and dynamics from an
underlined strongly coupled gauge theory. More specifically, a successful model of confine-
ment is expected to provide a first-principle dynamical description of the string formation,
its basic characteristics and string-breaking effects, also connecting those unambiguously
to dynamics of the fundamental DoFs of the underlined gauge theory and deducing the
phase structure of the theory at various densities and temperatures. While there are no
compelling solutions yet available, there are several distinct approaches to confinement
treatment being actively developed in the literature. Not only a large variety of treatments
of confinement has hit the literature in past decades but also a proper definition of confine-
ment; what we actually mean by this word posses a notorious difficulty, as was thoroughly
discussed in Refs. [3,4]. In this review, we will try to summarise some of the existing
attractive treatments of confinement and ideas and why confinement occurs in the way it
does in a conceptual and qualitative manner, without pretending to provide an exhaustive
overview of all relevant details and corresponding references.

The review is organised as follows. In Section 2, we discuss the basic ingredients of
the QCD phase diagram at different temperatures and values of the baryon chemical po-
tential. In Section 3, we provide a brief description of magnetic order/disorder phases and
introduce the basic notions of the lattice gauge theory that will be used in follow-up discus-
sions. In Section 4, we overview basic concepts and ideas that lead to different asymptotic
behaviours of the Wilson loop VEV as an order parameter for the confining phase. Such dis-
tinct properties of QCD scattering amplitudes as the Regge trajectories and the associated
picture of a colour string have been outlined in Section 5. In Section 6, we provide a detailed
outlook on the complementarity between the Higgs and confining phases and describe such
a common feature for both phases as colour confinement. In Section 7, a brief description
of the string hadronisation picture realised in the Lund model is given. Section 8 elaborates
on why confinement criteria based upon gauge symmetry remnants (un)breaking may be
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spoiled by gauge-fixing artefacts, highlighting the need for a gauge-invariant description
of confinement. Section 9 introduces the basics of the center-symmetry-based confinement
criterion and its implications. Section 10 gives a brief outlook on another order parameter of
confinement, the Polyakov loop, particularly suitable for confinement description at finite
temperatures. In Section 11, yet another important order parameter of confinement probing
the vortex structure of the QCD vacuum, the t’Hooft loop, is introduced and the basic
features of the center vortices are described. Section 12 elaborates on the most important
characteristics of the string tension as the probes for a confining phase. The foundations
and implications of the center vortex mechanism of confinement, with its basic tests per-
formed in the literature, have been discussed in Section 13. Section 14 connects the chiral
symmetry breaking and the topological charge to the existence of vortex configurations.
In Section 15, we briefly describe the Gribov–Zwanziger scenario of confinement, relating
it to the non-perturbative behaviour of propagators and describing how a colour string
could emerge in this scenario by considering constituent gluons in the gluon chain model.
A renown dual superconductivity picture of confinement and the fundamental role of
magnetic monopoles have been briefly described in Section 16. A novel generalisation
of the confinement criterion applicable in gauge theories with matter in the fundamental
representation has been briefly discussed in Section 17. Section 18 highlights an important
recent development in understanding the confining property of the gauge-field vacuum
and Higgs-confinement transitions via a novel non-local order parameter. A summary and
concluding remarks are given in Section 19.

2. Phase Structure of QCD Matter

Following the discovery of asymptotic freedom in QCD [5,6], it has been realised that
phase transitions in the hot and dense QCD matter between the hadronic (confined) and
quark-gluon (deconfined) phases are crucial for understanding the cosmological evolution
as well as the state of matter and dynamics of neutron stars [7–14]. Besides, the idea of
experimental measurements through heavy-ion collisions has been offered as a tantalising
opportunity for explorations of this interesting physics. In those early times, a hypothetical
state of QCD matter at characteristic temperatures of around 100 MeV has been envisaged
as existing in two possible states of “hadronic plasma” [9] and “quark-gluon plasma”
(QGP) [10], with an energy density of order 1 GeV/fm3. Later on, it has been understood
that the QCD phase diagram has a much richer structure, particularly, at high baryon
number densities, with a lot of important implications for understanding, for instance,
neutron star physics as well as heavy-ion collisions at particle colliders.

Strongly interacting QGP was first discovered at RHIC collider in 2005 [15–18] and
later has been confirmed at much higher energies at the CERN LHC (for a detailed review,
see, e.g., Refs. [19,20] and references therein). In the QGP phase, as the name suggests,
the strong interactions between constituents of the plasma, “dressed” light quarks and
gluons being its collective excitations, is driven by their SU(3)c colour charges. For a
comprehensive review of early developments and key ideas in the analysis of strongly
coupled QCD phenomena and QGP in particular, see, e.g., Ref. [21], while an overview of
more recent theoretical and experimental studies can be found in Refs. [19,20,22].

In a weakly interacting QCD gas at very high T, the microscopic quark-gluons in-
teractions are relatively weak and should obey the predictions of asymptotic freedom.
The leading-order perturbative QCD coupling that determines the strength of QCD interac-
tions at asymptotically short distances,

αs(Q) ' 2π

b0 ln(Q/ΛQCD)
, b0=11− 2

3
N f , (1)

is given in terms of the QCD energy scale ΛQCD ≈ O(1 GeV), momentum transfer Q �
ΛQCD and the active quark flavours’ number N f . In a perturbative domain of QCD,
when going towards shorter distances l � Λ−1

QCD, the colour charge is being diluted
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compared to the “soft” and non-perturbative domain of QCD at larger distances l ∼ Λ−1
QCD,

where the charge is being built-up effectively due to the phenomenon called the colour
charge “anti-screening” [5,6]. This is quite an opposite effect to what happens in QED.
This behaviour of the coupling is demonstrated in Figure 1 (left panel), together with
experimentally measured values. As soon as αs(Q) hits large values entering the strongly
coupled (confined) regime at lower T, the PT ceases to work such that effective and non-
perturbative methods are applied, being, however, often vastly disconnected from the
microscopic QCD theory. One could perform a consistent matching of the fundamental
QCD to the effective Lagrangian of chiral PT at the “soft” scale Q ' 4π fπ ' 1 GeV, where
both descriptions are expected to be valid and overlap. Such a matching provides a clue
about the IR behaviour of αS(Q) that tends to get “frozen” at the value of 〈αS〉IR ' 0.56 [23].

30 9. Quantum Chromodynamics

in this category, removing this pre-average would not change the final result within the quoted
uncertainty.

αs(MZ
2) = 0.1179 ± 0.0010

α s
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Figure 9.3: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

9.4.3 Deep-inelastic scattering and global PDF fits:
Studies of DIS final states have led to a number of precise determinations of –s: a combination [501]
of precision measurements at HERA, based on NLO fits to inclusive jet cross sections in neutral
current DIS at high Q2, provides combined values of –s at di�erent energy scales Q, as shown
in Fig. 9.3, and quotes a combined result of –s(M2

Z) = 0.1198 ± 0.0032. A more recent study
of multijet production [373], based on improved reconstruction and data calibration, confirms the
general picture, albeit with a somewhat smaller value of –s(M2

Z) = 0.1165±0.0039, still at NLO. An

1st June, 2020 8:27am

Figure 1. On the left panel, the QCD interaction strength αs as a function of the momentum transfer Q at the next-to-leading
order of the PT. The figure is taken from Ref. [24]. On the left panel, the QCD evolution of the characteristic parton (quark
and gluon) density and length-scale with respect to rapidity Y = ln(1/x) and ln Q2. The figure is taken from Ref. [25].

Besides the weakly coupled short wavelength modes of partonic DoFs with Q = 2πT
dominating the thermodynamic evolution at very high T, the QGP also features long
wavelength (non-perturbative) modes, with length scales of l > T−1. The latter modes
dominate the evolution at not-so-high T, forming a liquid and effectively turning QGP into
ideal fluid [22,26,27]. The latter fundamental property of QGP has been discovered first at
RHIC [15–18] and then confirmed at the LHC. Other effects of such strongly interacting
QGP are manifested through a collective flow phenomenon [27] as well as in an effec-
tive suppression of high-energy partons transiting through a hot and dense deconfined
medium [28,29] (for a review, see Ref. [20] and references therein).

Taking the ratio of the interaction-to-kinetic energy of the QGP constituents and
assuming equal contributions from chromo-electric and chromo-magnetic interactions, one
introduces the so-called plasma parameter [30]

Γ ' 2
Cq,gαS

aT
, Cq =

N2
c − 1
2Nc

=
4
3

, Cg = Nc = 3, (2)

expressed in terms of the fundamental (quark) and adjoint (gluon) Casimir invariants
of SU(3)c, Cq and Cg, respectively, and the T-dependent average distance between the
partons a satisfying aT ∼ d−1/3

F , where

dF ≡ 2× 8 +
3
4

(
3× N f × 2× 2

)
. (3)
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The latter evolves in T only through N f (T). Weakly interacting (ideal) plasmas have
a very low Γ < 10−3, while a strongly interacting plasma typically has a much larger
Γ & 1. Taking a nearly ideal (weakly coupled) massless QCD gas, for instance, one obtains
Γ ∼ αSd1/3

F serving as a lower estimate for the plasma parameter as it ignores the partonic
interactions in the ideal gas approximation. In a realistic case of QGP created in heavy-ion
collisions at RHIC, one finds T ≈ 200 MeV and αS = 0.3–0.5 with only two relevant active
flavours, NF = 2, leading to a value of Γ ' 1.5–6, indeed being deeply inside the strongly
coupled plasma regime.

The QCD evolution of partonic matter in terms of basic kinematic parameters of
resolved partons in the medium is illustrated in Figure 1 (right panel). For instance,
developing the partonic cascades in typical momentum transfer Q, one resolves the partons
with a transverse area 1/Q2, such that at larger Q and T ∼ Q, one observes a dilution
of the parton density controlled by the DGLAP evolution equations (see for instance
Refs. [31,32]). One may also observe how the parton density evolves with energy or, more
conveniently, with a fraction of light cone momentum taken by a given radiated parton
out of a parent particle, x = k+/P+. One may visualise the partonic cascade off the initial
particle effectively as Brownian-like motion in the transverse plane that can be considered
as the Gribov diffusion process in the evolution “time” Y = ln(1/x). The latter parameter
is simply a rapidity difference between the radiated and parent partons, while the diffusion
constant is D ∼ αS. Such an evolution is controlled by BFKL equations (for more details,
see, e.g., Refs. [31,32] and references therein).

The partonic cascade is essentially dominated by soft gluons at high energies or at
very small fractions x � 1, and they are of the same size at a fixed scale Q. As soon as the
parton scattering cross-section ∼ αS/Q2 multiplied by the probability to find a parton at a
given Q with a fraction x, xGA(x, Q2), becomes of the order of the geometrical cross-section
of an area A occupied by the gluons, ∼ πR2

A, the gluons start to overlap effectively. Due
to a repulsive interaction between gluons, however, their occupation number saturates at
fg ∼ 1/αS. In particular, this occurs for gluons with transverse momenta below a certain
emergent scale Qs(x), k⊥ ≤ Qs(x), known as a saturation or “close packing” scale [33] (see
also Refs. [34,35]),

Q2
s (x) =

αS(Qs)

2(N2
c − 1)

xGA(x, Q2
s )

πR2
A

, (4)

thus, representing a fixed point in the parton x-evolution. Such a saturation phenomenon
is rather generic as an analogical scaling of the density ∼ α−1 characterises various Bose–
Einstein condensation phenomena, in particular, those in the Higgs mechanism and in su-
perconductivity [36]. Such a highly coherent gluonic state of matter has properties of a clas-
sical field [34] and is known in the literature as the Colour Glass Condensate (CGC) [25,35,37]
or glasma [38].

Indeed, in the path integral formulation of the SU(N) gauge theory, for instance, one
sums over all gauge-field configurations weighted with exp(−iSg/h̄), where the action
can be written as

Sg = − 1
4g2

s

∫
Fµν,aF a

µνd4x, (5)

Aa
µ → Aa

µ ≡ gs Aa
µ , Fa

µν → gsFa
µν ≡ F a

µν = ∂µAa
ν − ∂νAa

µ + f abcAb
µAc

ν,

such that g2
s multiplies h̄ in the exponent. Here, f abc, (a, b, c) ∈ {1, . . . , N2 − 1} are the

SU(N) structure constants. The path integral would be dominated by the classical con-
figurations for h̄ → 0 (classical limit), which is, therefore, equivalent to taking the weak
coupling limit of the theory g2

s → 0, where the action is large, Sg � h̄, and so is the number
of quanta in these configurations, fg ∼ Sg/h̄ [34]. There are certain reasons to believe that
such classical-field configurations should describe the state of cold nuclear matter in the
initial stages of ultra-relativistic heavy-ion collisions [25,37].
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Needless to mention, strongly interacting QCD exhibits a variety of emergent collec-
tive effects and phenomena other then those of QGP that are very difficult to understand
and to predict starting from the first-principle microscopic theory of QCD. Observable pre-
dictions of the hot/dense QCD theory depend on the equation of state (EoS) of compressed
nuclear matter, but the latter has not been fully understood yet. This situation is analogical
to emergent phenomena in atomic and condensed-matter physics driven by the QED inter-
action theory at the microscopic level. Notably enough, besides the hadronic and QGP phases,
QCD matter features also other distinct phases predicted in various approaches [39,40].

Among important examples of various realisations of confining non-abelian gauge-
field dynamics in cosmology are the relaxation phenomena in the real-time cosmological
evolution of the QCD vacuum [41] and a possibility of phase transitions in a “dark” strongly
coupled SU(N) gauge sectors [42], both potentially testable via the detection of stochas-
tic primordial gravitational-wave spectra in future measurements. The homogeneous
gluon condensates in the effective SU(N) theory (such QCD gluodynamics) have also
been found to play an important role in the generation of the observable cosmological
constant [20,41,43–46]. For a recent review of implications of the quantum YM vacuum for
the Dark Energy problem, see Ref. [47].

Systematic explorations of QCD matter at high densities and temperatures, including
the search for the critical end point (CEP) in the middle of the phase diagram at µB ∼
0.4 GeV shown in Figure 2, only started about ten years ago. The CEP is located at the
end of the first-order phase transition boundary between the hadronic phase and QGP,
where a second-order phase transition is predicted to occur. One expects a number of new
phenomena in a vicinity of that point [48–51] that have been searched for by the RHIC
Beam Energy Scan program.

Figure 2. An illustration of typical phases of QCD matter that are expected to emerge at various
values of the temperature T and the baryonic chemical potential µB associated with U(1)B breaking
(see Ref. [20] and references therein). Accelerators operating at different center-of-mass (c.m.) energies
are depicted here.

Currently, a number of different studies of QCD phases in various parts of the (T, µB)
diagram are being deployed, both experimentally and theoretically, and a high complexity
has started to emerge. Particularly intense are explorations of low µB ' 0 [52–55] and
high µB' 100–600 MeV [40,49,51,55] domains, with possible transitions in between, also
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indicated in Figure 2. Other CEPs may also be expected to emerge such as those for chiral
(crossover at low-T, not shown in the figure) and nuclear liquid-gas (in the nuclear matter
ground-state at nearly-zero T and µB = 0.93 GeV) transitions.

More specifically, looking at the QCD phase diagram in Figure 2 along the direction
of increasing baryon chemical potential µB, we notice that at energies close to the binding
energy of bulk nuclear matter, the so-called cold nuclear matter phase is found. Interactions
between nucleons (quark bound states) may lead to pairing and di-baryon condensation
that spontaneously break the U(1)B baryon number symmetry (see, e.g., Refs. [56,57]).
Physically, this also means that the system is in a superfluid (confining) phase. This
system has a close analogy, for instance, with liquid helium, where one also finds the
Bose–Einstein condensation and Goldstone modes, both associated with the superfluidity
property. The same physics emerge in ordinary nuclear matter based upon the nuclear
many-body theory, which is applicable at not too large densities.

There is still a substantial lack of knowledge on a transition between the cold nuclear
matter and high-density QCD phases, particularly relevant for the physics of neutron stars.
Since QCD is asymptotically free, one can go to a very high µB in the quark-matter phase
and employ weak-coupling techniques [58]. In this quark-matter phase of dense QCD, such
calculations predict a nearly Fermi-liquid with residual interactions that lead to pairing
among quarks in a gauge-dependent way. This is described by means of a gauge-dependent
di-quark condensate 〈qq〉 playing a role of an order parameter in the dynamical Higgs
mechanism such that we deal with a Higgs phase. Indeed, such a di-quark condensate
emerges due to long-range attractive forces between the quarks through a Cooper-like pairs’
condensation [59,60]. Such a high-density (baryon) superfluid phase where the SU(3)c

gluon field is fully “Higgsed” is known in the literature as a colour superconductor1 (CSC)
(for a comprehensive review on key aspects of dense QCD, see Refs. [61,62]). The formation
of such Cooper pairs of quarks can be seen in QCD with three massless u, d, s flavours
at large baryon number densities featuring the following colour and flavour symmetries’
reduction [40,63]

SU(3)c × SU(3)R × SU(3)L × 3U(1)B → SU(3)c+L+R ×Z(2) (6)

down to a diagonal subgroup SU(3)c+L+R. The corresponding symmetry transformations
involve a simultaneous “rotation” of colour and flavour group representations known
as the colour–flavour locking (CFL). Such a CFL phase is known not to be topologically
ordered [64]. Then, in the CFL quark-matter phase, one could also find an order parameter
for U(1)B symmetry breaking (down to Z2) in analogy to the di-baryon condensate in the
nuclear-matter phase—it can be viewed as a cubic power of the di-quark condensate thus
being associated with a superfluid flow.

In fact, both quark matter and nuclear matter phases were found to be relevant for
the EoS of neutron stars (see, e.g., Refs. [62,65,66]), and the signatures of possible phase
transitions might show up in mass-radii relations for neutron stars and gravitational-wave
spectra from neutron star collisions. As at high temperatures no baryon number symmetry
breaking occurs, one supposedly crosses the line where U(1)B gets restored when the
system heats up. As we noticed above, at low temperatures, both low- and high-density
phases have the same order parameter w.r.t. U(1)B breaking, and one of the fundamental
open questions is whether a boundary between the quark-matter (Higgs) and nuclear-
matter (confinement) phases actually exists. Following Refs. [67–69], one could consider
a simplified picture of pure QCD and include three massless flavours in a maximally
symmetric realisation, such that there is no distinction in symmetry realisations between
the hadronic phase and asymptotically high-density phase. The latter means there may be
no phase transition that is consistent with identical global symmetry realisations in both
regimes, t’Hooft anomalies’ matching and with smoothly connecting low-lying excitations
(see, e.g., Refs. [67,70,71]). Such an assumption has become a working one for many
phenomenological studies modelling the EoS for neutron star physics (see, e.g., Ref. [72]
and references therein). Below, following the recent results of Ref. [58], one may conclude,



Universe 2021, 7, 330 8 of 55

however, that the Schäfer–Wilczek conjecture about quark-hadron continuity at large µB
may be largely oversimplified. The reality may be even more complex than what emerges
in existing theoretical approaches. The basic problem is that there are no well-justified
theoretical methods available for the treatment of the strong-coupling regime of QCD,
with a non-zero chemical potential, where lattice simulations may not be very reliable.

