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Abstract: We set up a consistent background field formalism for studying the renormalization group
(RG) flow of gravity coupled to N f Dirac fermions on maximally symmetric backgrounds. Based on
Wetterich’s equation, we perform a detailed study of the resulting fixed point structure in a projection
including the Einstein–Hilbert action, the fermion anomalous dimension, and a specific coupling
of the fermion bilinears to the spacetime curvature. The latter constitutes a mass-type term that
breaks chiral symmetry explicitly. Our analysis identified two infinite families of interacting RG fixed
points, which are viable candidates to provide a high-energy completion through the asymptotic
safety mechanism. The fixed points exist for all values of N f outside of a small window situated at
low values N f and become weakly coupled in the large N f -limit. Symmetry-wise, they correspond to
“quasi-chiral” and “non-chiral” fixed points. The former come with enhanced predictive power, fixing
one of the couplings via the asymptotic safety condition. Moreover, the interplay of the fixed points
allows for cross-overs from the non-chiral to the chiral fixed point, giving a dynamical mechanism
for restoring the symmetry approximately at intermediate scales. Our discussion of chiral symmetry
breaking effects provides strong indications that the topology of spacetime plays a crucial role when
analyzing whether quantum gravity admits light chiral fermions.

Keywords: models of quantum gravity; asymptotic safety; functional renormalization group; gravity–
matter models; fermions in curved spacetime

1. Introduction

Asymptotic Safety [1,2] constitutes a powerful mechanism for providing a consis-
tent and predictive high-energy completion of a quantum field theory. The construction
hinges on the presence of a suitable (interacting) fixed point of the theories renormal-
ization group (RG) flow. Building on the initial proposal by Weinberg [3,4], functional
renormalization group methods, pioneered in [5–8], have provided substantial evidence
supporting the existence of such a fixed point, the so-called Reuter fixed point, in the
context of gravity [9–53], and also a wide range of gravity–matter systems [54–82]. See
also [83–88] for reviews and [89–91] for recent lecture notes. In particular, there has been a
significant effort in developing the form-factor program, analyzing approximations that
retain an arbitrary momentum dependence at the level of the effective action [76,92], re-
constructing the graviton propagator [93–96], and refining the computational toolbox in
arbitrary backgrounds [97–100].

An important step toward a realistic theory of quantum gravity is the inclusion of
matter degrees of freedom. Within the asymptotic safety program, this step is conceptually
straightforward. The corresponding matter fields are simply added to the theory. Subse-
quently, one analyzes the resulting RG flow, searching for fixed points that could provide
potential high-energy completions. This opens the perspective on a new standard model of
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particle physics in which the matter degrees of freedom mandated by the standard model
of particle physics are supplemented by the graviton as an additional force carrier.

Tentative studies suggest that the RG flow of this setting indeed supports interacting
fixed points, which could render the construction asymptotically safe [56,63,70]. Remark-
ably, these fixed points come with the potential of fixing some of the free parameters of
the standard model, e.g., the value of the electromagnetic coupling [101,102], the Higgs
mass [55,74], or the ratio of quark masses [103].

An important element in the construction of the new standard model of particle physics is
the inclusion of fermions. Within the asymptotic safety program, this question has already
been looked into in a series of works [56,61,63,70,75,80,104–111]. In particular, non-minimal
couplings between fermions and gravity have been considered [61,73]. This entails the
effect of “gravitational catalysis” where the coupling to the spacetime curvature essentially
provides a mass to the fermions [109,111].

Up to now, fermions in Asymptotic Safety have predominantly been investigated
using a hybrid approach where the beta functions in the matter sector are computed in a
flat background. While this leads to significant technical simplifications and is conceptually
close to computations carried out in the context of particle physics, the specific background
also comes with features and choices that are non-generic when considering more general
curved backgrounds, see, e.g., [105] for an exemplary exposition.

This provides a clear motivation for investigating the RG flow of gravity coupled to
fermionic matter beyond these flat background studies. Building on our earlier work [80],
we investigate this question in a truncation comprising the Einstein–Hilbert action, the
fermion anomalous dimension and a coupling between the fermion bilinears and the
spacetime curvature. The latter provides a prototypical example for an interaction breaking
chiral symmetry explicitly. We provide a detailed derivation of the beta functions on a
background-sphere and carry out a thorough analysis of the resulting fixed point structure.
An important feature of our setting is that it can be restricted to several well-motivated
subtruncations, comprising

(i) fermions minimally coupled to the Einstein–Hilbert action,
(ii) fermions coupled to the Einstein–Hilbert action including the fermion

anomalous dimension,
(iii) the setting (i) complemented by the coupling of the fermion-bilinear to the spacetime

curvature, and
(iv) the full system including all couplings and anomalous dimensions.

This feature allows the explicit testing of the robustness of a fixed point structure
under a refinement of the approximation. In this way, the influence of various factors (as the
matter anomalous dimension) can be investigated systematically. Moreover, mechanisms
leading to new classes of fixed points, which are not visible in simpler approximations, are
readily understood based on explicit examples.

As a key result, we identify continuous families of interacting renormalization group
fixed points—so-called non-Gaussian fixed points (NGFPs)—which are robust under the
refinement strategy. Within our approximation, the fixed points come with varying degrees
of predictive power. The existence of two of these families are tied to the inclusion of the
non-minimal interaction term coupling the fermion-bilinear to the spacetime curvature.
Our analysis shows that the role of chiral symmetry in a curved background is actually
more subtle than suggested by flat-background computations since the change of the
background topology unlocks new symmetry-breaking ingredients, also see [112] for a
related discussion.

Our work is organized as follows. Section 2 introduces the Wetterich equation together
with the truncation ansatz studied in this article. In particular, the fate of chiral symmetry
is discussed in detail. The beta functions encoding the scale-dependence of the couplings
and anomalous dimensions contained in our ansatz are reported in Section 3. We perform
a detailed analysis of the fixed point structure encoded in this system in Section 4.
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The complexity of the approximation is increased from subsection to subsection,
giving control of the robustness of the fixed point structure. The RG flow controlled by the
interplay of these fixed points is investigated in Section 5. Section 6 contains our conclusion.
The technical details of our investigation, including a brief introduction to the spin-base
formalism employed in our computation, have been relegated to two appendices.

2. Gravitational RG Flows Including Fermions in a Curved Background

We start by outlining the general framework underlying our computation. Technical
details about the spin-base formalism have been relegated to Appendix A.

2.1. The Wetterich Equation and Its Projection

Starting from the pioneering work [8], the functional renormalization group equation
(FRGE) for the effective average action Γk [5–7] has played a key role in exploring the
existence and predictive power of the Reuter fixed points in the context of gravity and
gravity–matter systems. The Wetterich equation [5–7]

k∂kΓk =
1
2

STr
[(

Γ(2)
k +Rk

)−1
k∂kRk

]
(1)

encodes the change of Γk when integrating out quantum fluctuations with momenta p2 ≈ k2

where k corresponds to a coarse-graining scale. Here, STr contains a sum over all fluctuation
fields, an integral over loop-momenta, and a minus sign for fermionic degrees of freedom.
The Hessian Γ(2)

k is the second functional derivative of Γk with respect to the fluctuations.
The regulator Rk suppresses fluctuations with p2 . k2 by a k-dependent mass-term. By
constructionRk falls off sufficiently fast for p2 � k2, ensuring that the trace does not give
rise to UV-divergences. The interplay of the regulator appearing in the numerator and
denominator ensures that the flow of Γk is driven by integrating out momenta close to the
scale k [113,114].

In this work, we are interested in studying the RG flow of gravity supplemented by
N f Dirac fermions ψ in a four-dimensional spacetime. The gravitational degrees of freedom
are encoded in the spacetime metric gµν, which is decomposed into a fixed background
metric ḡµν and fluctuations hµν by performing a linear split

gµν = ḡµν + hµν . (2)

In the sequel quantities constructed from the background metric will be marked by a bar.
The metric fluctuations are further decompose into their trace h and traceless part ĥµν,

hµν = ĥµν +
1
4

ḡµνh , ḡµν ĥµν = 0 . (3)

Similarly, we decompose the fermions according to1

ψ = θ + χ , ψ̄ = θ̄ + χ̄ , (4)

where θ and χ are the background and fluctuations, respectively. We define ψ̄ ≡ ψ†h with
the internal spinor metric h satisfying h† = −h, c.f. Appendix A for more details on our
spinor conventions.

We then approximate the effective average action by

Γk[g, ψ, ψ̄, ḡ] = Γgrav
k [g, ḡ] + Γfermion

k [g, ψ, ψ̄, ḡ] + Γgf
k [g, ḡ] + Sghost[g, C, C̄, ḡ] . (5)

The gravitational part is approximated by the Einstein–Hilbert action,

Γgrav
k [g, ḡ] =

1
16πGk

∫
d4x
√

g[−R + 2Λk] , (6)
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with Gk and Λk being the running Newton’s coupling and cosmological constant, respec-
tively.2 The gravitational sector is supplemented by the harmonic gauge condition

Γgf
k [g, ḡ] =

1
32πGk

∫
d4x
√

ḡ ḡµνFµFν , Fµ = D̄νhµν −
1
2

D̄µ h , (7)

and the resulting (classical) ghost action

Sghost[g, C, C̄, ḡ] = −
√

2
∫

d4x
√

ḡ C̄µMµ
ν Cν , (8)

For g = ḡ, one hasMµ
ν = δ

µ
ν D̄2 + R̄µ

ν. The fermionic part of the action contains N f Dirac
fermions and is taken to be

Γfermion
k [g, ψ, ψ̄; ḡ] =

∫
d4x
√

g Zψ
k { ψ̄[i /∇+ mγ5]ψ + α̃kR ψ̄γ5ψ} . (9)

Here, Zψ
k denotes the wave function renormalization associated with the fermionic fields,

/∇ = γµ∇µ is the covariant derivative containing the spin connection, and m denotes
the fermion mass. In addition, our setting includes the scale-dependent coupling α̃k
multiplying a mass-type term where the mass of the fermions is provided by the Ricci
curvature R. The conventions on the γ-matrices are chosen such that the kinetic term
squares to the Klein–Gordon equation while, at the same time, satisfying the identity (A12).

We compute the flow of Gk, Λk, α̃k and the scale-dependence of Zψ
k in the background

field approximation, evaluating the FRGE (1) at zeroth order in the fluctuation fields. The
information about the k-dependence of the couplings is then encoded in the coefficients
multiplying the interaction monomials

I1 =
∫

d4x
√

ḡ , I2 =
∫

d4x
√

ḡR̄ , I3 =
∫

d4x
√

ḡθ̄ i /∇ θ , I4 =
∫

d4x
√

ḡR̄ θ̄γ5θ . (10)

The computation of these coefficients can significantly be simplified by a clever choice
of background fields to allow disentangling these contributions. In practice, we work with
ḡµν as a one-parameter family of metrics on the Euclidean four-sphere parameterized by
the radius of the spheres. The background curvature tensors then satisfy

R̄µν =
1
4

ḡµν R̄ , R̄µνρσ =
R̄
12
(

ḡµρ ḡνσ − ḡµσ ḡνρ

)
, D̄µR̄ = 0 . (11)

In addition, we impose that the background spinor satisfies the generalized eigenvalue equation

∇µ θ = i

√
R̄
48

γµ θ . (12)

Noting that the spectrum of the Dirac operator on a four-sphere is given by [116]

spec{/∇} = {±i

√
R̄
12

(l + 2)} , l = 0, 1, 2, · · · , (13)

it is easily verified that the choice (12) corresponds to the lowest eigenvalue of /∇. Notably,
this is the only eigenspinor of the Dirac operator that satisfies a generalized eigenvalue
equation of the form (12), see (A16). At this stage, the following important remark is
in order. Structurally, Equation (12) is quite different from a flat background where
eigenspinors of the Dirac operator are obtained in Fourier space, i /∇θ = /p θ. In this case, /∇
has a continuous spectrum, and it is admissible to work with a background spinor that is
covariantly constant,∇µθ = 0. Since the spectrum of /∇ on the sphere does not admit a zero
mode, it is clear that this choice is not admissible on spherically symmetric backgrounds
for purely geometrical reasons, though.
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The completion of our setup requires specifying the regulatorRk. In the gravitational
sector, we generate the matrix elements via the substitution rule

� 7→ �+ Rk(�) . (14)

The scalar regulator function Rk(�) is taken to be of Litim-type [117,118], RLitim
k (z) =

(k2− z)Θ(k2− z), where Θ(x) is the Heaviside step function. The coarse-graining operator
� is chosen as the Laplacian constructed from the background metric, �grav = −ḡµνD̄µD̄ν.
In the classification [84], this corresponds to a regulator of type I. Applying (14) to the
graviton propagator (A27) yields the matrix elements ofRk associated with the graviton

[
Rk|ĥĥ

]
µν

ρσ =
1

32πGk
Rk(�)

(
1
2

(
δ

ρ
µδσ

ν + δ
ρ
νδσ

µ

)
− 1

4
ḡµν ḡρσ

)
,

Rk|hh = − 1
128πGk

Rk(�) .
(15)

Following the discussion [105], the fermionic sector admits two canonical choices
for �:

�I ≡ −ḡµν∇̄µ∇̄ν , �II ≡ − /̄∇2 . (16)

These two choices are related by the Lichnerowicz formula

− /̄∇2
= −ḡµν∇̄µ∇̄ν +

1
4

R̄ , (17)

i.e., the two coarse-graining operators differ by a covariantly constant endomorphism only.
Hence, they can be combined into a single expression,

�ψ ≡ − /̄∇2
+ βR̄ , (18)

where β = 0 and β = −1/4 corresponds to �ψ being the squared Dirac operator and the
Laplacian, respectively. Motivated by the structure of the mass term appearing in (9), we
construct the regulator in the fermionic sector by replacing m with a k-dependent regulator
of dimension one

Rk|ψ̄ψ = k Zψ
k γ5

(
1−
√
�ψ/k

)
Θ
(

1−
√
�ψ/k

)
. (19)

This specific form of the regulator dresses the fermion kinetic term according to±Zψ
k

√
p2 →

±Zψ
k

√
p2 + k2(rψ

k )
2 with rψ

k ≡
(

1−
√
�ψ/k

)
Θ
(

1−
√
�ψ/k

)
being the dimensionless pro-

file function in the fermionic sector. Hence, it suppresses fluctuation modes with p2 � k2

irrespective of the corresponding sign of the eigenvalue. This completes the setup underly-
ing the RG analysis of our work.

