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Abstract: After reviewing several aspects about the thermodynamics of self-gravitating systems
that undergo the evaporation (escape) of their constituents, some recent results obtained in the
framework of fermionic King model are applied here to the analysis of galactic halos considering
warm dark matter (WDM) particles. According to the present approach, the reported structural
parameters of dwarf galaxies are consistent with the existence of a WDM particle with mass in the
keV scale. Assuming that the dwarf galaxy Willman 1 belongs to the region III of fermionic King
model (whose gravothermal collapse is a continuous phase transition), one obtains the interval
1.2 keV ≤m ≤ 2.6 keV for the mass of WDM particle. This analysis improves previous estimates
by de Vega and co-workers [Astropart. Phys. 46 (2013) 14–22] considering both the quantum
degeneration and the incidence of the constituents evaporation. This same analysis evidences that
most of galaxies are massive enough to undergo a violent gravothermal collapse (a discontinuous
microcanonical phase transition) that leads to the formation of a degenerate core of WDM particles.
It is also suggested that quantum-relativistic processes governing the cores of large galaxies (e.g.,
the formation of supermassive black holes) are somehow related to the gravothermal collapse of
the WDM degenerate cores when the total mass of these systems are comparable to the quantum-
relativistic characteristic mass Mc = (h̄c/G)3/2m−2 ' 1012 M� obtained for WDM particles with
mass m in the keV scale. The fact that a WDM particle with mass in the keV scale seems to be
consistent with the observed properties of dwarf and large galaxies provides a strong support to this
dark matter candidate.

Keywords: self-gravitating systems; phase transitions; evaporation; keV warm dark matter

1. Introduction

The thermodynamics of astrophysical systems is hallmarked by the incidence of a long-
range interaction like Newtonian gravitation. This interaction is directly responsible about
the occurrence of anomalies like gravothermal collapse and negative heat capacities [1–8].
Other difficulty associated with this interaction is the incidence of evaporation, namely,
the existence of a finite energy threshold where the constituents of an astrophysical system
can escape out from its own gravitational field [9–24]. Under these conditions, astrophysical
systems in Nature are not found in thermodynamic equilibrium. Nevertheless, these
systems can reach a quasi-stationary evolution that is possible to describe by methods of
statistical mechanics and thermodynamics.

An astrophysical model that combines both quantum and evaporation effects is the
called fermionic King model [24]. The corresponding distribution function associated to this
model was introduced empirically by Ruffini and Stella in the context of dark matter halos
problems [20], and independently by Chavanis [21], who justified it from a kinetic theory
based on the fermionic Landau equation. In recent years, Chavanis and co-workers [22–24]
performed an extensive analysis of this model concerning the role of quantum degeneration.
In a precedent paper [25], this same model was revisited by Velazquez and Espinosa-
Solis in order to clarify the role of the total mass M on the thermodynamic stability. It
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was shown that the competition among quantum and evaporative effects leads to the
existence of certain critical bounds for the total mass M that control the character of
gravothermal collapse. Besides the upper bounds of the total mass associated with quantum-
relativistic considerations [26–30], this model predicts that the total mass of astrophysical
systems could exhibit lower bounds due to the incidence of quantum and evaporation effects.
After reviewing several aspects about the thermodynamics of self-gravitating systems that
undergo the evaporation (escape) of their constituents, results obtained from the fermionic
King model will be applied here to the study of warm dark matter in galactic halos.
Inspired on precedent studies on this subject by de Vega and coworkers [31–33], I shall
derive new bounds for the mass of WDM particles considering the observed properties of
dwarf galaxies. Additionally, I shall discuss some connections concerning the formation
of degenerate core via gravothermal collapse, the supper-massive black holes that are
reported to exist at the center of galaxies and the existence of WDM particles with mass in
the keV scale.

2. Antecedents
2.1. Thermodynamic Effects of Evaporation

The evaporation of constituents implies an out-of-equilibrium situation, so that, there
is no unique way to account for this phenomenon throughout astrophysical models.
Among all proposals considering evaporation effects, King model [11–14] has received a
considerable attention in the literature since they provide a quite realistic description of the
star distributions of globular clusters, as well as brightness surfaces of elliptical galaxies.
Although King model is recovered as a limit case of fermionic King model reviewed in the
Section 2.3 below, it is merely one of possible models that accounts for evaporation effects.
It is worth to say that critical bounds for the total mass of degenerate self-gravitating
systems are model-dependent since they depend on the specific way one deals with the
constituents evaporation.

Recently, Gomez-Leyton and Velazquez have shown that King model belongs to the
family of lowered isothermal models [15]

f (r, p|β, εc, γ) = AE(x, γ), (1)

which they referred to as γ-exponential models. Here, x ≡ β[εc − ε(r, p)], β is the inverse
temperature parameter, εc is the cutoff (escape) energy, while ε(r, p) = p2/2m + mφ(r)
denotes the individual mechanical energy for a particle with mass m and momentum p that
is located at the position r, with φ(r) being the gravitational potential. This phenomeno-
logical proposal exploits and extends the truncation of power-expansion of exponential
function discussed by Davoust [34] considering a continuous deformation parameter γ
as follow:

E(x, γ) =
+∞

∑
k=0

1
Γ(γ + 1 + k)

xγ+k, (2)

where Γ(x) in the Gamma function. The mathematical behavior of this last function is
shown in Figure 1. Equation (1) includes a set of models already employed in astrophysics,
such as the models of Woolley [16] (for γ = 0), King (for γ = 1), Wilson [17] (for γ = 2),
polytropes [35,36] (in the limit of high energies) and Plummer [37] (a marginal case of
polytropes where γ→ 7/2). This family of models was generalized by Gieles and Zochi to
include rotation anisotropy and the presence of a mass-spectrum [38].
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Figure 1. Behavior of γ−exponential function (2). Main panel: this function converges towards usual
exponential function for large values of its argument x. Inset panel: it drops to zero when x → 0+

following a power-law of the type E(x, γ) ∝ xγ. The γ−exponential function is just the fractional
derivative of the exponential function, E(x, γ) ≡ dγ(ex)/dxγ. After [15].