Finally, yet another QCD phase that is believed to be located somewhere between the
chirally restored and confined phases is known as quarkyonic matter [73] that may also
have some relevance for neutron star physics [74]. In the limit of large number of colour
charges Nc, the gluons’ contribution scales as ∼N2

c compared to that of quarks ∼Nc such
that this phase is assumed to have energy densities well beyond Λ4

QCD. Since gluons are
bound in glueballs, one ends up with Nc DoFs in this phase.

Let us now turn to a discussion of methods of the lattice gauge theory that became the
main tool for explorations of non-perturbative physics in gauge theories and, in particular,
QCD in the strongly coupled regime and the associated dynamics of confinement, at least,
at not too large chemical potentials.

3. Ising Model and Lattice Gauge Theory

To what extent one can expect to derive precision results for low-energy observables
from the first-principle QCD theory? A default answer to this question is that we should
not expect that, at least, analytically. The collective phenomena that are manifest in the
strongly coupled regime of a gauge theory are so complex that none of the existing analytic
approaches captures all the relevant dynamics and yields satisfactory results. At the
same time, a theory may remain to be correct even if methods of extracting observable
information from it are not perfect or suitable. Often though, we start with a simplified
model that hopefully captures the same physics as a realistic one, but where we have a
better control, and then we abstract the lessons that we learn from such a model back to
more complicated theories, such as QCD.

Luckily, a precise and reliable analysis is possible but only numerically. The best
available framework so far is the lattice gauge theory providing a first-principle numerical
approach for strongly coupled theories, such as QCD. In fact, this framework is often
considered as a “numerical experiment” and may be regarded as a black-box whose results
need to fit a certain theoretical picture of real underlined physical phenomena and objects
providing means to understand those phenomena qualitatively. Whether or not the lattice
results fit a particular picture of confinement is an ongoing and long-standing debate in
the literature. For relatively recent detailed reviews on non-perturbative physics and the
confinement problem, see, e.g., Refs. [3,4,75–77] and references therein. Here and below,
we follow the notation adopted in Ref. [3] unless noted otherwise, acknowledging that
the latter reference represents one of the most complete, pedagogical and sophisticated
reviews available in the literature on what the confinement problem actually is from various
perspectives and approaches.

In order to build a consistent picture of confinement, we need to elaborate on such
important notions as ordered and disordered systems. One of the simplest examples of
the lattice field theory follows the basic principles of statistical mechanics, where the most
relevant properties of these systems are readily seen in the Ising model of ferromagnetism.
For illustration, consider a simple system—a square (D = 2), cubic (D = 3) or hypercubic
(D > 3) array (or lattice) of atoms, each with two spin states—in the external magnetic field
h. This system is described by the Hamiltonian,

H = −J ∑
x

D

∑
µ=1

s(x)s(x + µ)− h ∑
x

s(x), J > 0, (7)
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where s(x) = +1 and −1 would correspond to an atom at a point x with spin up and
down, respectively, and we denote here the total number of spins as N. The probability for
a specific configuration of spins, {s(x)}, at a given temperature T, can be written as

P{s(x)} =
1
Z

exp
[
− H

kT

]
, Z = ∑

{s(x)}
exp[−H/kT]. (8)

In the case of zero external field, h = 0, the system apparently possesses a global Z2
symmetry w.r.t. transformations

s(x)→ s′(x) = ξs(x), ξ = ±1, (9)

such that the mean magnetisation (average spin)

〈s〉 = ∑
{s(x)}

P{s(x)}
N ∑

y
s(y) (10)

vanishes. This is a system in a so-called disordered state.
Assume that the spins in the initial state are aligned. The exact Z2 symmetry means

that at any given temperature, any finite system would end up in a disordered state
provided that one waits for long enough for that to occur. This leads to the non-existence
of permanent magnets as any alignment of the spins would be destroyed by thermal
fluctuations. However, for large N, i.e., for macroscopic magnets, the time between sizable
fluctuations that could flip a lot of spins would grow exponentially and eventually exceeds
the lifetime of the Universe. For non-zero h, however, the Z2 symmetry appears to be
explicitly broken, enabling 〈s〉 6= 0 at any temperature. In this case, the system appears to
be in an ordered state where a large amount of spins point in the same direction.

Now, consider the magnetisation of a large system in the limit of vanishing h. One
could show that, in general, this quantity is non-vanishing

lim
h→0

lim
N→∞

〈s〉 6= 0, (11)

yielding the so-called spontaneous symmetry breaking (SSB) of the global Z2 symmetry, which
occurs particularly at low temperatures (ordered state). A global symmetry is said to be
broken spontaneously when the Hamiltonian and the corresponding equations of motion
are symmetric, but the solutions for physical observables (such as the magnetisation intro-
duced above) are not. At high T above a certain critical temperature (Curie temperature),
the averaged spin vanishes, and the spin system appears again in a symmetric (disordered)
state. Considering the vacuum expectation value (VEV) of a product of two spins, we notice
G(r) ≡ 〈s(0)s(r)〉 ∼ exp(−r/l), i.e., it falls off exponentially with the distance between
atoms r in a disordered state, where l is the correlation length. There is a phase transition
between the ordered and disordered phases of the system at the Curie temperature for any
D > 1, while for D = 1, the system is in a disordered phase at any T. The existence of
such phase transitions associated with a global symmetry breaking is a generic property of
many different systems and is also manifest in strongly coupled gauge theories, as will be
discussed below.

Let us further promote the global Z2 symmetry to a local one whose transformation
parameter depends on the position of the associated DoFs, ξ(x) = ±1, and can be chosen
independently at each site (gauge transformations). For this purpose, let us consider the links
of the lattice sµ(x) along each dimension µ = 1 . . . D as dynamical DoFs subjected to the
gauge transformation

sµ(x)→ ξ(x)sµ(x)ξ(x + µ̂), (12)

and write down the Hamiltonian of the gauge-invariant Ising model
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H = −J ∑
x

D−1

∑
µ=1

D

∑
ν>µ

sµ(x)sν(x + µ̂)sµ(x + ν̂)sν(x). (13)

Thereby, we arrive at the simplest example of the Z2 lattice gauge theory. In order to
describe such systems, one considers observables that are invariant under gauge transfor-
mations. A particularly important class of observables can be obtained by taking the VEV
of the so-called Wilson loop—a product of links on the lattice around a given closed contour
C [78],

W(C) =
〈

Π(x,µ)⊂Csµ(x)
〉

. (14)

The Hamiltonian (13) is given by the simplest Wilson loop given by a plaquette,
the minimal closed loop on the lattice.

In analogy to the gauged Ising model, in a generic lattice gauge theory described
by a certain (discrete or continuous) gauge group G, one starts with the Euclidean action
where the link variables are the elements of the gauge group. For instance, in the case of a
non-abelian group G ≡ SU(2), the group elements in discretized spacetime are

Uµ(x) = eiagAµ(x), Aµ(x) =
1
2

σa Aa
µ(x), (15)

in terms of the lattice spacing a, the gauge coupling g, the Pauli spin matrices σa, a = 1, 2, 3,
and the SU(2) gauge field Aa

µ(x). By convention, the link variable Uµ(x) is associated with
a line running from site x on the lattice to a neighbour site x + µ̂ in the positive direction
µ. The probability distribution of lattice configurations of the gauge field is found in full
analogy to that of the Ising model, namely,

P{s(x)} =
1
Z

exp(−S[U]), (16)

where the Euclidean action, also known as the Wilson action,

S[U] = − β

2 ∑
x,µ<ν

Tr[Uµ(x)Uν(x + µ̂)U†
µ(x + ν̂)U†

ν (x)] (17)

is invariant under local gauge transformations

Uµ(x)→ G(x)Uµ(x)G†(x + µ̂), G(x) ⊂ SU(2). (18)

We used the fact that the trace of any SU(2) group element is real. A straightforward
extension to the SU(N) gauge theory leads to

S[U] = − β

2N ∑
x,µ<ν

{
Tr[Uµ(x)Uν(x + µ̂)U†

µ(x + ν̂)U†
ν (x)] + c.c.

}
, (19)

with suitably generalised group elements Uµ(x).
By expanding the latter in powers of Aa

µ(x), taking β = 2N/g2 and turning to the
continuum limit of vanishing lattice spacing a→ 0, one arrives at the standard expressions
for the action and gauge transformations in Euclidean spacetime

S =
1
2

∫
d4xTr[FµνFµν], Fµν = ∂µ Aν − ∂ν Aµ − ig[Aµ, Aν], (20)

Aµ(x)→ G(x)Aµ(x)G†(x)− i
g

G(x)∂µG†(x), (21)

in terms of the field strength tensor Fµν and a gauge group element G(x). Here, the repeated
indices are summed over as usual.
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The formulation of the lattice gauge theory in Euclidean spacetime has quickly become
the cornerstone and the main reference for numerical analysis of basic characteristics of the
corresponding quantum field theory (QFT) in Minkowski spacetime (such as its low lying
spectrum and the static potential). This is due to the single most important fact that the
Euclidean formulation of the field theory is conveniently considered as a statistical (not
quantum) system whose analysis can be performed using the power of the lattice Monte
Carlo methods. For a detailed description of these methods, see, e.g., Ref. [79].

The Euclidean formulation is particularly designed for studies of QFT at finite tem-
peratures in equilibrium and works in Euclidean space with periodic time direction for
bosonic fields while fermion fields fulfil antiperiodic boundary conditions in the time
direction (for a recent review, see, e.g., Refs. [80,81]). A finite T theory is then constructed
from its zero-temperature counterpart by replacing bosonic and fermionic four-momenta
kµ in Euclidean integrals by 2πnT and (2n + 1)πT, respectively, and then switching from
kµ integration to summation over n. In a hot medium, an average momentum transfer
is given in terms of temperature, Q = 2πT. The study of thermodynamics and phase
transitions is performed in the Hamiltonian formalism starting from the thermal partition
function, and the “time” is Euclidean in the path integral formalism from the beginning
at any temperature. The order of the deconfinement phase transition in the Euclidean
SU(3) lattice gauge theory has been studied in this approach by Monte Carlo methods in
Ref. [82].

In the continuum limit, in order to obtain the Minkowski action of the corresponding
QFT starting from the thermal theory action in Euclidean spacetime, one conventionally
adopts the Wick rotation t → −it and A0 → iA0, relying on the analyticity property of
the vector-potential. Then, an assumption that a numerical simulation successfully set up
in Euclidean spacetime yields relevant results to the corresponding QFT in Minkowski
spacetime would be justified only for smooth transitions between short-distance to long-
distance physics enabling analytic (in physical time and in A0) continuations of amplitudes
from Minkowski to Euclidean spacetime and backwards. Indeed, such an assumption is
violated in the most general case as stated by the so-called Maiani–Testa no-go theorem [83]
related to the “failure” of the Wick rotation mentioned above. Indeed, when going out from
thermodynamics approaching the study of bound states, the Wick rotation is applicable
only to compute static characteristics of the QCD medium, such as vacuum condensates, as
well as masses of stable particles that are the minority of the QCD spectrum. Resonances,
such as the majority of mesons, charmed and stranged baryons, tetraquarks, pentaquarks,
and hadron molecules, are accessible in the Euclidean space only indirectly and only under
restrictive assumptions. For more details on the associated problems in the treatment of
two-particle systems, see Ref. [84], while a review on the status of three-particle systems
can be found, e.g., in Ref. [85].

A manifestation of non-analytic structures (domain walls) in the YM vacuum in physi-
cal time has also been discussed recently in the context of the non-stationary background
of expanding Universe in Ref. [46]. Such structures were found as attractor cosmological
solutions at sufficiently large physical times asymptotically matching the YM dynamics on
the Minkowski background. In the essence of the Maiani–Testa theorem, such non-analytic
(domain-wall) solutions found in the (nearly) Minkowski background would in general not
match the corresponding lattice simulations in Euclidean spacetime, so their implications
for confinement are unclear and should be studied separately. As long as such solutions are
concerned, one may conjecture that the Euclidean YM field theory predictions match those
in Minkowski spacetime only in regions sufficiently far away from the non-analytic phase
boundaries. This conjecture, however, requires further in-depth studies of the implications
of these novel solutions for confinement dynamics.

Another crucial limitation of Monte Carlo lattice simulations concerns the thermal
gauge theory with non-vanishing chemical potential. Indeed, the action becomes complex
if the temperature T and the chemical potential µ are both non-zero, meaning that standard
Monte Carlo methods fail in this case (for a thorough review on this issue, see, e.g., Ref. [86]).
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In particular, due to the sign problem, the lattice simulations of QCD at µB > 0 exhibit
difficulties in reproducing the quark-gluon plasma, as observed in heavy-ion collisions,
even under an assumption of the thermal equilibrium. The situation becomes even worse
when considering the nuclear matter in neutron stars or collapsing black holes at very
large densities in the curved spacetime. The way to proceed is to expand the pressure
in µB/T and calculate the physical observables as Taylor expansions in this quantity, see,
e.g., Ref. [87]. In practice, this requires calculating operators of high order, which are noisy
and require very large statistics [88]. Recently, an alternative summation scheme for the
equation of state of QCD at finite real chemical potential was proposed in [89], designed to
overcome those shortcomings. Using simulations at zero and imaginary chemical potentials,
the extracted LO and NLO parameters describing the chemical potential dependence of
the baryon density were extrapolated to large real chemical potentials. The proposed
expansion scheme converges faster than the Taylor series at a finite density, thus leading
to an unprecedented coverage up to µB/T ≤ 3.5 and to more precise results for the
thermodynamic observables.

4. Asymptotic Behavior of Large Wilson Loop VEVs

Different phases of a gauge theory are classified based on the behaviour of Wilson loop
VEVs at large Euclidean times compared to spacial separations, i.e., TE � R. Computing
those in Euclidean spacetime provides direct access to the interaction energy between
the static field sources in Minkowski QFT when the mass of the sources (and hence the
fundamental energy scale of a confining gauge theory) is taken to infinity. Introducing a
massive scalar field (a “scalar quark”) in an arbitrary representation r to the gauge theory
on the D-dimensional lattice, the corresponding action

S = − β

N ∑
p

ReTr[U(p)]− γ ∑
x,µ

(φ†(x)U(r)
µ (x)φ†(x + µ̂) + c.c.) + ∑

x
(m2 + 2D)φ†(x)φ(x) (22)

is invariant under the gauge transformation of the scalar field: φ(x)→ G(x)φ(x), where
the link variable is U(r)

µ (x), and the gauge-field holonomy is U(p) for a given plaquette p.
Consider an operator that creates a particle–antiparticle pair in a colour-singlet state

at a given time TE and separation R,

C(TE) = φ†(0, TE)
[
ΠR−1

n=0 U(r)
i (nî, TE)

]
φ(Rî, TE), (23)

that also creates a colour-electric flux tube (or string) stretched between the charges. In the
limit of heavy static colour-charged sources, m � 1 in lattice units, the second term in
Equation (22) may be considered as a small perturbation, so the string-breaking effect can
be neglected to a first approximation. Indeed, as matter fields are very heavy in this limit, it
would take an infinite energy to pull them out of the vacuum and to place them on a mass
shell in order for them to bind to the sources and hence to screen their charge. This means
that one would stretch the flux tube to an infinite length before it can ever break apart,
which is, of course, an unrealistic but still useful picture to test the confinement property of
the quantum vacuum.

Thus, by integrating out φ in the functional integral, one finds for the VEV

〈C(TE)
†C(0)〉 ∼Wr(R, TE), (24)

to the leading order in 1/m2 expansion, where

Wr(R, TE) = 〈Tr[U(r)U(r) . . . U(r)]C〉 ≡ 〈χr[U(R, TE)]〉 (25)

is the VEV of the Wilson loop written in terms of the time-like holonomy U(R, TE) of
the pure gauge theory. Here, the link variables run counter-clockwise on a time-like
rectangular contour C = R× TE, the group character is χr, and the sum runs over states
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with two static charges. In the continuum limit, the corresponding holonomy is given by
the path-ordered exponential

U(C) = P exp
[

ig
∮

C
dxµ Aµ(x)

]
. (26)

Therefore, the Wilson loop (holonomy) operator, in this case, represents a rectangular
time-like loop describing the creation, propagation and, finally, destruction of two static
quark and antiquark placed at certain fixed spacial points. The time-like links in a given
Wilson loop can thus be considered as the worldlines of static heavy charges.

On the other hand, in the operator formalism, one deduces that [3]

〈C(TE)
†C(0)〉 ∝ ∑

n
|cn|2e∆EnTE ∼ e−∆EminTE , TE → ∞, (27)

where ∆En is the energy of the nth excited state above the vacuum, and in the last part
of this relation, only the dominant contribution (at large TE) from the minimum-energy
eigenstate has been taken into account. In this case, ∆Emin = Vr(R) corresponds to the
energy difference between two static charges, being, in other words, the interaction (static)
potential between them Vr(R). Hence, the VEV of the rectangular Wilson loop

Wr(R, TE) ∼ e−Vr(R)TE (28)

is characterised by the potential V(R), which can be inverted as

Vr(R) = lim
TE→∞

log
[Wr(R, TE + 1)

Wr(R, TE)

]
. (29)

Now consider, for instance, a planar non-self-intersecting Wilson loop in the U(1)
gauge theory, and using the Stokes law, it can be written as

U(C) = exp
[
ie
∮

C
dxk Ak(x)

]
= exp

[
ie
∫

C
dSCFij(x)

]
, (30)

where the areal integration represents the magnetic flux and proceeds through the minimal
area of the large Wilson loop. Thus, due to the additive nature of the flux, such a planar
Wilson loop can be arbitrarily split into a product of smaller loops whose areas add up to
the one of the large loop

U(C) = Πn
i=1U(Ci). (31)

Here, the orientations of the smaller loops are chosen in such a way that neighbouring
contours run in opposite directions to each other. In the case of magnetic disorder, the mag-
netic fluxes through smaller loops Ci (e.g., plaquette variables, in the case of smallest loops)
are completely uncorrelated, such that the VEV factorises as

Wr(C) ≡ 〈U(C)〉 = Πn
i=1〈U(Ci)〉 = exp[−σr A(C)] , σr = −

ln〈U(Ci)〉
A′

, (32)

where A and A′ are the larger and smaller Wilson loop areas, respectively.
Assuming the absence of light matter fields that could, in principle, screen the colour

charge of the massive sources, and considering a rectangular Wilson loop with C = R× TE,
the magnetically disordered state is characterised by the linear growth of the interaction
potential with distance R between the static charges asymptotically,

Vr(R) = σrR + 2V0, (33)

which represents a potential of a linear string. Here, V0 is interpreted as a self-energy
contribution, and σr has the meaning of the string tension in a given group representation
r that does not depend on the subloop area A′. For an illustration of the total potential



Universe 2021, 7, 330 14 of 55

interpolating small-R (Coulomb) and large-R (confining) regimes, see Figure 3. The area-
law for the Wilson loop VEV ∼ exp[−σr RTE − 2V0TE] is then reproduced for TE � R, as
expected, or for a generic contour enclosing a large minimal area A(C),

Wr(C) ∼ exp[−σr A(C)−V0 P(C)], (34)

including also a dependence on the perimeter of the contour P(C). Note, the gluon
propagator is singular in the UV regime in the continuum limit which generically induces
a singular term that is interpreted as a divergent self-energy V0 of the charged particles
and antiparticles propagating in the loop. The latter produces a perimeter-law contribution
to the large Wilson loop VEV in the above expression. Thus, usually, a kind of smearing
of the loop via a superposition of nearby loops is required to regularise the Wilson loop
in the continuum limit (see, e.g., Ref. [90]), while on the lattice, such a short-distance
regularisation is always implicit.