2.2. Chiral Symmetry on Spherically Symmetric Backgrounds

Before giving the results of our computation, it is instructive to discuss the role of
chiral symmetry breaking in the setting described in the previous subsection. By definition,
chiral transformations rotate the left-handed and the right-handed components of a spinor
by an independent phase,

ψ→ eiϕγ5 ψ , ψ̄→ ψ̄ eiϕγ5 , (20)

with identical transformations for the background and fluctuation fields. The standard
model of particle physics indicates that there are sectors where chiral symmetry must be
unbroken at the typical energy scales associated with quantum gravity effects, typically as-
sumed to be set by the Planck scale MPl ≈ 1018 GeV. Any phenomenologically viable theory
of quantum gravity must therefore admit “light” chiral fermions [104]. The symmetry may
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then provide a valuable testbed for possible high-energy completions of gravity–matter
systems in general and via the asymptotic safety mechanism in particular.

Applying the transformation (20) to our ansatz for Γk shows that the gravitational
sector and the fermion kinetic term is invariant under chiral transformations. The mass term
as well as the interaction coupling the fermion-bilinear to the spacetime curvature break
this symmetry explicitly. On the basis that gravity couples to Dirac fermions, independently
of their handedness, one expects that there is a consistent solution of the flow equation
where the couplings of the chiral symmetry breaking terms are zero for all values of the
coarse-graining scale k.

At this point, apart from the chiral symmetry breaking terms in the action, our setup
of the flow equation contains two additional sources for chiral symmetry breaking. First,
the regulator Rψ

k introduced in Equation (19) is modeled according to a fermion mass
term. As a result, it induces a chiral symmetry breaking component in the flow.3 The
flat background computation recently presented in [119] followed an alternative route,
taking the regulator to be proportional to the fermion kinetic term, i.e., Rk(p2)|ψ̄ψ =

Zψ
k /p
(√

k2/p2 − 1
)

Θ(1− p2/k2). This suggests a chiral symmetry preserving extension to
general backgrounds given by

Rk(�
ψ)|ψ̄ψ = Zψ

k /̄∇
(√

k2/�ψ − 1
)

Θ(1−�ψ/k2) . (21)

While it would be interesting to compare our results to a flow computed based on this
choice, this is beyond the present study and may be the subject of subsequent work.

A second source of chiral symmetry breaking emanates from the background spinor
formalism. Explicitly, the generalized eigenvalue Equation (12) does not adhere to chiral
symmetry. This may easily be seen by evaluating the fermion kinetic term for this specific
choice of background

∫
d4x
√

ḡ ψ̄ i /̄∇ψ

∣∣∣∣
χ̄=χ=0

= −
∫

d4x
√

ḡ

√
R̄
3

θ̄θ . (22)

The resulting term has the structure of a mass term, signaling the breaking of chiral
symmetry by the choice of background. This property is actually not limited to the specific
choice of mode made in (12). Any background spinor that is an eigenvalue of the Dirac
operator on the background sphere, satisfying /∇θ = λθ, induces chiral symmetry breaking
terms based on the argument (22). Since any spinor can be expanded in this eigenbasis, it is
difficult to have a non-trivial fermionic background field that preserves the transformation
law (20) on a spherically symmetric background.

3. Beta Functions

We now give the result for the beta-functions encoding the scale-dependence of
the couplings Gk, Λk, and α̃k. The technical details underlying this computation have
been relegated to Appendix B. Further details on working with spinors on a spherically
symmetric background and the graviton-fermion vertices can be found in Appendix A.

3.1. Beta Functions

The scale-dependence of Gk, Λk and α̃k together with the fermion wave-function renor-
malization Zψ

k is obtained by substituting the ansatz (5) into the Wetterich Equation (1),
compute the resulting operator traces, and comparing the coefficients of the interaction
terms (10) appearing on the left- and right-hand side. The result is conveniently expressed
in terms of the dimensionless couplings

gk ≡ Gk k−2 , λk ≡ Λkk2 , αk ≡ α̃k k , (23)
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supplemented by the anomalous dimension of Newton’s coupling ηN and the fermionic
fields ηψ defined as

ηN ≡ G−1
k k∂kGk , ηψ ≡ − k∂k ln Zψ

k . (24)

In order to ease the readability of lengthy formulas, we will frequently suppress the
subscript k, setting gk ≡ g, etc. The scale-dependence of the couplings (23) is then encoded
in an autonomous system of coupled differential equations

k∂kgk = βg(g, λ, α) , k∂kλk = βλ(g, λ, α) , k∂kαk = βα(g, λ, α) . (25)

In addition to their dependence on the couplings, the beta functions also depend on
the parameter β specifying the coarse-graining operator (18). The beta functions in the
gravitational sector are given by 4

βg = (2 + ηN) g ,

βλ =(ηN − 2)λ +
g

4π

[(
10− 5

3
ηN

)
1

(1− 2λ)
− 8
]
−

N f g
12

(
4 + (8− 3π)ηψ

)
.

(26)

The explicit expression for the anomalous dimension ηN takes the form

ηN =
g
(

Bgrav
1 + N f (Bferm

1 + Bferm
2 ηψ)

)
1− g Bgrav

2
, (27)

where

Bgrav
1 = − 1

3π

[
9

(1− 2λ)2 −
5

(1− 2λ)
+ 7
]

,

Bgrav
2 =

1
12π

[
6

(1− 2λ)2 −
5

(1− 2λ)

]
,

Bferm
1 = − 1

6π
[(2− π)(1 + 6β) + 12α] ,

Bferm
2 =

1
12π

[(2− π)− 24(3− π) α + 6(8− 3π)β] .

(28)

The running of αk and the fermion anomalous dimension turn out to be cubic and
quadratic in α, respectively, and can be parameterized as

βα = A0 + (A1 + 1 + ηψ) α + A2 α2 + A3 α3 , (29)

and
ηψ = C0 + C1 α + C2 α2 . (30)

The coefficients Ai and Ci depend on g, λ, and ηψ and take the form

Ai =
g
π

[A1
i + Ã1

i ηψ

(1− 2λ)
+

A2
i + Ã2

i ηψ

(1− 2λ)2 +
A3

i
(1− 2λ)3

]
, Ci =

g
π

[ C1
i + C̃1

i ηψ

(1− 2λ)
+

C2
i

(1− 2λ)2

]
. (31)

The explicit computation gives the values tabulated in Table 1. The terms proportional to
ηψ can be understood as non-perturbative contributions resulting from resuming certain
perturbative contributions to the flow. The results for the anomalous dimensions are given
in implicit form. The corresponding system of linear equations is readily solved to obtain
the anomalous dimensions as a function of the scale-dependent couplings g, λ, and α.

The beta functions (26) and (29) together with the explicit expressions for the anoma-
lous dimensions (27) and (30) constitute the main result of this section. They extend the
computation presented in [80] by including the effect of the wave-function renormalization
in the fermionic sector. This extension gives valuable information about the robustness of
the fixed points and RG flows resulting from the ansatz given in Section 2.1.
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Notably, the beta functions are singular for λ = 1/2. This feature is linked to the
background graviton propagator (A27), which develops a first-order pole at finite mo-
mentum if the cosmological constant takes positive values. The condition λ = 1/2 then
parameterizes a singular locus in the g-λ-α-space at which the RG trajectories obtained
from integrating the beta functions may terminate at finite values of k. See [10,30] for a
more detailed discussion.

Table 1. List of the numerical coefficients appearing in the parameterization (31). The coefficients
not listed in the table vanish. The coefficients Aj

i agree with the ones published in [80].

Coefficient Numerical Value

A1
0 − 3

32

A1
1 − 7

6 + 7
16 π − 1

2 β

A1
2

47
12 −

5
4 π + ( 45

4 −
45
16 π)β

A1
3

9
10

A2
0

3
8 −

15
128 π + 1

32 ηN

A2
1

107
30 + 1

32 π + ( 1
30 −

13
64 π)ηN − 1

4 β− ( 39
40 −

21
64 π) β ηN

A2
2

169
120 −

1
2 π + ( 101

280 −
1
8 π)ηN + ( 9

2 −
9
8 π)β− ( 61

20 −
15
16 π) β ηN

A2
3 − 17

10 + ( 79
28 −

27
32 π)ηN

A3
0

7
20 −

3
32 π − ( 179

1120 −
3

64 π)ηN

A3
1 − 67

30 −
1
8 π + ( 47

210 + 1
32 π)ηN

A3
2 − 17

105 + ( 143
630 −

1
16 π)ηN

Ã1
0 − 9

32 + 3
32 π

Ã2
0 − 5

32 + 3
64 π

Ã1
1

21
16 −

7
16 π − 1

8 β

Ã2
1

1
12 −

1
32 π

Ã1
2

43
40 −

7
4 π −

( 9
4 −

9
16 π

)
β

Ã2
2

49
60 −

1
4 π

Ã1
3

163
10 −

21
4 π

C1
0

3
4 −

9
32 π

C2
0 − 75

16 −
9

64 π + ( 23
40 + 3

32 π) ηN

C1
1

21
4 −

45
32 π

C2
1

21
10 −

9
16 π − ( 277

280 −
9

32 π) ηN

C1
2 − 39

10 + 9
8 π

C2
2 − 23

10 + 3
8 π + ( 41

140 −
3

64 π) ηN

C̃1
0 − 27

32 + 9
32 π

C̃1
1 − 15

8 + 9
16 π

C̃1
2 − 1

2 + 3
16 π

3.2. Structural Properties of the Beta Functions

At this stage, it is instructive to take limits of our beta functions and compare them to
earlier results in the literature. Setting the matter contributions to zero, one recovers the
beta functions of the Einstein–Hilbert truncation [2,8].
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The ambiguity in the coarse-graining operator (18) raises the natural question if the
parameter β can affect the RG flow at a qualitative level. This is conveniently studied by
restricting the full setup to the case of minimally coupled fermions, setting αk = 0 and
switching off the fermion wave-function renormalization ηψ = 0. The equation βg = 0
then admits solutions with non-vanishing g∗ if η∗N = −2. Assuming that its numerator is
positive, Equation (27) then entails that g∗ > 0 requires

Bgrav
1 + Bferm < 0 . (32)

Substituting the explicit expressions given in (28) entails that g∗ changes sign if[
9

(1− 2λ)2 −
5

(1− 2λ)
+ 7
]
+

N f

2

[
2− π + (12− 6π)β

]
= 0 . (33)

For β < − 1
6 the straight bracket multiplying N f is positive. If the first term is positive and

finite, this entails that (32) is satisfied for all values of N f . Conversely, β > − 1
6 entails that

(again for λ < 1/2 kept fixed) there is a critical value

Ncrit
f = 2

[
9

(1− 2λ)2 −
5

(1− 2λ)
+ 7
]

/
[

π − 2 + (6π − 12)β

]
> 0 , (34)

where the condition (32) is violated and g∗ moves to negative values. This mechanism,
leading to a upper bound on the number of fermions for which g∗ > 0, was first discussed
in detail in [105]. In a flat background one has /p2 = p2, corresponding to the case β = 0.
Computations on a spherical symmetric background can be based on coarse-graining with
the square of the Dirac operator (β = −1/4), which does not lead to a violation of (32).
From the structure of Bferm found in (28), it is clear that both the inclusion of α and ηψ

may crucially affect the condition (32). Following [80], this observation constitutes one
motivation to study RG flows including the non-minimal fermion interaction terms (9).

From the viewpoint of chiral symmetry, an intriguing property of βα is the non-
vanishing coefficient A0. Barring miraculous cancellations, this entails that any interacting
fixed point with g∗ 6= 0 also comes with a non-zero value α∗. This entails that any
interacting RG fixed point found in the present computation comes with a (possibly small)
chiral symmetry breaking component associated with the coupling of the spinor bilinear to
the spacetime curvature. At this point, it is instructive to scrutinize this property in more
detail. For this purpose, we compute the coefficient A0 with the right-hand side of (12)
artificially set to zero

A1
0

∣∣∣
∇µθ=0

=
3
32

,

A2
0

∣∣∣
∇µθ=0

=
1
2
− 15

128
π +

(
23

160
− 3

64
π

)
ηN ,

A3
0

∣∣∣
∇µθ=0

=
7
20
− 3

32
π −

(
179

1120
− 3

64
π

)
ηN .

(35)

In a sense, this may correspond to a hybrid-type of computation where the flow of the mat-
ter couplings is evaluated on a flat background while the gravitational sector is computed
utilizing the background sphere. The contribution of the non-trivial background spinor
∆Ai

0 ≡ Ai
0 − Ai

0

∣∣
∇µθ=0 can then be isolated by taking the difference between the result (35)

and the coefficients given in Table 1

∆A1
0 = − 3

16
, ∆A2

0 = −1
8
−
(

9
80
− 3

64
π

)
ηN , ∆A3

0 = 0 . (36)
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The vanishing of ∆A3
0 indicates that this term receives contributions from the regulator only.