The γ-exponential models enable a panoramic view about the incidence of evaporation
on the thermodynamics of astrophysical systems [19]. The truncation in the one-body
distribution function (1) is described by two parameters: (a) the energy threshold εc
that defines the system size via the tidal radius R, and (b) the deformation parameter γ
that drives the deviation of the one-body distribution (1) from the isothermal Maxwell-
Boltzmann profile:

fMB(r, p|β) ∼ exp[−βε(r, p)] (3)

throughout the power-law truncation of with exponent γ at the cutoff energy εc. Due
to the divergence of polytropes when the exponent n > 5 [36], the admissible values of
the deformation parameter γ belong to the interval 0 ≤ γ ≤ 7/2. The thermodynamics
of these models is qualitatively similar to the one shown by King model for the cases
where 0 < γ ≤ γc ' 2.1. However, nontrivial consequences are found for the cases
where γc ≤ γ < 7/2, such as the divergence of the energy of gravothermal collapse and
the existence of multiples branches of stabilities. As already shown by Gomez-Leyton
and Velazquez [19], the thermodynamic effects of evaporation strongly depend on other
dynamical factors, such as the existence of mass-spectrum for the constituents.

In the same fashion that King model is one of possible γ-exponential models that
account for the incidence of evaporation for classical self-gravitating systems, the fermionic
King model is just one of possible models that describe evaporation effects for systems of
self-gravitating fermions. This particular model will be employed later in Section 3.2 to
obtain new bounds for the mass m of warm dark matter particles (WDM). In general, such
bounds will depend on the concrete truncation of one-body distribution function at the
escape energy εc, which means that this problem far to be fully solved in the present study.
I shall return to this question at the end of conclusion section.
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2.2. Concerning the Thermodynamic Limit

The thermodynamics of astrophysical systems exhibits a great sensibility to the exter-
nal conditions. A good illustration about this very fact was discussed years ago by de Vega
and Sanchez [5], who showed that the thermodynamics depends on the shape of the container
that is employed to confine a self-gravitating system (an unrealistic theoretical assumption
to avoid the escape of constituents). This behavior is radically different from the ones
observed for the case of extensive systems (large systems with short-range interactions).
Conventionally, the incidence of surface effects can be neglected in comparison with bulk
effects whenever the system size (e.g., the number of particles N or the volume V) is very
large. For example, the boiling temperature of water can depend on the environmental
pressure p, but it does not depend on the volume of container or its shape whenever one
considers the thermodynamic limit:

N → +∞ : U/N = const and V/N = const. (4)

Due to the long-range character of gravitation, however, one cannot affect a part of
the astrophysical systems without disturbing the whole system. By themselves, this feature
is the reason why the thermodynamic of astrophysical systems is so rich and challenging.
Each realistic assumption introduced into a theoretical analysis can produce significant
changes in the thermodynamics of the proposed model. Essentially, every external or
internal condition matters in this scenario: the initial conditions of microscopic dynamics,
the incidence of quantum and relativistic effects, the presence of a mass spectrum or the
evaporation (escape) of constituting particles, the asymmetry of distributions due to the
system proper rotation, etc.

The thermodynamic limit (4) is not relevant in astrophysics due to the long-range
character of gravitation. For the particular case of the self-gravitating gas of non-relativistic
point particles, the question of the thermodynamic limit has not reached a consensus in
the literature (different proposals have been made for this class of systems). This problem
was recently revisited in Ref. [39], where I provided a series of arguments in favor of the
thermodynamic limit:

N → ∞ :
U

N7/3 = const, VN = const. (5)

This same thermodynamic limit also applies for the case of fermionic King model [25].
In fact, the relevance of this thermodynamic limit for these type of systems was early
demonstrated by Hertel and Thirring [40] and recovered from simpler (scaling) arguments
in Section 7.1. of [8] and in Appendix B of [41] where it was called the quantum thermody-
namic limit. For the sake of the self-consistency of the paper, let us recall some arguments
leading to this thermodynamic limit as well as its applicability conditions.

Plummer model is presumably the simplest and oldest toy model that includes a
truncation of the energy spectrum due to the incidence of evaporation [37]. The later one
can be considered as a marginal particular case with n = 5 of polytropic models [35]:

fn(r, p) =
{

AnEn−3/2, if E > 0,
0, if E ≤ 0,

(6)

where E = εc − ε(r, p). Its density profile is infinitely extended in the space:

ρP(r) =
3M

4πa3

(
1 +

r2

a2

)−5/2

, (7)

but it exhibits finite total mass M and characteristic radius a. Its associated potential is
also analytical:

φP(r) = −
GM√
a2 + r2

. (8)
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Accordingly, its energy threshold for the escape of particles εc ≡ 0, which means that
Plummer model describes an isolated self-gravitating gas of non-relativistic point particles.
Considering the normalization condition (N is number of particles):

N =
∫

fP(r, p)
d3rd3p

(2πh̄)3 (9)

and calculating the total energy U:

U =
∫ ( 1

2m
p2 +

1
2

mφ(r),
)

fP(r, p)
d3rd3p

(2πh̄)3 , (10)

one obtains that the characteristic radius a is related to the total energy U as:

a =
3π

64
GM2

(−U)
. (11)

This last result implies that Plummer model does not exhibit any characteristic energy or
length (it is scale independent).

The relevance of the thermodynamic limit (5) for the system of self-gravitating non-
relativistic point particles can be particularly shown by considering the entropy associated
with Plummer model:

S = −k
∫

fP(r, p) log fP(r, p)
d3rd3p

(2πh̄)3 . (12)

Avoiding exact mathematical calculations, one can obtain the following estimation [39]:

S ∼ 3
2

Nk log

[
G2m5

2h̄2
N7/3

(−U)

]
. (13)

The mathematical form of this entropy is consistent with the following thermodynamic limit:

N → ∞ :
S
N

= const,
U

N7/3 = const, (14)

which ensures the extensivity of the entropy. The same scaling properties are also appli-
cable the case of non-relativistic self-gravitating fermions [40], which evidences that this
thermodynamic limit does not depend on classical or quantum description for the case of
self-gravitating non-relativistic point particles.