Confinement

Confinement = no free quarks
Linear confinement observed by Regge trajectories m2 − m2

0 ∝ J .
Later confirmed e.g. by quenched lattice QCD

String tension

V (r)

r

linear part

Coulomb part

total

Figure 3. An illustration of the total static quark potential as a function of interquark separation.

It is straightforward to show that for any gauge group and D = 2, only a magnetically
disordered phase is realised, reproducing the area-law falloff due to the absence of a Bianchi
constraint on the components of the field strength tensor [91]. It is, however, a much harder
problem to prove the area-law falloff of large Wilson loop VEVs in a generic YM theory
with a non-trivial center symmetry, which represents the basic confinement problem (for
more details, see below). A remarkable property of a Wilson loop is that it characterises
vacuum fluctuations of the gauge field, i.e., without the presence of any external sources,

Wr(C) = 〈Ψ0|χr[U(C)]|Ψ0〉, (35)

with a space-like loop C in terms of the ground-state Ψ0 of the Hamiltonian of the pure
gauge theory. As the space-like and time-like loops are related by a Lorentz transformation,
one deduces that the potential energy of interaction between static charges is directly
connected to the gauge-field vacuum fluctuations in the absence of colour-charged sources.

In D > 2 lattice, the Bianchi constraint emerges that correlates the field strength values
at neighbour sites so that those no longer fluctuate independently from one point to an-
other [92]. The absence of those correlations among the smallest Wilson loops, the plaquette
variables, is the single most important requirement that provides the area-law relation for
Wilson loops of arbitrary sizes. For D > 2, such correlations disappear, and the area-law
is established in the strong-coupling limit only, i.e., in the leading order in β� 1. In the
weakly coupled regime β� 1 in D = 3 + 1 electrodynamics, this property does not hold,
and one recovers the massless phase instead with the potential [93]

V(R) = − g2(R)
R

+ 2V0, (36)

corresponding to a perimeter-law falloff of the Wilson loop VEV,
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W(C) ∼ exp[−V0 P(C)], (37)

where P(C) = 2TE for a rectangular loop C (with TE � R), while the coupling g(R) is a slow
function of R that approaches a constant in the Coulomb phase. In non-abelian theories,
the magnetically disordered phase has been established for sufficiently large Wilson loops
using the non-abelian Stokes law (see, e.g., Refs. [94–101]) and also employing a finite-range
behaviour of field strength correlators [102,103]. Let us now briefly discuss one of the most
distinctive features of long-range dynamics of QCD associated with Regge trajectories.

5. Regge Trajectories and QCD Strings

We have seen that the magnetic disorder phase manifests itself through a linear
dependence of the static potential, and this behaviour is inherent to that of a string. What
is the nature of such a “colour string” and how is it formed? Which phenomenological
implications do such strings may have?

In hadronic scattering processes, the t-channel exchanges of QCD resonances are
considered to be important at high energies. As suggested by quantum mechanics, a given
scattering amplitude can be represented as a series expansion in partial waves,

A(k, cos θ) =
∞

∑
l=0

(2l + 1)al(k)Pl(cos θ), (38)

in terms of the Legendre polynomials of the first kind and of order l, Pl(cos θ), the scattering
angle θ and the partial wave amplitudes al . For a 2 → 2 process and particles of equal
mass, for instance,

cos θ = 1 +
2s

t− 4m2 . (39)

Considering an exchange of a single resonance only, with spin l0 and at large s→ ∞,
the amplitude behaves as A(s, t) ∝ sl0 , such that by means of the optical theorem, the cor-
responding total cross-section, σtot ∝ sl0−1. This result does not work very well against
the experimental data for an integer value of l0. The way out is to adopt that there are
several resonances being exchanged in the t-channel that should all be taken into account.
This is consistently done in the formalism of the Regge theory operating with an analyt-
ical continuation of partial amplitudes al to the complex angular momentum plane (for
a thorough discussion of Regge theory principles and applications, see, e.g., Ref. [104]).
The poles in this plane are traced out by straight lines known as Regge trajectories, l = α(t),
and are associated with particles. The squared mass of an exchanged resonance with
spin l corresponds to those t at which l is an integer. As a result of the Regge theory,
the asymptotic energy dependence of the scattering amplitude reads

A(s, t)→ β(t)sα(t), s→ ∞. (40)

As a striking feature of QCD that has not been observed, e.g., in the electroweak (EW)
theory, the Regge trajectories appear to be almost linear functions,

α(t) = α(0) + α′t, (41)

and one of the big questions is which dynamics could provide such a simple behaviour
confirmed experimentally. Namely, hadrons of a given flavour quantum number appear to
lie at almost parallel Regge trajectories.

It is clear that such a behaviour must be specific to confining dynamics of QCD.
Apparently, the potential that binds the quark and anti-quark together into a meson and
rises with the interquark separation linearly should be responsible for such behaviour. One
adopts the physical picture of a string stretched between q and q̄ as a narrow colour-electric
flux tube, which carries the energy E = σr, so that one can neglect the quark masses. For
simplicity, considering the leading Regge trajectory that maximises l at a given t, the flux
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tube of length r rotates about its center such that its end points move with the speed of
light, and

√
t =

∫ r/2

−r/2
dx

σ√
1− v2

⊥

=
πrσ

2
, (42)

in terms of the string tension σ and the transverse velocity v⊥ = 2x/r. Analogously,
the angular momentum of such a system

l =
∫ r/2

−r/2
dx

σv⊥x√
1− v2

⊥

=
πr2σ

8
, (43)

providing us finally with the Regge slope l/t = 1/2πσ ≡ α′ = const. The latter can be
extracted by fitting to the experimental data α′ ' 0.9 GeV−2, yielding the string tension
value of σ ' 0.18 GeV2 = 0.91 GeV/fm.

The fundamental question is how non-local string-like objects emerge from the lo-
cal microscopic parton (quark and gluon) dynamics in QCD. For some peculiar reasons,
the gluon field between a static quark and anti-quark gets “squeezed” into a narrow cylin-
drical domain, whose transverse area is nearly independent on the interquark distance—the
main effect of the magnetic disorder phase. In a colour-electric flux tube picture, the energy
stored in such a QCD string is proportional to the string tension σ that can be found in
terms of the colour electric field Ea

i ≡ Fa
0k as an integral over the transverse area of the flux

tube as [3]

σ =
1
2

∫
d2y⊥ (Ea

i (y))
2. (44)

Such a string then wildly fluctuates in transverse directions, and the energy of such
fluctuations tends to grow with the distance between the static sources. At some critical
distance, the strong fluctuations destabilise the flux tube making the longer strings less
energetically favourable than the shorter ones. So, instead of indefinitely (and linearly)
rising energy stored in a flux tube with its length, one encounters a string breaking effect
realised due to the presence of quarks in QCD or, in a general YM theory, matter fields
in fundamental representation of the gauge group. Let us elaborate on this point in some
more details in what follows.

6. Colour Confinement and Higgs-Confinement Complementarity

A traditional and rather generic question one may ask here is what we actually mean
by confinement in a gauge theory with and without matter fields that transform in the
fundamental representation of the gauge group. As was discussed above, in pure non-
abelian gauge theories without dynamical matter fields, the existing attempts to prove
confinement consist in demonstrating the area-law dependence of W(C), or equivalently,
in showing linear dependence of the static quark potential at large separations2. As we will
elaborate in more formal details below, confinement in a pure YM theory is associated with
an unbroken center symmetry. Thus, the non-perturbative vacuum of QCD or, in general,
a non-abelian gauge theory in the range of length-scales where the static potential satisfies
a linearly-rising behaviour is considered to be in a confined phase.

In the presence of dynamical quarks in the theory, there would not actually be a
linear static potential between heavy test quarks at asymptotically large R. Indeed, if one
attempts to pull them apart, one eventually observes a pair creation (out of the vacuum),
thus ending up with the formation of mesons at very large distances. In this picture, such a
dynamical quark–antiquark pair creation occurs at the ends of the two shorter strings at
the breaking point of the larger one such that the colour charge of the static charges gets
effectively screened off. Such a string breaking or fragmentation phenomenon in QCD causes
the flattening out of the static quark potential at large distances in consistency with the
Regge trajectories of QCD and with the vast phenomenology of particle physics processes
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with hadronic final states. Such a picture has become the cornerstone of hadronisation
modelling when long strings loose their stability and decay into shorter strings, yielding
the spree of hadrons measurable by experiments at long distances. As we will discuss
more later on, no exact center symmetry can be found in such a theory since it generically
gets broken by the presence of matter in fundamental gauge-group representation. There
are reasons to expect a finite range in intermediate distances where the potential could be
seen as approximately linear and hence string-like. Therefore, even as confinement is an
unquestionably useful way of thinking about the long-range physics of QCD, it is by far
a more complex phenomenon than an assumption about an asymptotically linear static
potential associated with unbroken center symmetry.

The phenomenological reality is that coloured quarks and anti-quarks at long distances
are always bind together into composite states—mesons and baryons—and do not exist as
isolated colour charges. This is realised in an effective string-based hadronisation picture
that is proven to work very well phenomenologically in a variety of high-energy scattering
processes with hadron final states (see below). The corresponding dynamics have been
studied in lattice gauge theory simulations in the strong-coupling regime when matter
fields are present in the action [105–107]. The resulting hadrons are automatically colour-
neutral and are the true asymptotic states of QCD not the coloured quarks and gluons.
Hence, sometimes QCD confinement is naively identified with colour confinement (also
known as C-confinement) due to the colour charge being effectively screened away at large
distances by dynamical matter fields such that the coloured partons may only propagate
at short distances. However, one must be a little more careful with such an identification.
If colour confinement were the only property of the confining phase, than typical Higgs
theories (such as the weak interactions’ theory in the SM) should also be considered as
confining [3], although they do not feature such phenomena as flux tube formation and
Regge trajectories [108,109]. This is why “true confinement” appears to be a more complex
phenomenon, and, in addition to C-confinement, it should also be connected to other
distinct properties of the quantum ground state, such as magnetic disorder associated with
an unbroken global symmetry [3]. It does appear indeed rather obvious that C-confinement
always accompanies the magnetic disorder phase, while the opposite may not necessarily
be always true [110].

Indeed, consider an even simpler SU(2)-invariant gauge-Higgs theory [111], with a
Yukawa-type interaction term that can be straightforwardly deduced from Equation (22).
Here, the confinement regime is reproduced for small β, γ� 1 characterised by the linear
rise of the static potential, followed by its flattening at large separations due to string
breaking. So, this regime is very similar to the long-range dynamics of real QCD. However,
at large values of β, γ� 1, one enters the Higgs regime characterised by the presence of
massive vector bosons, analogues to those in the EW theory. This is the so-called massive
phase characterised by a Yukawa-type potential for TE � R

V(R) = −g2 e−mR

R
+ 2V0, (45)

corresponding to a perimeter-law for a generic large planar loop C, W(C) ∼ exp[−V0P(C)]
with R� 1/m. In fact, in both confinement and Higgs (massive) regimes, the colour field
is not detectable far from its source. Indeed, while in the confinement regime, there are
only colour-singlets in the physical spectrum of this theory, in the Higgs regime, the gauge
forces are the short-range ones, such that one charge screening mechanism transforms
into another as the couplings change. This is due to the fact that the gauge-invariant
operators in the SU(2) theory that create colour-singlet states in the confinement domain
are also responsible for the creation of massive vector bosons in the Higgs domain (for an
early discussion on role of the EW theory operators for generation of particle spectra, see,
e.g., Ref. [108]), and those states evolve into each other with varying model parameters.
Whether this happens continuously or via a first-order phase transition is a subject of
ongoing research in the literature, which will be discussed below.
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Referring to the EW theory as a particularly important example one should be also
very careful about what one actually means by the Higgs phase and the associated Higgs
mechanism. Conventionally, the Higgs phase is described in terms of a Mexican-hat shape
potential emerging due to the formation of classical scalar fields’ (Higgs) condensates
in a weakly coupled regime and, as a cause, leading to the spontaneous breaking of a
given symmetry. While the gauge symmetry is manifest at the Lagrangian level, due to
its spontaneous breakdown by means of the Higgs condensate, it is not a symmetry of
solutions of the corresponding equations of motion. Note, however, that it is meaningless
to talk about the spontaneous breaking of a gauge symmetry without specifying a certain
gauge-fixing condition. Indeed, the Higgs vacuum VEV depends on the gauge choice that
we make in practical calculations and can be fixed to any value by an appropriate choice
of the gauge, while the actual physical observables and physical states must be gauge-
invariant and do not depend on this choice. The gauge symmetry SSB phase cannot be
regarded as a true physical system, provided that the gauge symmetries are redundancies
of description and cannot actually break spontaneously. The latter is the statement of
the so-called Elitzur’s theorem [112]. Indeed, according to this theorem, a local gauge
symmetry, in variance to less powerful global symmetries, can not break spontaneously
such that VEVs of any gauge-noninvariant observables must be zero.

In general, in a gauge theory with fundamental-representation matter fields such as
a gauge-Higgs theory, for instance, one typically does not expect to physically identify a
local order parameter that would distinguish between the Higgs and confinement phases
as qualitative descriptions of the corresponding field configurations. If there is no gauge-
invariant way to distinguish between these regimes than it would be justified to attribute
them to a single phase, as mentioned earlier. A discussion of this issue known as the
Higgs-confinement complementarity goes back to as early as the late 1970s and early 1980s.
In Refs. [109,113,114], by varying parameters in relatively simple lattice gauge-Higgs
theories with a global symmetry, analyticity over a set of observables has been rigorously
proven when going from a confining regime in the phase diagram to a regime characteristic
for the Higgs phase. Although at certain large values of β, such a phase boundary emerges
(see, e.g., Ref. [115]), one can find an analyticity line continuously connecting any two
points in the parameter space except γ = 03. In other words, in those models where this is
true, there would indeed be no thermodynamical phase transitions (or phase boundaries)
along this path that separate the two regimes, suggesting a possible existence of a single,
massive phase all along the phase diagram (see Ref. [3] for a more elaborate discussion).
Can this statement be applied only for some specific models or is it always true?

This important result, first obtained in specific models, was then conjectured by some
of the authors into a kind of “folk theorem” (also known as the Fradkin–Shenker–Banks–
Rabinovici theorem), stating that the corresponding conclusion is expected to be always
correct. Namely, if there is no local order parameter distinguishing different symmetry
realisations, one should probably expect the continuity of phases. There are many examples
where such a continuity has indeed been confirmed in simulations such as in transition
from low- to high-temperature QCD when turning from physics of dilute gas of hadronic
resonances to the physics of quark-gluon plasma (at low µB). Indeed, in the Euclidean
description of real QCD, there are certain reasons to believe that there is no thermodynamic
phase transition that separates these two regimes. However, as will be discussed below,
the analyticity conjecture may not actually be always true. As was argued in Ref. [58],
considering a discontinuity in a non-local order parameter, the Fradkin–Shenker–Banks–
Rabinovici theorem does not apply to models where a global symmetry is broken in the
same way in both the Higgs and confinement regimes, i.e., where the Higgs fields are
charged under global symmetries.

In fact, already in the string-breaking picture of hadronisation, by construction,
the gluon vector-potential cannot retain its analyticity and is inherently discontinuous in
the effective string-length (or string-time) scale as the string breaks apart, and no gluon
field is expected to retain between the daughter strings. Whether or not the observables
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still remain analytic upon such a string breaking is one of the big questions for confinement
models. One interesting example of the analyticity breakdown is associated with the notion
of “dense QCD” or QCD at large baryon chemical potentials in the phase with broken
U(1)B. We will elaborate on this aspect in the end of this review.

7. String Hadronisation and the Lund Model

One of the existing successful realisations of the string hadronisation picture is the
so-called Lund string fragmentation model [116] implemented in Monte Carlo event
generators widely used in the phenomenology of particle physics, such as Pythia [117,118].
It realises the basic picture of linear confinement described above, where a flux tube is
stretched between the colour-charged endpoints of the back-to-back qq̄ system that is
characterised by the string tension σ ' 1 GeV/fm and the transverse size close to that
of the proton, rp ' 0.7 fm. In the simplest formulation of the hadronisation model,
the quarks at the endpoints are assumed to be massless and to have zero transverse
momenta. As the energy transfers between the endpoint quarks and the flux tube, they
move along the light cone experiencing the “yo-yo”-type oscillations. As the quarks move
apart and pair-creation of dynamical qq̄ pairs is enabled, there is non-zeroth probability
for the initial “quark-string-antiquark” system to break up into smaller strings. For a
simple illustration of this phenomenon, see Figure 4. Ordering the newly produced
pairs as qi q̄i, with i = 1, . . . , n− 1, into a chain along the string, depending on the initial
energy of q and q̄, one eventually ends up with the production of a set of n mesons,
{qq̄1, q1q̄2, . . . , qn−2q̄n−1, qn−1q̄} moving along the x axis of the initial string. The qi q̄i
production vertices with coordinates (ti, xi) have a space-like separation, with no unique
time-ordering, satisfying the constraint that the produced ith meson must be on its mass
shell, i.e., σ2[(xi − xi−1)

2 − (ti − ti−1)
2 = m2

i ].
In a more elaborate formulation, quarks have mass mq, while the colour string wildly

fluctuates not only in longitudinal but also in transverse directions, and the amplitude
of those fluctuations tends to grow with the string length and may eventually desta-
bilise the system causing the string to break up. The transverse momenta p⊥ of the
(anti)quarks are then naturally incorporated by giving q and q̄ opposite kicks in the trans-
verse plane, with the mean square 〈p2

⊥〉 = σ/π ≡ κ2 ' (0.25 GeV)2, such that the
produced meson receives 〈p2

⊥had〉 = 2κ2. The virtual (anti)quarks tunnel over a distance

m⊥/σ, with m⊥ =
√

m2
q + p2

⊥ the transverse quark mass, before they become on-shell,
and the tunnelling probability of the produced pair provides an extra Gaussian suppression
factor exp(−πm2

⊥/σ).