In general, the ∆Ai
0 are non-vanishing. This establishes that, even in the case where no

additional chiral symmetry breaking terms are induced (e.g., by a mass-type regulator in
the fermionic sector), the background spinor equation will induce a non-trivial coefficient
A0. This makes the flow qualitatively different from the one computed for matter sectors
on a flat background.

4. Fixed Point Structure for Gravity-Fermion Systems

The main result of the previous section is the explicit form of the beta functions
encoding the scale-dependence of the dimensionless couplings gk, λk, and αk as well as the
fermion anomalous dimension ηψ. These beta functions depend parameterically on the
number of fermions N f and the parameterization of the coarse-graining operator β. The
explicit expressions (26) and (29) then serve as our starting point for studying the fixed
point structure of the system. Clearly, there is a Gaussian fixed point (GFP), situated at
{gGFP
∗ , λGFP

∗ , αGFP
∗ } = {0, 0, 0}, which is present at all levels of our approximation. Thus,

our goal is to identify the non-Gaussian fixed points (NGFPs) that could provide a high-
energy completion of the gravity-fermion system via the asymptotic safety mechanism.
The interplay of the fixed points will be studied in Section 5.

Let us start by introducing the general framework. We denote the dimensionless couplings
collectively by ui = {g, λ, α}. At a fixed point ui

∗, all beta functions vanish simultaneously,

βuj(ui
∗) = 0 , ∀ i . (37)

This entails that the dimensionless coupling constants remain finite if the underlying RG
trajectory is dragged into a fixed point as k → ∞. The set of these asymptotically safe
trajectories spans the UV-critical hypersurface of the fixed point. Whether a given direction
is UV-attractive (UV-relevant) or UV-repulsive (UV-irrelevant) is conveniently studied by
linearizing the beta functions at the fixed point. Defining the stability matrix associated
with a given fixed point u∗,

Bi
j ≡ ∂uj βui

∣∣
u=u∗

, (38)

eigendirections VI with stability coefficients θI , BVI = −θIVI , are UV-attractive if Re θI > 0
and UV-repulsive if Re θI < 0. Since B is not necessarily symmetric, the stability coefficients
can be complex. Notably, the θI constitute observable quantities. Thus, they provide
valuable probes for judging the robustness of approximations based on truncating the
action functional.

In the following subsections, we will gradually build up the analysis, starting with
minimally coupled fermions in Section 4.1. The effect of the chiral symmetry breaking
fermion-curvature coupling, initially studied in [80] and also [73,119], is reviewed in
Section 4.2. We analyze the fixed point structure of the full system in Section 4.3 and
conclude with a discussion of the chiral symmetry breaking terms in βα in Section 4.4. Our
main result are the two families of RG fixed points characterized in Figures 8 and 9, which
are robust under the extension of the projection space and satisfy the criterion of being
almost Gaussian in the sense that quantum fluctuations do not provide “large corrections”
to the classical values of the critical exponents.

4.1. Fermions Minimally Coupled to Gravity

We start by studying the fixed point structure arising from minimally coupled fermions,
restricting ourselves to the subsystem where αk = 0.
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4.1.1. Minimally Coupled Fermions without the Fermion Anomalous Dimension

The first level of the analysis also switches off the fermion wave function renormaliza-
tion by setting ηψ = 0. In this case, the beta functions (26) simplify to

βg = (2 + ηN) g ,

βλ =(ηN − 2)λ +
g

4π

[(
10− 5

3
ηN

)
1

(1− 2λ)
− 8
]
−

N f g
3

.
(39)

The explicit expression for ηN takes the form

ηN =
2g
(

22− 36λ + 56λ2 − N f (π − 2) (1 + 6β) (1− 2λ)2
)

g (1 + 10λ)− 12π (1− 2λ)2 . (40)

The Einstein–Hilbert truncation without matter fields is recovered by setting N f = 0. In
this case, the flow is independent of β and one recovers the well-known Reuter fixed point

g∗ = 0.707 , λ∗ = 0.193 , θ1,2 = 1.48± 3.04i . (41)

The inclusion of fermions results in a deformation of the gravitational fixed point.
Notably, the deformed fixed points exist for all values of N f for both values of β. This can
be seen in the top line of Figure 1. A remarkable feature is that the β = 0-case exhibits
a critical number of fermions Ncrit

f = 12.26 where the NGFP transitions from g∗ > 0 to
g∗ < 0. From the perspective of the background field approximation, NGFPs situated at
g∗ < 0 are problematic for phenomenologically admissible high-energy completions of
gravity: from (39) one concludes that βg = 0 when g = 0. As a consequence, the RG flow of
Newton’s coupling cannot change its sign. At low energy, gravity being attractive requires
a positive value G0, which cannot be reached from a NGFP situated at g∗ < 0.5 On this
basis, one could then conclude that not all NGFPs are located such that it may serve as a
building block for a theory with a phenomenologically viable high energy completion.
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β=0
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-20
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20
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β=0
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5 10 15 20 25
Nf0
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Reθ1,2

β = 0
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Nf0
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4
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β = -1/4

Figure 1. The position and critical exponents of the NGFP arising from (39) as function of Nf . The blue
and orange lines correspond to β = −1/4 (coarse-graining by the Laplacian) and β = 0 coarse-
graining by the squared Dirac operator). Notably, the NGFP exists for all values N f . For β = 0 there
is a critical number of fermions Ncrit

f = 12.26 where the NGFP transition from g∗ > 0 to g∗ < 0. (The
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real part of the critical exponents as a function of N f is shown in the bottom row. For low values
N f , the stability coefficients θ1,2 are a complex pair. The critical exponents turn real at N f ≈ 1.33
(β = −1/4) and N f ≈ 1.29 (β = 0), respectively. This transition is magnified in the insets shown in
the lower row.

The critical exponents of the NGFPs are shown in the lower row of Figure 1. Starting
from the gravitational fixed point (41) and increasing N f , one observes that they become
real at N f ≈ 1.33 (β = −1/4) and N f ≈ 1.29 (β = 0), respectively. The fact that the
critical exponents vary mildly with N f indicates that the even the inclusion of a large
number of matter fields does not crucially alter the stability properties of the fixed point.
This provides a clear indication that the NGFPs seen in the present setting are essentially
gravity-dominated. Remarkably, the transition from g∗ > 0 to g∗ < 0 leaves no imprint on
the critical exponents, justifying the deformation of the gravitational fixed point persists
for all values of N f also in the peculiar case of β = 0.

Intriguingly, the properties of the NGFPs for large numbers of fermion fields can be
studied analytically. Using a large-N f -expansion, the position of the fixed point is given by

g∗ ' −
12π

N f (π − 2)ξ
, λ∗ '

π

(π − 2)ξ
+

λ
(1)
∗ (ξ)

N f
. (42)

Here, we abbreviated ξ ≡ 1 + 6β and the '-symbol indicates that the right-hand side is an
expansion in 1/N f with terms of order O(1/N2

f ) being neglected. The coefficient λ
(1)
∗ (ξ) is

positive for all values β. Its explicit form is tabulated in Table 2. The large-N f expansion of
the critical exponents has a similar structure. Computing the stability matrix, substituting
the general solution for g∗, and λ∗, and subsequently performing the large-N f expansion
of the critical exponents yields

θ1 ' 4 +
θ
(1)
1

N f
, θ2 ' 2 +

θ
(1)
2

N f
. (43)

The coefficients at subleading order in N f , again, depend on ξ and are given in the lower
block of Table 2. Evaluating the coefficients for the specific values of β, one sees that these
asymptotics entailed by Equations (42) and (43) matches the one shown in Figure 1.

A remarkable property of Equations (42) and (43) is that in the large-N f limit g∗ ∝
1/N f becomes perturbatively small. At the same time, the critical exponents do not match
the ones of the free theory, thus, indicating that we are still dealing with a non-Gaussian
fixed point in this limit. This opens a window for studying the gravity–matter fixed points
using standard perturbative techniques.

4.1.2. Minimally Coupled Fermions Including the Fermion Anomalous Dimension

We now refine the analysis of the previous subsection by including the fermion
anomalous dimension ηψ while still keeping αk = 0. This extension of the truncation gives
important information on the robustness of the fixed point structure uncovered in the
system with ηψ = 0. The explicit form of the beta functions is

βg = (2 + ηN) g ,

βλ =(ηN − 2)λ +
g

4π

[(
10− 5

3
ηN

)
1

(1− 2λ)
− 8
]
−

N f g
12

(4 + (8− 3π) ε ηψ) .
(44)

The explicit expressions for ηN and ηψ are obtained from Equations (27) and (30) by taking
α = 0 and solving the system of linear equations
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ηN =
g
[(

Bgrav
1 + N f Bferm

1

)(
C̃1

0 g(1− 2λ)− π(1− 2λ)2)− g N f Bferm
2

(
C2a

0 + C1
0(1− 2λ)

)]
g2N f Bferm

2 C2b
0 − Bgrav

2 g
(
C̃1

0 g(1− 2λ)− π(1− 2λ)2
)
+ C̃1

0 g (1− 2λ)− π (1− 2λ)2
,

ηψ =
g
[

g Bgrav
1 C2b

0 + (1− gBgrav
2 )(C1

0(1− 2λ) + C2a
0 ) + N f g Bferm

1 C2b
0

]
(1− gBgrav

2 )(1− 2λ)(π(1− 2λ)− g C̃1
0)− N f g2 Bferm

2 C2b
0

.

(45)

The constants Ci
0 and C̃i

0 are listed in Table 1, and we decomposed C2
0 = C2a

0 + C2b
0 ηN ,

such that
C2a

0 ≡ −
75
16
− 9

64
π , C2b

0 ≡
23
40

+
3

32
π . (46)

The parameter ε introduced in (44) distinguishes between the cases where the fermion
anomalous dimension is included (ε = 1) or switched off (ε = 0).

The impact of the fermion anomalous dimension on the position of the NGFP is shown
in Figure 2 for both choices of the coarse-graining scheme.
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Figure 2. Corrections to the position of the NGFPs resulting from the inclusion of the fermion
anomalous dimension (ε = 1, orange lines). The position of the NGFP for ηψ = 0 is given by the blue
lines. Notably, the corrections provided by the fermion anomalous dimension are small. They are
most pronounced in small values of N f .

Notably, the fixed point positions receive only minor corrections once the fermionic
wave function is included. These corrections are most pronounced in the range 0.7 . Nf . 1.3
for β = 0, whereas, for β = −1/4, the corrections are over a wider range although they
become significantly smaller as N f increases. For β = 0, there is, again, a critical number of
fermions, albeit at a slightly larger value.

The critical exponents of the NGFPs, together with the corresponding values for ηψ,
are shown in Figure 3. The comparison between Figures 1 and 3 shows that the critical
exponents obtained for ε = 0 and ε = 1 exhibit the same qualitative behavior. Again,
there is a transition from complex to real critical exponents occurring, now at N f = 0.5
(β = 0) and N f = 0.55 (β = −1/4). Moreover, the transition from g∗ > 0 to g∗ < 0 (β = 0)
does not reflect in θ1,2, which are continuous at Ncrit

f . The fermion anomalous dimension
shown in the bottom diagram reveals that ηψ is bounded and vanishes for large values
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of N f . The largest absolute values are found for small values of N f , consistent with the
observation that the corrections arising from the inclusion of the fermionic wave function
renormalization are most pronounced in this regime.

0 5 10 15 20 25
Nf0

1

2

3

4

Reθ1,2

β = 0

0 5 10 15 20 25
Nf0
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Reθ1,2

β = -1/4

β=-1/4

β=0

5 10 15 20 25
Nf

-4

-3

-2

-1

0

ηψ

Figure 3. Illustration of the critical exponents (top line) and fermion anomalous dimension (bottom
line) for β = 0 and β = −1/4, respectively. The bifurcation point appearing for low values of N f
signals the transition from complex to real critical exponents. The sign change in g∗ and λ∗ that
occur when β = 0 induces a tiny discontinuity where the fermion anomalous dimension jumps by
∆ηψ = 0.03 without changing its sign.

Equations (44) and (45) allow for study of the properties of the fixed points in a large-
N f expansion analytically. This expansion takes a form similar to the one found in the
minimally coupled case. The fixed point is located at

g∗ ' −
12π

(π − 2)ξ
1

N f
, λ∗ '

π

(π − 2)ξ
+

λ
(1,ηψ)
∗
N f

. (47)

The coefficient λ
(1,ηψ)
∗ is, again, a function of ξ and listed in the second row of Table 2.

The large-N f behavior of the stability coefficients is obtained by constructing the general
stability matrix, substituting the position of the fixed point and then performing the N f -
expansion for the resulting eigenvalues. This results in

θ1 ' 4 +
θ
(1,ηψ)
1
N f

, θ2 ' 2 +
θ
(1,ηψ)
2
N f

. (48)

Using that g∗ ∝ 1/N f and λ∗ ∝ constant, the asymptotics of ηψ follows from (45)

ηψ '
3(π − 2)(1628 + 195π)ξ + 180π(8− 3π)

80(π(ξ − 2)− 2ξ)2
1

N f
. (49)

The sign of the prefactor depends on ξ. For ξ ≥ 0.105, ηψ approaches zero from above
while for ξ ≤ 0.105 it is negative for all values N f . Again the asymptotics (47)–(49) matches
the one found numerically in Figures 2 and 3.
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Table 2. Summary of the numerical coefficients determining the leading corrections in a large-N f
expansion of the fixed point position (top rows) and stability coefficients (bottom rows).