Let us now exploit the Plummer model to discuss the restricted applicability of the
thermodynamic limit (5). The calculation of the entropy using formula (12) accounts
for the quantum-classical approximation (the presence of the factor (2πh̄)3 dividing the
configuration space volume d3rd3p). From the estimation (13), one verifies the existence of
the following characteristic energy:

|Uc| ∼
G2m5

h̄2 N7/3. (15)

The later one appears when quantum correlations turn important in the innermost
regions described by Plummer profile (7). Considering the characteristic momentum:

p ∼
√

2m(−U)/N (16)
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and the radius a given by (11), de Broglie length λ turns comparable to the inter-
particle distance:

λ =
h̄
p
∼
(

a3

N

)1/3

(17)

for energies of order of the characteristic energy (15). For this energy scale, the classical non-
relativistic Plummer model losses its applicability, and the same one should be extended
by a sort of fermionic Plummer model (A generalized family of models for self-gravitating
systems of non-relativistic fermions that undergo evaporation is suggested at the end of
the paper: the fermionic γ-exponential models. The fermionic Plummer model should be
the marginal case of γ = 7/2 of this family of generalized models). While the quantum
description does not restrict the application of the thermodynamic limit (5), this result loses
its validity in the relativistic limit. In particular, the characteristic energy (15) should not
overcome the rest energy of the system

|Uc| ∼
G2m5

h̄2 N7/3 < Nmc2. (18)

Accordingly, the results of non-relativistic approximation lost their applicability when total
mass M = Nm of the self-gravitating system approaches the characteristic mass Mc

Mc ∼
(

h̄c
G

)3/2 1
m2 . (19)

By itself, the previous argument implies that the thermodynamic limit (14) is only
relevant within a non-relativistic approximation. Replacing the generic mass m by the mass
of hydrogen atoms H, one immediately obtains the characteristic mass constant:

Mc =

(
h̄c
G

)3/2 1
H2 ∼ 29.2M� (20)

that appears in stability limits of stars [27–30].

2.3. Thermodynamics of Fermionic King Model at Constant Total Mass

The one-body distribution proposed by Ruffini and Stella [20] can be expressed into
the following form:

f (r, p|β, εc) =
eβ[εc−ε(r,p)] − 1
α + eβ[εc−ε(r,p)]

H[εc − ε(r, p)]. (21)

Here, H(x) is Heaviside step function, β = 1/kT represents the inverse temperature param-
eter, εc = mφs denotes the energy threshold for the escape of particles, and φs = −GM/R
is the surface potential. Finally, α is a dimensionless positive parameter associated with
normalization of the one-body distribution, which ensures the inequality fFDT(r, p|β) ≤ 1.
The ansatz (42) provides a suitable interpolation between the known Fermi-Dirac distribution:

fFD(r, p|β) = 1
eβ[ε(r,p)−εF ] + 1

(22)

in the limit of low energies and the quasi-stationary one-body distribution associated with
King models [11–14]:

fK(r, p|β, εc) =
1
α

[
eβ[εc−ε(r,p)] − 1

]
H[εc − ε(r, p)] (23)

in the classical non-degenerate limit. Notice that εF denotes the Fermi energy, which
enable us to rewrite the normalization constant α as α ≡ eβ(εc−εF). Accordingly, the limit
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of low energies (22) corresponds to the condition β[εc − ε(r, p)] � 1, while the classical
non-degenerate limit (23) is given by the conditions α � 1 and fFDT(r, p|β, εc) � 1.
The normalization parameter α characterizes the degree of degeneration of the astrophysical
situation described by this model.

As already shown in the precedent work [25], the thermodynamics of fermionic King
model is driven by the incidence of two characteristic lengths: the tidal radius R and the
Fermi radius RF

R3
F =

1
M

9π4

2g2
h̄6

G3m8 c2. (24)

Here, g = 2s + 1 is the spin multiplicity, the total mass M, and the numerical constant
c = 0.9156. The tidal radius R defined the confinement region r < R where the system
is trapped by its gravitational field. This characteristic length dominates the high energy
branch that ranges from the point of gravothermal collapse uc up to point of evaporation
disruption uc (the same branch observed in classical King model). The Fermi radius RF
determines the low energy branch that corresponds to post-collapse states with degenerate
fermion cores. These two characteristic lengths can be employed to introduce the mass
ratio parameter θ and the Fermi mass MF as follows:

θ =

(
RF
R

)3
≡ MF

M
and MF ≡

1
R3

9π4

2g2
h̄6

G3m8 c2. (25)

The mass ratio parameter characterizes the system degeneracy due to the competition
among quantum and evaporation effects, while the Fermi mass MF is the total mass
corresponding to a self-gravitating degenerate system whose Fermi radius RF is equal
to the tidal radius R. One could expect that the Fermi radius RF for a self-gravitating
degenerate system of fermions should not overcome the value of the tidal radius R. In any
case, the possible existence of an upper limit θm for the mass ratio parameter θ anticipates
that the fermionic King model should exhibit a lower bound mass for the system stability
against evaporation disruption.