Lund model : repeated string breaks for large system
with pure V (r) = κr, i.e. neglecting Coulomb part:

∣∣∣∣
dE

dz

∣∣∣∣ =
∣∣∣∣
dpz

dz

∣∣∣∣ =
∣∣∣∣
dE

dt

∣∣∣∣ =
∣∣∣∣
dpz

dt

∣∣∣∣ = κ

so energy–momentum quantities can be read off from space–time ones

Motion of quarks and antiquarks in a qq system:

z

tqq

gives simple but powerful picture of hadron production
Figure 4. An illustration of the string hadronisation picture in the Lund model.

In the framework of the Lund model, a consistent selection of the produced DoFs is
performed according to the probability distribution [116],

f (z) ∼ (1− z)a

z
e−bm2

⊥/z, (46)
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implying an equilibrium distribution of the production vertices on the string

P(Γ) ∼ Γa e−bΓ, (47)

where Γ = σ2(t2 − x2), a, b are free parameters, and z is the light-cone momentum fraction
carried away by a produced meson. The remaining (1− z) part of the momentum is kept
by the string and is then redistributed among other mesons in its subsequent fragmentation.
Even though the hadron masses do not enter this approach directly, a good description of
the produced particle spectra can be reached with only a few free parameters.

More complicated qq̄gg . . . topologies can be introduced considering a gluon as a
state with separate colour and anticolour indices, well justified in the large-Nc limit [119].
The string then gets stretched between q and q̄ as usual, while each of the gluons attach at
intermediate points along the string respecting the colour flow that goes in and out of each
gluon. Notably, the fragmentation procedure of such a string does not require any extra
free parameters [120]. The fact that there is no string that connects q and q̄ directly in this
case leads to asymmetries in the produced particle spectra in consistency with experimental
observations [121]. At last, baryon production can be conceptually tackled by enabling a
diquark–antidiquark breaking, e.g., via sequential qq̄ production stages (for more details
on this mechanism, see, e.g., Refs. [122,123]).

8. Gauge Symmetry Remnants and Confinement Criteria

Due to the Elitzur’s theorem [112] described above, the phases of a gauge theory
cannot be distinguished by means of the breaking of any local gauge symmetry. Thus,
there must be an additional, global symmetry whose breaking enables us to identify those
phases, at least, when a local order parameter is concerned. In the Ising model, the role of
such a global symmetry is played by the Z2 symmetry as we have noticed earlier. Fixing
a covariant gauge, in general, does not eliminate the gauge freedom entirely but leaves
certain remnant (both dependent and independent on spacetime coordinates) symmetries
that can in principle get spontaneously broken since the Elitzur’s theorem does not apply
to those.

One of the examples of a possible confinement criterion known as the Kugo–Ojima
condition [124,125] states that the full residual gauge symmetry in the Landau gauge
∂µ Aa

µ = 0 must remain unbroken in order to ensure that the expectation value of the colour
charge operator 〈ψ|Qa|ψ〉 vanishes in any physical state ψ. The spacetime-dependent
(but global) part of such a full residual gauge symmetry w.r.t. gauge transformations
Aµ → GAµG† in the Landau gauge is known to take the following form [126,127]

G(x) = exp
( i

2
Ξa(x)σa

)
, (48)

where

Ξa(x) = εa
µxµ − g

1
∂2 (Aµ × εµ)a +O(g2), (49)

in terms of a finite number of arbitrary parameters εa
µ, and the SU(2) gauge coupling

constant g. Besides, for confinement to hold yet another spacetime-independent part
of the full residual gauge symmetry is required to be unbroken in addition to that in
Equation (48). An analogical criterion of confinement has also been formulated in the
Coulomb gauge [128,129].

Thus, according to the Kugo–Ojima and Coulomb confinement criteria, the phase
boundary between the confining and de-confining regimes of a gauge theory is associated
with the boundary between the unbroken and broken full (x-dependent and independent)
remnants of the gauge symmetry in Landau and Coulomb gauges, respectively. However,
a problem highlighted by lattice simulations and demonstrated in Figure 5 is that these
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criteria predict transitions between confinement and deconfinement phases where actually
no such transitions appear in the exact numerical analysis [130].

 0
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 2.5

 0  0.5  1  1.5  2

γ

β

Landau
gauge inv
crossover

Figure 5. Phase boundaries of global gauge symmetry breaking obtained in Landau gauges and in
the gauge-invariant approach in the SU(2) gauge-Higgs theory, along with the sharp crossover line
at β > 2. The figure is taken from Ref. [131].

Different remnant symmetries emergent in different gauges break at different values
of the couplings, so the resulting phase boundary is in fact gauge-dependent and might
indeed emerge even when there is no actual change in the physical state of the system [130].
In order to distinguish a confining state from a non-confining one, one should instead
come up with a gauge-invariant criterion whose violation would indicate a true boundary
between the magnetic order and disorder states that is the same in any gauge. As was
discussed earlier, there is no such criterion in a gauge-Higgs theory. This might indicate that
there is no such gauge-invariant separation of phases that can be attributed to a spontaneous
breaking of a given symmetry, and the system is in the massive phase characterised by the
string-breaking effects and a perimeter-law behaviour of Wilson loop VEVs [3].

There are compelling reasons to believe that the same picture is realised in QCD at very
large separations, supported also by lattice simulations. In the gauge-Higgs theory, only in
the limit of Higgs decoupling, γ = 0, the state of magnetic disorder emerges, as indicated by
the area-law falloff of large Wilson loops at arbitrary large spacetime separations. The same
occurs in the infinite quark mass limit in QCD such that it takes an infinite amount of
energy in order to put an infinitely heavy quark–antiquark pair on its mass-shell from the
vacuum such that the area-law persists to arbitrarily large string lengths.

9. Center Symmetry

So, when one talks about the true (gauge-invariant) separation of phases, one implies
a strong first-order (non-analytic) phase transition between the magnetic order (massive)
and disorder states that exists at a well-defined (unique!) combination of model parameters
in any gauge. Such non-analytic behaviour is associated with a spontaneous breaking of
a certain symmetry, and, to comply with the Elitzur’s theorem [112], such a symmetry
must be global. This type of a symmetry exists and is called the center symmetry—a specific
subgroup of a given gauge symmetry group, which is defined as a subset of the gauge
group elements that commutes with all the elements of the gauge group. For instance,
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the center of the SU(N) gauge symmetry group is its ZN subgroup {exp 2πin/N 1̂N},
with n = 0, . . . , N − 1.

Each of an infinite number of SU(N) representations can be separated into N possible
subsets or N-alities depending on the corresponding representation of ZN (there are only N
of those). Hence, each SU(N) representation is characterised by the N-ality k that is found
as the number of boxes in the associated Young tableau mod N. In other words, N-ality
reflects how a given representation transforms under the center symmetry subgroup of the
gauge group. For instance, if for a matrix representation M[g] of an SU(N) group element
g, M[zg] = zk M[g] for a center ZN element z, one says that g belongs to a representation
of N-ality k (for a more detailed pedagogical discussion, see, e.g., Ref. [3]). In the lattice
formulation, one could show that the action (19) of a pure gauge theory is invariant under
the time-like link transformation

U0(~x, t0)→ zU0(~x, t0), z ⊂ ZN , (50)

on a fixed time slice t = t0. This transformation is a particular case of the singular gauge
transformation defined on a time-periodic lattice with a period Lt as

U0(~x, t)→ G(~x, t)U0(~x, t0)G†(~x, t + 1), (51)

where G(~x, t) is a periodic function up to a center symmetry transformation, i.e.

G(~x, Lt + 1) = z∗G(~x, 1) , (52)

that also leaves Wilson loops invariant on the lattice. Such a transformation corresponds to
an “almost” gauge transformation in the continuum limit,

Aµ(x)→ G(x)Aµ(x)G†(x)− i
g

G(x)∂µG†(x), (53)

where the second term is dropped for t = Lt and for µ = 0 when it turns into a delta-function.
Matter fields in the fundamental representation of the gauge group SU(N), or any

other fields with N-ality k 6= 0, break the center symmetry ZN explicitly if they are not
decoupled from the theory—such as the Higgs field for a non-zero coupling γ in the
example discussed above or the quark sector of real QCD (with k = 1) with finite quark
masses. Such a breaking, which is also a necessary ingredient of the string hadronisation
model (see above), causes the static potential to flatten out instead of growing linearly at
asymptotically large distances as the matter fields are, in fact, responsible for the string
breaking phenomenon. Gluons or other particles in the adjoint representation having
N-ality k = 0 do not break the center symmetry so they cannot screen the colour charge of
a static source if the latter has a non-zero N-ality. A well-known exception is the G2 gauge
symmetry, which has a trivial center subgroup, with a single unit element only, such that
the gluons can bind to any source producing a colour-singlet state.

An important criterion of confinement is thus associated with the unbroken center
symmetry in a pure YM theory, implying an asymptotically and infinitely rising static
quark potential and signalling the area-law falloff of large Wilson line VEVs and hence the
presence of the magnetic disorder state. The center symmetry can also be spontaneously
broken by thermal effects, i.e., at high temperatures, in pure YM theories, causing the same
effect of flattening out the static potential asymptotically as that of the matter fields. Other
possible sources of the center symmetry breaking should also be considered in order to
reconstruct a full picture of phases in the underlined gauge theory.
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10. Polyakov Loop

Consider a finite (in space) lattice that is periodic in time. Such a lattice is used,
in particular, in quantum statistical mechanics at finite temperatures T, where the partition
function reads

Z = ∑
n
〈n| exp(−βT H)|n〉, βT =

1
T

. (54)

In the continuum limit of a field theory and in Euclidean time TE, the latter generalises
to a path integral

Z =
∫

Dφ(x, 0 ≤ TE < βT)e−S, (55)

where the periodic boundary condition in time φ(~x, 0) = φ(~x, βT) is imposed through an
implicit delta-function. Upon lattice regularisation, the temperature is related to the lattice
period in time Lt as T = 1/(Lta), with a being the lattice spacing as usual, and hence,
βT = Lta is the total time extension of the lattice.

While neither the gauge-field action nor Wilson loops are affected by the ZN center
symmetry transformation (50), the trace of the following holonomy winding in time around
the periodic-time lattice, known as the Polyakov loop [132],

P(~x) = TrΠLt
n=1U0(~x, n), (56)

is ZN non-invariant, i.e., it transforms as P→ zP. In the continuum limit, one can represent
the Polyakov loop holonomy as follows

P(~x) = P exp
(

i
∫

dtA0(~x, TE)
)
= S diag

[
e2πiµ1 , e2πiµ2 , . . . , e2πiµN

]
S−1, ∑

j
µj = 0, (57)

in terms of an SU(N) matrix S(x) that diagonalises P(~x).
One can show that in the case of P(~x) being a center element, all µj are equal, and

such a holonomy determines the finite-temperature classical instanton solutions known
from Refs. [133,134]. In fact, in center-projected configurations that will be discussed below,
the Polyakov loop holonomies P(~x) are the only center elements. In general, the Polyakov
loop is non-trivially charged under ZN , meaning that its expectation value plays a role of an
order parameter for the spontaneous breaking of the center symmetry. Hence, the Polyakov
loop is yet another important characteristics of the confined (magnetic disorder) phase
of the gauge theory, and vacuum fluctuations of the gauge field are responsible for the
formation of this phase and in some ways are associated with the center symmetry.

Indeed, a difference between free energies of two states, one containing a single iso-
lated (heavy) static charge q and the other one defined in a pure gauge theory is as follows

e−βT Fq =
Zq

Z
∝ 〈P(~x)〉, (58)

which is obtained by integrating out the massive quark field (in the m→ ∞ limit) in the
path integral for Zq over the period of the lattice 0 ≤ TE < βT . Indeed, Fq for a single quark
q would be infinite if 〈P(~x)〉 → 0, i.e., in the case of unbroken center symmetry. At high
temperatures (small βT), the center symmetry is in general spontaneously broken such that
the isolated charges are described by finite-energy states (deconfining phase). A magnetic
disorder-to-order phase transition associated with thermal breaking of the center symmetry
is expected to occur at a critical temperature [135].

11. t’Hooft Loop and Center Vortices

The singular gauge transformation in the continuum limit (53), unlike the ordinary
center symmetry transformation, leaves the action non-invariant. As a result of such a
transform, a singular loop of magnetic flux, the so-called thin center vortex, is being created.
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For instance, as was mentioned earlier, the holonomy for a closed space-like loop C in the
U(1) gauge theory

U(C) = eieΦB (59)

is given in terms of the magnetic flux ΦB through the loop. For a loop winding around a
solenoid oriented along the z-axis, it is possible that ΦB 6= 0 even for a zeroth magnetic field
along the closed loop, which can be obtained as a result of a singular gauge transformation
applied to Aµ = 0 with a discontinuous G(x). If in cylindrical coordinates {r, θ, z, t},
the corresponding transformation function G has a discontinuity in θ for r > 0, then

U(C)→ e±ieΦB U(C), (60)

where exp(±ieΦB) is an element of the U(1) group, the sign ± depends on the orientation
of the loop C, such that a singular line of magnetic flux (thin vortex) is produced along the
z-axis. Instead of the z-axis, one could introduce yet another closed contour C′ topologically
linked to C such that the singular gauge transformation operator G that creates a magnetic
flux along C′ would satisfy

G(~x(1)) = e±ieΦB G(~x(0)) (61)

on the contour C′ determined by the parametric equation ~x = ~x(ξ), with ξ = [0, . . . , 1],
such that ~x(1) = ~x(0) belong to a surface bounded by C′. Upon such a transformation,
a Wilson loop C linked to C′ appears to transform as in Equation (60). The winding number
is defined as the number of times a loop goes around a fixed point in D = 2, while in D = 3,
such a topological invariant generalises to the so-called linking number that determines the
number of times two loops can wind around each other. This can be generalised further
on for D dimensions where a loop C links to a D− 2 hypersurface C′ on which a (D− 2)-
dimensional thin vortex is created by the corresponding singular gauge transformation,
which is discontinuous in the D− 1 (Dirac) region bounded by the D− 2 hypersurface.

Switching over to the SU(N) YM theory, the U(1) group element that multiplies a
transformation operator in Equation (61) should be replaced by a center-group ZN element

G(~x(1)) = zG(~x(0)), U(C)→ (z∗)lU(C), (62)

in order for such a transform to create a thin vortex (and hence to affect the action) on the
(D− 2)-dimensional hypersurface only and not on the Dirac D− 1 region that it envelops.
Above, the space-like Wilson loop C is topologically linked to the (D− 2)-dimensional thin
vortex, with the corresponding linking number l. Upon quantisation of the non-abelian
magnetic flux, its quanta are known in the literature as the thin center vortices, while a
regularisation of the singular colour-magnetic field by smearing it out in the transverse
directions to the (D− 2) hypersurface leads to a vortex with finite thickness or a thick center
vortex. For a more detailed description of the vortex configurations and properties, see,
e.g., Ref. [3] and references therein.

Consider an operator B(C) that creates a thin center vortex at a fixed time t0 along
a given loop C in a D = 3 + 1 gauge theory [136]. If C and another closed loop C′ are
topologically linked (with l = 1) in a three-dimensional surface, then

B(C)U(C′) = zU(C′)B(C), z ⊂ ZN , (63)

is valid. In this case, the operator B(C) is known as the t’Hooft loop. As was demonstrated in
Ref. [136], the VEV of a Wilson loop W(C) ≡ 〈U(C)〉 and a t’Hooft loop 〈B(C)〉may satisfy
either perimeter-law or area-law falloffs but not simultaneously. Indeed, the confined
(magnetic disorder) phase corresponding to an unbroken center symmetry is realised when

W(C) ∼ e−aA(C) ⇐⇒ 〈B(C)〉 ∼ e−bP(C) , a, b > 0, (64)
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while the opposite case,

W(C) ∼ e−a′P(C) ⇐⇒ 〈B(C)〉 ∼ e−b′A(C) , a′, b′ > 0, (65)

implies a spontaneously broken center symmetry (magnetically-ordered phase). Indeed,
the Wilson and t’Hooft loop operators can be considered dual to each other as the first one
creates a closed loop of the colour-electric flux, while the second one creates a closed loop
of the colour-magnetic flux (thin center vortex) at a fixed time t in both cases.

One could introduce a vortex on a finite lattice in D = 4 by replacing U(p′)→ ξU(p′)
for a given plaquette p′ in the SU(N) gauge-field action [137]

S = − β

2N

[
∑

p 6=p′
(Tr[U(p)] + c.c.) + (Tr[ξU(p′)] + c.c.)

]
, ξ ⊂ ZN , (66)

U(p′) = U1(x0, y0, z, t)U2(x0 + 1, y0, z, t)U†
1 (x0, y0 + 1, z, t)U†

2 (x0, y0, z, t), (67)

which can be viewed as a change in the periodic boundary conditions, also referred
to as twisted boundary conditions. Such a change creates a thick center vortex on the
lattice parallel to (z− t)-plane, satisfying the ordinary periodic boundary conditions in z, t
coordinates.

In the simplest case of SU(2) gauge symmetry, the (magnetic) free energy of a Z2-
center vortex Fm can be found as

e−Fm =
Z−
Z+

(68)

in terms of the partition functions with ordinary and twisted boundary conditions, Z+ and
Z−, respectively, while the free energy of the closed colour-electric flux Fe is

e−Fe = 1− e−Fm . (69)

It was shown in Ref. [138] that the VEV of a rectangular Wilson loop C with area A(C)
is bounded from above as

W(C) ≤ [exp(−Fe)]
A(C)/(Lx Ly) . (70)

A sufficient condition for the existence of a magnetic-disorder phase, and hence
confinement, in terms of the behaviour of the magnetic vortex free energy then reads

Fm ∼ LzLte−κLx Ly , (71)

i.e., it falls off exponentially at a large LxLy area, such as exp(−Fe) ' Fm � 1. Indeed,
the latter limit, together with Equation (70), implies an area-law upper bound for a large
Wilson loop and, hence, the asymptotic string tension. In Ref. [139], it has been pointed out
that quark confinement emerges from a vortex condensate supported by the mass gap.