λ
(1)
∗ Equation (42) 56π3−2(π−2)π2ξ+19(π−2)2πξ2−4(π−2)3ξ3

(π−2)2(π(ξ−2)−2ξ)2ξ2

λ
(1,ηψ)
∗ Equation (47)

1
320(π−2)2(π(ξ−2)−2ξ)2ξ2

[
− 1280(π − 2)3ξ3

− (π − 2)π(π(9π(328 + 195π)− 85040) + 168448)ξ2

+ 4π(π(π(45π(9π − 97) + 9401) + 9710)− 29304)ξ

+ 80π2(π(71 + 27π) + 216)
]

θ
(1)
1 Equation (43) 80(π−2)ξ

(π(ξ−2)−2ξ)2

θ
(1)
2 Equation (43) − 2(4ξ2−4πξ(37+ξ)+π2(40+74ξ+ξ2))

(π(ξ−2)−2ξ)3

θ
(1,ηψ)
1 Equation (48) 800(π−2)2ξ2+(π−2)π(9π(674+75π)−22576)ξ−45π2(8−3π)2

10(π(ξ−2)−2ξ)3

θ
(1,ηψ)
2 Equation (48)

−1
80(π(ξ−2)−2ξ)3

[
(π − 2)(π(12004 + 2295π)− 48224)ξ2

− 2(π(π(1170π − 20497) + 28250) + 35928)ξ

+ 20π(π(27π − 805) + 3132)
]

In summary, we find that the gravitational fixed point admits a deformation by the fermion
number N f . This deformation exists for all values N f . The critical exponents vary mildly with N f ,
indicating that the fixed point is “gravity-dominated”. For β > − 1

6 , there is a critical number of
fermions for which the value of the background Newton’s coupling g∗ transits to negative values. In
general, the inclusion of the fermion anomalous dimension leads to small corrections in the fixed
point properties and in particular to the critical exponents. The one-parameter family of NGFPs
admits a large N f expansion where g∗ = 0 to leading order. Moreover, the leading term in the
N f -expansion of the stability coefficients are universal in the sense that they are independent of our
choice of coarse-graining operator.

4.2. Including Non-Minimally Coupled Gravity-Fermion Interactions

We now consider the system where αk 6= 0 and ηψ = 0. This subsystem includes
the gravity-mediated chiral symmetry breaking term while neglecting the effect of the
fermion wave function renormalization. Since this case has been discussed in [80] already,
the present exposition will be brief.

The explicit form of the beta functions for this subsystem is readily obtained from (26),
(27) and (29) and reads

βg = (2 + ηN) g ,

βλ =(ηN − 2)λ +
g

4π

[(
10− 5

3
ηN

)
1

(1− 2λ)
− 8
]
−

N f g
3

,

βα =A0 + (A1 + 1)α + A2α2 + A3α3 .

(50)

The anomalous dimension ηN has the explicit form

ηN =
2g
(

22− 36λ + 56λ2 − N f (π + 6πβ− 2(1 + 6α + 6β))(1− 2λ)2
)

g(1 + 10λ)− 12π(1− 2λ)2 . (51)

The coefficients Ai are parametrized as

Ai =
g
π

[
A1

i
(1− 2λ)

+
A2

i
(1− 2λ)2 +

A3
i

(1− 2λ)2

]
, (52)

with the numerical values Aj
i are listed in Table 1.
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Examining the fixed point structure of this system leads to the following observations:

1. Including the new fermionic term proportional to α gives rise to a new beta function
βα. This is cubic in α for a fixed λ, g and, thus, guarantees that there is at least one
real solution to the equation βα = 0.

2. As already discussed in Section 3.2, the coefficient A0 in βα is generically non-zero.
Thus, α = 0 is not a root of βα. As a consequence, any fixed point discussed in the
previous section has to generalize to a fixed point where α∗ 6= 0.

3. When investigating the transition from the case of pure gravity, N f = 0, to the
inclusion of a small number of fermions, N f � 1, one finds that the fixed point from
the minimally coupled case splits into three families of NGFPs that are distinguished
by their value of α∗. In addition to these families, there is a fourth one coming in from
α∗ → −∞.

4. When N f is increased to N f ≈ 3 the NGFPs from α∗ → −∞ and one family emanating
from the pure-gravity fixed point annihilate. The remaining two families of NGFPs
extend to arbitrary values of N f . These solutions are named NGFPA and NGFPB

(Family A and Family B).

The position and stability properties associated with Family A and Family B are
shown in Figures 4 and 5, respectively. The two families are distinguished by their value of
α∗. Family A has the characteristic feature that αA

∗ � 1, while Family B is characterized
by αB

∗ ∝ N f . Family A therefore corresponds to an (almost) chiral fixed point. Comparing
the fixed point positions shown in Figure 1 and gA

∗ and λA
∗ reveals that these exhibit a very

similar behavior.
Most notably, gA

∗ is sensitive in the same way to the choice of β: there is a critical
number Ncrit

f where gA
∗ switches sign. The similarity between these two cases is understood

by noting that α∗ = 0 is a good approximation to the case where αA
∗ � 1. This suggests

that the NGFPs found at minimal coupling should be identified with the fixed points
comprising Family A once the projection is extended to include α.

Family B is situated such that gB
∗ > 0 for all values of N f . This entails that there is no

critical number of fermions Ncrit
f for Family B. This can be understood from the fixed point

condition η∗N = −2. Considering the fact that αB
∗ > 0 continuously grows proportional to

N f , one sees that the contribution of α dominates over the contribution from the regulator,
β, as αB

∗ � β. With this, one finds that gB
∗ is always positive. The large values for αB

∗
indicates that Family B constitutes a new class of NGFPs where chiral symmetry is broken
by the coupling to gravity. Owed to the fact that this class comes with αB

∗ 6= 0, it is clear
that this family may not be seen in computations that do not include the coupling α in
the projection.

The critical exponents for both families are shown in Figure 5. This shows that
Family A and Family B come with two and three relevant directions, respectively. This
result is independent of the values for N f and β. Consequently, a high-energy completion
based on NGFPA has the power to predict the value of α appearing in the effective action
Γk=0. Conversely, a high-energy completion based on NGFPB has this coupling as a free
parameter, which needs to be fixed by experimental observations. In addition to this, one
can see that the critical exponents become real at NA

f ≈ 1.34 and NB
f ≈ 14 in the case that

β = −1/4 whereas they become real at NA
f ≈ 1.29 and NB

f ≈ 8.6 in the case that β = 0.
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Figure 4. The position of the fixed points as a function of N f is shown for the system (50). The blue
and yellow lines indicate the difference in β and, therefore, in the coarse-graining operator. Family A
is characterized by αA

∗ ≈ 0 and structurally resembles the fixed points found at minimal coupling, cf.
Figure 1. For β = 0 there is a critical number of fermions Ncrit

f that changes the sign of gA
∗ . Family B

on the other hand is characterized by αB
∗ that grows proportional to N f . This in turn makes it so that

αB
∗ � β and gB

∗ is always positive.

The position of the NGFPs for large N f can be obtained analytically by performing
a scaling analysis within the fixed point equations. For NGFPA the leading terms in the
expansion are given by

gA
∗ ' − 12π

(π−2) ξ N f
, λA
∗ ' π

(π−2)ξ , αA
∗ ' −

1008π2+42π(π−2)(16−15π)ξ−3(π−2)2(796−273π)ξ2

224 (π(ξ−2)−2ξ)3 N f
, (53)

while for NGFPB

gB
∗ '

π(3608− 945π)

560 N2
f

, λB
∗ ' −

π

12
3608− 945π

560
1

N f
, αB

∗ '
560

3608− 945π
N f . (54)

These asymptotic formulas, again, match the behavior displayed in Figure 4, obtained by
numerical methods. Thus, both Family A and Family B exist for arbitrary positive values
N f . Moreover, the system becomes weakly coupled as N f → ∞.
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Figure 5. The critical exponents associated with the NGFPs comprising Family A and Family B for
both values of β. The families come with two and three relevant directions, respectively. This is
independent of the choice of coarse-graining operator and N f . Furthermore, the critical exponents
become real at NA

f ≈ 1.34 and NB
f ≈ 14 in the case that β = −1/4, whereas they become real at

NA
f ≈ 1.29 and NB

f ≈ 8.6 in the case that β = 0.

In summary, the inclusion of α leads to new fixed points. The fixed point NGFPA comes with
α∗ � 1 and corresponds to an (almost) chiral fixed point. In addition, there is a family of non-chiral
fixed points NGFPB. The later family is not resolved by the projections analyzed in Section 4.1,
since these do not track the chiral symmetry breaking coupling α discriminating the two families.
The large-N f expansion shows that both families admit a weak-coupling limit, limN f→∞ g∗ = 0.

4.3. The Complete System

We now investigate the fixed point-structure of the complete set of beta functions (26)
and (29). Our main finding is the existence of three continuous families of NGFPs (de-
noted as NGFPA, NGFPB, and NGFPC) whose properties are summarized in Figures 8–10,
respectively. Families A and B exhibit the same qualitative features as the fixed points
found in Section 4.2. Family C is novel and ows its existence to the inclusion of ηψ. While
this new family of fixed points passes several non-trivial tests for its validity, the evidence
supporting this class of fixed points is not on the same footing as the one for the other
families, which are observed in “simpler” truncations of the system already.

Before reporting on the results, two technical remarks are in order. First,
Equations (27) and (30) are implicit equations determining the anomalous dimensions.
Since they are linear in ηψ and ηN , it is straightforward to solve them leading to explicit
expressions for ηψ and ηN depending on the couplings {g, λ, α} and parameters β, N f . The
corresponding expressions are quite lengthy and little illuminating, and thus we refrain
from reproducing them at this point.

Secondly, the inclusion of ηψ complicates the structure of the beta functions such that
the NSolve-algorithm provided by Mathematica is unable to provide a complete list of
fixed points for fixed values of β, N f . Consequently, we adapted our search strategy as
follows. In the first step, we performed a detailed search for fixed points at N f = 10−4

and N f = 20, systematically varying the seeds of Mathematica’s FindRoot-routine on a
three-dimensional cube spanned by {g, λ, α}. This resulted in two lists of solutions, which
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served as seeds in the subsequent analysis. In order to reduce the numerical complexity of
the search, the list obtained for N f = 10−4 was reduced to the fixed points emanating from
the Reuter fixed point (41), but coming with arbitrary values for α∗.

The seeds at N f = 10−4 (N f = 20) were then extended toward increasing (decreasing)
values of N f . In this way, our search algorithm covered the parameter space N f ∈ [0, 20]
twice. This allowed to eliminate outliers and spurious solutions appearing in the numerical
search and resulted in the robust picture of the fixed point structure detailed below.

4.3.1. Merging Fixed Points—An Algebraic Consideration

The analysis of the fixed point structure conveniently started with the following
observation. The condition βg = 0 together with the requirement g∗ 6= 0 requires η∗N = −2.
The latter relation can be solved explicitly for g∗, which then becomes a function of the
remaining couplings {λ∗, α∗} and the parameters {N f , β}. For ηψ = 0, the condition
η∗N = −2 is linear in g∗ so that there is a unique solution. Including ηψ turns this relation
into a quadratic equation for g∗. While this equation can still be solved algebraically, one
now obtains two branches of solutions. The coordinates {g∗, λ∗} obtained from the first
branch connect continuously to the Reuter fixed point (41). It is this branch that is traced in
the sequel.

The novel feature in the fixed point function g∗(λ∗, α∗; N f , β) is the appearance of a
square-root whose argument depends on {λ∗, α∗, N f , β}. Demanding that g∗(λ∗, α∗; N f , β)
is real then requires that the argument of the square-root is positive. This, in turn, leads to
an additional constraint on the position of the NGFPs. The explicit form of this inequality
is rather bulky and will not be given here. Instead, we illustrate its content for a specific
choice of parameters {β = 0, N f = 0.05} in Figure 6. The collision of NGFPB with this
region shifts the fixed points into the complex plane from which they re-emerge at larger
values N f .

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

λ

α

Figure 6. In the presence of the fermion anomalous dimension ηψ, the fixed point condition η∗N = −2
constitutes a quadratic equation for g∗ whose solution includes a square root. The figure displays the
sign of its argument as a function of λ and α for fixed parameters N f = 0.05 and β = 0. Negative
values are marked in blue, while a positive argument is obtained in the sandy region. The purple dot
represents the fixed point from Family B. As the value of N f increases, the fixed point moves into the
blue region where the argument of the square root is negative.



Universe 2021, 7, 306 20 of 45

In addition, a detailed numerical investigation of the fixed point structure for β = 0
and values N f < 0.55 shows an intricate pattern of fixed points moving into and out of
the complex plane. This pattern is illustrated in Figure 7. Reading the figure from left to
right, we first encounter three fixed points branching off the Reuter fixed point for N f � 1.
At N f ≈ 0.06, a new pair of fixed points emerges from the complex plane. At N f ≈ 0.08,
the lower branch of this pair merges with the branch NGFPB, and both fixed points vanish
into the complex plane. The upper branch of the new pair merges with Family A at the
lower boundary given in (55), N f ≈ 0.55. These fixed points eventually re-emerge at
N f ≈ 1.05. The precise values of N f where these fixed points take a detour through the
complex plane depends on the choice for β. For the two cases investigated in the present
work this window is found at

β = −1/4 : 0.65 < N f < 1.25 ,

β = 0 : 0.55 < N f < 1.05 .
(55)

Family C is unaffected by the region of instability and exists for arbitrary values N f . The
comparison with the results obtained when setting A0 = 0 (see the next section) where
the window (55) is absent suggests that it is the chiral symmetry breaking contribution A0,
which is responsible for creating this “region of instability”.