Introducing the dimensionless potential Φ(r) and the dimensionless radius ξ = ξcr/R:

Φ(r) = βm[φs − φ(r)], (26)

one obtains the following differential equation:

1
ξ2

d
dξ

[
ξ2 dΦ(ξ)

dξ

]
= −4πF

[
Φ(ξ), µ,

3
2

]
, (27)

which enable us to derive the spherical solutions of fermionic King model. The function
F(Φ, µ, ν):

F(Φ, µ, ν) ≡ 1
Γ(ν)

∫ Φ

0

eΦ−x − 1
1 + eΦ−x−µ

xν−1dx (28)

is the Fermi-King integral, which depends on the degeneration parameter µ = ln α. The integra-
tion of this problem requires both the boundary conditions and the regularity conditions at
the origin:

Φ(0) = Φ0,
dΦ(0)

dξ
= 0, Φ(ξc) = 0 and ξc

dΦ(ξc)

dξ
= −η = −β

GMm
R

, (29)

where η is the dimensionless inverse temperature. Details of numerical calculations and
expressions of thermodynamic observables and potentials will be omitted here in the sake
of brevity. It is important to mention that Chavanis and co-workers addressed in Ref. [24]
the thermodynamics of this model at constant degeneration parameter µ. In my precedent
paper with Espinoza-Solis [25], we have discussed the thermodynamics of this model at
constant total mass M (or constant mass ratio parameter θ), whose results significantly differ
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from the precedent study. For the convenience of the readers, some additional notes are
presented in the Appendix A to clarify the existing differences.

The numerical computation of the dependence µ = µ(Φ0, θ) and the associated caloric
curves η versus u∗ at constant total mass M are shown in Figure 2, where u∗ = −GM2/RU
is the dimensionless inverse energy, with U being the total energy. It was included here
the caloric curve corresponding to the classical King model for comparative purposes.
The observed thermodynamic dependencies can be grouped into three regions of values for
the mass ratio parameter θ, which are distinguished among them by a different qualitative
behavior of the caloric curves:

• The region I: the interval 0 ≤ θ < θ1 ' 1.12× 10−7 (black curves). The gravitational
collapse of fermionic King model represents a discontinuous microcanonical phase
transition, and its thermodynamics exhibits a branch with negative heat capacities.
The classical King model that appears when µ→ +∞ corresponds to the infinite mass
limit θ → 0. In terms of the total mass M, this region corresponds to situations with
high total masses, the interval M1 < M < +∞, where M1 = MF/θ1 ' 8.9× 106MF.

• The region II: the interval θ1 ≤ θ < θ2 ' 1.10× 10−2 (red curves). The gravitational
collapse of fermionic King model turns a continuous microcanonical phase transition,
and its thermodynamics exhibits a branch with negative heat capacities. In terms of
the total mass M, this region corresponds to situations with intermediate total masses,
the interval M2 < M ≤ M1, where M2 = MF/θ2 ' 90.9MF.

• The region III: the interval θ2 ≤ θ < θm ' 4.0 (green curves). The gravitational
collapse of fermionic King model is a continuous microcanonical phase transition,
and its thermodynamics does not exhibit negative heat capacities. In terms of the
total mass M, this region corresponds to situations with low total mass, the interval
M3 < M ≤ M2, where M3 = MF/θm '¼MF.
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Figure 2. (a): Contour maps of the mass ratio parameter θ = MF/M [see in Equation (25)] in the plane of integration
parameters [Φ0, µ] of the Poisson problem (27), which were obtained from numerical procedures designed to fulfil this
purpose. Here, µ = ln α is the degeneration parameter defined from the normalization constant α in Equation (42); Φ0 is the
central value of the dimensionless potential (26). Notice that for each value of the degeneration parameter µ there exist
infinite values for the mass ratio parameter θ since this quantity also depends on the dimensionless potential Φ0, θ = θ(Φ0, µ).
This very fact implies that thermodynamics of fermionic King model at constant degeneration parameter µ differs from its
thermodynamics at constant mass ratio θ (or constant total mass M). (b): Corresponding caloric curves at constant mass ratio
parameter θ in terms of the dimensionless inverse temperature η = βGMm/R and the auxiliary variable u∗ = −GM2/RU
defined from the total energy U. One can observed the existence of three regions with different thermodynamic behavior.
The points (a, b, c, c′, d) are some notable configurations. Among them, it is remarkable the case of configurations (c, c′) over
the curve with θ = 2.84× 10−8 (region I), which exhibit the same energy but different temperatures. The during discontinuous
jump from the profile c towards the profile c′, the system temperature grows and there exist a redistribution of the mass that
leads to the formation of a dense degenerate core. After [25].
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The model does not exhibit solutions for values of the mass ratio parameter θ > θm.
As already commented, the value θm implies the minimum mass M3 = MF/θm for the
system stability. Accordingly, if M is lower than the one quarter of the Fermi mass, the ef-
fective repulsive forces associated to Fermi exclusion principle will overcome the system
gravitation, and the same one will undergo a very intense evaporation until dissipating as
a whole.

The phenomenology of the caloric curves at constant total mass M discussed here
is rather similar to the one the thermodynamics of this model at constant degeneration
parameter µ [24,25]. In fact, the identification of three regions in the phase diagram of the
self-gravitating Fermi gas has been also reported in other studies [8,22], which are related
to the existence of canonical and microcanonical critical points in the self-gravitating Fermi
gas model. The originality of present approach concerns to highlight the importance of
the total mass in the thermodynamic stability of this model. There are other aspects that
are discussed in more details in the precedent work [25], like the formation of degenerate
core via gravothermal collapse. Chavanis and coworkers argued in section VI of Ref. [24]
that the formation of degenerate core falls into unstable branch of caloric curves and this
type of structures (fermion balls) should not be observed at the center of dark matter
haloes (solutions that they referred as embryonic phase). However, the previous claim is
not fully rigorous since solutions with degenerate cores are also present in stable blanches.
According the caloric curves shown in the right panel of Figure 2, the configurations (c, c′)
fall on stable branches of the caloric curve with θ = 2.84× 10−8 (region I). A discontinuous
jump from the profile c towards the profile c′ involves a violent redistribution of the mass
that leads to the formation of a dense degenerate core with a warmer polytropic halo.
In fact, other type of structures can be observed in the thermodynamics of this model, like
stable solutions with degenerate core, isothermal gas envelop and a polytropic halo [25].