12. Fundamental Properties of the String Tension

One of the fundamental characteristics of confinement is an non-vanishing asymptotic
string tension or, equivalently, the asymptotic linearity of the static potential [3,4]. As was
proven in Ref. [140], the potential is always convex and is saturated by a straight line from
above. At not too large distances, the string tension for a quark in a given representation r
of the gauge group interacting with an antiquark can be approximated as

σr =
Cr

CF
σF. (72)

This is the property known as the Casimir scaling, which is strictly valid in the large-N
limit. Here, σF is the string tension for the defining (fundamental) representation. Such
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a scaling can be proven in a two-dimensional theory and then to a good precision can be
found also in 4D by means of the dimensional reduction [141], supported also by numerical
simulations [142]. For a more recent analysis of the Casimir scaling in the D = 2 + 1
SU(N) theory in the vortex picture, see Ref. [143]. Asymptotically at very large distances,
the Casimir scaling does not hold (apart from N = 2 and large-N cases) and can be effective
at intermediate distances only.

The dimensional reduction is a specific (approximate) property of the quantum state of
the theory Ψ0[A] emergent at large length-scales. According to this property, a calculation
of the VEV of a large Wilson loop W(R, T) in the fundamental representation in a D = 4
gauge theory can be sequentially reduced to that in a D = 3 theory [144,145] and then
down to a D = 2 case [91]. In this case,

W(R, T) = 〈Tr[U(C)]〉D=4 ≡ 〈Ψ0|Tr[U(C)]|Ψ0〉 ' 〈Tr[U(C)]〉D=3 ' 〈Tr[U(C)]〉D=2 = e−σA(C), (73)

where the last relation corresponds to the fact that in D = 2, the Wilson loop VEVs obey
an area-law falloff. For this property to hold in the strong coupling limit, the vacuum
functional should take the same form in D = 2, 3, 4 at large length-scales:

Ψ0[A] ∝ exp
[
− 1

4g2
eff

∫
d3x Tr[F2

ij]
]
. (74)

Note that this form can not be correct at short distances in PT, so it should be regarded
as an approximate and generically valid in the non-perturbative regime only. It is also not
correct for Wilson loops in the adjoint representation, which follow a perimeter-law, due
to the colour screening effect. An elaborate form for the vacuum functional that matches
both the dimensional reduction form and the correct free-field limit has been proposed
in Ref. [146] predicting the glueball mass spectrum in D = 2 + 1 in consistency with the
lattice calculations. For other proposals, see, e.g., Refs. [147–151].

Another fundamental property of the string tension, presumably closely related to
confinement, is the observation that the string tension depends only on the N-ality of the
gauge group representation. For static quarks in the adjoint representation, for instance,
gluons screen their charges at large distances, causing the string to break at separations
R satisfying 2E < σAR, where E is the gluonic energy of the produced “gluelump” state,
and σA = CA/CFσF is the string tension in the adjoint representation valid at intermediate
distances. For numerical studies of the adjoint string tensions, see, e.g., Ref. [152]. While
the precise form of the N-ality dependence is not known, there are several models widely
used in the literature. Among them, for instance, the “Casimir scaling” proposal assumes
that the string tension for the lowest dimensional representation (k-string tension) behaves
asymptotically for the SU(N) gauge theory as

σr =
k(N − k)

N − 1
σF. (75)

If the true confinement phenomenon implies the formation of an electric flux tube in
the form of a quantum Nambu-like string, typical predictions of the string model, such
as subleading deviations from linearity of the potential as well as the spectrum of string
excitations, should find their evidence in a first principle analysis of the confining gauge
theories. In particular, one such prediction is a subleading 1/R correction term to the static
quark potential emerging due to transverse fluctuations of the string known as the Lüscher
term [153,154]

V(R) = σrR− π(D− 2)
24

1
R
+ const. (76)

such that the VEV of a large rectangular Wilson loop can be generically parameterised as

Wr(R, TE) = exp[−σrRTE + τ(R + TE)− ξ(TE/R + R/TE) + η], (77)
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where the second term in the exponent is a self-energy contribution that diverges in the
continuum limit, as was mentioned above. On the lattice, one may extract the asymptotic
string tension σ as the following ratio computed at large loop areas

− log
[W(R, TE)W(R− 1, TE − 1)

W(R− 1, TE)W(R, TE − 1)

]
→ σ for RTE → ∞, (78)

known as the Creutz ratio.
Another property of the Nambu string is that the cross-section area of the string

grows logarithmically with the quark separation, the effect known as roughening [155,156].
An agreement with Nambu string model predictions was found earlier in the analysis of
closed string excitations in the D = 2 + 1 SU(N) gauge theory in Ref. [157].

13. Center Vortex Mechanism of Confinement

The center vortex mechanism of confinement is strongly supported by the fact that
the static potential slope depends only on the N-ality, while N-ality zero (or adjoint) string
tensions vanish at asymptotically large distances. Furthermore, when adopting a picture
of a pair creation of particles out of the vacuum at a certain distance causing the string to
break, one implies a microscopic perturbative language of particle states in a particular
configuration. While an extrapolation of perturbative particle states towards large distances
may not necessarily work out well in confining theories, an effective particle picture of
string breaking is still considered to adequately reflect the reality, at least qualitatively.
In proper path integral computations, one sums over all possible field configurations that
should provide the same result for the gauge-invariant observables (such as Wilson loop
VEVs) as the phenomenologically successful effective particle picture of the string breaking.
Ultimately, one would like to find out how the vacuum field fluctuations induce N-ality
dependence of the asymptotic string tension and describe colour screening of the static
sources [3].

While instantons [158] are saddle points of the classical gauge-field action, vortices are
interpreted to be saddle points of the effective one-loop action [159,160] that incorporates
the vacuum polarisation effects, and hence have a pronounced fundamental meaning (see
also Ref. [4]). Fluctuations of center vortices that can be identified as solitonic objects
in typical field configurations are known to give rise to an area law of Wilson loops.
A remarkable property is that Wilson loops in different representations but with the same
N-ality get the same contributions from center vortices, while loops of N-ality zero are
not affected. This follows from the simple fact that the creation of a vortex linked to the
loop C affects the loop holonomy of a given N-ality k as U(C) → zU(C) and its VEV as
Wr(C)→ zkWr(C) for z from the center group ZN of SU(N).

In a more generic case, consider a set of vortices linked to a given loop C, with linking
numbers l1,2,3,... having the center elements z1,2,3,.... Then, the creation of this set modifies
the Wilson loop VEV as Wr(C) → Zk(C)Wr(C), where Z(C) = zl1

1 zl2
2 zl3

3 . . . . In the vortex
picture of confinement [136,159,161,162] (see also Ref. [3] and references therein), the
gauge-field vacuum configuration is considered to be a set of vortices superimposed on
a non-confining configuration. Then random fluctuations in a number of vortices in the
system as well as in their linking numbers to a given Wilson loop C induces the area law
dependence of the corresponding Wilson loop VEV. The loop holonomy can be represented
in a factorised form U(C) = Z(C)u(C), where u(C) is a contribution from a non-confining
background, and Z(C) ⊂ ZN is a center-valued holonomy. Then, the vortex mechanism
implies the factorisation of the Wilson loop VEV

〈χr[U(C)]〉 ' 〈Zk(C)〉〈χr[u(C)]〉 ' exp[−σr A(C)] exp[−µrP(C)]. (79)

A detailed proof relies on a weak correlation between Z(C) and U(C), as well as
between Z(C1) and Z(C2) for any large loops C, C1,2, and can be found for instance in
Ref. [3]. It manifestly demonstrates that the string tension computed for smaller loops is
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the same as that for the larger ones provided that the above assumptions hold and Z(Ci)
experience independent fluctuations.

Numerical estimates [163] suggest that the thickness of the vortex is close to one fermi,
so, in principle, the Wilson loops with an extension below this scale may get affected.
As was demonstrated in Refs. [164,165], such a vortex thickness plays an important role for
generating the Casimir scaling at intermediate distances. At large distances dominated by
large Wilson loops, the N-ality dependence of the linear static potential is reproduced as
expected. From this point of view, vortices are non-local objects that represent specific field
configurations that lead to an asymptotic string tension as a function of N-ality.

The link configurations Uµ(x) = g(x)zµ(x)g−1(x + µ̂) that produce Z(C) holonomies
can be transformed into the link configurations zµ(x) of the ZN lattice gauge theory respon-
sible for confinement by means of a specific SU(N) gauge transformation g(x). The thin
vortices then have a meaning of excitations of the center-group ZN lattice gauge theory.
The original link variables Uµ(x) get separated into a product of center elements zµ(x),
and the link variables of the non-confining background Vµ(x) by the g(x) transform

Uµ(x) = g(x)zµ(x)Vµ(x)g−1(x + µ). (80)

The main aim of the vortex mechanism of confinement is to find a specific g(x) for a
given non-confining background Vµ(x), typically assumed to be a small fluctuation about
the unity. Locations of center vortices can then be extracted from zµ(x) after the above
factorisation U → zV has been performed [166]. One such g(x) transforms the DoFs into a
specific gauge known as the direct maximal center gauge where the deviation of the links
in the adjoint representation from the identity matrix is minimal, or where the quantity

K = ∑
x,µ

Tr[UA
µ (x)] = ∑

x,µ
Tr[Uµ(x)]Tr[U†

µ(x)]− 1, (81)

with the adjoint link UA
µ (x) is maximal. Locations of center vortices can then be extracted

in a dedicated Monte Carlo procedure from the identified center elements zµ(x) once the
center mapping (projection) Uµ(x) → zµ(x) has been performed. If the product Z(p) of
zµ(x) on the projected ZN lattice around a plaquette p satisfies Z(p) 6= 1, a thin vortex (or
P-vortex) is then located on that plaquette. The vortex picture of confinement then reduces
to a consideration of P-vortices as random surfaces percolating through the spacetime
volume. Uncorrelated piercings by the P-vortices on a given planar surface correspond to
uncorrelated large center-projected loops. The numerical procedures, however, may fix
the projected lattice to only one out of a large amount of local maxima of the gauge-fixing
functional K known as the Gribov copies [167], not straight to its global maximum, which is
considered to be a problem in several widely used center-gauge fixing approaches.

The problem of Gribov copies is one of the main obstacles for a consistent treatment
of the confinement problem. Considering a set of gauge-equivalent configurations of the
gauge field known as a gauge orbit and imposing a gauge-fixing condition as a certain
hypersurface in a space of gauge field configurations, the Gribov copies can be visualised
as many possible intersections of the gauge orbit with the gauge-fixing hypersurface.
Summing over all contributions from Gribov copies in a path integral, the latter may
actually vanish since those contributions come with opposite signs and may mutually
eliminate each other in a given observable. This is the statement of the Neuberger’s
theorem [168] rendering BRST quantization not well defined in the non-perturbative regime
of a gauge theory (see a detailed discussion in Ref. [3]). One possibility is to restrict the
functional integral to a subspace of gauge configurations with a positive Faddeev–Popov
determinant, the so-called Gribov region, and its boundary also containing the lowest
non-trivial eigenmode with zeroth eigenvalue is called the Gribov horizon. An instructive
example of such a hypersurface restricted to the Gribov region is the Landau gauge fixing
condition that minimises the functional
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R = −∑
x,µ

ReTr[Uµ(x)], (82)

such that the corresponding Gribov region consists of all possible minima of R = R[A] for a
given gauge orbit. However, various gauge orbits might cross the Gribov region a different
number of times leading to different weights assigned to different gauge orbits. A proposal
to consider only unique global minima of R[A] functional for each gauge orbit [169] may be
very difficult to realise in practical calculations. Furthermore, there is no reason to believe
a particular Gribov copy with the global minimum for R[A] is more physical than other
local minima. Lattice procedures, in general, assume that a particular choice of a Gribov
copy would not make a big difference on the numerical results.

In order to establish a direct connection between the existence of P-vortices and a mag-
netically disordered phase, following the reasoning of Ref. [3], let us first consider whether
the center-projected Zµ(x) link variables (extracted, for instance, in a maximal center gauge)
are responsible for the confinement. For this purpose, it is instructive to consider the VEV
of the rectangular R× TE Wilson loop, W(R, TE), defined in Equation (77). If such a loop
is constructed from Zµ(x) links on a center-projected lattice, the corresponding Creutz
ratio (78) appears to converge much faster to σ than for the unprojected Wilson loop VEV.
Already at R = 2, the static potential becomes linear—the property of the so-called preco-
cious linearity. The fact that the asymptotic string tensions extracted from center-projected
and unprojected Wilson loop VEVs at large R are the same is known as the center dominance.
There is also an excellent agreement of the Creutz ratios on the center-projected lattice with
the well-known predictions of the asymptotic freedom for large β (small gauge couplings).

A slow convergence of the Creutz ratio (78) to the string tension at large R in the
unprojected case means that we deal with thick vortices linked to large Wilson loops here.
The center projection effectively shrinks the thickness of the vortices down to a single lattice
spacing, so the linking appears to be relevant already for small center-projected loops.
Indeed, as was deduced earlier, P-vortex piercings are totally uncorrelated on a planar
surface already causing the linearity of the potential at small distances. One naturally
wishes to establish that each thin P-vortex in the projected configurations matches a thick
center vortex in an unprojected lattice in order to prove that the P-vortices do not carry
artefacts of the gauge fixing procedure and indeed are responsible for the underlined
physics of magnetic disorder (and hence confinement).

As thoroughly described in Ref. [3], one way of proving the relevant correlation of
P-vortices with gauge-invariant observables (unprojected Wilson loops) is to compute a
so-called vortex-limited Wilson loop VEV defined as an expectation value of an ordinary
unprojected loop holonomy Wn(C) but taken in the ensemble of configurations where
the minimal surface area of the loop is pierced by n P-vortices. Then, considering for
simplicity the SU(2) theory, if the ratios asymptotically behave as Wn(C)/W0(C)→ (−1)n

provided that 〈Z(C)〉 = (−1)n (−1 per each vortex piercing), then the procedure of finding
thin P-vortices on the center-projected lattice effectively locates thick center vortices on
the unprojected lattice. This, indeed, has been confirmed by lattice simulations, see,
e.g., Ref. [170].

Another test proposed in Ref. [171] suggests to insert a thin vortex found by the center
projection operation into a thick vertex on the unprojected lattice and then to check if their
disordering effects, due to center dominance, cancel out asymptotically at large distances.
Indeed, an explicit calculation shows that this procedure eliminates the string tension and
hence the disorder effect. It was also checked in Ref. [172] that the P-vortex density is
independent on the lattice spacing in the continuum limit, as expected for physical objects.
An additional observation of Ref. [173] revealed that the continuum action density appears
to be singular at the location of P-vortices, which, together with their constant density,
signals an intricate cancellation between action and entropy at a surface of infinite action
associated with a vortex.

As was discussed above, at finite temperatures T in a time-periodic lattice, the
Polyakov loop VEVs determine the quark free energy Fq. In the SU(2) gauge theory,
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at T > Tc = 220 MeV, a deconfinement transition occurs when Fq becomes finite and the
static quark potential goes flat. However, even at large T > Tc, space-like Wilson loops
retain their area-law falloff such that vacuum fluctuations inherit some of the key properties
of the confined phase.

This observation fits well with the center-vortex mechanism of confinement [3]. At low
T, due to uncorrelated piercings of the minimal loop areas, one finds 〈P(~x)〉 = 0 and
an exponential falloff of the Polyakov loop correlators for large interquark separation
〈P(~x)P(~x + ~R)〉 ∼ exp[−σ(T)LtR], with σ(T)—the T-dependent string tension of a flux
tube stretched between q and q̄. Since the vortices running in space-like directions have a
finite diameter, as the temperature rises, they get squeezed by the reduced finite lattice ex-
tension in time Lt until they effectively stop percolating, eliminating the exponential falloff
of the Polyakov loop correlator and hence 〈P(~x)〉 is no longer zero [163,174]. The asymp-
totic behaviour of the space-like Wilson loop, however, is determined by the piercings of
center vortices oriented in periodic time (i.e., running in timelike directions), and their
cross-section is not limited by a small extension in the time direction at large T. Thus,
the corresponding P-vortices keep percolating on a time slice in the spacial directions such
that the exponential falloff of space-like Wilson loops remains unaffected in the deconfined
regime [175,176].

As we already discussed above, the center symmetry turns out to be explicitly broken
by the dynamical fields in the fundamental representation. The center dominance in the
confinement region in the SU(2) gauge-Higgs theory has been tested in Ref. [177]. In a
region where the screening effects by the matter fields become important, the center vortices
do not disappear but somehow rearrange themselves in order to allow for asymptotically
vanishing string tension while still generating a linear slope in the potential at intermediate
distances (no signature of linearity has been found in the Higgs region at any scale). In the
presence of matter fields, the Dirac volume shrinks and the vortex piercings of the Wilson
loop minimal area are expected to become correlated at large distances, but to the best of
our knowledge, there is no full consensus on exactly how this occurs.

14. Chiral Symmetry Breaking and Topological Charge

The global chiral symmetry of QCD light u, d quark sector SU(N f )R × SU(N f )L (with
the number of flavours, say, N f = 2) is broken spontaneously by the order parameter
known as the quark (or chiral) condensate 〈q̄q〉 6= 0. In addition, it is also broken explicitly
by the light current quark mass turning the Goldstone bosons, the pions, into massive
pseudo-Goldstone states. Another less known mechanism based upon the linear sigma
model of effective quark-meson interactions introduces yet another source of the global
chiral symmetry breaking through a linear term in σ-field proportional to the quark con-
densate. Such a breaking is also explicit, and as such, it provides an additional finite
contribution to the pion mass. A symmetry breaking due to the quark condensation phe-
nomenon is often referred to as dynamical symmetry breaking and is considered a baseline for
Technicolour models of EW symmetry breaking [178,179] (for a detailed review of existing
concepts, see, e.g., Ref. [180]).

As was discussed earlier in the case of Ising model, in order to get a nontrivial
value of the order parameter one should perform two limits in a certain order—first, take
volume to infinity and then set the quark masses to zero. This procedure leads to the
well-known Banks–Casher relation [181] between the chiral condensate as the trace of
the quark propagator and the value of the density of the close-to-zero eigenvalues of the
Dirac operator characterised by vacuum field configurations. The latter density receives
no perturbative contributions, and hence, the dynamical chiral symmetry breaking is an
intrinsically non-perturbative phenomenon.