Family A

Family B

Family C

0.1 0.2 0.3 0.4 0.5
Nf0

2

4

6

8

10

12

14
g*

Figure 7. Illustration of the interplay between the NGFPs and the region of instability exemplified in
Figure 6 (β = 0). The figure gives the g∗ coordinate of various fixed point solutions for values N f
below the window (55).

4.3.2. Fixed Points—Numerical Results

We now summarize the key properties of the three continuous families of NGFPs
identified by our numerical search algorithm. Explicit examples corresponding to specific
choices of the parameters N f and β are listed in Table 3. When plotting the N f -dependence
of the solutions, the blue and yellow lines appearing in the position plots correspond to the
two choices of coarse-graining operators, β = −1/4 and β = 0, respectively. Gray bands
mark the position for β = 0 of region (55) where NGFPA and NGFPB have been shifted to
complex positions.
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Table 3. Examples illustrating the generic properties associated with the three families of fixed
points for selected values N f and β. The NGFP’s of Family A and C constitute saddle points for the
RG flow while NGFPB act as UV-attractors for the RG flow in the g-λ-α−hyperplane. In contrast to
the Reuter fixed point (41), all examples come with real stability coefficients.

N f β θ1 θ2 θ3 g∗ λ∗ α∗ ηψ

NGFPA

3 0 4.21 2.05 −0.84 4.18 −1.65 0.04 −0.53
3 −1/4 4.22 1.78 −0.76 2.35 −0.89 0.04 −0.70

20 0 3.96 2.28 −1.01 −6.32 11.6 0.0081 0.017
20 −1/4 4.11 2.01 −0.99 1.43 −2.63 0.0075 −0.089

NGFPB

3 0 4.29 2.52 0.68 0.43 −0.12 1.86 −0.95
3 −1/4 4.14 2.53 0.61 0.44 −0.12 1.62 −0.86

20 0 4.40 3.46 0.58 0.016 −0.032 8.95 −0.65
20 −1/4 4.38 3.45 0.58 0.016 −0.032 8.74 −0.62

NGFPC

3 0 4.07 1.31 −67.4 0.0025 −0.0061 91.0 −25.9
3 −1/4 4.07 1.33 −68.9 0.0024 −0.0059 93.0 −26.2

20 0 4.01 1.33 −68.7 5.45× 10−5 −9.40× 10−4 608 −26.4
20 −1/4 4.01 1.34 −69.0 5.42× 10−5 −9.36× 10−4 610 −26.5

NGFPA: The properties of the non-Gaussian fixed points comprising Family A are
shown in Figure 8. The fixed points exist for all values N f outside the window (55). The
effect of the fermion anomalous dimension on the system is most pronounced for small
fermion numbers N f . 2 where |η∗ψ| > 1. For values N f located to the left of the gray
region, the fixed points act as UV-attractors and are characterized by a complex pair of
stability coefficients. For N f larger than the bound (55), the NGFPs are characterized by two
real positive and one negative stability coefficient, indicating that they are saddle points for
the RG flow. In this region, the effect of including ηψ is rather small. As a consequence, the
properties of the fixed points are in qualitative agreement with the findings in Section 4.2.
In particular, the case β = 0 still exhibits a critical number of fermions Ncrit

f at which the
sign of g∗ changes and α∗ � 1 so that the fixed points remain (approximately) chiral.
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Figure 8. Cont.



Universe 2021, 7, 306 22 of 45

5 10 15 20
Nf

-1

0

1

2

3

4

Reθ1,2,3

Family A, β = 0

5 10 15 20
Nf

-1

0

1

2

3

4

Reθ1,2,3

Family A, β = -1/4

Figure 8. Results from the numerical investigation of the NGFPs belonging to Family A. Reading
the diagrams from top-left to bottom right, the first three plots show the position of the fixed points
as a function of N f . The blue and yellow lines correspond to the choice in coarse-graining operator,
β = −1/4 and β = 0, respectively. The fermion anomalous dimension η∗ψ is shown in the fourth
diagram. The stability coefficients are plotted in the bottom row of the diagram indicating that the
fixed points come with two UV-attractive and one UV-repulsive eigendirection once N f exceeds the
upper bound of the window (55).

NGFPB: The properties of the NGFPs comprising Family B are shown in Figure 9. We
first focus on the region where N f is larger than the values indicated in (55). Here, the
NGFPs exist for all N f . The signature feature of Family B in this region is the linear increase
of αB

∗ with N f . This feature is accompanied by a negative fermion anomalous dimension
ηB

ψ ' −1. Moreover, the stability analysis reveals that the three stability coefficients
are real and positive, indicating that the fixed points serve as UV-attractors for all three
couplings {λ, g, α}. This picture matches the one established without considering the effect
of the fermion wave function renormalization (cf. Figures 4 and 5). This indicates that
the small negative value of ηB

ψ does not affect the fixed point structure of Family B in a
qualitative way.

For values N f to the left of the gray vertical band, ηB
ψ is negative with relatively large

absolute values. As a consequence, the inclusion of ηB
ψ affects the fixed point structure

rather drastically. This includes the rather intricate pattern of fixed points being created
and annihilated as a function of N f , which is detailed in Figure 7. Moreover, ηB

ψ turns the
real part of one of the stability coefficient from positive to negative so that the NGFPB are
saddle points for low values N f .

NGFPC: The genuinely novel feature arising from the inclusion of the fermion anoma-
lous dimension is a new family of NGFPs, which we label Family C. Its properties are
summarized in Figure 10. Notably, Family C exists for all values N f : it is unaffected by the
instability window (55). We find that αC

∗ increases linearly with N f . As a consequence, the
family is rather robust against changes in the coarse-graining operator encoded in β. As its
characteristic feature, Family C comes with a negative and rather large fermion anomalous
dimension, approaching ηC

ψ ≈ −26 for large values N f . The stability analysis shows that
NGFPC is a saddle point with two (real) UV-attractive and one UV-repulsive eigendirection.
Clearly, it is the interplay between α and the large absolute value of ηC

ψ that gives existence
to this family of fixed points.

In summary, the inclusion of ηψ leads to three continuous families of NGFPs: Family A (saddle
point), Family B (UV-attractor), and Family C (saddle point). Families A and B are qualitatively
similar to the fixed points identified in the previous section, while Family C is novel. All families
posses a weak coupling limit limN f→∞ g∗ = 0. The effect of ηψ is most notable for small values
N f . 2. In this region, the fermion anomalous dimension leads to an intricate pattern of fixed points
moving in and out of the complex plane, see Figure 7. Family C is unaffected by these transitions
and exists continuously for all values N f .
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Figure 9. Results from the numerical investigation of the fixed points belonging to Family B. The first three diagrams show
the position of the fixed points as a function of N f for β = −1/4 (blue line) and β = 0 (orange line). The fixed points exist
for all values N f outside the window (55). The fermion anomalous dimension evaluated at the fixed point is depicted in the
fourth diagram, indicating that η∗ψ < 0 in all cases. Notably, small values of N f lead to rather large absolute values |η∗ψ|
while values N f to the right of the region of instability have η∗N ≈ −1 (cf. Table 3). The stability coefficients show that the
NGFPB are saddle points with two UV-relevant directions (three UV-attractors) for values N f below (above) the bounds (55).
The inserts magnify the fermion anomalous dimension and the stability coefficients obtained for the NGFPB along the
orange line in Figure 7.
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Figure 10. Characteristic properties of Family C obtained from investigating the system
Equations (26) and (29) numerically. The first three diagrams show the position of the fixed points as
a function of N f for β = −1/4 (blue line) and β = 0 (orange line). NGFPC exists for all values N f and
is fairly insensitive to the choice of β. It is unaffected by the window (55). The fermion anomalous
dimension at the fixed points is depicted in the fourth diagram, showing that it is negative and rather
large. The stability analysis identifies two UV-attractive and one UV-repulsive stability coefficient,
indicating that NGFPC is a saddle point in the {g, λ, α}-plane.

4.4. The Complete System Excluding Chiral Symmetry Breaking Contributions

We conclude our analysis of the fixed point structure by studying the beta functions
(26) and (29) with A0 set to zero by hand. This approximation mimics the structure of
βα found in flat-background computations [61]. The main effect is the disappearance of
the bounds (55) for Family A and B. Family C is structurally left unaltered. Our analysis
follows the one of the previous subsection. In particular, the technical remarks made at the
beginning of Section 4.3, again, apply.

4.4.1. Merging Fixed Points—Algebraic Considerations

We start by analyzing the condition η∗N = −2. Notably, A0 does not enter into this
equation. As a consequence, one obtains a quadratic equation fixing g∗ as in terms of
{λ∗, α∗, N f , β}. One branch is connected continuously to the Reuter fixed point (41). The
equation for g∗ contains square roots whose arguments depend on {λ∗, α∗, N f , β}. The



Universe 2021, 7, 306 25 of 45

condition that the arguments should be positive in order to ensure that g∗ is real, again,
leads to the constraints illustrated in Figure 6.

For N f < 0.2, this property leads to an intricate interplay of fixed points moving in
and out of the complex plane. For β = 0, the resulting pattern is illustrated in Figure 11.
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Family B
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Nf0
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14
g*

Figure 11. Illustration of the interplay between the fixed points for β = 0 and small values N f < 0.2.
Family B (orange line) crosses over into the complex plane upon colliding with a short-lived fixed
point given by the purple line. The Family B’ (green line) extends to arbitrary values of N f . On this
basis, we identify the Family B’ as the “continuation” of Family B to arbitrary large values N f .

The result is very similar to the case where A0 6= 0. However, the region (55) has
disappeared and Family B is unable to return from the complex plane. Instead, one has a
new branch, dubbed Family B’, which extends to arbitrary values of N f .

4.4.2. Fixed Points—Numerical Results

We now illustrate the key properties of the three continuous families of NGFPs identi-
fied by our numerical search algorithm. When plotting the N f -dependence of the solutions,
the blue and yellow lines appearing in the position plots correspond to the two choices of
coarse-graining operators, β = −1/4 and β = 0, respectively.

NGFPA: The properties of the fixed points comprising Family A are shown in
Figure 12. It is then suggestive to call this family of fixed points “quasi-chiral”. The
fixed points exist for all values of N f as the window (55) is now absent. As a consequence
of excluding the chiral symmetry breaking term A0, Family A is now situated at αA

∗ = 0
for all values of N f . The stability coefficients are structurally equal to the ones from the
previous section: for low values N f the fixed points act as UV-attractors while they turn
into saddle points once N f exceeds one.
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Figure 12. Characteristic properties of Family A obtained from investigating the system
Equations (26) and (29) with A0 = 0. The first three diagrams show the position of the fixed points
as a function of N f for β = −1/4 (blue line) and β = 0 (orange line). NGFPA exists for all values N f
and is characterized by αA

∗ = 0. The fermion anomalous dimension at the fixed points is depicted
in the fourth diagram, showing no structural differences with respect to the previous section apart
from the disappearance of the bounds (55). The stability analysis identifies two UV-attractive and
one UV-repulsive stability coefficient for values of N f extending beyond the window (55), indicating
that NGFPA is a saddle point in the {g, λ, α}-plane. For smaller values of N f , the stability analysis
identities three UV-attractive stability coefficients.

NGFPB and NGFPB′ : The properties of the NGFPs comprising Families B and B′ are
shown in Figure 13. Their position and fermion anomalous dimension resembles the one
found for NGFPB shown in Figure 9. Apart from the disappearance of the forbidden region
(55), there are no structural changes with respect to the full system. For β = −1/4, we
find that Family B is UV-attractive, in agreement with the previous section. The fixed
point collisions resolved in Figure 11 have a drastic effect on the stability coefficients of
the system though: the Family B’ (located at N f & 0.06) comes with one UV-relevant
and two UV-irrelevant directions. This indicates that the inclusion of A0 has a significant
stabilization effect on the fixed point structure. The direct comparison to the case with
A0 6= 0 shows that the interplay of A0 with the other terms in the beta functions leads to a
fixed point structure, which is less sensitive to varying β in the sense that Family B can be
recovered for both β = 0 and β = −1/4.
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Figure 13. Characteristic properties of Family B obtained from investigating the system
Equations (26) and (29) with A0 = 0. The first three diagrams show the position of the fixed points
as a function of N f for β = −1/4 (blue line) and β = 0 (orange line). NGFPB exists for all values N f
for β = −1/4. For β = 0, Family B moves into the complex plane at N f ≈ 0.6 and does not re-emerge
due to the absence of the window (55). Family B’ continues and is shown as a green line. The fermion
anomalous dimension at the fixed points is depicted in the fourth diagram, showing that it is negative
and rather large. The stability analysis identifies two UV-attractive and one UV-repulsive stability
coefficient for values below the outer edge of (55), indicating that NGFPB is a saddle point in this
region. For values beyond this edge, the fixed points function as UV-attractors.

NGFPC: Structurally, this family of fixed points is left unaltered. For completeness,
the properties of the NGFPs comprising Family C are shown in Figure 14.

In summary, switching of the chiral symmetry breaking contribution in βα by hand has little
effect on the solutions NGFPA and NGFPC. NGFPA is now situated at α∗ = 0, warranting the
label “quasi-chiral” fixed point. In this approximation, Family B develops a significant β-dependence
though. Only for β = 0, one recovers the qualitative features exhibited by the full system, indicating
that A0 plays an intriguing role in stabilizing the fixed point structure.
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Figure 14. Characteristic properties of Family C obtained from investigating the system
Equations (26) and (29) with A0 = 0. The first three diagrams show the position of the fixed points
as a function of N f for β = −1/4 (blue line) and β = 0 (orange line). NGFPC exists for all values N f
and is fairly insensitive to the choice of β. The fermion anomalous dimension at the fixed points is
depicted in the fourth diagram, showing that it is negative and rather large. The stability analysis
identifies two UV-attractive and one UV-repulsive stability coefficient, indicating that NGFPC is a
saddle point in the {g, λ, α}-plane.