3. Application to Dark Matter Halos
3.1. Incidence of Evaporation Effects

Recently, the macroscopic effects of quantum degenerated astrophysical systems
have been applied by de Vega and co-workers to the study of dark matter (DM) halos in
galaxies [31–33]. According to these studies, the quantum effects in warm dark matter
(WDM) could turn important near the galactic centers, overall for the case of dwarf galaxies
(whose content of DM is much more significant). By itself, this claim explains why classical
N-body simulations fail to describe galactic cores and their sizes; e.g., the appearance in
simulations of cuspid distributions like NFW-profile [42]:

ρNFW(r) =
ρ0r3

s

r(rs + r)2 , (30)

where ρ0 and rs are fitting parameters, which is divergent at the origin as the isother-
mal sphere:

ρ(r) =
σ2

v
2πGr2 , (31)

where σ2
v is the velocity dispersion. Profiles with this type of divergences reflect the

gravitational collapse of self-gravitating system of classical non-relativistic point particles.
However, such divergences are absent in self-gravitating systems of fermions [24,25], which
predict the formation of a core-halo structure with a degenerate core for low energies. In other
words, WDM may be capable to solve the called cusp-core problem [43].

In the study of dark matter in galaxies, de Vega and co-workers considered a Fermi-
Dirac distribution (22), but they do not account for the incidence of evaporation. Since a
Fermi-Dirac distribution converges towards the classical Maxwell-Boltzmann distribution (3)
for large energies, their theoretical profiles recover the isothermal sphere tail 1/r2 for large
distances (corresponding to a linear-divergent total mass). To avoid the long-range divergence
of gravitation, they restricted calculations to a finite region of the space below the radius
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r200 (the radius where the mass density equals 200 times the mean DM density), which is a
typical length employed in studies of dark matter halos [44]. Considering precedent studies
concerning the comparison of empirical rotation curves of large galaxies using the Burkert
profile (rh denotes the halo radius and ρ0 the central density):

ρB(r) =
ρ0r3

h
(rh + r)

(
r2

h + r2
) , (32)

de Vega and co-workers have obtained a good agreement among their theoretical profiles
in the classical regime within halos cores for distances r < 2rh [33]. As expected, discrep-
ancies turn significant for larger distances since Burkert profile (32) predicts tails 1/r3

(corresponding to a logarithmic-divergent total mass).
Generally speaking, empirical profiles with tails 1/rα with exponent α = 3− 5 can

be explained by classical astrophysical models considering an evaporation truncation [23].
The fact that observed DM halos can be described using empirical profiles with these
tails is an indicator about the incidence of evaporation effects. In a similar way as a
globular cluster exhibits a tidal radius due to the gravitational influence of its host galaxy,
the galaxies them-selves should exhibit tidal radius due to the gravitational influence
of other galaxies in galactic clusters. For illustrative purposes, it is shown in Figure 3 a
comparison between a density profile near gravothermal collapse corresponding to King
model (γ = 1) and the Burkert profile (32) with fitting radius rh = 0.01R. Despite the
existing of small discrepancies in the innermost regions, the fit is reasonably good for
distances r < 25rh = 0.25R. It is worth to mention that this particular King profile exhibits
an isothermal core. Additionally, it is also shown in this figure a second King profile for
configurations with higher energy (near the point of isothermal collapse), which does not
exhibit an isothermal core [15]. For this case, the fit is much better using an empirical
Plummer-like profile:

ρPl(r) =
ρ0r2n

h(
r2

h + r2
)n , (33)

with n = 2.1 and rh = 0.16R, which is reasonably good for distances r < 2.5rh = 0.40R.
As expected, the high energy King profiles undergo a major incidence of evaporation,
which correspond to empirical profiles (33) with larger exponent n. According to these
examples, Burkert profile (32) not only allows us to infer the existence of evaporation effects,
but also that it corresponds to configurations with isothermal cores, which are observed
for low energies close to gravitational collapse only. This fact was previously noticed
by Chavanis and co-workers in Ref. [23], who presented a more complete comparison
among distributions derived from the classical King model and empirical profiles with tails
1/rα. Fermionic King model should also provide a good fit of dark matter distributions of
galaxies since it contains the classical King model as a limit case. Of course, the available
observational data DM halos might not be confident to show the existence (or nonexistence)
of a finite tidal radius R in the outermost regions.
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Figure 3. Comparison of two King profiles with and without isothermal cores, and the empirical
profiles of Burkert (32) and Plummer-like (33). Here, R denotes the tidal radius.

3.2. New Bounds of WDM Particles Mass m from Fermionic King Model

To reproduce the smaller observed structures, different studies using N-body simula-
tions suggested that the WDM particle mass should be in the keV scale [45–51]. Among dif-
ferent candidates for WDM particles are the called sterile neutrinos with masses of order
of m ∼ keV [52]. Considering the reported data of dwarf galaxy Willman 1, de Vega and
co-workers estimated that the WDM particle mass m is approximately around 2 keV [31].
Their analysis was focussed on the upper bound of the phase space density:

Q(r) =
ρ(r)
σ3(r)

(34)

that arises in the degenerate limit, where ρ(r) is the density and σ(r) the velocity dispersion.
As already commented, the mass bound derived by de Vega and co-workers disre-

gards the incidence of evaporation. Instead, they invoked a conventional recipe that is
rather equivalent to the use of box to enclose the self-gravitating system [2]. Although this
argument is theoretically useful to perform estimations, it is clearly nonphysical for self-
gravitating systems like galaxies, where the escape of constituents is unavoidable process.
The fermionic King model provides a more realistic approach to these situations. The com-
petition of evaporation and quantum effects imply the following upper bound for the
mass-ratio parameter:

θ =
MF
M
≤ θm ' 4, (35)

which depends on the total mass M and the tidal radius R of the system. For systems with
masses below the lower bound M3 =¼MF, the gravitation cannot retain their constituents
and they suffer a complete and violent evaporation disruption. This collective instabil-
ity appears when fermionic quantum pressure overcomes gravitation within the region
enclosed by the tidal radius R. If DM halos are composed of fermionic WDM particles,
the mass-ratio of compact dwarfs galaxies could be close to this upper bound, so that, they
should exhibit strong predominance of quantum degeneration [31–33].
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Let us assume the value g = 2 and the rough estimation R ' 100rh for the tidal
radius R from the halos radius of Burkert profile rh derived from the fit of Figure 3.
The mass-ratio (25) can be expressed as follows:

θ = θh

(
2keV

m

)8
, (36)

where the pre-factor θh is given by:

θh ' 17
(

106M�
M

)(
pc
rh

)3
. (37)

Notice that the pre-factor θh is just the mass-ratio corresponding to a WDM particle
with m = 2 keV. The calculations shown in the Table 1 are based on the same observational
data considered by de Vega and co-workers in Ref. [31]. According to these calculations,
Willman 1 is the dwarf galaxy that exhibits the largest value of the mass ratio parameter
θ, and hence, the one whose internal conditions are closest to the evaporation disruption
associated to the upper bound (35):

θ = 0.085
(

2keV
m

)8
≤ 4. (38)

The previous inequality implies WDM particles with masses m ≥ mmin = 1.2 keV. Con-
sidering this lower bound, the corresponding maximum values θmax of the mass ratios for
most of galaxies shown in Table 1 correspond to the region I, where 0 < θ < θ1 = 1.12× 10−7.
For these cases, the thermodynamics of fermionic King model predicts a gravothermal collapse
for low energies with the character of a discontinuous microcanonical phase transition. Those
galaxies whose mass ratios θ belong to the interval θ1 < θ < θ2 ' 1.10× 10−2 correspond to
the region II, where gravothermal collapse for low energies is a continuous microcanonical
phase transition. Systems under these conditions are more gravitationally stable. In fact, their
thermodynamics is dominated by gravitation because of they exhibit states with negative
heat capacities.

Curiously, Willman 1 is the only dwarf galaxy of Table 1 that could belong to the
region III, where the mass-ratio values are located inside the interval θ2 < θ ≤ θm ' 4.0.
This possibility requires WDM particle with mass m within the range:

mmin = 1.2 keV ≤ m ≤ mmax = 2.6 keV. (39)

If this is correct, then the internal conditions of Willman 1 are exceptionally different from
the rest of the galaxies. The progressive lost of mass and energy associated with the escape
of its constituents (by the incidence of tidal forces) can eventually drive Willman 1 towards
its complete evaporation disruption. The so rare character of dwarf galaxies belonging to
the region III suggests that a stellar system under these conditions should undergo a fast
evolution via the evaporation of its constituents. Studies concerning the dynamics under
evaporation for systems of self-gravitating fermions are required to estimate the associated
evolution times. At this point, it is also reasonable that Willman 1 actually falls into the
region II (more stable system), which requires that the mass of WDM particles obeys the
bound m > 2.6 keV.
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Table 1. Observed values of the DM halos parameters [rh (radius), ρ0 (central density) and Mh (mass)] employed by Destric
and co-workers covering from ultracompact galaxies to large spiral galaxies (obtained from [53–62]). Assuming that the
dwarf galaxy Willman 1 belongs to the region III of fermionic King model, θ2 ≤ θ ≤ θm, the mass m of WDM particles
should belong to the range mmin = 1.2 keV ≤ m ≤ mmax = 2.6 keV. For this range of values, it was calculated the mass ratio
θ = MF/M for the rest of galaxies. Here, θ f is the pre-factor of Equation (36), which corresponds to the mass ratio for a
WDM particle with mass m = 2 keV, while θmax and θmin are the mass ratios corresponding to the minimum and maximum
masses mmin and mmax, respectively. The black values of the mass ratio θ belong to region I (0 < θ < θ1), the red values
belong to the region II (θ1 < θ < θ2), while the green values to the region I (θ2 < θ ≤ θm).

Galaxy rh [pc] ρ0
[
M�pc−3] Mh

[
106M�

]
θmin [mmax] θh θmax [mmin]

Willman 1 19 6.3 0.029 1.1× 10−2 0.085 4.0
Segue 1 48 2.5 1.93 1.0× 10−5 8.0× 10−5 3.7× 10−3