Provided that in real QCD with light quarks, the string tension vanishes asymptotically
due to colour-screening and string breaking, the chiral condensate by itself is not tied to
the area-law falloff of large Wilson loop VEVs and does not even require the presence of
gauge fields, in analogy to the effective Nambu–Jona-Lasinio model [182]. Naively, one
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might think that these observations indicate no immediate connection between the chiral
symmetry breaking mechanism and the confinement phenomenon. As was emphasised in
Ref. [183], the low-lying Dirac eigenmodes, which are crucial for chiral symmetry breaking,
provide vanishingly small contributions to the string tension and to the Polyakov loop in
both confined and deconfined phases. These observations provided no indication of an
immediate correspondence between chiral symmetry breaking and confinement.

Interestingly enough though, the critical temperatures of chiral and deconfinement
phase transitions appear to be the same or close to each other, as suggested by lattice
simulations, motivating a further search for possible hidden connections between the two
transitions. In particular, a connection between the Polyakov loop, center symmetry, and the
chiral condensate may be due to the fact that, after integrating out fermions, the chiral
condensate is basically a complex expectation value of many Wilson loops, including
those wrapping around compact dimensions. As was elaborated in detail in Ref. [184],
the spectral properties of the Dirac operator are affected by confinement, in particular,
causing the correlators of Dirac eigenvector densities to decay exponentially instead of
a power law in the deconfined phase. Ultimately, one would need to establish a link
between the spectral properties of the Dirac operator in the infrared regime presumably
responsible for chiral symmetry breaking with those in the ultraviolet regime tightly
connected to confinement.

Remarkably, in Refs. [171,185], it was shown that the chiral condensate vanishes as
soon as vortices are removed from the underlined field configurations, while the chiral
condensate values are notably larger in center-projected configurations than those on the
unmodified lattice. This observation shows that the center vortices are responsible not
only for magnetic disorder but also determining the chiral symmetry breaking—thus, both
phenomena are tightly connected [186].

It is well known that the axial symmetry U(1)A of the classical QCD action is broken
by the chiral anomaly at the quantum level. The topological charge given by the integral of
the divergence of the axial current,

Q =
1

32π2

∫
d4xεµναβ Tr[FµνFαβ], (83)

receives contributions from finite action configurations known as instantons [158]. Due
to the Atiyah–Singer Index theorem, the integer Q value has a meaning of a difference of
numbers of zero modes of the Dirac operator with positive and negative chiralities. The η′

meson, which would have been a (pseudo-)Goldstone boson of U(1)A breaking, appears to
be way too heavy phenomenologically (above 1 GeV). Its mass is found to be proportional
to the topological susceptibility found in the pure gauge theory in the chiral and large-Nc
limits, i.e.,

m2
η′ '

2N f

f 2
π

χ , χ =
〈Q〉
V

, (84)

—the relation known as the Veneziano–Witten formula [187,188]. Here, V → ∞ is a large
volume, and fπ is the pion decay constant. For lattice calculations of the topological
susceptibility and tests of the Veneziano–Witten formula, see, e.g., Refs. [189,190].

The topological susceptibility χ is characterised by the vacuum quantum-field fluc-
tuations in a pure gauge theory without any quark fields. Like the chiral condensate,
the density of the topological charge may not seem to immediately connect to the IR
property of confinement, and naively, one would guess that it may be determined by
non-confining configurations, such as instantons in the standard picture. However, as was
shown in Ref. [191], a P-vortex acquires a fractional topological charge at “writhing” points,
and it is possible to get a correct topological susceptability in certain vortex models [192].
Moreover, the results of Ref. [171] actually demonstrate that the topological charge tends
to vanish upon vortex removal, while in Ref. [193], it was shown that χ computed from
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P-vortices appears to be consistent with the measurements. Therefore, the initial naive
guess do appear to be wrong, and confinement plays a crucial role here as well.

Yet another, more recent, test of the vortex mechanism considering the effective quark
propagator in the Landau gauge in the following IR form

S(k) =
Z(k)

i/k + M(k)
(85)

has been performed in Refs. [186,194] (see also Refs. [3,4] for a pedagogical discussion).
With an appropriate smoothing (“cooling”) procedure in the SU(3) gauge theory that
eliminates short-distance fluctuations, the effective mass M(k) and renormalisation Z(k)
functions have been computed for the full, vortex-only and vortex-removed configurations
and compared to each other. Removing the vortices causes the mass function to plummet
dramatically—see Figure 6—while the full and vortex-only results have appeared to be
essentially the same, hence demonstrating a critical role of the vortices in dynamical
mass generation and chiral symmetry breaking. The maxima of the action for vortex-only
configurations appear to resemble those of instantons, while the number density of those
objects is notably similar for the full and vortex-only configurations and by far much larger
than that for the vortex-removed case. It seems likely that vortices and instantons are
indeed connected in some very non-trivial way.
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Figure 4. The mass (a) and renormalisation (b) functions on the original (untouched) (squares) and vortex-
removed (crosses) configurations. Removal of the vortex structure from the gauge fields spoils dynamical mass
generation and thus dynamical chiral symmetry breaking.

Smoothing is necessary for the center-projected configurations, because the overlap Dirac operator
isn’t suited to rough ZN configurations. Smoothing is carried out in the full SU(3) manifold, not the
ZN subgroup, so it is more appropriate to call the result "vortex-only" rather than center-projected.

A comparison of M(p),Z(P) for the full and vortex removed configurations is shown in Fig. 4.
Obviously vortex removal causes a severe reduction of the mass function, bringing it much closer to
zero. By contrast, M(p),Z(p) for the full and vortex-only configurations, are virtually identical (Fig.
5), and M(p) is of course an effect due to chiral symmetry breaking.
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Figure 5. The mass(a) and renormalisation (b) functions on the original (untouched) (squares) and vortex-only
(circles) configurations after 10 sweeps of three-loop O(a4)-improved cooling, at an input bare quark mass of 12
MeV.

The next question is topological charge. After ten or so cooling sweeps it was found that max-
ima of the action in vortex-only configurations stabilized, and began to resemble classical instantons
both in shape and corresponding topological charge density at the center. A comparison of instanton
number (on a logarithmic scale) vs. cooling sweeps in the full, vortex-only, and vortex-removed con-

Figure 6. The mass function of the effective quark propagator computed accounting for the full and
vortex-removed configurations. The figure is taken from Ref. [195].

Remarkably, the center vortices thus appear to describe a number of fundamentally
important IR phenomena in non-abelian gauge theories in a gauge-invariant way. Neverthe-
less, there are also weak points in the vortex mechanism of confinement that require further
clarification and, in a perspective, a more complete understanding of, for instance, the Gri-
bov copies problem and a lack of natural explanation of the Lüscher term. Further, a more
complete theory of vortices should address these issues, hopefully, on a first-principle basis.

A lack of a perfect consistency of the vortex scenario with full numerical results for the
SU(3) gauge theory has also emerged in the literature. For instance, center projection in
the SU(3) case yields 2/3 of the asymptotic string action computed on the full lattice [196].
However, consistency has been substantially improved by means of a certain gauge-field
smoothing procedure [194], so this may not be regarded as a critical problem.
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In order to make the next step in our understanding of the vortex dynamics, it may
be enlightening to suggest an EFT of vortices as non-local dynamical objects—fluctuating
surfaces—in D dimensions, where all the IR phenomena described above would emerge
naturally among its key predictions. Such a theory known as the random surface model
that resembles a string theory on the lattice has been proposed and elaborated, e.g., in
Refs. [191,192,197–199].

In order to build the simplest D = 4 action density of vortices in this framework,
one considers an extrinsic curvature of the vortex worldsheet multiplied essentially by a
single coupling, while the additional Nambu-like string term proportional to the area of
the vortex worldsheet appears to be redundant and can be omitted. In the SU(2) version
of this model, one assigns (−1)n to the Wilson loop holonomy for the number of vortex
piercings n per minimal loop area, and then one averages it over an ensemble of center
vortex configurations. The latter can be generated by Monte Carlo methods for a lattice
action density given by the number of cases when a single link is shared by two adjacent
orthogonal vortex plaquettes.

In order to compute the topological charge density in this model, for instance, one
employs a weighted stochastic procedure of introducing the monopole lines to the sur-
face of each vortex plaquette (see Section 16 below for a brief description of the mag-
netic monopoles’ scenario of confinement). The topological susceptibility appears to
be insensitive to the monopole lines’ density—a sign of strong predictive power of the
model. Besides, the model correctly predicts the emergence of the chiral condensate at
T < Tc and the restoration of the chiral symmetry at T > Tc, with a critical temperature
of the transition Tc. A variation in the lattice time extension can provide a tempera-
ture dependence, and the second-order deconfinement phase transition has been found.
The single dimensionless coupling and the lattice spacing a determine a wide range of
long-distance non-perturbative phenomena and were fixed through a matching to the
physical Tc/

√
σ and σ/a2 = (440 MeV)2, in terms of the string tension σ. Upon such a

matching, the temperature-dependent values of σ, the chiral condensate and χ are shown
to be in agreement with the full theory. Remarkably, in the case of SU(3) gauge theory, the
random surface model predicts the electric flux tubes in a form of Y-shaped string junctions
for baryons (three-quark systems) [200], which is also in agreement with the numerical
results of Refs. [201,202].

An alternative EFT approach to dynamics of vortices was suggested in Ref. [162] that is
based upon a gauge theory with an adjoint matter field and its gauge-invariant mass term,
which provides a mass for the gauge field via the Higgs mechanism. Besides the vortex
solutions, it also naturally reveals another type of solutions with magnetic monopoles
running along the vortex sheets that are necessary to generate a topological charge.

For a more thorough discussion on the existing vortex-based scenarios, we refer the
reader to Ref. [3]. Now, we turn to alternative scenarios of confinement, yet trying to
connect them with the existence of vortices whenever possible.

15. Gribov-Zwanziger Scenario, Non-Perturbative Propagators and Gluon Chains

Starting from the Coulomb gauge, in Refs. [167,169,203], it has been suggested that
very small eigenvalues of the Faddeev–Popov operator that are located close to the Gribov
horizon contribute the most to the Coulomb potential VC(R) and could in principle enhance
it to a linear form (see also Ref. [204]). This is the so-called Gribov–Zwanziger scenario
of confinement. As it should be for a confined phase, numerical analysis on the lattice
demonstrates the linear rise of Coulomb potential VC(R), which is basically a separation-
dependent part of the interaction energy of the physical qq̄ state defined as

R→ ∞ , VC(R)→ V(R, T = 0) , V(R, T) = − d
dT

log[G(R, T)] ,

G(R, T) = 〈Ψqq̄|e(H−E0)T |Ψqq̄〉 , Ψqq̄ = q̄(0)q(R)Ψ0 , (86)
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with the ground-state of the theory Ψ0, the vacuum energy E0 and with self-energy con-
tribution neglected at large R. However, the slope of the extracted Coulomb potential
VC(R) is significantly (for a factor of 2–3, depending on the gauge coupling) larger than
that of the static quark potential V(R) ' limT→∞ V(R, T) obtained by gauge-invariant
methods [129]. Although the latter is in agreement with Zwanziger inequality [205],
V(R) ≤ VC(R), the potential is overconfining, prompting discussions in the literature on
whether the Coulomb potential in this formulation actually is the full story of confinement
or some crucial ingredients are still missing. It is worth mentioning, however, that the
asymptotic string tension of the Coulomb potential appears to vanish as soon as vortices
are removed from the underlined gauge field configurations, rendering the importance of
the vortices for understanding the confinement phenomenon in the Coulomb gauge [206].
Such configurations without vortices in fact behave as perturbations of the free gauge
theory, in consistency with expectations.

In the confined phase, the Coulomb self-energy of an isolated static charge E is
expected to be infinite, and the main condition for that reads

E ∝
∫

dλ
〈ρ(λ)F(λ)

λ

〉
→ ∞, lim

λ→0

ρ(λ)F(λ)
λ

> 0, F(λ) = 〈φλ|(−∇2)|φλ〉, (87)

where the first relation relies on the continuum limit of small eigenvalues λ → 0 of
the Faddeev–Popov operator, with the corresponding eigenstates φλ and density of the
eigenvalue distribution ρ(λ). Using the lattice methods, it was found that [204]

ρ(λ) ∼ λ0.25, F(λ) ∼ λ0.38, (88)

yielding a divergent E → ∞ and hence satisfying the confinement criterion (87). An en-
hancement of ρ(λ) and F(λ) close to the Gribov horizon λ → 0 seems to be associated
with the role of a center vortex ensemble. However, as was advocated in Ref. [129], the
Coulomb force appears to be confining also at temperatures above the deconfinement
phase transition temperature, which contradicts the fact that a confining potential must be
associated with a phase of magnetic disorder.

The linear confining Coulomb potential in the Gribov–Zwanziger scenario can be
associated with the instantaneous part of the two-gluon correlator. So, confinement could
be effectively considered as an emergent property due to a gluon exchange with a non-
perturbative (dressed) gluon propagator. A naive calculation shows that a linear potential
may arise if the propagator of the gluon exchange scales with momentum transfer as
∼ 1/k4 at k → 0, at least, in one of the possible gauges [207]. One typically attempts to
analyse the IR behaviour of the effective gluon and ghost propagators and vertices using
the formalism of the Dyson–Schwinger equations following from the disappearance of the
functional integral of a total derivative,

〈
− δS

δφi(x)
+ ji(x)

〉
= 0, (89)

with subsequent differentiation over the sources {jk}. For a review on phenomenological
implications of the Dyson–Schwinger approach, see, e.g., Ref. [208] and references therein.

The full gluon and ghost propagators in Euclidean spacetime are conventionally
represented in terms of form factors as

Dab
µν(k) = δab

(
δµν −

kµkν

k2

)Z(k2)

k2 , Gab(k) = δab J(k2)

k2 , (90)

respectively, such that their IR behaviour, as the virtuality of the exchange vanishes k2 → 0,
is controlled by

Z(k2) ∝ (k2)−κgl , J(k2) ∝ (k2)−κgh , (91)
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where κgh and κgl are the so-called IR critical exponents (or anomalous dimensions) to be
determined in the calculations.

A necessary condition for the Kugo–Ojima confinement criterion is that the
ghost propagator features an enhanced (stronger than 1/k2) IR singularity, i.e.,
limk→0[J(k2)]−1 = 0, known as the horizon condition [209]. The second condition is
the vanishing gluon propagator, limk→0[Z(k2)/k2] = 0. This is the exactly case for the
so-called scaling solution [210–212] that implies a specific relation between κgl and κgh
in D-dimensions [209,210,212,213]

κgl + 2κgh = −4− D
2

. (92)

For the D = 4 case, the values are found to be κgh ' 0.595 and κgl ' −1.19, such that
the gluon propagator indeed tends to vanish at k → 0. In order to explain confinement,
it was argued in Ref. [214] that the quark-gluon vertex should be sufficiently singular in
the long-distance limit, such that its combination with a non-singular gluon propagator
gives rise to the confining potential. The scaling solution has been confirmed by a lattice
analysis of Ref. [215] in the SU(2) gauge theory in the Landau gauge and only in D = 2
dimensions, but it was not observed for D > 2 [216,217].

Another well-known solution, the so-called decoupling solution, with

κgl = −1, κgh = 0, (93)

has been proposed, e.g., in Refs. [218–220]. This solution corresponds to a saturated form of
the IR gluon propagator tending to a constant and, hence, effectively decouples from the dy-
namics in analogy to a massive particle. It is worth noticing here that the non-perturbative
gluon propagator does not behave as a propagator for a massive state. Indeed, from nu-
merical simulations, one observes indications of a violation of positivity, in consistency
with the fact that no coloured gluons exist in the asymptotic spectrum of a gauge theory
that is traditionally connected to gluon confinement [221,222]. Besides, the decoupling
solution implies a simple 1/k2 pole for the ghost propagator. This solution appears to be
favoured by known lattice simulations for D > 2, which also indicate a disagreement with
the Kugo–Ojima criterion. A more generic criterion for quark confinement applicable in
arbitrary gauges relying on the IR behaviour of ghost and gluon propagators has been
proposed in Ref. [223].

One would remark here that the primary probe for the magnetic disorder phase is,
of course, the area-law falloff of gauge-invariant observables, Wilson loop VEVs, and not
the gluon propagator itself, which is not a gauge-invariant object. So one should be extra
careful in interpreting the IR behaviour of the propagator in order to avoid spurious results.
For recent comprehensive effort to obtain a linear static potential in the framework of
Dyson–Schwinger formalism in a Coulomb gauge, see Ref. [224]. A thorough analysis of
the Polyakov line VEVs and effective potential based upon the formalism of the Functional
Renormalisation Group [225] has been performed in Refs. [226,227], and an agreement
with lattice results has been found. However, the search for the area-law dependence of
large Wilson loops’ VEVs with these methods has not been successful so far.

The picture of strongly collimated colour-electric flux tubes stretched between the
colour-charged static sources does not seem to apply to the distribution of colour-electric
field in the Coulomb gauge [3]. Indeed, there is a significant long-range dipole contribution
to the Coulomb electric field that would cause rather strong van der Waals-type forces
between hadrons at large distances. This would immediately contradict to the mass gap
existence [139] that requires only short-range forces between composite colour-neutral
states. This problem generically emerges in any confinement scenario, such as the Dyson–
Schwinger-type approaches where a confining force is associated with a single (dressed)
gluon exchange at large distances. While providing a linear potential, such one-gluon
exchange scenarios (including the Coulomb confinement one) imply a spread out of the
electric field towards large distances, possibly with flux collimation to some extent [228].
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A possible development that may eventually address the shortcomings of the Coulomb
confinement scenario discussed earlier is to notice that the qq̄ state defined in Equation (86)
is not necessarily a minimum-energy state of a system containing a single qq̄ pair, and lower
energy states could in principle be constructed using operators Qj

i—functionals of the lattice
links—that effectively create “constituent” coupled gluons as

Ψ̃qq̄ = q̄i(0)Qj
iqj(R)Ψ0, (94)

where schematically,

Qj
i = a0δ

j
i + a1 Aj

i + a2 Ak
i Aj

k + . . . . (95)

The resulting state effectively represents a chain of gluons bound by attractive forces,
with a q and q̄ at the end of the chain, at large R, that could, in principle, provide a
necessary suppression of the long-range dipole fields. Hence, such a gluon chain may
be viewed as a colour-electric flux tube itself [229,230]. Indeed, as q and q̄ get separated,
more and more constituent gluons get pulled out of the vacuum to minimise the energy of
the system [231,232]. This picture rather naturally emerges by expanding the Wilson line
stretched between q and q̄ in powers of the gluon field and actually implies the absence of
dipole fields at large R. In the limit of large number of colours N in the the SU(N) theory,
such a chain of gluons on a given time slice is dominated by a high-order planar Feynman
amplitude that can be, in principle, tackled by analytic methods.