5. Bounding Chiral Symmetry through Asymptotic Safety

In Section 4.3, we presented an in-depth analysis of the fixed points encoded in the
beta functions (26) and (29). In this course, we identified four fixed points: the GFP, NGFPA,
NGFPB, and NGFPC. The goal of this section is to illustrate the RG flow resulting from
the interplay of these fixed points and its consequences for the chiral symmetry breaking
coupling α. For concreteness, we set β = −1/4 and N f = 3. The position and stability
coefficients for this case are listed in Table 3.

Ultimately, physics should be extracted from the effective average action Γk at k = 0
where all quantum fluctuations have been integrated out [76,88]. Asking for a (semi-)classical
regime then requires that there is a cross-over in the RG flow from the NGFP providing the
UV-completion and the GFP controlling the low-energy behavior of the flow [10,120]. This
restricts the discussion to the interplay of the GFP, the quasi-chiral fixed point NGFPA and
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the non-chiral fixed point NGFPB. The NGFPC is detached from the semi-classical regime
and will not play a role in the subsequent discussion.

As a starting point, we give a more detailed analysis of the stability matrix (38)
associated with these fixed points. For the GFP situated at {gGFP

∗ , λGFP
∗ , αGFP

∗ } = {0, 0, 0}
the stability coefficients are fixed by canonical power counting and the corresponding
eigenvectors in the g-λ-α–plane are6

θ1 = 2, V1 = {0, 1, 0} ,
θ2 = −2, V2 = {0.98, 0.21, 0.01} ,
θ3 = −1, V3 = {0, 0, 1} .

(56)

Thus, we have two IR-attractive eigendirections that are essentially aligned with the g- and
α-axis, while the fixed point is IR-repulsive along the λ-direction. The quasi-chiral NGFPA

is located at {gA
∗ , λA

∗ , αA
∗ } = {2.35,−0.89, 0.04} and possesses the eigensystem

θ1 = 4.22, V1 = {0.33, 0.941, 0.01} ,
θ2 = 1.78, V2 = {0.92,−0.40, 0.} ,
θ3 = −0.76, V3 = {0.90,−0.38,−0.21} .

(57)

Thus, we are dealing with a saddle-point whose UV-attractive directions essentially lie
within the g-λ-plane, while the α-direction is UV-repulsive. Finally, the non-chiral NGFPB

sits at {gB
∗ , λB

∗ , αB
∗} = {0.44,−0.12, 1.62} and acts as a UV-attractor

θ1 = 4.14, V1 = {0.29, 0.19, 0.94} ,
θ2 = 2.53, V2 = {0.61,−0.28, 0.74} ,
θ3 = 0.61, V3 = {0.31,−0.09,−0.95} .

(58)

An intriguing feature of these stability properties is that they admit RG trajectories
that emanate from NGFPB in the UV cross over to NGFPA and, subsequently, obtain their
low-energy completion from the GFP. This process is illustrated in Figure 15.

NGFPB
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Figure 15. Illustration of the interplay between the three fixed points (56)–(58) for N f = 3 and
β = −1/4. The left and right panel show gk and (the logarithm of) αk-component obtained from
solving the full system of beta functions numerically as a function of t ≡ log k. The green lines
correspond to the UV-safe trajectories emanating from NGFPB. The thick green line marks the
crossover from NGFPB to NGFPA and constitutes the barrier between the safe and unsafe trajectories
depicted in orange. For small values t, the flow undergoes a second cross-over from NGFPA to
the GFP. The linear decrease of log αk in this regime is characteristic for the dimensionful coupling
obtaining a constant (k-independent) IR-value.

The interplay among the fixed points suggests that there is a window for the IR values
of αk provided by the asymptotic safety condition. In order to obtain a qualitative idea
for the admissible values α0, we consider a two-parameter family of initial conditions
{ginit, λinit, αinit} placed on a two-sphere centered on the UV-attractor NGFPB, i.e.,

ginit = gB
∗ + R sin θ cos φ, λinit = λB

∗ + R sin θ sin φ, αinit = αB
∗ + R cos θ. (59)
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Provided that R is taken sufficiently small, this construction guarantees that all trajec-
tories constructed from these initial conditions are pulled into NGFPB as k→ ∞. Thus, one
can construct the UV-critical hypersurface of the fixed point by varying θ, φ and integrating
the RG flow toward k→ 0 numerically. Subsequently, one can extract the scaling of αk in
the vicinity of the GFP and reconstruct the value of the dimensionful coupling α̃k via the
relation (23). Concretely, our sampling algorithm considered two different values for the
radius, R = 0.05 and R = 0.005, and sampled the two-sphere with angle differences of 0.1
and 0.3 degrees, respectively. In the IR, this algorithm identified the following maximal
and minimal values for α̃0:

R = 0.005 : 0.020 ≤ α̃0 ≤ 0.19 ,

R = 0.05 : 0.014 ≤ α̃0 ≤ 0.16 .
(60)

The fact that different values for R give slightly different limits results from the fact that
the set of RG trajectories created by sampling the spheres at different radius is not identical:
the initial conditions set at R = 0.05 and R = 0.005 are not positioned on the same RG
trajectory and, thus, provide two different samplings of the UV-critical hypersurface. Our
result then gives a good indication for the values of α̃0, which are compatible with an
asymptotically safe UV completion by the non-chiral fixed point NGFPB.

In particular, they show that the couplings are not exponentially large, and thus (60)
could be in agreement with the phenomenological requirements of having light chiral
fermions. In a flat background where NGFPA may be exactly chiral, this cross-over may
provide an elegant mechanism for starting from a non-chiral theory at high energy (NGFPB)
and restoring the symmetry (at least approximately) by spending a sufficient amount of
RG time in the vicinity of NGFPA before flowing to the GFP.

6. Summary and Conclusions

Our work provides a detailed study of the asymptotic safety mechanism for gravity
coupled to N f Dirac fermions within the background field formalism. In addition to a
fermion-kinetic term (and the associated fermion anomalous dimension), our study in-
cludes a non-minimal interaction coupling the fermion bilinears to the spacetime curvature.
The extension beyond minimal coupling is interesting for two reasons. First, the new
term gives a contribution to the anomalous dimension of Newton’s coupling, which is
proportional to the number of fermionic fields. Depending on the sign of the corresponding
coupling, this leads to a novel screening/anti-screening contribution in the gravitational
RG flow, which works toward either stabilizing or destabilizing the asymptotic safety
mechanism. Secondly, the non-minimal interaction explicitly breaks chiral symmetry, as it
provides a fermion mass set by the spacetime curvature. Thus, the analysis has a natural
connection to interesting questions including the existence of light chiral fermions [104]
and the role of global symmetries within the asymptotic safety program [121]. While
the effect of the non-minimal coupling has already been explored in [61], our work (and
its companion [80]) is the first where the role of the explicit symmetry breaking terms is
studied in a non-flat background. Together with the flat-space results, our findings establish
that the topology of spacetime has a crucial effect on symmetries supported by the matter
sector (also see [109,112] for related discussions).

The renormalization group flow of the system projected onto the subspace spanned by
the ansatz (10) comes with an intricate fixed point structure. At the same time, the ansatz is
sufficiently sophisticated to admit several non-trivial subsystems. Thus, it allows to test the
robustness of the fixed point structure under the inclusion of further interaction monomials.
In the absence of the non-minimal coupling, the systems exhibits a one-parameter family
of interacting fixed points, called NGFPA, existing for all values N f . Their structure
resembles the pure gravity fixed point. In particular, they come with two UV-relevant
directions associated with Newton’s coupling and the cosmological constant, while the
fermion anomalous dimension is negative and of order unity. Notably, this family admits a
large-N f -expansion showing that the theory becomes weakly coupled in the large N f -limit.
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Extending the projection subspace by the non-minimal coupling has two significant
effects. First, the “chiral” fixed points NGFPA persist but are shifted toward a non-zero
value of the non-minimal coupling. The coupling behaves as a “shifted” Gaussian matter
coupling, i.e., the cubic beta function (29) for the new coupling has a non-vanishing
constant term. One source for this shift is the contribution of the background fermion fields,
Equation (12), which violates chiral symmetry7 . The new direction of the renormalization
group flow is irrelevant; therefore, the symmetry breaking dies off toward low energy
and does not provide an obstruction to the existence of light (standard-model like) chiral
fermions. Secondly, the inclusion of the non-minimal coupling reveals the existence of
a family of “non-chiral” fixed points, called NGFPB, characterized by the new coupling
taking values αB

∗ ≥ 1. These come with three UV-relevant directions. The specific values
for the stability coefficients and anomalous dimensions suggest that this class of fixed
points also behaves “almost Gaussian” in the sense that quantum corrections do not
overrule the canonical power counting. Supplementing the full system with the fermion
anomalous dimension induces a “region of instability” in the N f -dependence of the fixed
point structure. This region is situated at small values N f ∼ 2 and characterized by fixed
points shifting into and emerging from the complex plane (see Figure 7). In addition,
the anomalous dimension creates one more branch of fixed point solutions, NGFPC. In
this case, the fermion anomalous dimension and eigenvalues deviate significantly from
canonical power counting.

These results fit well with the fixed point structure found on flat backgrounds. The
properties of NGFPA are in qualitative agreement with the chiral fixed point investigated
in [56–58] while non-chiral fixed points similar to the class NGFPB have been reported
in [61]. In particular, the critical exponents and fermion anomalous dimensions are in
qualitative agreement when the values of N f allow for such a comparison. Our work
then adds two important new insights to our understanding of the asymptotic safety
mechanism of gravity coupled to fermionic matter: first, there is an intriguing interplay
between the topology of the background and the possibility of realizing global symmetries
at an interacting fixed point. Our analysis provides an explicit example where the choice of
background structure induces a non-zero value for a coupling responsible for the explicit
breaking of a global symmetry. Secondly, we were able to trace the gravity–matter fixed
points to large values N f . This feature is in agreement with the fixed point structure
observed in fluctuation computations [106]. Intriguingly, for large values of N f , the fixed
points become weakly coupled in the background Newton coupling. This opens the
exciting possibility that this regime may actually be accessible via perturbative methods.

Conceptually, it would be interesting to enhance the projection subspace of our
work by promoting the fermionic wave-function renormalization to a (matrix-valued)
momentum-dependent function Zψ

k → Zψ
k (/∇). When expanding Zψ

k (x) in a power series
at x = 0, the lowest order terms correspond to a mass-term, the fermion kinetic term, and
the invariant

∫
d4x
√

g ψ̄ /∇2ψ8.
This class of interactions is singled out by the observation that, in addition to the

structures included in (10), they are the only invariants that may still contribute to the
anomalous dimension of Newton’s coupling at the background level. With the present
choice of background fermions, it is not possible to disentangle this coupling from an Rψ̄ψ
term. While it is clear that the methods developed in this work can be used to analyze
this coupling in an approximation excluding the Rψ̄ψ-term, we leave this investigation to
future work.

Naturally, it would also be interesting to extend the present construction by adding
further matter fields present in the standard model of particle physics. While this will
give additional contributions to the beta functions derived in this work, we expect that the
generic feature of having several renormalization group fixed points realizing different sets
of symmetries (at least approximately) and coming with different degrees of predictive
power will carry over to this extended setting.
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Appendix A. Fermions on Curved Backgrounds

Our evaluation of the Wetterich Equation (1) in the fermionic sector utilizes the spin-
base formalism developed in [123–125] and summarized in [126]. The most important
formulas resulting from this approach together with our conventions for the spinors are
summarized in this appendix.

Appendix A.1. Spinor Conventions

Let us start by considering a flat spacetime R4 with Euclidean metric δab, a, b = 1, 2, 3, 4.
The spacetime admits a set of complex 4× 4-matrices γ̄a, the Dirac matrices, satisfying the
Clifford algebra {

γ̄a, γ̄b
}
= 2 δab 1 , (A1)

where 1 is the 4 × 4-dimensional unit matrix. In addition, there is the fifth γ-matrix ,
γ5 ≡ −γ̄1γ̄2γ̄3γ̄4, satisfying γ̄a γ5 = −γ5 γ̄a and (γ5)2 = 1. The γ-matrices can be used to
build a convenient basis for Dirac space. Explicitly, the elements are

{
Γn}

n=1,...,16 =
{

1, γ̄a,
i
2
[
γ̄a, γ̄b], γ5, i γ̄aγ5}, (A2)

and satisfy
tr(ΓnΓm) = 4 δnm. (A3)

One can then project the structure ψ̄Aψ, with A an arbitrary matrix in Dirac space onto
ψ̄Γaψ using

ψ̄Aψ =
1
4 ∑

n
tr
(

AΓn) ψ̄Γnψ . (A4)

By making use of the explicit basis (A2), one can derive the Fierz reordering formula

(
ū1Γmu2

)(
ū3Γnu4

)
= − 1

16 ∑
o,p

tr(ΓmΓnΓoΓp)
(
ū1Γou4

)(
ū3Γpu2

)
, (A5)

where the ui are arbitrary Dirac spinors. The minus sign is incorporated since we work
with Grassmann-valued spinors.