Coma-Berenices 123 2.09 0.14 8.4× 10−6 6.5× 10−5 3.0× 10−3

Leo T 170 0.79 12.9 3.5× 10−8 2.7× 10−7 1.2× 10−5

Canis Venatici II 245 0.49 4.8 3.1× 10−8 2.4× 10−7 1.1× 10−5

Draco 305 0.5 26.5 2.9× 10−9 2.3× 10−8 1.0× 10−6

Leo II 320 0.34 36.6 1.8× 10−9 1.4× 10−8 6.6× 10−7

Hercules 387 0.1 25.1 1.5× 10−9 1.2× 10−8 5.5× 10−7

Boötes I 362 0.38 43.2 1.1× 10−9 8.3× 10−9 3.9× 10−7

Carina 428 0.15 32.2 8.7× 10−10 6.7× 10−9 3.2× 10−7

Ursa Major I 504 0.25 33.2 5.1× 10−10 4.0× 10−9 1.9× 10−7

Sculptor 480 0.25 78.8 2.5× 10−10 2.0× 10−9 9.1× 10−8

Leo IV 400 0.19 200 1.7× 10−10 1.3× 10−9 6.2× 10−8

Leo I 518 0.22 96 1.6× 10−10 1.3× 10−9 6.0× 10−8

Ursa Minor 750 0.16 193 2.7× 10−11 2.1× 10−10 9.8× 10−9

NGC 185 450 4.09 975 2.5× 10−11 1.9× 10−10 9.0× 10−9

Sextans 1290 0.02 116 8.8× 10−12 6.8× 10−11 3.2× 10−9

Canis Venatici I 1220 0.08 344 3.5× 10−12 2.7× 10−11 1.3× 10−9

Fornax 1730 0.053 1750 2.4× 10−13 1.9× 10−12 8.8× 10−11

NGC 855 1063 2.64 8340 2.2× 10−13 1.7× 10−12 7.9× 10−11

NGC 4478 1890 3.7 6.55× 104 4.9× 10−15 3.8× 10−14 1.8× 10−12

Small Spiral 5100 0.029 6900 2.4× 10−15 1.8× 10−14 8.7× 10−13

NGC 3853 5220 0.77 2.87× 105 5.4× 10−17 4.2× 10−16 1.9× 10−14

NGC 731 6160 0.47 2.87× 105 3.3× 10−17 2.5× 10−16 1.2× 10−14

NGC 499 7700 0.91 1.09× 106 4.4× 10−18 3.4× 10−17 1.6× 10−15

Medium Spiral 1.9× 104 0.0076 1.01× 105 3.2× 10−18 2.4× 10−17 1.1× 10−15

Large Spiral 5.9× 104 2.3× 10−3 1.0× 106 1.1× 10−20 8.3× 10−20 3.9× 10−18

3.3. The keV Scale and the Masses of Large Galaxies

According to the estimates shown in Table 1, most of galaxies exhibit mass-ratios θ
compatible with the existence of a discontinuous gravothermal collapse for low energies.
Such a gravitational instability leads to a violent redistribution of the mass that ends with
the formation of a degenerate core of very small size. Accordingly, large galaxies could exhibit
degenerate fermions cores of WDM particles. This idea is not new. Several authors have
claimed in the past that WDM particles could provide a self-consistent model of dark matter
that describes both the center and the halo of the galaxies [63,64]. It has been suggested
that degenerate superstars composed of weakly interacting fermions in the 10 keV range
could be an alternative to the supermassive black holes that are reported to exist at the
center of galaxies [65–69]. The suggestion that DM halos may experience a discontinuous
gravothermal catastrophe was also made by Chavanis et al in Ref. [24]. The mass of the
DM halo above which the gravothermal catastrophe occurs was estimated by these authors
as Mh ∼ 1.60× 107M� for a fermion mass m = 1.23 keV. Their estimation, however, is not
based on the fermionic King model itself, but a model of self-gravitating fermions enclosed
into a box [8]. Despite this last model disregards the effects of evaporation, one observes
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a reasonable agreement of this estimation with the results shown in Table 1. Apparently,
the fermionic King model suggests the lower mass Mh should be slightly larger (for dwarf
galaxies like Sculptor for a fermion with minimal mass m = 1.2 keV).

So far, it was only considered the behavior of WDM particles on the thermodynamics
of these stellar systems. However, the presence of baryonic components (e.g., stars and
inter-stellar gas) also plays an important role in this context. In the study with Gomez-
Leyton concerning the γ-exponential models for a bi-component system, it was shown
that the thermodynamics near gravothermal collapse is dominated by the the behavior
of the heavy component (see in Ref. [19] discussions concerning asymptotic behavior (58)
of gravothermal collapse temperature). Besides, the existence of mass-segregation due
to the mass spectrum of constituents enables the occurrence of gravothermal collapse for
energies higher than the ones associated to a system of identical particles. Accordingly,
the presence of baryonic matter at the innermost regions of dark matter halos must trigger
the formation of degenerate core of WDM particles via gravothermal collapse. Roughly
speaking, this astrophysical phenomenon is quite similar to how the water condensation
in atmosphere is triggered by the presence of condensation nuclei (e.g., dust particles).
The formation of a degenerate core of WDM particles will provoke the reconcentration
and the growth of velocity dispersions of baryonic matter trapped inside this region.
Considering the empirical relations among the masses of supermassive black holes and the
velocities dispersions σ of stars in the bulges of large galaxies [70–72], it is clear that the
formation of a degenerate core of WDM particles favors the growth or even the formation
of these exotic relativistic objects in galaxies with masses large enough.

The long-range character of gravitation ensures that the internal processes taking place
in the galactic core disturb the whole system. In fact, the quantum-relativistic conditions
governing the interior of galactic cores of large galaxies are driven by the overall masses of
these stellar systems. Considering the quantum-relativistic mass bound (19), one obtains:

Mc ∼ 6.4× 1012M⊙ (40)

for the case of WDM particle with mass m = 2 keV. Remarkably, this characteristic mass
is comparable to the typical mass of large galaxies, e.g., the mass of our Milky way is
M = (0.8− 1.5)× 1012M⊙ [73]. The present heuristic arguments suggest that the properties
of the large galaxies could be explained by quantum-relativistic processes involving WDM
particles (e.g., the formation of supermassive black hole via the relativistic gravothermal
collapse of degenerate cores of WDM particles). In other words: in the same way that the
characteristic mass (20) explains the properties of stars in terms of baryonic matter, the characteristic
mass (40) should explain the observed properties of large galaxies if DM halos are composed of
WDM particles with mass m in the keV scale.

Unfortunately, the analysis of the previous possibility is much beyond the reach of
fermionic King model. It requires a relativistic approach analogous the one developed by
Chavanis and Alberti in Refs. [41,74–76], but including the incidence of evaporation effects.
In general, one could expected many qualitative behaviors similar to the ones reported in
Refs. [41,74,76] replacing the box radius by the tidal radius. Accordingly, the relativistic
approach of fermionic King model should be hallmarked by three characteristic lengths: the
tidal radius R, the Fermi radius RF given by Equation (24), and the Schwarzschild radius
RS = GM/c2. These three characteristic lengths enable us to introduce two mass ratios:

θ =

(
RF
R

)3
=

MF
M

and χ =

(
RF
RS

)3/4
∝

Mc

M
, (41)

where MF is the Fermi mass (25), while Mc is the quantum-relativistic mass bound (19).
The thermodynamics of a relativistic fermionic King model will depend on these two
characteristic masses. While the usual (classical) King model is compatible with any value
of the total mass M, the fermionic King model is not consistent for masses below the
lower bound M3 ' ¼MF even for large energies (classical limit). For large values mass
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and energies, the thermodynamic of fermionic King model is also affected by quantum
correlations (see caloric curves shown in the right panel of Figure 2). I think that similar
restrictions should be observed when the total mass M approaches the quantum-relativistic
bound, M ∼ Mc. In particular, one should observed the formation of a black hole from
the gravitational collapse of the degenerate core as discussed in Ref. [76]. Any case,
the relativistic models of self-gravitating fermions under evaporation are of great interest in
the searching of WDM candidates. In principle, these models would enable the derivation
of upper bounds for the mass of WDM particles. The key question here is to clarify the
overall conditions in which a degenerate core of WDM particles collapses to form a black
hole, and then contrast these predictions with observational data of galaxies population
without super-massive black holes [77].