Among remarkable features of the gluon chain model are the Casimir scaling in
the leading order of 1/N expansion and a subleading 1/N2 string breaking effect at
some critical length-scale leading to a correct N-ality dependence of the string tension
asymptotically. In the case of heavy (static) charges in the adjoint representation of SU(N),
for instance, in the limit N → ∞, two gluon chains instead of one are formed between
the charges, leading to twice larger adjoint string tension compared to the one in the
fundamental representation, i.e., σA = 2σF. The latter is defined only at intermediate
distances but must disappear at asymptotic distances due to colour screening by N-ality
zero gluons in the vacuum. Although gluons do not break the center symmetry as such, they
take part in the colour screening on the same footing as light quarks in QCD such that both
quarks and gluons are absent in the asymptotic spectrum in the virtue of C-confinement
and the string hadronisation model. This suggests a non-trivial but less explored and
speculative possibility that the non-perturbative gauge-field vacuum somehow rearranges
itself at large distances in such a way that the center symmetry might get broken somehow
even without the presence of matter fields in the fundamental representation4.

Indeed, pulling the two gluons (or adjoint matter states) apart from each other, even-
tually the virtual gluons from the QCD vacuum are prompted to bind to the octet-charged
sources, yielding colour-singlet states—gluelumps—at asymptotically large distances. Such
a gluon colour-screening mechanism is very similar to that driven by dynamical virtual
quarks being brought on mass-shell to screen the charge of heavy static quarks as the latter
move apart, and the energy accumulated in the string is partially spent for that purpose.
So, the colour-screening and hence the string-breaking phenomenon is not particularly
sensitive to N-ality but rather to the colour charge itself being the necessary prerequisite for
C-confinement. While the formation of a flux tube between the two gluons at intermediate
distances applies for the confining phase in the strongly coupled regime, C-confinement as
an asymptotic phenomenon occurs also in the Higgs phase but without the formation of an
intermediate flux tube.

Note that an adjoint string breaks via a 1/N2 suppressed but very important (at
large R) interaction between the gluon chains, enabling them to transform into a pair of
gluelumps, as described above (see also Ref. [230]). This correctly generalises for sources in
an arbitrary gauge group representation giving rise to N-ality dependence of the asymptotic
string tension. Such an important string-like property of the gluon chain as the Lüscher
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term appears due to fluctuations in the gluons’ positions on the chain [230]. As was
demonstrated in Ref. [233], introducing up two gluons in a chain preserves the linearity
of the Coulomb potential, but that is already enough to bring its slope much closer to the
true static potential (i.e., obtained by gauge-invariant methods). In this calculation, it was
shown that multi-gluon configurations in the chain appear to be increasingly important at
large R, which also strongly reduces the sensitivity of the results to the lattice volume. This
means that the long-range dipole field becomes strongly suppressed, indicating a possible
formation of a localised colour flux tube (for more discussion on this aspect, see Ref. [3]).

16. Dual Superconductivity and Magnetic Monopoles

As was proposed a long ago in Refs. [132,234–237], the QCD vacuum could be viewed
as a “dual” superconductor, an analog of type-II superconductor, where the electric and
magnetic fields are interchanged. These studies have pioneered the developments of a
beautiful theory of what is sometimes called the dual superconductor picture of confinement.
In a usual superconductor, one deals with a condensate of electric charges (in fact, bosonic
Cooper pairs), and, due to repulsion (or confinement), the magnetic fields get squeezed
into magnetic flux tubes with a constant energy density (Abrikosov vortices). In a “dual”
superconductor, one instead works with a condensate of magnetic charges known as mag-
netic monopoles, where the electric field of static charges would be squeezed (confined) into
electric flux tubes. The latter realisation is what we often regard as ordinary confinement in
QCD. Both the static potential of magnetic monopoles in a type-II superconductor and the
static potential of colour-electric charges in a “dual” superconductor would rise linearly
with the charge separation.

This effect gives rise to a very simple picture of confinement essentially based upon a
suitable generalization of the Landau–Ginzburg superconductivity theory. Indeed, starting
from relativistic abelian Higgs model

S =
∫

dDx
(1

4
FµνFµν + |Dµφ|2 + λ

4
(φ†φ− v2)2

)
, Dµφ = ∂µ + ieAµ, (96)

one recovers the magnetic flux-tube Abrikosov-like solutions dubbed as the Nielsen–Olesen
vortices [238]. Attributing a non-trivial winding number n to the Higgs complex phase,
a Nielsen–Olesen vortex carries the magnetic flux 2πn/e. In the dual version, such vortex
carries an electric flux that confines the electric charges. A particular model, where the
dual abelian Higgs model with confinement is realised, is the N = 2 supersymmetric
YM theory known as the Seiberg–Witten model [239,240] having several distinct types
of electric flux tubes. In this model, a continuous set of distinct vacua is spanned by
the “moduli” space of certain scalar field operators. Soft supersymmetry breaking then
reduces the theory down to an effective N = 1 theory, where the confinement of the electric
charge is realised due to the condensation of the monopole field and electric flux tube
formation. This happens in full analogy to the confinement of the magnetic charge due to
magnetic flux tube formation in usual type II superconductors and in the ordinary abelian
Higgs model. The duality transformation in the Seiberg–Witten model inverts a certain
combination of the effective coupling constant and the θ angle enabling one to obtain
the effective action of light fields at any value of the gauge coupling from the detailed
knowledge about the weak-coupling regime of the theory and its infrared singularities (for
a detailed review of the underlined concepts and formalism, see, e.g., Refs. [241–243]). Such
a duality is due to an exact symmetry of the abelian effective theory manifest at low energies
and not of the original SU(2) theory. In fact, this duality is a proper generalisation of the
famous electric-magnetic duality of the Dirac formulation of Maxwell electrodynamics
(with magnetic monopoles) exchanging the electric charge qe and its magnetic counterpart
qm = 2π/qe. Hence, by means of such a duality transformation, one hopes to learn about
strong-coupling (or long-distance) dynamics given from the weak-coupling regime of its
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dual formulation. In Ref. [244], it was shown that k-string tensions in the SU(N) version of
the Seiberg–Witten model obey the Sine law

σr =
sin(πk/N)

sin(π/N)
σF, (97)

being numerically not very different to that of the Casimir scaling (c.f. Equation (75)).
In itself, the superconductivity picture of confinement is an abelian mechanism that

has been explored originally by Polyakov [245] in the context of the confinement of electric
charges in the D = 2 + 1 compact U(1) gauge theory. This theory turns out to be an
important starting point to approach QCD confinement. While in the D = 2 + 1 case,
the compact QED features monopoles (topological excitations), and in D = 3 + 1, those
monopoles are point-like defects in spacetime, i.e., they are also instantons. Effectively
integrating out all the DoFs except monopoles in D = 2 + 1 compact QED, it was shown in
Refs. [132,237,245] that the action of the monopole gas interacting by means of Coulomb
force on the lattice reads

Sm =
2π2

g2a

[
∑
i 6=j

mimjG(ri − rj) + G(0)∑
i

m2
i

]
, (98)

with i, j = 1 . . . N for N monopoles, and the lattice Coulomb propagator G at large distances
behaves as G ∼ 1/4π|ri − rj|. A Wilson loop in this approach can be expressed in terms of
the monopole density and appears as a current loop that generates its magnetic field being
effectively screened away by the (anti)monopoles from the background. Such an effect
causes the area-law falloff for the Wilson loop VEVs. Polyakov has explicitly demonstrated
that even the arbitrarily low density of these monopoles is sufficient to produce confinement
and the mass gap of the theory. This happens in a regime when the entropy related to the
size and shape of large Wilson loops wins over the cost in the monopole action for a large
loop. The latter effect occurs at any coupling for D = 3 QED but only for large enough
couplings in the D = 4 case.

In the case of YM theories, one needs to extract an abelian subgroup from the gauge
group, e.g., by means of an adjoint Higgs field. An important realisation in the case of the
SU(2) gauge theory is the Georgi–Glashow model, where in the minimum of the Higgs
potential and in unitary gauge, there is a residual U(1) local gauge symmetry. Due to
this symmetry, the model exhibits magnetic (‘t Hooft–Polyakov) monopoles [246,247] as
instanton solutions of the classical equations of motion in D = 3 or as static solutions
(solitons) in D = 3 + 1. The Higgs field that is used to fix the unitary gauge necessarily
vanishes at the center of each t’Hooft–Polyakov monopole, making the unitary gauge fixing
ambiguous at those sites. The Wilson loop VEVs are then computed in a similar way as
was done in compact D = 3 QED, resulting in a finite string tension σ ∼ exp(−Sm) [237].
In D = 4, the Georgi–Glashow theory has both confining and non-confining phases;
however, stable monopole solutions only exist in the non-confining phase where they do
not form a Coulomb plasma.

An important caveat in the D = 3 theory is that one cannot simply neglect the effects
of W bosons at large distances (and hence in the analysis of confinement) in the long-range
effective action. Indeed, the string tensions cannot acquire a correct N-ality dependence
without W bosons. The Coulomb monopole gas approximation can be justified in a certain
intermediate range below a string-breaking length-scale, where a W bosons carrying two
units of electric charge are pair-produced and screen the charges of the static sources,
which also possess two units of electric charge. Analogically, the dual abelian Higgs model
that ignores the effect of W bosons predicts a wrong N-ality dependence of the Wilson
loop VEVs. Thus, it is unable to consistently describe long-range physics of vacuum
fluctuations at characteristic distances exceeding the colour screening length-scale. Non-
abelian supersymmetric versions of the dual Higgs model have been proposed in a number
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of existing works yielding specific non-abelian vortex solutions; for a detailed review on
these aspects, see, e.g., Refs. [75,248] and references therein.

Dynamical “abelization” of SU(N) gauge fields can be achieved even without an
adjoint Higgs field. Instead of using an adjoint Higgs field, another way to extract a
Cartan (abelian) subgroup U(1)N−1 of SU(N) suggested in Ref. [249] is the so-called
abelian projection, using a composite operator that transforms like a matter field in the
adjoint representation and fixing a gauge in which this operator is diagonal. The same
effect emerges also with adjoint fermions fields [250,251] or by adding a trace deformation
term to the action [252], and both methods have been successfully explored by lattice
simulations (see, e.g., Refs. [253–255]).

The gluons from the coset of abelian projection are charged under U(1)N−1, while
the monopole condensation would describe their confinement in a way similar to the
dual abelian Higgs model. The basic idea then is to look for a specific gauge in which the
quantum fluctuations of the U(1)N−1-charged gluons are strongly suppressed compared
to the fluctuations of “photons” from the Cartan subgroup U(1)N−1. In such a gauge
called the maximal abelian gauge [256], the link variables would be close to a diagonal
form. For instance, in the SU(2) gauge theory, this is achieved by means of requiring
∑ Tr[Uµ(x)σ3U†

µ(x)σ3] to be maximal while leaving the residual U(1) symmetry w.r.t.
gauge transformations

Uµ(x)→ eiφ(x)σ3Uµ(x)e−iφ(x+µ̂)σ3 . (99)

This enables one to decompose Uµ(x) = Cµ(x)uµ(x), where the Cµ(x) matrix is
expressed in terms of a “matter” field cµ(x) with two units of U(1) charge, while the
diagonal uµ(x) = diag(exp(iθµ(x)), exp(−iθµ(x))) is given in terms of the abelian U(1)
gauge field θµ(x), the “photon”, coupled to the “matter” field cµ(x). One, therefore, obtains
the abelian-projected lattice by means of Uµ(x)→ exp(iθµ(x)) projection. Note that in the
case of the SU(3) theory, the maximal abelian projection is not unambiguously defined, as
has been discussed for instance in Ref. [257].

In the monopole dominance approximation [258,259], one then replaces the link variables
by the monopole links constructed from the Dirac string variables and the Coulomb
propagator, and then one computes the VEVs of the Wilson loops over an ensemble of such
monopoles. This procedure leads to (almost) the same values for the asymptotic string
tensions of the single-charged Wilson loops in the SU(2) lattice gauge theory as in the
gauge-invariant approach. Furthermore, the single-charged Polyakov loops computed
in the abelian-projected configurations and in the monopole dominance approximation
agree with each other and both vanish below the critical temperature of the deconfinement
transition, in consistency with expectations. However, these results do not agree for double-
charged Polyakov loops. Vanishing VEVs of the latter, and hence the confining disorder, are
found in the monopole dominance approximation, which is inconsistent with the charge
screening effect that must be in place for double-charged static sources, and for that matter,
with the N-ality requirement. This means that in the case of magnetic disorder dominated
by abelian gauge field configurations, the abelian flux can not be distributed according to
the Coulomb monopole-gas approximation.

The latter problem is not present in the abelian-projected configurations yielding a
correct asymptotic behaviour of large Wilson loop VEVs in the fundamental representation.
Fixing an abelian projection gauge in the SU(2) gauge theory arranges the monopoles and
antimonopoles coupled to each other into a chain with the total monopole flux of±2π. At a
certain fixed time, such a flux can be squeezed into center vortex structures on the abelian-
projected lattice [260]—for an illustration of this effect, see Figure 7. Indeed, the numerical
analysis that locates both the (anti)monopoles through abelian projection and the center
vortices through center projection showed that almost all (anti)monopoles are located on
the vortex sheets arranging themselves into alternating order in a chain (for an inspiring
discussion, see Refs. [3,4]). The fact that the double-charged (Wilson and Polyakov) loops
do not get contributions from linking with such vortices on the abelian-projected lattice is
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reflected in a vanishing asymptotic string tension in this case, in agreement with the charge
screening effect.

138 9 Monopoles, Calorons, and Dual Superconductivity

Fig. 9.4 Vortex field strength after maximal abelian gauge fixing. Vortex strength is mainly in the
±σ3 direction

Fig. 9.5 Vortex field after abelian projection
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Fig. 9.6 Hypothetical collimation of monopole/antimonopole flux into center vortex tubes on the
abelian-projected lattice

insensitive to linking with such vortices, and this will ensure that the string tensions
σn will satisfy (9.54) as required.

The picture outlined above can be tested by numerical simulation. We work
in the indirect maximal center gauge, which uses maximal abelian gauge as
an intermediate step, and identify the locations of both monopoles (by abelian
projection) and vortices (by center projection). We also measure the excess action
(above the average plaquette value S0), on plaquettes belonging to monopole
‘cubes’, and on plaquettes pierced by vortex lines. The following results are obtained
for SU(2) lattice gauge theory at β = 2.4 [33]:

1. Almost all monopoles and antimonopoles (97%) lie on vortex sheets.
2. At fixed time, the monopoles and antimonopoles alternate on the vortex lines, in

a chain.

Figure 7. The formation of a center vortex through a collimation of the monopole/antimonopole flux.
The figure is taken from Ref. [4].

It is instructive to introduce a specific order parameter, the VEV of a monopole creation
operator 〈µ(~x)〉, that would signal an emergence of the dual superconducting phase in
a non-abelian gauge theory [261,262]. The operator µ(~x) effectively inserts a monopole
configuration at a certain position into the system such that it does not commute with the
total magnetic charge operator, and hence its VEV would break the corresponding dual
U(1) gauge symmetry, a remnant of the gauge symmetry. According to the monopole
condensation mechanism of confinement, the system is in a confining phase if and only if
〈µ(~x)〉 6= 0, while a transition to a non-confining configuration occurs when 〈µ(~x)〉 → 0,
which indeed coincides with a more generic numerical analysis in the full theory (also at
finite temperatures). There are, however, severe ambiguities such that 〈µ(~x)〉 may also
vanish in the absence of any thermodynamic transition to a deconfined phase [263]. Indeed,
as was already briefly discussed earlier, the breaking of gauge symmetry remnant cannot
be utilised as a correct signature of the magnetic disorder phase.

In a pure non-abelian gauge theory in D = 4, classical instanton solutions can not
be responsible for magnetic disorder of the vacuum field configurations since their field
strength falls off too fast at large distances. However, at finite temperatures, the instanton
solutions as saddle points of the Euclidean gauge fields’ action called calorons can be
relevant for confinement. The latter solutions were found in Refs. [264–266] and are known
in the literature as KvBLL solutions. They may contain monopole constituents sourcing both
electric and magnetic fields, also known as dyons or Bogolmolny–Prasad–Sommerfield
(BPS) monopoles [267,268], which can be widely separated. The thermal approach to pure
4D YM theories based upon nonperturbative results on a thermal ground state in the
deconfined phase derived from an (anti)caloron ensemble has been thoroughly discussed
in Ref. [269] and in references therein. Among important corollaries to this approach is,
for instance, the derivation of the 3D critical exponent of the Ising model for the correlation
length criticality.

The early work of Ref. [134] made important contributions to understanding the trivial-
holonomy calorons in SU(2) Euclidean gauge theory based on Ref. [270], while nontrivial
holonomy solutions have been studied, e.g., in Refs. [264,266,271–273]. Considering, for
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instance, the maximally non-trivial Polyakov loop holonomy P(~x) introduced in SU(N) in
Equation (57), where µj are ordered and spaced with a maximal distance from each other

µmax
n = −1

2
− 1

2N
+

n
N

, (100)

the probability density of calorons in the vacuum would peak at TrP(~x) = 0. As was
discussed earlier, in the center vortex mechanism of confinement, the vanishing Polyakov
loop expectation value computed on an ensemble, where positive and negative fluctuations
in vortex configurations cancel out, is a signature of unbroken center symmetry and, hence,
that of the confinement property. Notably, in the caloron configurations, the maximally
non-trivial Polyakov loop holonomy vanishes by itself before any averaging as the basic
property of such configurations.

Due to this property, a system of widely separated dyons, the dyon gas, whose free
energy is minimal for Tr P(~x) = 0, has been considered as the basis for the description of
the magnetic disorder in YM theories [274]. Indeed, it was shown that the k-string tensions
extracted from space-like Wilson loops are in agreement with those that determine the
asymptotic behaviour of Polyakov loop correlators and follow the Sine law (97). In the high
temperature regime, a phase transition to the deconfinement phase occurs with Tc/

√
σ

values being in perfect agreement with numerical lattice results. Despite such tremendous
success, the path integral measure for the multi-dyon configurations appears to be not
positively definite, thus violating the basic property of the exact measure [275]. However,
numerical simulations of Ref. [276] with a suitable parameterisation of the integration
measure confirmed that the confining static potential indeed emerges in the dyon gas
approximation. Thus, one can conclude that the monopole mechanism based upon the
caloron classical solutions is one of the most promising scenarios of confinement in non-
abelian gauge theories.

There are some critical points to be made regarding the dyon gas picture of confine-
ment neatly summarised in Ref. [3]. The same question as for the monopole Coulomb gas
applies also for the dyon gas regarding the asymptotic string tension of double-charged Wil-
son loops that should disappear due to a screening by gluons. Another question concerns
the probability distribution of Polyakov loop holonomies, which is peaked for a vanishing
maximally-nontrivial holonomy in the fundamental representation, i.e., Tr P(~x) = 0. If this
is indeed true, it implies a negative expectation value of the Polyakov loop in the adjoint
representation. However, if the latter is positive, the probability distribution would be
peaked at the center-element holonomy, as suggested by the center vortex scenario of
confinement. Remarkably, the expectation value of the adjoint Polyakov line in the phase
of magnetic disorder has been found to be positive in the SU(3) theory in Ref. [277].