We will now discuss the generalization to Euclidean curved spacetimes with metric
gµν, admitting a suitable spin-structure. Here, it is convenient to introduce vierbeins
ea

µ satisfying
gµν = ea

µeb
ν δab. (A6)

Notably, these vierbeins are not unique. They are fixed up to local SO(4)-transformations
only. Requiring invariance under these transformations serves as an important guiding



Universe 2021, 7, 306 33 of 45

principle for the construction of various objects. The Dirac matrices γµ satisfying the
generalized Clifford algebra {

γµ, γν
}
= 2 gµν 1, (A7)

can be constructed from the flat space gamma matrices γ̄a as

γµ ≡ eµ
a γ̄a. (A8)

Note that, in general, the Dirac matrices γµ will now depend on the spacetime coordinate.
In order to construct fermion bilinears and, in particular, the fermion kinetic term, two

additional objects are required, the spin metric h and the spin connection Γµ providing the
connection piece in the spin covariant derivative ∇µ. The spin metric is used to construct
the Dirac-adjoint

ψ̄ ≡ ψ†h . (A9)

The spin metric has to satisfy |det(h)| = 1 in order to ensure no new scale is intro-
duced. In addition, the reality of the spinor bilinear forces h† = −h and γ†

µ = −hγµh−1.
Starting from some basic assumptions for both h and∇µ (e.g., linearity, product rule, metric
compatibility, and covariance), one can show that, for an arbitrary spinor ψ containing
components of arbitrary spacetime rank, we have

∇µψ = Dµψ + Γµψ, ∇µψ̄ = Dµψ̄− ψ̄Γµ. (A10)

Here, Dµ is the Levi–Civita connection, and Γµ is a spin connection piece. Throughout
this work, we assume a torsion free connection: tr(Γµ) = 0. Through covariance of the
vierbeins, it can be shown that

∇µγν = 0 . (A11)

From the properties of Γµ one can also derive the important commutator identity

[
∇µ,∇ν

]
=

1
8

Rµναβ

[
γα, γβ

]
. (A12)

This relation allows to derive the well-known Lichnerowicz formula

− /∇2ψ =
(
∆ψ +

R
4
− 1

2
γµγν

[
Dµ, Dν

])
ψ, (A13)

where ∆ψ := −∇µ∇µ. At this stage, an action giving rise to the dispersion relation
(∆ψ + m2)ψ = 0 can be constructed as

Sferm =
∫

d4x
√

g ψ̄
(
i /∇+ mγ5)ψ. (A14)

The reality condition h† = −h guarantees that the action is real.
We close this section by showing that, on a background given by a four-sphere, an

eigenmode of the Dirac operator satisfying (12) must necessarily be the lowest eigenmode.
Let the spinor ψ satisfy the relation ∇µψ = ic γµψ, for some real number c. Then we have[

∇µ,∇ν

]
ψ = −c2[γν, γµ

]
ψ. (A15)

By rewriting the right-hand side via (A12) and exploiting (11), one then concludes that c
must take the value

c =

√
R
48

. (A16)

This corresponds to the lowest eigenvalue of the Dirac operator [116]. Hence, ψ must be
the lowest momentum mode of the Dirac operator. Notably, this does not mean that the
lowest momentum mode necessarily satisfies relation (12). Working in an explicit basis
however (see for instance [116]), it can be verified that it does.
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Appendix A.2. Variations with Respect to the Metric Field

The computation of the flow in the fermion sector requires the explicit form of the
Hessian Γ(2)

k entering (1). For this, one needs the expansion of the EAA in terms of the
fluctuation fields at quadratic order. Only the fermion fields ψ can give rise to the fermion-
fluctuating fields χ, whereas all other objects present in the EAA produce terms containing
the fluctuating metric hµν. The variations of the gamma matrices can be determined by
equating the Clifford algebra (A7) order by order in the metric perturbation. For our
purpose, the first two orders in this expansion are sufficient

δγµ = −1
2

hµνγν, δ2γµ =
3
8

γαhβαhµβ. (A17)

Here, indices are raised/lowered by the background metric ḡ. The matrix γ5 can be
constructed such that the variations with respect to the metric vanish. For the variations of
∇µ we have [126]

δ∇µ =
1
8
[
γα, γβ

]
Dβhµα,

δ2∇µ =
1
8
[
γα, γβ

](
hλ

αDβhµλ + hλ
βDλhµα +

1
2

hλ
α Dµhβλ

)
.

(A18)

Appendix A.3. Vertices and Propagators

We close the discussion by giving the explicit form of the vertices entering into Γ(2)
k .

Given the linear split (4), we adopt

δψi(x)
δχj(y)

= δi
j δ(x− y),

δψ̄i(x)
δχ̄j(y)

= δ
j

i δ(x− y) . (A19)

All the other variations are taken to be zero, which corresponds to treating ψ and ψ̄

as independent fields. Introducing a multiplet Υ =
{

ĥµν, h, χa, χ̄a
}

the Hessian Γ(2)
k is

defined as

Γ(2)
k =

−→
δ

δΥ
Γk

←−
δ

δΥT . (A20)

The variations from the right are taken with respect to the transpose in spinor space.

Denoting the entries of this matrix in field space by Γ fi f j
≡
−→
δ

δ fi
Γk

←−←−
δ

δ f T
j

, and, employing the

identity
(
ψ̄Aψ

)T
= −ψT ATψ†, the off-diagonal entries are given by

Γĥχ/Zψ
k =

i
4
←−
D µ θ̄γν + ᾱk

←−
D µ←−D ν θ̄γ5

Γhχ/Zψ
k = − 3i

16
←−
D µ θ̄γµ +

ᾱk
4
(3∆ + R) θ̄γ5 − 3

2
c θ̄

Γĥχ̄/Zψ
k =

i
4
←−
D µ γνθ − ᾱk

←−
D µ←−D ν γ5θ

Γhχ̄/Zψ
k = − 3i

16
←−
D µ γµθ − ᾱk

4
(3∆ + R) γ5θ +

3
2

c θ

Γχĥ/Zψ
k = − i

4
←−
D µ θ̄γν − ᾱk

←−
D µ←−D ν θ̄γ5

Γχh/Zψ
k =

3i
16

θ̄γµDµ −
ᾱk
4

θ̄γ5 (3∆ + R) +
3
2

c θ̄

Γχ̄ĥ/Zψ
k = − i

4
γνθDµ + ᾱk γ5θDµDν

Γχ̄h/Zψ
k =

3i
16

γµθDµ +
ᾱk
4

γ5θ (3∆ + R)− 3
2

c θ.

(A21)
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Following (A16), we have c =
√

R
48 , and all objects are constructed from the back-

ground metric only. The left arrow over the derivatives arrives from partial integration
and is there to signal the derivative acts on the gravitational degrees of freedom. The
boson–boson variations, ignoring the contributions of the kinetic term, are given by

Γĥĥ/Zψ
k =

5
2

c θ̄θ − ᾱk θ̄γ5θ (
1
2

∆ +
1
3

R)
(
1− P

)µν

αβ

− DσDρ
(
1− P

)µν

λρ

(
1− P

)λσ

αβ
+O(Dµ)

Γhh/Zψ
k = −3

8
c θ̄θ +

3
16

ᾱk θ̄γ5θ ∆ +O(Dµ) .

(A22)

Here, 1 denotes the identity on the space of symmetric two-tensors, and P projects out the
trace, meaning (

1− P
)µν

αβ
=

1
2
(δ

µ
α δν

β + δν
αδ

µ
β)−

1
4

gαβgµν . (A23)

The explicit form of the O(Dµ)-terms is irrelevant since their contribution vanishes after
they are traced over. Finally, the fermion–fermion variations result in

Γψ̄ψ/Zψ
k = i /∇+ ᾱkRγ5

Γψψ̄/Zψ
k = −

(
i /∇+ ᾱkRγ5)T .

(A24)

These are all the variations that enter into the calculation for the beta function encoding the
running of couplings in the fermionic sector. Combining (A24) with the regulator (19) and
inverting the resulting expression gives the explicit form of the fermionic propagator

G−1
ψ = i /∇ W̃χ(/∇2) + γ5 Wχ(/∇2) . (A25)

The functions W̃χ(/∇2) and Wχ(/∇2) are defined as

Wχ(/∇2) ≡
Rψ

k + ᾱR

−/∇2 + (Rψ
k )

2 + 2ᾱR Rψ
k

, W̃χ(/∇2) ≡ 1

−/∇2 + (Rψ
k )

2 + 2ᾱR Rψ
k

. (A26)

Here, the terms−/∇2 are short-hand for the right-hand side of (17). The graviton propagator
resulting from the Einstein–Hilbert action in harmonic gauge is readily obtained from [2,8]
and reads

G−1
h = − 128πGk (∆− 2Λk)

−1 ,

G−1
ĥ

= 32πGk (∆ + 2
3 R− 2Λk)

−1 (1− P
)µν

αβ
.

(A27)

Appendix B. Functional Traces Involving Fermionic Background Fields

In this appendix, we illustrate the techniques used for evaluating operator traces
containing background spinor fields. In practice, these computations amount to evaluating
the Feynman diagrams shown in Figure A1 for the Feynman rules obtained from (5) on a
background four-sphere.

For the trace-mode h of the graviton fluctuations, the explicit expressions correspond-
ing to these diagrams (from left to right) are

Dhhχ
3 = Tr0

[
G−1

h Γhχ G−1
ψ Γχ̄h G−1

h ∂tRh
k

]
Dχχh

3 = −Trψ

[
G−1

ψ Γχ̄h G−1
h Γhχ G−1

ψ ∂tRψ
k

]
Dh

Tad = −1
2

Tr0

[
G−1

h Γhh G−1
h ∂tRh

k

]
.

(A28)
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The explicit form of the vertices is given in Equations (A21) and (A22), while the graviton
and fermion propagators take the forms (A27) and (A25), respectively. In addition, there is
an identical set of expressions where h is replaced by the traceless fluctuations ĥ and Tr0
substituted by the trace over traceless, symmetric matrices.

Figure A1. Feynman diagrams encoding the contributions (A28) to the RG flow. Solid and double
internal lines correspond to the fermion and gravity propagators while the crossed circle marks the
insertion of the corresponding regulator. The external straight lines denote background fermionic
fields. The explicit expressions for the vertices are collected in Appendix A.2.

Appendix B.1. Useful Identities for Background Spinor Computations

Our goal is to project (A28) onto the invariants I3 and I4 listed in Equation (10). For the
specific choice of background spinor (12), this corresponds to extracting the contributions
proportional to ∫

d4x
√

ḡ
√

R̄ θ̄θ ,
∫

d4x
√

ḡR̄ θ̄γ5θ . (A29)

These structures carry the information about the fermion anomalous dimension and the
scale-dependence of αk, respectively. The projection then entails that we can ignore all
terms of order R̄3/2 and higher. Moreover, the trace arguments in (A28) typically contain
products of γ-matrices, which need to be mapped to the corresponding basis elements Γn

appearing in the fermion bilinears. This mapping is carried out using the formula (A4), for
Γn = 1 and Γn = γ5, respectively. A corollary of this projection is that all terms containing
an odd number of gamma matrices between the background spinors will not contribute to
the set (A4).

In order to keep track of the order of the background curvature, all derivatives acting
on the background spinors are eliminated. To accomplish this, we will list three identities.
The first identity shows how to commute an arbitrary function of the squared Dirac operator
through a gamma matrix and reads

/∇2γαψα.. = γα /∇2ψα.. + 2γν
[
Dν, Dα

]
ψα

.. +
R
4

γαψα... (A30)

In addition to the index α, the (generalized) spinor ψ may carry an arbitrary set of spacetime
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indices (which is indicated by the dots). Secondly, we give an identity allowing us to
commute a function of /∇2 and a background spinor (12)

f (/∇2) θ T = θ f (−∆) T − 16c2 θ f ′(−∆) T +
1
2

γµγνθ f ′(−∆)
[
Dµ, Dν

]
T

+ 2c2 θ ∆ f ′′(−∆) T + 2ic γµθ Dµ f ′(−∆) T.
(A31)

Here, T is a tensor of arbitrary rank with the indices suppressed. This formula can be
derived by repeatedly acting with /∇2 onto the structure θ T and is valid up to terms of
order R̄3/2. The final identity allows to pull out a spinor bilinear θ̄ A θ, with A being an
arbitrary (not necessarily constant) matrix in Dirac space out of the functional trace

Tr
[
(∆φ) g(∆)

]
= 0, (A32)

where φ is a scalar function. The reason this identity holds is because the Laplacian ∆
projects out the zero mode of the spherical harmonics. Off-diagonal heat kernel methods
(see [97]) then show that the functional trace vanishes. We now have all ingredients to
evaluate the traces (A28).

For reference, we further note the explicit commutation relations appearing in explicit
applications of (A30) and (A31). On a background four-sphere and up to terms of order
O(R2) we have [

Dµ, W(∆)
]

φα1...αn = W ′(∆)
[
Dµ, ∆

]
φα1...αn . (A33)

For tensors of rank one and symmetric traceless tensors φ̂µν the commutators evaluate to
the explicit expressions

[
Dµ, ∆

]
φµ = −1

4
R Dµ φµ ,

[
Dµ, ∆

]
φ̂µν = − 5

12
R Dµ φ̂µν . (A34)

Appendix B.2. Results for Selected Traces

We exemplify our computational strategy by evaluating Dhhχ
3 explicitly, before giving

some concluding remarks on the evaluation of the other trace expressions. In order to ease
the notation, we focus on extracting the contributions proportional to R̄ θ̄γ5θ only. We also
set Zk = 1 for simplicity. The terms proportional to

√
R̄ are obtained along the same lines.