4. Conclusions

In this work, I have reviewed different aspects about the thermodynamics of astro-
physical systems that undergo the evaporation of their constituents. These antecedents
were employed to revisit precedent studies by de Vega and co-workers concerning warm
dark matter in galactic halos [31–33]. According to the present analysis and precedent
studies by Chavanis and co-workers [23], the empirical Burkert profile (32) employed to fit
dark matter halos distributions can be associated to astrophysical models with evaporation
effects for low energies close to gravothermal collapse. Using the reported parameters of
the dwarf galaxy Willman 1, the upper bound (35) for the mass ratio θ = MF/M enable
us to derive the lower bound m ≥ mmin = 1.2 keV for WDM particles. According to this
estimation, most of galaxies are massive enough to undergo a violent gravothermal collapse
that leads to the formation of a degenerate core of WDM particles. Heuristic arguments
were presented in favor that the formation of suppermassive black holes in large galaxies
could be explained by a relativistic gravothermal collapse of degenerate core of WDM
particles with mass m in the keV scale. This picture is highly supported by recent studies
by Chavanis and Alberti concerning the relativistic description of self-gravitating fermions
enclosed into a box [41,74,76]. In any case, the keV scale seems to be very important to
explain the observed properties of dwarfs and large galaxies.

Before end this section, let us refer to some open problems. The present study should
be generalized to describe a more general influence of evaporation, the presence of a
mass spectrum for constituents, as well as the relativistic corrections. As already discussed,
the classical King model (23) is just the case γ = 1 of the γ-exponential models (1). A natural
extension for fermionic King model (42) is the following:

f (r, p|β, εc, γ) =
E(x, γ)

α + ex H[x], (42)

where x = β[εc − ε(r, p)] and E(x, s) the generalized exponential function (2). Interesting
aspects to be studied for the the previous fermionic γ-exponential models are: (a) if the
incidence of quantum effects disturbs the occurrence of the called asymptotic gravothermal
collapse [19], and (b) to clarify the γ-dependence of the upper bound (35) for the mass
ratio parameter θ = MF/M. The presence of a mass spectrum is achieved considering the
methodology discussed in Refs. [19,38]. The relativistic approach requires the adaptation
of the methodology of Alberti and Chavanis [41,74,76] for a system of self-gravitating
fermions that undergo the existence of evaporation. An important antecedent for this task
is the called relativistic Woolley model developed by Katz and Horwitz [78,79], which
should be regarded the case γ = 0 of relativistic γ-exponential models. Although the
previous ingredients will provide a more complete picture to about the thermodynamics
of dark matter halos, their consideration will involve a great complexity in the associated
calculations. As already commented, these relativistic models of fermions would enable the
derivation of upper bounds for the mass of WDM particles through the study of galaxies
population without super-massive black holes [77].
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Appendix A. Additional Notes

The present work differs in mathematical notations and treatments with the work of
Chavanis et al in Ref. [24]. These authors defined the degeneration parameter µCh as follows:

µCh =
η0

A
, (A1)

where η0 = gm4/h3 (g = 2s + 1) and the normalization constant A is given by:

A = η0e−βεm−αCh . (A2)

Here, εm denotes the truncation energy, namely, the escape energy at which the
particles leave the system. The constant αCh is related to the Fermi energy as εF = −αCh/β.
Consequently, the degeneration parameter µCh can be written as:

µCh =
η0

A
≡ eβ(εm−εF). (A3)

In the Section II.E of Ref. [24], these authors invoked a dimensional analysis to estimate
the degeneration parameter µCh using the typical radius R and the typical mass M, and they
obtained the correspondence:

µCh ∼ µBox ∼ η0G
3
2 M

1
2 R

3
2 , (A4)

which looks equivalent to the expression

µCh ∼ 1/θ1/2 (A5)

considering the mass ratio parameter θ introduced in Equation (25).
The degeneration parameter (A3) employed by Chavanis and co-workers corresponds

to the normalization constant α introduced in Equation (42), which is expressed in terms
of the Fermi energy εF, the cutoff (escape) energy εc and the temperature parameter β
as α = eβ(εc−εF). The degeneration parameter µ employed as integration parameter of the
Poisson problem (27) and the Fermi-King integral (28) is the variable

µ = ln α = β(εc − εF), (A6)

which is related to the degeneration parameter µCh employed by Chavanis et al as:

µ ≡ ln µCh. (A7)

The expressions (A4) and (A5) do not apply for the case of fermionic King model: a
given value of the degeneration µ corresponds to different values of the mass ratio parameter
θ because of the dependence of this quantity on the system energy (or the integration
parameter Φ0). This very fact is clearly shown in the left panel of Figure 2. Equation (A4)
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was obtained for the model of self-gravitating fermions enclosed into a box [8], but it
cannot be extrapolate to the case of fermionic King model. This feature explains why the
thermodynamics of fermionic King model at constant degeneration parameter µ differs
from its thermodynamics at constant total mass M. The study by Chavanis and co-workers
in Ref. [24] concerns to the thermodynamics at constant degeneration parameter µ only.
The thermodynamics of fermionic King model at constant total mass M has been recently
discussed by Velazquez and Espinoza-Soliz in Ref. [25] to clarify the role of the total mass
M on the thermodynamic stability. In fact, this second study employs the most relevant
variables of the thermodynamic description: the total energy U, the total mass M and tidal
radius R (regarded here as a fixed parameter that is equivalent to fix the volume V of the
system). Such a description was invoked to obtain a re-derivation of bounds for WDM
particles presented in this paper. Further details about the existing difference between
these two frameworks are discussed in this precedent paper.
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