Besides, considering the asymptotic behaviour of double-winding Wilson loops VEVs’
(i.e., Wilson loops winding around closed co-planar loops C1 and C2), one reveals a dramatic
difference in predictions of the monopole and vortex mechanisms of confinement [278]
(see also [3,4]). The vortex scenario provides the “difference-of-areas” law behaviour for
such loops, ∼ exp[−σ|A(C1)− A(C2)|, where the “−” sign is due to a vortex linking to the
largest loop, correctly reproducing the full lattice results. In this case, the monopole scenario
predicts the “sum-of-areas” falloff as ∼ exp[−σ(A(C1) + A(C2))], which is disfavoured by
numerical simulations. The latter observation indicates that the vacuum cannot be in a dual-
superconducting state of monopole/dyon plasma. In fact, the “difference-of-areas” law is
restored by heavy W bosons that are present in the full YM theory but not in an abelain part
of it. As was suggested in Ref. [4], upon integrating out the W bosons’ states, one expects
the monopole–antimonopole lines to get collimated into Z2 vortices, as is illustrated in
Figure 7, i.e., in a similar fashion to what has been seen on an abelian-projected lattice. This
effectively turns the monopole ensemble into a configuration of Z2 vortices, offering an
intricate connection between the two pictures of confinement.

Another observation of Ref. [279] in the case of the G2 gauge theory has suggested that
the Polyakov loop expectation value exactly vanishes in the dyon gas picture. The colour
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screening in G2, however, requires binding a static source in the fundamental representation
to a minimum of three gluons, likely leading to a very small, but non-zero, Polyakov loop
expectation value that would be difficult to identify numerically [3]. If the colour screening
mechanism is a valid approach, the center symmetry breaking at large distances would be
manifest in G2, whereas the dyon gas approximation, like the Coulomb gas approximation
discussed earlier, might be lacking something relevant in the asymptotic regime.

17. Separation-of-Charge Confinement Criterion

A clear symmetry-based distinction between the confining and Higgs phases in a
gauge theory with fundamental representation matter fields has been recently proposed in
Refs. [110,280,281]. An important generalised criterion of confinement valid in both pure
YM theories and YM theories with matter in the fundamental representation states that

EV(R) ≡ 〈ΨV |H|ΨV〉 − Evac ≥ E0(R), (101)

with ΨV being the qq̄ state connected by a Wilson line,

ΨV ≡ q̄a(~x)Vab(~x,~y; A)qb(~y)Ψ0, (102)

for any choice of the gauge bi-covariant non-local operator Vab(~x,~y; A). The latter depends
only on the gauge field, thus eliminating any possibility for a string breaking by means
of dynamical matter fields. This criterion is a necessary and sufficient condition for the
separation-of-charge confinement (or Sc-confinement, for short), which is meaningful only in
gauge theories with a non-trivial center symmetry. In Equation (101), H is the Hamiltonian,
Evac is the vacuum energy, E0(R) ∼ σR at R → ∞ is an asymptotically linear function,
which has the meaning of the ground-state energy of the qq̄ in a pure SU(N) gauge theory
(but not in the one with matter fields), where the above criterion is equivalent to the
area-law falloff of Wilson loop VEVs.

In the SU(2) gauge-Higgs theory, the confining phase is found for γ � β � 1 and
γ� 1/10, where the Sc-confinement condition (101) is satisfied. However, deeply in the
Higgs phase, for other couplings’ ranges, this criterion is not fulfilled; hence, we deal with
only a weaker C-confinement situation there. In Refs. [110,280,281], it has been shown that
a transition between the C- and Sc-confinement phases must take place in the gauge-Higgs
theory, and the unbroken custodial symmetry has been found to separate the Sc-confining
(if not massless) phase from the Higgs phase corresponding to a C-confined spin glass
state, where the custodial symmetry is actually broken. It would be very interesting to see
how such a new concept of Sc-confinement can be applied for more realistic theories such
as QCD.

18. Separating the Higgs and Confinement Phases: Vortex Holonomy Phase

As was discussed earlier, the results of Refs. [109,113,114] state that it is possible
to identify a continuous path between the Higgs and confinement regimes where no
first-order phase transitions occur like what is believed to happen in physics of high-to-
low temperature QCD (smooth crossover) transition and in several other specific models.
Indeed, one would naively expect that such a continuity always takes place unless the
phases are separated by different realisations of global symmetries.

An important counter-example to this statement has been recently explored in a whole
class of models in Refs. [58,64]. Namely, it has been demonstrated that even in the case of
a spontaneous global U(1) symmetry breaking in both Higgs and confinement regimes
(an analog to the baryon symmetry breaking in dense QCD at low T), it is still possible
to identify a novel non-local order parameter (a vortex holonomy phase) that separates
the two phases, leading to a thermodynamical phase transition. This proof provides an
important argument against the quark-hadron continuity (Schäfer–Wilczek) conjecture in
dense QCD, as mentioned above in Section 2.
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For this purpose, the authors of Ref. [58] started with Polyakov’s D = 4 compact
U(1) gauge theory discussed in the previous section, then imposed a single global U(1)G
symmetry (an analog to U(1)B of QCD) and added three complex scalar fields that ef-
fectively mimic dynamical quark fields in QCD, with the following assignments under
U(1)×U(1)G group

φ+ = {+1,−1}, φ− = {−1,−1}, φ0 = {0,+2}. (103)

Then, the product φ+φ− appears to be an analog to the gauge invariant baryon opera-
tor, and φ0 can couple to φ+φ− product and can be considered as a baryon interpolating
field or a source for baryons. A VEV in φ0 would bring the theory into a superfluid
phase of spontaneously broken U(1)G, such that the global symmetries’ realisation is the
same in the confinement and Higgs phases. In the monopole-driven confinement pic-
ture, the monopoles in this theory would have a finite action that can be UV-completed
through an SU(2) symmetry, just as in the original Polyakov’s description. Finally, addi-
tional discrete Z2 (charge conjugation and flavour-flip) symmetries have also been intro-
duced and can be considered as analogous to the flavour symmetry in QCD. The effect of
monopoles in this model induces an additional term in the Lagrangian [237]

Vm(σ) ∝ e−SI cos σ, (104)

which is a potential for the “dual photon”—a periodic scalar field σ→ σ + 2π related to
the field strength by the abelian duality relation

Fµν =
ie2

2π
εµνλ∂λσ. (105)

As one varies the adjustable mass parameters, three different regimes of the theory
emerge. One of them corresponds to the compact 3D U(1) theory with heavy scalar
quarks and confinement where no symmetries are spontaneously broken (“gapped con-
fined” regime). The second regime features the Higgs mechanism with a non-zero VEV
〈φ+φ−〉 6= 0, such that a cubic φ+φ−φ0 term in the potential drives the condensation of φ0,
〈φ0〉 6= 0 and hence spontaneous breaking of U(1)G (Higgs phase with a single massless
Goldstone boson). The third regime has monopole-driven confinement, while 〈φ0〉 6= 0
spontaneously breaks U(1)G symmetry, and the heavy charged scalars are very heavy and
may be disregarded. A key question here is whether the two phases with spontaneously
broken U(1)G (“Higgs” and “confining”) with no distinguishing local order parameter are
really two distinct phases or might be continuously connected.

The main claim of Ref. [58] is that these phases are distinct and can be distinguished
only by a new non-local order parameter that is connected with topological excitations.
Physically, both phases with spontaneously broken U(1)G should be considered as superflu-
ids that have vortices. As a consequence of U(1)G breaking, the theory possesses a gapless
Nambu–Goldstone mode, which is a phase of 〈φ0〉 condensate, as well as topologically sta-
ble vortex excitations when the phase of the 〈φ0〉 condensate winds around the unit circle
when one goes around a given loop. In ordinary superfluids in three spacial dimensions,
this provides vortex loops, but in D = 2 + 1, vortices act like point particles, the point
around which the condensate phase winds. Winding of that phase, in the language of
superfluids, is exactly what is called quantized minimal “circulation”. The winding number
can then be found in terms of a contour integral of the gradient of the phase or simply as

w ∝
∮

C

d〈φ0〉
|〈φ0〉| . (106)

The charge particles in the superfluid phase would then interact with (minimal-energy)
vortices through acquiring an Aharonov–Bohm phase as one sends a charged particle into
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a loop that links with the worldline of the vortex. This phase is measured by the Wilson
loop holonomy

Ω(C) = ei
∮

C A, (107)

whose expectation value
〈Ω(C)〉 ∼ e−mP(C). (108)

This means that short-range quantum fluctuations in the phase (with dynamical funda-
mental representation charges) automatically lead to a perimeter-law decay of the VEV of
a large Wilson loop. In fact, this represents the same physics as that of string breaking that
turns the area-law behaviour of a pure YM theory into perimeter-law behaviour present in
real QCD and in the Higgs phase, as was discussed in detail in previous sections.

Let us consider a Wilson loop expectation value in the presence of a minimal-energy
vortex, which can be thought of in terms of a constrained functional integral where one
integrates over all the field configurations in the theory but with a constraint forcing the
presence of a vortex along some large worldline C in D = 3 spacetime. The same short-
range physics guarantees it is going to have the same perimeter-law behaviour, but it can
have an additional phase factor

〈Ω(C)〉w=1 ∼ eiΦe−mP(C). (109)

In order to extract the phase, one defines the ratio [58]—the vortex order parameter,

OΩ ≡ lim
rv→∞

〈Ω(C)〉w=1

〈Ω(C)〉 , (110)

taking the size of the Wilson loop and its separation from the vortex rv arbitrarily large
simultaneously. The symmetries of the theory guarantee that the Wilson loop VEV 〈Ω(C)〉
is real, and it can be made positive. While the charge conjugation and reflection symmetries
are broken, the flavour-flip symmetry is preserved in the presence of a vortex. The latter
also flips the sign of the gauge field and hence conjugates the holonomy guaranteeing that
the vortex-constrained expectation value of the Wilson loop is also real but can be either
positive or negative, i.e., OΩ = ±1. This means that the vortex order parameter cannot vary
smoothly under variations of model parameters when moving between the two phases.

In Ref. [58], it was demonstrated by means of a semi-classical analysis and through
the minimization of the vortex energy that in the Higgs phase, the vortex order parameter
must be equal to −1. Integrating out the heavy charged scalars in the confining phase,
one can conclude that the vortex-constrained Wilson loop expectation value hardly knows
about the presence of the vortex, thus OΩ = 1. It was argued in Ref. [58] that if one varies
parameters of the theory and at some point the magnetic flux carried by vortices suddenly
jumps, which is what the vortex order parameter is really probing, that surely is going to
change the core energy density of the vortex. In this case, it does change the probability
of having vortex excitations in the ground state wave function, affecting the ground state
energy density. In other words, a sudden change in the vortex properties really should be
reflected in a genuine thermodynamic phase transition.

Given the close analogies of the considered model with QCD, by construction of the
model above, this conclusion may be straightforwardly generalised to a D = 4 non-abelian
theory with fundamental-representation matter charged under a given global symmetry.
This is the case of dense QCD with broken U(1)B, where the SU(3) vortex order parameter
can be shown to take two distinct values in two phases [58]

OΩ ≡ lim
rv→∞

〈TrΩ(C)〉w=1

〈TrΩ(C)〉 =

{
e2πi/3 CFL/Higgs phase
+1 nuclear/confining phase

, (111)

such that the latter OΩ = +1 is understood as the characteristic signature of confined QCD
phase with spontaneously broken baryon symmetry.
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This indeed illustrates the main point suggesting that the quark-hadron continuity
between the nuclear and quark-matter phases may not hold. Ref. [70] has argued that
despite the noted discontinuity in the vortex order parameter, the continuity of phases
may still be intact due to a continuous connection between the vortex in the CSC/CFL
phase and the corresponding one in the nuclear phase. In response to this claim, Ref. [58]
has explicitly proven the existence of thermodynamical phase transition at the interface
between the two phases connected to the manifest discontinuity in the non-local vortex
order parameter. While the debate about this important issue will likely continue in
the literature, it once again reveals the surprising underlined complexity of the non-
perturbative QCD vacuum, and the associated approaches to the confinement problem
may still not be in their final form. It would be very instructive to find possible connections
between the vortex holonomy phase and its discontinuity with the Sc-confinement criterion
briefly discussed in the previous section, both pursuing the same goal of sharply separating
the Higgs and confining phases.

19. Summary

To summarise, the mass gap and colour confinement that are already realised in a
gauge-Higgs theory may not be connected to an asymptotically rising static potential
and Regge trajectories, and, hence, they do not necessarily represent an emergence of the
magnetic disorder state. On the other hand, the magnetic disorder and the associated
area-law behaviour of Wilson line VEVs imply colour confinement and the mass gap
automatically. In this sense, colour confinement and the mass gap only represent a small
part of a bigger picture of confinement and should be considered as a consequence of
the confined magnetic disorder state and flux tubes formation corresponding to a phase
with unbroken non-trivial center symmetry. If there is no non-analytic boundary between
the massive and magnetic disorder phases at finite values of coupling constants and at
some critical length-scale, i.e., a first-order phase transition, one should talk about a single
massive phase at all scales, as, for instance, in the gauge-Higgs theories. The flux tubes
formation is only an approximate picture in this case, roughly consistent with reality
at some intermediate distances, but it does not necessarily represent an emergence of a
new phase.

One of the big questions for real QCD though, i.e., with physical quarks and gluons,
which would distinguish it from the EW theory is then whether a magnetic disorder phase
really exists within some finite interval of characteristic length-scales that would abruptly
transit to a massive phase at asymptotically large length-scales (due to string-breaking),
or not. If not, then real QCD would always be considered on the same footing with a
gauge-Higgs theory as existing in the massive phase only which is one of the basic options
actively discussed in the literature. One thing, however, that distinguishes real QCD from
the EW theory is the existence of experimentally observed Regge trajectories in QCD with
light quarks that, in fact, may indicate the presence of a non-analytic phase boundary at
moderately large distances in QCD in contrast to EW theory, while both would be in the
massive phase asymptotically. Numerical values of the coupling constant here should play
a decisive role here, and for weak couplings, the magnetic disorder may not emerge at all.

In fact, light “sea” quarks, i.e., with masses way below the confinement energy scale
of QCD, emerge due to gluon splitting Ga → qq̄ such that correlated qq̄ pairs could be
viewed as effective gluons as long as the resolution length-scale is above the wave-length
of such a pair. If, at such length-scales, the strong-coupling constant is large enough, one
can view physics in such a regime as that of an effective pure YM theory in a magnetically
disordered phase with unbroken center symmetry. By pulling q and q̄ apart from each
other at length-scales larger than the resolution scale, the center symmetry gets effectively
broken, and the theory enters the massive phase. In the infinite quark mass limit, however,
the string-breaking length-scale grows indefinitely, making the magnetic disorder phase
valid for asymptotically large distances.
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Depending on the values of the gauge coupling constant, the same can occur in a
gauge-Higgs theory in a strongly coupled regime, which is supported by lattice simulations.
Thus, we arrive to a radically different phase structure of a gauge theory depending on
whether it is in a strongly coupled or in a weakly coupled regime. However, even without
matter fields involved, the major problem of confinement remains, namely to understand
why pure YM theories with a non-trivial center symmetry in D ≤ 4 dimensions can only
exist in a state of magnetic disorder. Once this key problem is solved, it will become clearer
under what conditions realistic theories, such as gauge-Higgs theory or real QCD, may
exist and the magnetically disordered phase, and a first-order phase transition towards the
massive phase may occur, if at all.

As was elaborated in this review, the phase structure and properties of the quantum
QCD vacuum is still under intense explorations, both experimentally and theoretically,
numerically and analytically, and is far from its complete and satisfactory description.
However, tremendous progress has been made and some basic contours of the fundamental
picture of confinement have started to emerge. We do understand a confining phase as
an asymptotic magnetic disorder phase with unbroken non-trivial center symmetry that
manifests itself through the area-law behaviour of large Wilson loop VEVs and, hence,
a linear rise of the corresponding static (string) potential. However, real QCD features
such a phase only pre-asymptotically where colour-electric flux tubes exist at not-too-large
distances, while they break apart at length-scales beyond an inverse to the lightest meson
mass (pion) scale, yielding a massive phase asymptotically. The quanta of the magnetic flux,
vortices, have proven to play a crucial role at all stages, from the formation of a flux tube
to its breaking. Given the overwhelming qualitative and quantitative evidence collected
in vast amounts of studies in the literature, the center vortex mechanism remains among
the most favoured scenarios of confinement so far. Other ideas, such as the monopole
scenario, highlight the underlined complexity of the confining phase and phase transitions
and offer different perspectives but in one way or another connect to the vortex picture.
Various order parameters briefly described in this review probe the confining phase and
are capable of separating it from a non-confining (Higgs) phase, with the latter remaining
under a continuous debate in the literature.
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Notes
1 Real superconductors have observable phenomena such as persistent currents distinguishing the superconducting phase from a

normal one. The name “colour superconductor” come out rather misleading in a sense that there are no observable persistent
colour-charge currents associated to this phase [58].

2 One should make a side remark here: considering static charges in the fundamental representation, with a non-zero coupling to
the gauge field in the action, automatically implies that the theory is not a pure non-abelian gauge theory. Obviously, a pure
gauge theory features neither “static” nor “dynamic” quark fields; moreover, as such, the latter fields are not distinguished by
the action unless the static ones are made a lot heavier than the dynamic ones. Therefore, any statements about the linear static
potential in pure non-abelian gauge theories should be taken with reservations and only makes sense when taking a limit of
heavy (static) matter fields that can be effectively integrated out in the corresponding path integral of the theory. However,
the latter procedure formally eliminates such heavy charges from asymptotic states of the resulting EFT entirely, making it
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impossible to use them as probes for vacuum dynamics and hence confinement in pure gauge theories. So, in practice, one does
not eliminate them from the asymptotic states of a gauge theory but rather retains them as heavy sources but with a finite mass.

3 At γ = 0, the theory is in the magnetic disorder phase, which cannot be continuously evolved from other regions in parameter
space with γ 6= 0.

4 By construction, a pure gauge theory does not contain any fundamental-representation charges. So instead of heavy quarks,
the use of “constituent gluons” as static colour charges to probe the formation and properties of the flux tubes of finite lengths,
colour screening, string breaking mechanism and the phases of the theory would be the most natural approach to study
confinement in pure non-abelian theories.
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