Inserting the explicit expressions for the propagators and vertices, one has

Dhhχ
3 = Tr0

[
Wh(∆)

( 3
16

i Dµ θ̄γµ +
ᾱ

4
(3∆ + R)θ̄γ5 − 3

2
ic θ̄
)

i /∇+ γ5Rψ
k + γ5 ᾱR

−/∇2 + (Rψ
k )

2 + 2ᾱR Rψ
k

( 3
16

i γνθ Dν + γ5 ᾱ

4
θ (3∆ + R)− 3

2
ic θ
)]

,
(A35)

where the function Wh(∆) is given by

Wh(∆) := G−2
h (∆) ∂tRh

k(∆). (A36)

The strategy for evaluating the right-hand side of (A35) is the following

1. Factor out the vertex terms in order to obtain traces with a specific combination of
γ-matrices sandwiched between the background fermions.

2. For each of these combinations, use the representation (A25) to identify the part of
the fermion propagator, which will give the non-vanishing contribution to the trace
(recalling that traces with odd numbers of γ-functions will vanish under the projection
and keeping terms up to order R̄).

3. Commute the gamma matrix with the function of /∇2 with identity (A30).
4. Use identity (A31) to deal with the derivatives acting on the background spinor.
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5. Take the spinorial scalar out of the functional trace (allowed by identity (A32)) and
project onto correct spinor structure using (A4).

6. Compute all the commutators and contract the indices.
7. Add all the terms together.

This algorithm results in the following set of scalar traces:

Dhhχ
3

∣∣∣
θ̄γ5θ

=− 9
256

Tr0
[
Wh(∆)∆ Wχ(−∆)

]
+

3
64

Tr0
[
Wh(∆) R Wχ(−∆)

]
+

3
1024

Tr0
[
Wh(∆)∆ R W ′χ(−∆)

]
− 3

2048
Tr0
[
Wh(∆)∆2 R W ′′χ (−∆)

]
+

9
32

ᾱ Tr0
[
Wh(∆)∆2 W̃χ(−∆)

]
+

3
32

ᾱ Tr0
[
Wh(∆)∆ R W̃χ(−∆)

]
− 9

128
ᾱ Tr0

[
Wh(∆)∆2 R W̃ ′χ(−∆)

]
+

3
256

ᾱ Tr0
[
Wh(∆)∆3 R W̃ ′′χ (−∆)

]
+

9
16

ᾱ2 Tr0
[
Wh(∆)∆2 Wχ(−∆)

]
+

3
8

ᾱ2 Tr0
[
Wh(∆)∆ R Wχ(−∆)

]
− 3

16
ᾱ2 Tr0

[
Wh(∆)∆2 R W ′χ(−∆)

]
+

3
128

ᾱ2 Tr0
[
Wh(∆)∆3 R W ′′χ (−∆)

]
,

(A37)

where the subscript on the right-hand side indicates that the diagram has been projected
onto the fermion-bilinear θ̄γ5θ. At this stage, the argument of all scalar traces has been
reduced to functions of the Laplacian ∆. These expressions are then readily evaluated using
the early-time expansion of the heat-kernel [2,8,84], in d = 4 dimensions and up to terms
quadratic in the curvature

Trs[W(∆)] =
1

(4π)2 trs[1]
∫

d4x
√

g
(

Q2[W] +
1
6

R Q1[W]

)
+O(R2) , (A38)

with
Qn[W] ≡ 1

Γ(n)

∫ ∞

0
dzzn−1W(z) , n > 0 . (A39)

Applying these formulas to (A37) gives the final expression for Dhhχ
3

∣∣∣
R θ̄γ5θ

Dhhχ
3

∣∣∣
R θ̄γ5θ

=
G k

(1− 2λ)2π

{
− 29

256
− (

89
1280

− 33
1024

π)ηN

+ (− 9
16

+
9

64
π)β + (

9
128
− 9

512
π)β ηN

+ α
[ 3

16
− 27

128
π − (

13
128
− 15

256
π)ηN −

3
8

β− (
117
80
− 63

128
π)βηN

]
+ α2

[371
80
− 21

16
π − (

5
14
− 3

32
π)ηN + (

27
4
− 27

16
π)β + (

183
40

+
45
32

π)β ηN

]
+ α3

[
− 51

20
+ (

237
56
− 81

64
π)ηN

]}
.

(A40)

We now discuss the contribution of Dχχh
3 . A priori, Dχχh

3 constitutes a trace in
spinor-space,

Dχχh
3 = −∑

n
〈ψ̄n|Γχ̄h G−1

h ΓhχG−1
ψ ∂tRψ

k G−1
ψ |ψn〉 , (A41)

where the sum is over a complete basis of spinors on the four-sphere. One can then exploit
that the vertices Γhχ act as “intertwiners” converting from a spinorial to a scalar expression.
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This allows us to rewrite (A41) as a scalar trace by inserting a complete basis of scalar
functions satisfying ∑m |φm〉〈φm| = 1

Dχχh
3 = −∑

n,m
〈ψ̄n|Γχ̄h G−1

h |φm〉〈φm| ΓhχG−1
ψ ∂tRψ

k G−1
ψ |ψn〉

= −∑
n,m
〈φm| ΓhχG−1

ψ ∂tRψ
k G−1

ψ |ψn〉〈ψ̄n|Γχ̄h G−1
h |φm〉

= −∑
m
〈φm|G−1

h ΓhχG−1
ψ ∂tRψ

k G−1
ψ Γχ̄h |φm〉 .

(A42)

After this reordering, the structure of Dχχh
3 becomes identical to the one found in Dhhχ

3 .
The evaluation of Dχχh

3 then proceeds along the same lines as the one of Dhhχ
3 , replacing

Wh(∆) 7→ G−1
h (∆) , G−1

ψ (/∇) 7→ G−2
ψ (/∇)∂tRψ

k (/∇) ,

Wχ(/∇2) 7→ Vχ(/∇2) , W̃χ(/∇2) 7→ Ṽχ(/∇2) ,
(A43)

where

Vχ(/∇2) ≡
/∇2 +

(
Rψ

k
)2

+ 2ᾱR Rψ
k[

− /∇2 +
(

Rψ
k
)2

+ 2ᾱR Rψ
k
]2 ∂tR

ψ
k ,

Ṽχ(/∇2) ≡
2(ᾱR + Rψ

k )[
− /∇2 +

(
Rψ

k
)2

+ 2ᾱR Rψ
k
]2 ∂tR

ψ
k .

(A44)

Making these substitutions in (A37) and taking into account the relative minus sign
yields the contribution of the fermion loop diagram

Dχχh
3

∣∣∣
R θ̄γ5θ

=
G k

(1− 2λ)π

{
− 39

256
+ (−27

32
+

27
128

π)β

+ α
[21

16
− 27

64
π − 3

4
β
]
+ α2

[89
8
− 105

32
π + (

135
8
− 135

32
π)β

]
+ α3 27

20

}
.

(A45)

The evaluation of the Feynman diagrams including the traceless part of the graviton
fluctuations proceeds along the same lines. In order to simplify the computation, we per-
form a transverse-traceless decomposition [97,127–129] of ĥµν on the spherically symmetric
background, setting

ĥµν = hTT
µν + Dµξν + Dνξµ +

(
DµDν +

1
4

gµν ∆
)
σ , (A46)

followed by the field redefinition

ξµ 7→
1√
2

[
∆− 1

4
R
]−1/2

ξµ, σ 7→
[3

4
∆2 − 1

4
R∆
]−1/2

σ . (A47)

The component fields, given by a transverse-traceless symmetric tensor hTT
µν , a trans-

verse vector ξµ, and a scalar σ, satisfy the differential constraints

gµνhTT
µν = 0, DµhTT

µν = 0, Dµξµ = 0. (A48)

The redefinition (A47) ensures that the decomposition does not give rise to non-trivial
(operator-dependent) Jacobians.
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Following the algorithm described above allows to reduce the operator traces appear-

ing in Dĥĥχ
3 to traces whose arguments depend on the Laplacian ∆ only. The expression

analogous to (A37) reads

Dĥĥχ
3

∣∣∣
θ̄γ5θ

=

− 1
32

TrTV
[
Wĥ ∆ Wχ(−∆)

]
+

1
128

TrTV
[
Wĥ R Wχ(−∆)

]
+

1
96

TrTV
[
Wĥ ∆ R W ′χ(−∆)

]
− 1

768
TrTV

[
Wĥ ∆2 R W ′′χ (−∆)

]
+

5
384

TrTV
[
W ′ĥ ∆ R Wχ(−∆)

]
− 3

64
Tr0
[
Wĥ ∆ Wχ(−∆)

]
+

1
64

Tr0
[
Wĥ R Wχ(−∆)

]
+

1
256

Tr0
[
Wĥ ∆ R W ′χ(−∆)

]
− 1

512
Tr0
[
Wĥ ∆2 R W ′′χ (−∆)

]
+

1
32

Tr0
[
W ′ĥ ∆ R Wχ(−∆)

]
+

3
8

ᾱ Tr0
[
Wĥ ∆2 W̃χ(−∆)

]
− 1

8
ᾱ Tr0

[
Wĥ ∆ R W̃χ(−∆)

]
− 3

32
ᾱ Tr0

[
Wĥ ∆2 RW̃ ′χ(−∆)

]
+

1
64

ᾱ Tr0
[
Wĥ ∆3 R W̃ ′′χ (−∆)

]
− 1

4
ᾱ Tr0

[
W ′ĥ ∆2 R W̃χ(−∆)

]
+

3
4

ᾱ2 Tr0
[
Wĥ ∆2 Wχ(−∆)

]
− 1

4
ᾱ2 Tr0

[
Wĥ ∆ R Wχ(−∆)

]
− 1

4
ᾱ2 Tr0

[
Wĥ ∆2 R W ′χ(−∆)

]
+

1
32

ᾱ2 Tr0
[
Wĥ ∆3 R W ′′χ (−∆)

]
− 1

2
ᾱ2 Tr0

[
W ′ĥ ∆2 R Wχ(−∆)

]
.

(A49)

Here, the subscripts TV and 0 indicate that the corresponding traces are over the space of
transverse vectors and scalars, respectively. Applying (A38), one then finds

Dĥĥχ
3

∣∣∣
R θ̄γ5θ

=
G k

(1− 2λ)2π

{
13
256

+ (
129
1280

− 33
1024

π)ηN

+
1

1− 2λ

[ 7
20
− 3

32
π + (− 179

1120
+

3
64

π)ηN
]

+ (
9
16
− 9

64
π)β + (− 9

128
+

9
256

π)β ηN

]
+ α

[
− 37

48
+

55
128

π + (
1379
1920

− 67
256

π)ηN

+
1

1− 2λ

[
− 7

30
− 1

8
π + (− 11

420
+

1
32

π)ηN)
]

+
1
8

β + (
39
80
− 21

128
π)β ηN

]
+ α2

[
− 707

240
+

13
16

π + (
201
280
− 7

32
π)ηN

+
1

1− 2λ

[
− 17

105
+ (

143
630
− 1

16
π)ηN

]
+ (−9

4
+

9
16

π)β + (
61
40
− 15

32
π)β ηN

]
+ α3

[17
20
− (

79
56
− 27

64
π)ηN

]}
.

(A50)

Finally, one can compute Dχχĥ
3

∣∣∣
θ̄γ5θ

by plugging the substitutions (A43) into (A49), giving

Dχχĥ
3

∣∣∣
R θ̄γ5θ

=
Gk

(1− 2λ)π

{
15

256
+

1
1− 2λ

[ 7
16
− 15

128
π
]
+ (

28
32
− 27

128
π)β

+ α
[
− 119

48
+

55
64

π +
1

1− 2λ

[13
20
− 3

16
π
]
+

1
4

β
]

+ α2
[
− 173

24
+

65
32

π − 17
60

1
1− 2λ

+ (−45
8

+
45
32

)β
]
− 9

20
α3
]}

.

(A51)
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For completeness, we also give the expressions for the tadpole diagrams shown in
Figure A1, which are evaluated rather straightforwardly and read

Dh
Tad

∣∣∣
R θ̄γ5θ

=
Gk

(1− 2λ)2π

{
α
[1

8
− 1

48
ηN

]}
,

Dĥ
Tad

∣∣∣
R θ̄γ5θ

=
Gk

(1− 2λ)2π

{
α
[27

8
− 9

16
ηN +

1
1− 2λ

[
− 2 +

1
4

ηN
]]}

.
(A52)

Together, the contributions (A42), (A45) and (A50)–(A52) give rise to the beta func-
tion (29). This closes our discussion on evaluating the functional renormalization group
Equation (1) including fermions in a curved background.

Notes
1 For a similar decomposition of fermionic fields into background and fluctuation fields in a flat Euclidean background, see [115].
2 We stress that physics should be extracted from the endpoint of an RG-trajectory at k = 0 [76,88]. This entails that the Newton’s

constant and cosmological constant appearing in physical processes is scale-independent.
3 Similarly to the case of split-symmetry breaking, this effect may be controlled by a modified Ward-identity.
4 We correct a misprint in the earlier work[80] where the factor of g multiplying the fermionic contribution to βλ is missing.
5 See our discussion in Section 3.2 and [58] for arguments bypassing this logic at the level of fluctuation field computations.
6 We give all results rounded to two decimal digests. The notation 0. implies that the component is non-zero but rounds to zero in

this representation.
7 This is reminiscent of the discussion of gravitational catalysis occurring in fermionic systems in hyperbolic spacetimes [122],

where it is also the spectrum of the Dirac operator, which is responsible for chiral symmetry breaking.
8 Based on a flat-background study, partial results on the fixed point structure associated with this coupling were reported in [61].
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